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Graph decompositions of finite graphs : useful for FPT 
algorithms and graph structure (Graph Minor Theorem, 
perfect graphs).  Width measures are frequently associated 
with decompositions : tree-width, path-width, rank-width, 
linear rank-width, clique-width. 



Graph decompositions and widths of countable 
graphs :  Definitions ? 

 

Compactness results : is  wd(G) the  least upper bound 
of  wd(H), for all H, finite subgraphs of G ?  
 

 

Yes  for  tree-width by  Kriz & Thomas.   



This  talk : rank-width of countable graphs. 

Two notions of linear rank-width based on two different 
linear orders :  Q   and   Z 

Two notions of rank-width based on two types of trees : 
quasi-trees (cf.  Q )  and  trees (cf.  Z ). 

 

    Different compactness results : 

Rank-width       (quasi-trees) Yes 

Discrete rank-with   (trees) Yes  with gap: n � 2.n 

Linear  rank-width       (Q) Yes 

Discrete linear rwd      (Z) No 



Rank-width : Countable, simple, undirected graphs. 

 

If X and Y are disjoint sets of vertices, A[X,Y] is the 
adjacency matrix of G  between vertices in X and in Y.  

 

The rank over GF(2) of a countable matrix A[X,Y] is 
the lub (least upper bound) of ranks of its finite sub-
matrices. 

 

 

 



A layout of a graph G is a pair ( T, f ): 

   T is a tree (without root) of degree at most 3,  

f : injective mapping : V(G) � Leaves(T) 

Each edge e of T yields a bipartition (Xe, Xe
c)  of  V(G)  

( Xe  or  Xe
c may be empty). 

rk(e) := rank of A[Xe, Xe
c]  over GF(2) 

rk(T,f) := lub {rk(e) / e,  edge of tree T}. 

rwd(G) := minimal rk(T,f)  over all layouts (T,f). 

 



 

Property : (1) rwd(H) < rwd(G) if H ⊆i G  (induced subgraph) 

(2) If, between X and Xc, there are k pairwise disjoint 
edges, then rk( A[X,Xc])  >  k. 

 

Examples : Trees have rank-width  1, 

cycles have rank-width 2; 

nxn square grids have rank-width n-1  

(Jelinek, difficult proof). 

 



Linear rank-width  

 Defined  from  layouts of the special  form  

 

 

 

 

 Equivalent to a < b <c < d < e < f : a linear order on 
vertices. Edge bipartitions (Xe, Xe

c) are replaced by  

Dedekind cuts : bipartitions  (X, Xc) such that X < Xc 

 



These definitions work for countable graphs. 

 

Terminology : discrete rank-width, drwd(G); the good 
notion of “rank-width” will be different  (for countable graphs). 

 

Theorem : Discrete rank-width has compactness,  but 
“only” with gap: 
 

drwd(G) < 2. Sup{rwd(H) / H ⊆i G, H finite} 

 



Proof : Compactness with gap : will come later.  

No  compactness. Counter-example : 

G has vertex set Q partitioned into two dense subsets 
A and B. 

     If x < y, then x -- y (edge) if and only if  y ∈ A. 
 

Every finite induced subgraph of G is a threshold 
graph, hence of rank-width 1. But  drwd(G) > 2 
(actually drwd(G) = 2 by the first fact).  

 Wanted:  a definition of rank-width giving exact compact-
ness. 



 Linear  rank-width  as  warming up. 
 

 Same as rank-width with layout = linear order on V(G). 
Bipartitions are defined from Dedekind cuts (X, Xc) (such 
that X < Xc). 
 

 There are 3 types of  layout : 

  N, Z, suborder of Q (arbitrary linear order). 

 Hence 3 notions of linear rank-width with: 

LrwdQ(G) < LrwdZ(G) < LrwdN(G) < 2.LrwdZ(G) 



 LrwdN(G) is called discrete linear rank-width, denoted by 
dLrwd(G).  

 

Lrwd(G) called linear rank-width is based on arbitrary 
linear orders. 

 
 

Theorem : (1) Lrwd has the compactness property. 

