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Motivation 

 Fixed-parameter tractable (FPT) graph algorithms for monadic 

second-order (MSO) expressible problems, 

 for graphs of bounded tree-width (twd) or clique-width (cwd), 

 based on automata running on algebraic  terms denoting the 

(decomposed)  input graphs. 

Tools: Fly-automata (FA): they compute their transitions, to 

overcome the “huge size problem”, 

  Tree-decompositions  encoded  by  clique-width  terms, 

  Linear bounds on cwd in terms of  twd  for sparse graphs.  
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The basic theorem : Each MSO property of graphs of  cwd  or twd  

at most k  is  decidable  in  time  f(k) x number of vertices. 
 

 Facts: Extends to MSO properties expressed with edge set 

quantifications, for graphs of bounded tree-width (not  bounded  cwd). 

   

  Graphs given with relevant decompositions, of “small  width”. 

   

  Optimal  decompositions are difficult to construct   

  (NP-complete problems). But  optimality is  not  essential. 
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Computation  of  graph  evaluations 

 

P(X) is a property of tuples X of sets of vertices (usually MSO expressible). 

∃ X.P(X)  : the basic, “Boolean evaluation”. 
 

# X.P(X) : number of satisfying tuples X. 
 

Sp X.P(X)  : spectrum = the  set  of tuples of  cardinalities of  the 

components of the tuples  X  that satisfy  P(X). 
 

 MinCard X.P(X) : minimum cardinality of  X satisfying P(X). 
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Computations  using  fly-automata    (by  Irène  Durand) 
 

 Number of   3-colorings  of  the  6 x 525  rectangular grid  (of clique-
width  8)  in  10 minutes.  
 
 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)  in  1.5   
minutes. 
 
 (3-colorable but not acyclically;  

 red   and  green   vertices  

 induce  a  cycle). 
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The  McGee  graph    

is  defined  by a clique-width term  

of  size  99  and depth 76. 

 

This graph  is 3-acyclically  colorable. 

Checked in 40 minutes. 

 

Even in  2 seconds by enumerating the accepting  

runs,  and  stopping  as soon as  a  successful one  is found. 
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  Informal   review  of  definitions  and  basic facts. 
  

  1)  Graphs are finite, simple, loop-free, directed or not. 

  A  graph  G  can be  given  by  the logical  structure   

( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 

2) Alternative  description  of  graphs : 

Inc(G) :=  ( VG U  EG ,  incG(.,.) )  

   = (vertices and edges,  incidence  relation) 

  �     the  bipartite  incidence  graph  of  G. 

 

MSO  formulas  on  Inc(G)  can use quantifications  on sets of edges  

of  the  considered  graph  G. 
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3)  Tree-width ( twd(G) )   is well-known. 

 

 

 

         

 

 

 

 

  width of  decomposition : 3 

  dotted  lines : equal  vertices 
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 4)  Clique-width  :  algebraic  construction of graphs  
 

 Vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a  is an  a-vertex. 
 

Binary  operation:   disjoint  union  :   ⊕ 

Unary  operations:  edge  addition  denoted  by  Adda,b 

Adda,b (G)  is  G  augmented   

with  (un)directed edges  from (between) 

 every   a-vertex  to (and)  every  b-vertex. 

vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 Basic graphs  :  a    denotes  a  vertex  labelled  by   a 
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 The clique-width  of    G, denoted by cwd(G), is the smallest  k  such 

that   G is  defined  by a  term  using  k   labels.  

 Such a term is a  decomposition  of  G  as a gluing of complete bipartite 

graphs. k  indicates the “complexity of  gluings”, not size of components. 

 

 Classes  of   bounded   clique-width:  

  cographs,  cliques,  complete bipartite graphs,  trees,  

  any  class  of  bounded   tree-width. 

 

 Classes  of  unbounded  clique-width: 

  Planar  graphs, chordal graphs. 
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 Example 1 : Cliques  (a-labelled)  have  clique-width  2 

 and  unbounded  tree-width. 

 

 

 

 

 

 

 

  Kn   is   defined   by   tn   where    t1   =   a 

  tn+1   =   Relabb      a( Adda,b (tn ⊕ b) ) 

 

Example 2 :  Cographs  (a-labelled)  are   generated   by   ⊕   and   ⊗   defined  

by:     G ⊗ H  =  Relabb      a(  Adda,b ( G ⊕ Relaba      b(H) )  ) 

              =   G ⊕ H   with   “all edges”   between   G   and    H. 
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Remark :   An algebraic expression of  tree-width  is  possible, by using 

parallel composition  G // H instead  of  disjoint union  G ⊕ H. 

