

1

Polynomial bounds on clique-width

in terms of tree-width

Bruno Courcelle

Bordeaux University, LaBRI (CNRS laboratory)

Reference : B.C.: From tree-decompositions to clique-width terms, Discrete

Applied Maths, 2017, in press (on line on ScienceDirect.com).

 Various articles cited below.

2

Motivation

 Fixed-parameter tractable (FPT) graph algorithms for monadic

second-order (MSO) expressible problems,

 for graphs of bounded tree-width (twd) or clique-width (cwd),

 based on automata running on algebraic terms denoting the

(decomposed) input graphs.

Tools: Fly-automata (FA): they compute their transitions, to

overcome the “huge size problem”,

 Tree-decompositions encoded by clique-width terms,

 Linear bounds on cwd in terms of twd for sparse graphs.

3

The basic theorem : Each MSO property of graphs of cwd or twd

at most k is decidable in time f(k) x number of vertices.

 Facts: Extends to MSO properties expressed with edge set

quantifications, for graphs of bounded tree-width (not bounded cwd).

 Graphs given with relevant decompositions, of “small width”.

 Optimal decompositions are difficult to construct

 (NP-complete problems). But optimality is not essential.

4

Computation of graph evaluations

P(X) is a property of tuples X of sets of vertices (usually MSO expressible).

∃ X.P(X) : the basic, “Boolean evaluation”.

X.P(X) : number of satisfying tuples X.

Sp X.P(X) : spectrum = the set of tuples of cardinalities of the

components of the tuples X that satisfy P(X).

 MinCard X.P(X) : minimum cardinality of X satisfying P(X).

5

Computations using fly-automata (by Irène Durand)

 Number of 3-colorings of the 6 x 525 rectangular grid (of clique-
width 8) in 10 minutes.

 4-acyclic-colorability of the Petersen graph (clique-width 5) in 1.5
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

6

The McGee graph

is defined by a clique-width term

of size 99 and depth 76.

This graph is 3-acyclically colorable.

Checked in 40 minutes.

Even in 2 seconds by enumerating the accepting

runs, and stopping as soon as a successful one is found.

7

 Informal review of definitions and basic facts.

 1) Graphs are finite, simple, loop-free, directed or not.

 A graph G can be given by the logical structure

(VG , edgG(.,.)) = (vertices, adjacency relation)

2) Alternative description of graphs :

Inc(G) := (VG U EG , incG(.,.))

 = (vertices and edges, incidence relation)

 � the bipartite incidence graph of G.

MSO formulas on Inc(G) can use quantifications on sets of edges

of the considered graph G.

8

3) Tree-width (twd(G)) is well-known.

 width of decomposition : 3

 dotted lines : equal vertices

9

 4) Clique-width : algebraic construction of graphs

 Vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

Binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with (un)directed edges from (between)

 every a-vertex to (and) every b-vertex.

vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

 Basic graphs : a denotes a vertex labelled by a

10

 The clique-width of G, denoted by cwd(G), is the smallest k such

that G is defined by a term using k labels.

 Such a term is a decomposition of G as a gluing of complete bipartite

graphs. k indicates the “complexity of gluings”, not size of components.

 Classes of bounded clique-width:

 cographs, cliques, complete bipartite graphs, trees,

 any class of bounded tree-width.

 Classes of unbounded clique-width:

 Planar graphs, chordal graphs.

11

 Example 1 : Cliques (a-labelled) have clique-width 2

 and unbounded tree-width.

 Kn is defined by tn where t1 = a

 tn+1 = Relabb a(Adda,b (tn ⊕ b))

Example 2 : Cographs (a-labelled) are generated by ⊕ and ⊗ defined

by: G ⊗ H = Relabb a(Adda,b (G ⊕ Relaba b(H)))

 = G ⊕ H with “all edges” between G and H.

12

Remark : An algebraic expression of tree-width is possible, by using

parallel composition G // H instead of disjoint union G ⊕ H.

 This operation glues G and H by fusing, for each label a, the

(unique) a-vertex of G and the (unique) a-vertex of H.