 

(2) dLrwd has not, even with a gap function. 



Proofs : (1) Using Koenig’s lemma.  

 

(2) Counter-example : 

P = the infinite path isomorphic to N 

G = the union of  ω disjoint copies of P 

Lrwd(G) = 1 for order N + N + N + … 

dLrwd(G) = ω. 



Rank-width based on quasi-trees. 
 

In order to apply Koenig’s lemma, we need a notion of 
tree closed under countably many insertions of nodes on a 
path, hence has least upper bounds for topological ordering. 

 

We will define quasi-trees whose “paths” between two 
nodes can have countably many nodes. 



Betweenness : If T is a tree, let BT(x,y,z) mean that y is on 
the path that links x and z. The following properties hold: 

 

 

  

 

 

 

 



Definition: A quasi-tree is a pair (N,B) where N is a set (its 
nodes) and B a ternary relation that satisfies Properties A1-
A7.  It is discrete if for each x, z, the set of nodes y between 
x and  z (i.e., such that B(x,y,z) holds) is finite. Then B = BT 
for some tree T. 

  

 An increasing sequence of finite quasi-trees has a lub 
that is a quasi-tree. 

 

 A cut  is a partition  (X,Xc) such that  X  and  Xc  are 
convex;  X is convex if  B(x,y,z) ∧ x∈X ∧ z∈ X ⇒ y ∈ X. 



 Degree. Nodes y and z are in the same direction relative 

to node x  if :     y = z  ∨ B(y,z,x) ∨ B(z,y,x) ∨  

      ∃ u ( B(y,u,x) ∧ B(z,u,x) ∧ B(y,u,z) ). 

 This is an equivalence relation. Its classes are the 
directions relative to x.  

 

 The degree of x is the number of directions relative to it. 
A leaf has degree 1 (it is not between two nodes). 

 



  A layout  of  G is a quasi-tree S =(N,B) whose nodes 

have  degree  <  3 and  such that   V(G)  ⊆  Leaves(S). 

 

  If  (X,Xc)  is a cut of S : 

  rk(X,Xc) := rk(A[X ∩ V(G), Xc ∩ V(G)])  

  rk(S) := Sup{ rk(X,Xc) /  (X,Xc) is a cut }  

  rwd(G) := Min{ rk(S) /  S is a layout }   

  drwd(G) := Min{ rk(S) /  S is a discrete layout }   

      = Min{ rk(T,f) /  (T,f) is a layout, T tree }  



  

 Theorem : (1) rwd has the compactness property. 

(2) drwd(G) <  2. rwd(G). 

  

Proof : (1)  With Koenig’s lemma,  as  for  Lrwd. 



  (2) drwd(G) <  2. rwd(G). 

  

First :  drwd(G) <  2.Lrwd(G). 

  

A  countable  linear order  is  

described  by  a rooted  

binary tree.  

 

   

 



Let  <  witness  that  Lrwd(G) < k. 

We  describe   <    

by  a  binary  tree.  

We get as layout of G   

a  tree of degree  < 3. 

An edge  e  yields  a  

bipartition  of  V(G)   

of  the  form  (X ∪ Z, Y).   We have:  

rk(A[X∪ Z, Y]) < rk(A[X, Y]) + rk(A[Z, Y]) 

     < rk(A[X, Y∪ Z]) + rk(A[X ∪ Z, Y])  < 2k. 



For proving that drwd(G) <  2. rwd(G), we  use essentially 
this idea: we encode a layout  S  by a binary  

rooted  tree. 
 

Structuring  of a quasi tree  S. 

Choose a  leaf  r. 

Maximal  lines  N0, N1, …  

containing r. 

U0 := N0,  

U1 := N1 - U0,  

U2 := N2 - (U0 ∪ U1 ), etc. 



 Describe  each  line  Ui  by a binary tree Ti 

 

 Connect trees  

 T0,T1,T2,… 

 into  a  single  

 tree.  

 This tree is a  

 layout of  G 

 of rank < 2.k  

 where k = rk(S).  