 This operation  glues G  and  H  by  fusing, for each label a, the 

(unique)  a-vertex of  G  and  the  (unique)  a-vertex of  H. 

 But the construction  of  an automaton  running  on  terms over  //  

denoting graphs G of  twd < k  intended  to check an MSO property  of 

Inc(G)  is  more  complicated because  of  these  fusions.  The  basic  fact  

for   ⊕   is :   G ⊕ H   =  ϕ (X)�  if  and  only  if     

     G    =  ψ 1(X ∩ VG)   and   H   =  θ 1(X ∩ VH)  

     or  G    =  ψ 2(X ∩ VG)    and   H   =  θ 2(X ∩ VH)   …  

     or   G    =  ψ p(X ∩ VG)   and   H   =  θ p(X ∩ VH)     
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Comparing  tree-width  and  clique-width  (undirected  graphs) 

 cwd (G)  < 3. 2 twd(G) - 1   (Corneil & Rotics, the exponential is not avoidable) 

    

 

 

 

 

 

 

 

 

 If  a  box  of  the  tree-dec  has  k  vertices, then  2k-1  labels may be  

 necessary  to  specify  how  the vertices  below  it  are linked to its vertices. 
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 We  have  : cwd (G)  < 3. 2 twd(G) - 1    

 Tree-width  is  not  bounded  from clique-width (consider cliques). 

 However :   twd (G) <  3(r-1). cwd(G)  if G has no subgraph Kr,r 

 

 We will  only consider classes  of graphs with no  Kr,r : 

 Form them :  bounded tree-width  ⇔  bounded  clique-width.  

  

  Question :  For  which classes do we have cwd(G) = O(twd(G)c )  

for fixed c,  with “good values” of  c  and of hidden constants ? 
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Graph class cwd(G)  where  k = twd(G) 

  No subgraph  Kr,r  4 / (r-1)! .kr     where   k >  2 r 

  Uniformly  q-sparse  :  

at most  q.n   edges for  n 

vertices   (or  q-degenerated) 

  

2 / (q-1)! .kq     where   k >  2 q 

  Nowhere  dense 
f(ε).k 

1+ε
      for each    ε  > 0     

  Bounded expansion 

  or  even  ◊1(G) <  b (“nabla”1) 

 

4b.k 

  no  Kr,r  minor a r log log r .k 

   p-planar h(p).k 
 

  Large  functions  f, g, h  and  value a ! 
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 With  “good”  bounds :  

 

   1-planar 18k – 29  (undirected) 

  planar 6k – 2     ( 32k – 24  if directed) 

  degree   <  d  k.d  + 1    (also  directed) 

   incidence  graph k + 3       ( 2k + 4  if  directed) 

  grids  k + 2          
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Remark :  About  incidence  graphs  of graphs  of  bounded  tree-width  

       and  MSO2  properties. 

 MSO2  means  expressed by an MSO  formula  using edge  set  

quantifications.  

Example : There exists a set of edges forming a perfect matching, or forming a  

Hamiltonian path. Not possible without such quantifications. 
 

 1) From  of  a  tree-decomposition of  G  of  width k, we  construct  a  

clique-width  term  t  for  Inc(G)  of  “small” width k+3 (or 2k+4 ); no exp. !  

 2) We translate an MSO2  formula  ϕ  for  G into an MSO formula θ for 

Inc(G).   

 3) The  corresponding  automaton  A(θ)  takes  term  t  as  input.  
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Proof method  for making  tree-decompositions into cwd terms 

  

 For  a  graph  G  and  Y  a  set  of  vertices : 

 µG(Y) :=  the number of sets  NG(x) ∩ Y  for x  ∉ Y. (NG(x) : neighbours of x) 

  

 More generally, neighbourhood  complexity :  

 

 νr
G(Y) :=  the number of sets  N

r
G(x) ∩ Y .  

         (Nr
G(x) : neighbours at distance at most r of x) 

 Hence :  µG(Y) <   ν1
G(Y). 