 But the construction of an automaton running on terms over //

denoting graphs G of twd < k intended to check an MSO property of

Inc(G) is more complicated because of these fusions. The basic fact

for ⊕ is : G ⊕ H = ϕ (X)� if and only if

 G = ψ 1(X ∩ VG) and H = θ 1(X ∩ VH)

 or G = ψ 2(X ∩ VG) and H = θ 2(X ∩ VH) …

 or G = ψ p(X ∩ VG) and H = θ p(X ∩ VH)

13

Comparing tree-width and clique-width (undirected graphs)

 cwd (G) < 3. 2 twd(G) - 1 (Corneil & Rotics, the exponential is not avoidable)

 If a box of the tree-dec has k vertices, then 2k-1 labels may be

 necessary to specify how the vertices below it are linked to its vertices.

14

 We have : cwd (G) < 3. 2 twd(G) - 1

 Tree-width is not bounded from clique-width (consider cliques).

 However : twd (G) < 3(r-1). cwd(G) if G has no subgraph Kr,r

 We will only consider classes of graphs with no Kr,r :

 Form them : bounded tree-width ⇔ bounded clique-width.

 Question : For which classes do we have cwd(G) = O(twd(G)c)

for fixed c, with “good values” of c and of hidden constants ?

15

Graph class cwd(G) where k = twd(G)

 No subgraph Kr,r 4 / (r-1)! .kr where k > 2 r

 Uniformly q-sparse :

at most q.n edges for n

vertices (or q-degenerated)

2 / (q-1)! .kq where k > 2 q

 Nowhere dense
f(ε).k

1+ε
 for each ε > 0

 Bounded expansion

 or even ◊1(G) < b (“nabla”1)

4b.k

 no Kr,r minor a r log log r .k

 p-planar h(p).k

 Large functions f, g, h and value a !

16

 With “good” bounds :

 1-planar 18k – 29 (undirected)

 planar 6k – 2 (32k – 24 if directed)

 degree < d k.d + 1 (also directed)

 incidence graph k + 3 (2k + 4 if directed)

 grids k + 2

17

Remark : About incidence graphs of graphs of bounded tree-width

 and MSO2 properties.

 MSO2 means expressed by an MSO formula using edge set

quantifications.

Example : There exists a set of edges forming a perfect matching, or forming a

Hamiltonian path. Not possible without such quantifications.

 1) From of a tree-decomposition of G of width k, we construct a

clique-width term t for Inc(G) of “small” width k+3 (or 2k+4); no exp. !

 2) We translate an MSO2 formula ϕ for G into an MSO formula θ for

Inc(G).

 3) The corresponding automaton A(θ) takes term t as input.

18

Proof method for making tree-decompositions into cwd terms

 For a graph G and Y a set of vertices :

 µG(Y) := the number of sets NG(x) ∩ Y for x ∉ Y. (NG(x) : neighbours of x)

 More generally, neighbourhood complexity :

 νr
G(Y) := the number of sets N

r
G(x) ∩ Y .

 (Nr
G(x) : neighbours at distance at most r of x)

 Hence : µG(Y) < ν1
G(Y).

 Also : µG(Y) < (4
r
 + 4r) . Y  where r = ◊1(G) (Gajarsky et al.)

19

Lemma : If twd(G) < k, and µG(Y) < m whenever  Y  < k + 1 ,

 then cwd(G) < m + 1.

 For each graph class, we bound µG(Y) in terms of  Y .

 For planar graphs, we use the bound 3n - 6 on the number of edges ;

 for q-sparse graphs, we use an orientation of indegree at most q.

 In all cases we transform a tree-decomposition into a clique-width term

based on the same tree.

20

Proof sketch for planar graphs.

Enough to consider a bipartite graph with vertex set X U Y and  Y = k.

There are at most k+1 sets NG(x) ∩ Y for x of degree 0 or 1, (x ∈ X).

There are at most 3k-6 sets NG(x) ∩ Y for x of degree 2 : each of them

corresponds to an edge of a planar graph with vertex set Y.

There are at most 2k-4 vertices x of degree > 2 : let Z be these

vertices : 3.  Z  <  E  < 2.( Z  + k) - 4 (planar bipartite).

 Total : k+1 + 3k-6 + 2k -4 = 6k - 9.

21

Graph classes of bounded expansion

(Nesetril, Ossona de Mendez)

 Some cases : bounded degree, s-colorable,

 minor closed, hence planar or bounded tree-width,

 topologically closed (by contracting paths), p-planar.

Definition : A class C has bounded expansion if

 ∀ d ∃ c ∀ G ∈ C and H a d-shallow minor of G,

 we have  EH  < c .  VH 

 d-shallow minor : contracting connected subgraphs of radius < d.

Notation:

 ◊d(G) := Max {  EH  /  VH  , H d-shallow minor} < c

22

 Theorem (Reidl et al.) :

 A class C has bounded expansion ⇔ for each r , we have :

∃ c ∀ G ∈ C ∀ Y ⊆ VG : νr
G(Y) < c. Y 

 Hence, if C has bounded expansion (take r = 1) :

cwd(G) = O(twd(G)) for all G ∈ C

 Whence, the answer for p-planar graphs (B.E. by Nesetril et al.)

 But the bound c for r =1 is huge.

23

 Remark 1 : Several bounds for p-planar graphs:

 cwd(G) < h(p). twd(G) with huge h(p).

 cwd(G) < (6. twd(G))p + 1 because a p-planar graph is

 the union of < p+1 planar graphs.

 cwd(G) < (18. twd(G))p/2 +1 because a p-planar is

 the union of < p/2+1 1-planar graphs.

 cwd(G) < a. twd(G)q where q = 4. p1/2

 because p-planar graphs are uniformly q-sparse (Pach and Toth).

24

 Remark 2 :

 For a graph of tree-width d, given by a non-optimal

 tree-decomposition of width k, we obtain a clique-width term of width

 at most f(d).k for some fixed function f .

 The results of Corneil and Rotics give f(d) > 2 d/2 / d.

 To be done : “good” estimation of f(d).

25

More on sparse graphs : nowhere dense graph classes

 They include : bounded expansion, locally bounded expansion

 and thus locally bounded tree-width.

Definition (Nesetril, Ossona de Mendez) : A class C is nowhere dense if

∀ d ∃ c ∀ G ∈ C ∀ H d-shallow minor of G :

 ω(H) < c (ω(H) := max size of a clique in H).

26

Theorem (Eickmeyer et al.) : A class C is nowhere dense ⇔

 for each r and ε > 0 :

∃ c ∀ G ∈ C ∀ Y ⊆ VG : νr
G(Y) < c. Y 1 + ε

 Hence, if C is nowhere dense (take r = 1), then for each ε > 0 :

cwd(G) = O(twd(G) 1+ ε
) for all G ∈ C

27

 Proper inclusions of classes :

1. Graphs without Kr,r as a subgraph are not uniformly q-sparse

for any q (Erdös & Stone, see Diestel’s book),

 but twd(G) = O(cwd(G)) (Gurski & Wanke).

 2. The class of graphs G that are uniformly q-sparse,

 i.e. each subgraph H with n vertices has < q.n edges,

 is not nowhere dense : consider cliques with subdivided edges.

 We only have, presently, cwd(G) = O(twd(G)q).

 Question : Do we have cwd(G) = O(twd(G)q/2) ?

 3. The class of graphs whose degree is at most the girth is

nowhere dense by does not have bounded expansion. (N. & OdM’s book)

28

Discussion

 - in many cases the constants are “bad” (exponential) ;

 - however, they are not reached, or in weird cases only ;

 - better bounds (cf. the cases of planar and 1-planar graphs)

 should be determined for classes of particular interest ;

 - the algorithm given below works for arbitrary

 tree-decompositions (given by normal trees) as input ;

 the time and space need not be huge (no “search”).

29

Some open questions

 “Good” bounds for p-planar graphs and other classes of

bounded expansion.

 Where lies the class of q-quasi planar graphs (have drawings

where no set of q edges that cross pairwise) ?

 It is known that q-planar graphs are (q+1)-quasi planar and that

q-quasi planar graphs have n.(log n)O(log q) edges for n vertices.

For q at most 4, they are uniformly r-sparse.

30

An algorithm to transform tree-decompositions

into clique-width terms.

 First : How to specify tree-decompositions ?

 Instead of the classical definition (T,f), we use partial k-trees in the

following way. A normal tree T for a graph G is :

 rooted, its nodes are the vertices of the graph and

 adjacent vertices of the graph are comparable for the

 ancestor relation of T.