 Also  :   µG(Y) <  (4
r
 + 4r) . Y     where    r = ◊1(G)       (Gajarsky et al.) 
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Lemma :  If  twd(G) <  k, and  µG(Y) <  m   whenever    Y  < k + 1 , 

      then  cwd(G)  <  m + 1. 

  

 For each graph class, we  bound  µG(Y)  in  terms  of     Y . 

 For planar graphs, we use the bound 3n - 6 on the number of edges ;  

 for q-sparse  graphs, we use  an orientation of  indegree  at  most q. 

 

 In  all  cases we  transform  a tree-decomposition  into  a clique-width term  

based  on  the  same  tree.  
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Proof sketch for planar graphs. 

 

Enough  to  consider a bipartite graph  with vertex set  X U Y and   Y = k. 

There  are at most  k+1  sets NG(x) ∩ Y  for x  of degree 0 or 1,  (x ∈ X). 

There  are at most  3k-6  sets NG(x) ∩ Y  for x  of degree 2 : each of  them 

corresponds to an edge of a planar graph with vertex set Y. 

There are at most  2k-4  vertices  x  of degree > 2 : let  Z  be  these  

vertices :  3.  Z  <   E  <  2.(  Z  + k )  -  4  (planar bipartite). 

 Total : k+1  + 3k-6  + 2k -4  =  6k -  9.  
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Graph  classes  of  bounded  expansion  

(Nesetril, Ossona de Mendez) 
  

 Some cases  : bounded degree,  s-colorable,  

     minor closed, hence  planar  or  bounded tree-width, 

     topologically  closed  (by contracting  paths ),   p-planar. 
      

Definition :  A  class  C  has  bounded  expansion  if   

 ∀ d ∃ c ∀ G  ∈ C  and  H  a  d-shallow minor of  G,   

   we have     EH   <   c .  VH   

 d-shallow minor : contracting connected subgraphs of radius < d. 

Notation:  

  ◊d(G) := Max {  EH    /   VH   ,  H  d-shallow  minor}  <   c 



 

22 

 

 Theorem  (Reidl et al.) :  

 A class C has  bounded  expansion  ⇔  for each r , we have : 

∃  c  ∀  G  ∈  C  ∀ Y ⊆ VG :  νr
G(Y) <   c. Y  

 Hence, if  C  has  bounded  expansion  (take  r = 1) : 

cwd(G)  =  O( twd(G) )   for all  G  ∈  C 

 Whence, the  answer  for  p-planar graphs (B.E. by  Nesetril et al.)  

 But  the bound  c  for  r =1  is  huge.  
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 Remark  1  : Several  bounds  for  p-planar graphs: 

  cwd(G)  <  h(p). twd(G)    with huge   h(p). 
 

  cwd(G)  <  ( 6. twd(G) )p + 1    because  a  p-planar  graph  is  

  the  union  of  <  p+1  planar graphs. 
 

  cwd(G)  <  ( 18. twd(G) )p/2 +1    because a  p-planar  is  

  the  union  of  <  p/2+1   1-planar graphs. 
 

  cwd(G)  <  a. twd(G)q    where  q  = 4. p1/2    

  because  p-planar graphs are  uniformly q-sparse  (Pach and Toth). 
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 Remark  2 :  

  For a graph of tree-width d, given  by  a non-optimal  

 tree-decomposition of width k,  we obtain  a  clique-width term of width  

 at  most  f(d).k  for some fixed function  f .  

 

  The results of  Corneil  and  Rotics  give  f(d)  >  2 d/2 / d. 

   

  To be done : “good”  estimation of f(d). 
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More on sparse graphs : nowhere dense graph classes 

  They include : bounded expansion,  locally  bounded  expansion  

      and  thus  locally  bounded tree-width. 

 
 

Definition (Nesetril, Ossona de Mendez) : A  class  C  is  nowhere dense   if   

∀ d ∃ c ∀ G  ∈ C  ∀  H   d-shallow minor of  G : 

    ω(H)  <   c            (ω(H)  := max size of a clique in H). 
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Theorem (Eickmeyer et al. ) : A  class  C  is  nowhere dense    ⇔   

   for each r  and ε > 0  : 

∃ c  ∀  G  ∈  C  ∀ Y ⊆ VG   :  νr
G(Y) <   c. Y 1 + ε 

  

 Hence, if  C  is nowhere  dense  (take  r = 1), then  for each ε > 0  : 

cwd(G)  =  O( twd(G) 1+ ε
  )   for all  G  ∈  C 
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 Proper  inclusions  of  classes :  

1. Graphs  without  Kr,r   as  a  subgraph  are  not  uniformly q-sparse 

for any  q  (Erdös & Stone, see Diestel’s  book),  

          but   twd(G)  =  O( cwd(G))    ( Gurski  & Wanke). 

 2. The class  of  graphs  G   that  are  uniformly  q-sparse,  

 i.e. each subgraph  H  with n  vertices has  <  q.n  edges,  

 is   not   nowhere dense : consider  cliques with  subdivided  edges. 

  We only have, presently,   cwd(G)  = O( twd(G)q).  

  Question : Do  we have  cwd(G)  = O( twd(G)q/2 )  ? 
  

 3.   The  class  of graphs  whose degree is at most the girth  is  

nowhere dense  by  does not have bounded expansion. (N. & OdM’s book)  
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Discussion  

 

  - in many cases  the  constants  are  “bad” (exponential) ;   

  - however, they are not reached, or in weird  cases only ;   

  - better  bounds (cf. the cases of planar and 1-planar graphs)   

   should  be determined  for classes of particular interest ; 

  - the  algorithm  given  below  works  for  arbitrary  

   tree-decompositions (given by normal trees) as input ;  

   the  time and  space need not be huge (no  “search”). 
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Some open  questions 

 

 “Good”  bounds  for  p-planar graphs  and  other  classes  of 

bounded expansion. 

 

 Where  lies  the  class  of  q-quasi planar graphs (have drawings 

where  no  set  of  q  edges that cross pairwise) ?  

 It is known that  q-planar  graphs are  (q+1)-quasi planar and that  

q-quasi planar  graphs have  n.(log n )O(log q)  edges  for  n vertices. 

For q at most 4, they  are  uniformly   r-sparse. 
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An  algorithm  to  transform  tree-decompositions 

into clique-width terms. 

 

 First  :  How  to  specify  tree-decompositions ? 
 

 Instead  of  the classical  definition  (T,f), we  use partial k-trees  in the 

following way.    A  normal  tree  T  for  a  graph  G  is : 

  rooted,  its nodes  are  the  vertices  of  the  graph  and   

  adjacent  vertices of the graph  are  comparable  for the  

  ancestor  relation  of  T. 

 Then  T  is   the tree of a tree-decomposition (T,f T)  where : 

f T (u) := {u}  ∪ { v >T u  /  v  is  adjacent  to  some  w <T u  }. 
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 Every  tree-dec (T ’, f)  can  be  made  (T,f T)  of  same  width  for a  

normal  tree  T  (by contracting  edges in T ’  and  inserting  nodes  on  edges; 

no complicated  transformation).  

 f T (u) := {u, v, v’}  :  the edges  from  w, w’   “jump”  over  u 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 

          edges not in the graph  
     
          edges of  the graph  
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Remarks :  

 1. We  get  a  compact  data structure for  the graph and  a  tree-

decomposition  :     R =  (VG , edgG, parentT ) 

  from  which  f T  (describing the “bags”) is easily computable. 

 

 2. This  triple  is  also  a  convenient  logical structure  : the bags  can 

be described by an MSO formula  ϕ(u,X)  saying  “X = f T (u)”  (in R) 

 

 3. This description corresponds to  the  notion  of  a  partial k-tree, 

obtained by edge deletions from a  k-tree. 
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Bottom-up  inductive  construction  of  a clique-width  term   

       from  a  normal  tree-decomposition. 

           H = RELAB ( ADD(  G1 ⊕ G2 ⊕  *  )) 
         where  ADD  adds  the edges between   

                *  and  the vertices in  G1 ⊕ G2, on the 

           basis  of  the  labels  in  G1 ⊕ G2    

                    that  encode  subsets  of  f T (*) .  
          The  number of  such  labels  is    

          bounded   by  µG(f T (*)).  
          RELAB  : relabellings to update  the  

          labels in  G1 ⊕ G2  and  change  *  into  
          the  correct  label  for  H. 
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Remarks :   

 1.  The  algorithm  uses  time  O(n.k.m2) where : 

  n =  number of  vertices (nodes  of the tree T), 

  k =  the width  of the tree-decomposition  (T, f T ), 

  m = number of labels  of the produced  clique-width term. 