 Then T is the tree of a tree-decomposition (T,f T) where :

f T (u) := {u} ∪ { v >T u / v is adjacent to some w <T u }.

31

 Every tree-dec (T ’, f) can be made (T,f T) of same width for a

normal tree T (by contracting edges in T ’ and inserting nodes on edges;

no complicated transformation).

 f T (u) := {u, v, v’} : the edges from w, w’ “jump” over u

 edges not in the graph

 edges of the graph

32

Remarks :

 1. We get a compact data structure for the graph and a tree-

decomposition : R = (VG , edgG, parentT)

 from which f T (describing the “bags”) is easily computable.

 2. This triple is also a convenient logical structure : the bags can

be described by an MSO formula ϕ(u,X) saying “X = f T (u)” (in R)

 3. This description corresponds to the notion of a partial k-tree,

obtained by edge deletions from a k-tree.

33

Bottom-up inductive construction of a clique-width term

 from a normal tree-decomposition.

 H = RELAB (ADD(G1 ⊕ G2 ⊕ *))
 where ADD adds the edges between

 * and the vertices in G1 ⊕ G2, on the

 basis of the labels in G1 ⊕ G2

 that encode subsets of f T (*) .
 The number of such labels is

 bounded by µG(f T (*)).
 RELAB : relabellings to update the

 labels in G1 ⊕ G2 and change * into
 the correct label for H.

34

Remarks :

 1. The algorithm uses time O(n.k.m2) where :

 n = number of vertices (nodes of the tree T),

 k = the width of the tree-decomposition (T, f T),

 m = number of labels of the produced clique-width term.

 2. In this construction, adda,b only creates “stars” K1,p , but no

Kq,p. The full power of edge addition is not used. We do not get optimal

clique-width terms (as examples can show).

35

Conclusion:

 From a “good” tree-decomposition of a sparse graph (planar,

bounded degree, etc…), we can get, in some cases, a “good” clique-

width term, of comparable width (avoiding the general exponential

jump).

 There are many algorithms that construct “good” (not optimal) tree-

decompositions, but not so many that construct “good” clique-width

terms. Algorithms based on rank-width do not give “good terms”.

 Clique-width terms yield easier constructions of fly-automata than

tree-decompositions.

36

Fly-automata for the verification of MSO graph properties

 Standard proof of the basic theorem : one constructs, for each MSO

formula ϕ and integer k, a finite automaton A(ϕ,k) that takes as input

a term denoting a graph G of clique-width < k and answers in time

f(k).n whether G = ϕ (where n is the number of vertices).

 The construction is by induction on the structure of ϕ.

37

Difficulty : The finite automaton A(ϕ,k) is too large to be imple-

mented by a transition table as usual as soon as k > 2 :

2^(2^(…2^k)..)) states, because of quantifier alternations.

 To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the (say 100) transitions

necessary for an input term (say of size 100) are computed “on the fly”.

 Sets of states can be infinite and fly-automata can compute

values, for example, the number of p-colorings of a graph.

38

 Fly-automaton (FA)

Definition : A = < F, Q, δ, Out > (FA that computes a function).

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

etc. : states are encoded by finite words),

Out : Q � D , computable (D is an effective set, coded by finite words).

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued. Determinization works.

An FA defines a computable function : T(F) � D , hence, a decidable

property if D = {True, False}.

39

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n

where k depends on the operations occurring in t and bounds the tree-

width or clique-width of G.

40

Computation time of a fly-automaton (FA)

 F : all clique-width operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k). nc � it is an FPT-FA,

 a. ng(k) � it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-

width as parameter. (The important notion is the max. size of a state.)

 All dynamic programming algorithms based on clique-width terms

can be described by FA.

41

 Fly-automata can be constructed :

 - either “directly”, from our understanding of the considered graph

properties,

 - or “automatically” from a logical description,

 - or by combining previously constructed automata.

 Example of a direct construction for p-coloring :

 Checking that a “guessed” p-coloring is good: a state is a set of pairs

(a, j) where a is a label and j is a color (among 1, …, p) or Error.

 Checking the existence of a good p-coloring : a set of such states, in

practice not of maximal (exponential) size.

42

 Combinations and transformations of fly-automata.

 Product of A and B : states are pairs of a state of A and one of B.

 Determinization of A : states of Det(A) are finite sets of states of A

because the transition is finitely multi-valued. At each position in the

term, Det(A) gives the finitely many states that can in some

computation (the automaton A can be infinite).

 Counting determinization of A, yielding CDet(A):

 a state of CDet(A) is a finite multi-set of states of A (giving the

number of runs that can yield a state of A, not only the existence).

43

Inductive construction for ∃X. ϕ(X) with ϕ(X) MSO formula

 Atomic formulas (for example X ⊆ Y, edg(X,Y)) : direct constructions

 ¬ P (negation) : as FA are run deterministically (by computing at each

position the finite set of reachable states), it suffices to exchange accepting

and non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

 How to handle free variables for queries ϕ(X) and for ∃X.ϕ(X) ?

44

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vp to the free set variables X1,…,Xp of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wp)), wi ∈ {0,1} : we get F(p) (only nullary symbols are modified);

 2) a term s in T(F(p)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vp to the set variables X1,…,Xp :

 if u is an occurrence of (a, (w1,..,wp)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vp)

45

Example

 Graph G(t)

 Term t

46

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

47

 By an induction on ϕ, we construct, for each ϕ(X), X=(X1,…,Xp),

a fly-automaton A(ϕ(X)) that recognizes:

L(ϕ(X)) : = { t * (V1,…,Vp) ∈ T(F(p)) / (G(t), V1,…,Vp)  = ϕ }

Quantifications: Formulas are written without ∀

 L(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(L (ϕ(X1, ..., Xp+1))

 A(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(A (ϕ(X1, ..., Xp+1))

where prp+1 is the projection that eliminates the last Boolean;

� a non-deterministic FA denoted by prp+1(A (ϕ(X1, ..., Xp+1)),

to be run deterministically.

48

Remark: If a graph is denoted by a clique-width term t, then each of its

vertices is represented in t at a single position (an occurrence of a nullary

symbol).

 If the operation // is also used (G // H is obtained from disjoint G and H

by fusing some vertices of G to some vertices of H, in a precise way fixed by

labels), then a vertex of G//H is represented by several positions of the

term. The automaton that checks a property ϕ(X1, ..., Xp) of G denoted

by a term t must also check that the Booleans that specify (X1, ..., Xp)

agree on all positions of t that specify a same vertex of G.

 We have no such difficulty if we use disjoint union instead of //. Hence,

for representing tree-decompositions, clique-width terms may be more

convenient.

49

 Application to MSO2 properties of graphs of bounded tree-

width via incidence graphs.

 1) Recall : From of a tree-decomposition of G of width k, we

construct a term t for Inc(G) of “small” clique-width k+3 (or 2k+4).

 2) Recall : We translate an MSO2 formula ϕ for G into an MSO

formula θ for Inc(G).

 3) The corresponding automaton A(θ) takes term t as input. But an

atomic formula edg(X,Y) of ϕ is translated into ∃U. inc(X,U) ∧ inc(U,Y)

in θ which adds one level of quantification.

Fact : The automaton A(θ) remains manageable.

50

 For certain graph properties P, for example “connectedness”,

“contains a directed cycle” or “outdegree < p”, we have :

 P(G) ⇔ P(Inc(G)).

 The automaton for graphs G defined by clique-width terms can be

used “directly” for the clique-width terms that define the graphs Inc(G).

51

Summary : Checking properties of G of tree-width < k

MSO property MSO2 property

cwd term for G

of width O(k) or O(kq)

in “good cases” and

exponential in bad ones

cwd term for Inc(G)

of width O(k);

more complicated

automaton in some cases,

because of edg(X,Y)

52

General conclusion

1) By uniform constructions, we get dynamic programming algorithms

based on fly-automata, that can be quickly constructed from logical

descriptions � flexibility. A small modification of the input

formula is reflected easily in the automaton.

2) It is hard to obtain upper-bounds to time computations. We do not

get better algorithms than the specific ones that have been

developed.

53

3) Even for graphs given by tree-decompositions, clique-width terms

are appropriate because of two facts:

(a) Fly-automata are simpler to construct and

(b) it is practically possible to translate tree-decompositions of

“certain” sparse graphs into clique-width terms.

4) Fly-automata are implemented. Tests have been made for

colorability and connectedness problems.