  

 2.   In  this construction, adda,b  only creates  “stars”  K1,p , but  no  

Kq,p. The full power of edge addition is not used.  We  do  not  get  optimal  

clique-width terms  (as  examples  can show). 
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Conclusion:   

 From  a  “good”  tree-decomposition  of  a  sparse graph  (planar, 

bounded degree, etc…),  we can  get, in some cases,  a  “good”  clique-

width  term, of  comparable  width  (avoiding   the  general  exponential   

jump). 
 

 There are many algorithms that  construct  “good” (not optimal)  tree-

decompositions, but  not  so  many  that  construct “good” clique-width  

terms.  Algorithms  based  on  rank-width  do  not give “good terms”. 

 

 Clique-width  terms  yield  easier  constructions  of  fly-automata  than 

tree-decompositions.
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Fly-automata  for  the  verification  of  MSO  graph properties 

 

 Standard proof  of  the basic  theorem : one constructs, for each  MSO  

formula  ϕ  and  integer k,  a  finite  automaton A(ϕ,k) that  takes  as  input 

a term denoting a graph G of clique-width < k and  answers  in  time   

f(k).n    whether   G   =  ϕ    (where   n  is the number of vertices). 

 The   construction  is   by  induction  on  the  structure  of  ϕ. 
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Difficulty : The  finite  automaton  A(ϕ,k)  is  too large  to  be  imple-

mented  by  a  transition  table  as  usual as  soon  as  k > 2 :  

2^(2^(…2^k)..))  states,   because of quantifier alternations. 
  

 

  To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the (say 100) transitions 

necessary  for  an  input  term (say of size 100) are  computed “on the fly”.   
 

  Sets of states can be infinite and  fly-automata can compute 

values, for example,  the  number of  p-colorings  of a graph.  
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 Fly-automaton  (FA)   

Definition :  A = < F, Q, δ, Out >    (FA   that   computes  a   function). 

F :   finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

etc. : states are  encoded by finite words), 

Out : Q � D , computable  (D  is an effective set, coded  by  finite  words). 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued.  Determinization  works.    

An  FA defines  a  computable  function : T(F) � D , hence,  a  decidable  

property  if  D  =  {True, False}. 
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The  MSO  meta-theorem  through  fly-automata 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n 

where k depends on the operations occurring in t and bounds the tree-

width  or  clique-width of  G.  
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Computation  time  of  a  fly-automaton (FA)  
  

 F : all  clique-width  operations,   Fk : those  using k  labels. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k). nc  �    it is an FPT-FA, 

  a. ng(k)  �    it is an XP-FA. 

 The  associated  algorithm  is  polynomial-time, FPT  or XP  for clique-

width  as  parameter.        (The important notion is the max.  size of a state.)  

 All  dynamic programming algorithms  based on clique-width  terms 

can  be described by FA.  
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  Fly-automata  can  be constructed : 
 

 - either  “directly”, from  our  understanding  of  the considered  graph 

properties, 

 - or  “automatically”  from a  logical description, 

 - or by combining  previously  constructed  automata. 

 

 Example  of a  direct construction for  p-coloring  :  

 Checking that a “guessed”  p-coloring  is good: a state is a set of pairs 

(a, j) where a is a label  and  j  is a color (among 1, …, p) or Error. 

 Checking the existence of a good  p-coloring  : a set of such states, in 

practice not of maximal (exponential) size. 
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 Combinations  and  transformations  of  fly-automata. 

 

 Product  of  A  and  B :  states are pairs of a state of A  and one of B. 

 Determinization  of  A :  states  of  Det(A)  are  finite sets of states of A  

because the transition is  finitely  multi-valued.  At  each  position  in the 

term, Det(A)  gives the finitely  many  states  that can  in some 

computation (the automaton A  can be infinite). 

 Counting  determinization of A, yielding CDet(A):   

 a state of CDet(A)  is a finite  multi-set  of  states of A (giving the 

number of runs that can yield a state of A, not only the existence). 
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Inductive  construction  for  ∃X. ϕ(X)  with  ϕ(X)  MSO  formula 

 

 Atomic formulas  (for  example X ⊆ Y, edg(X,Y) ) :  direct  constructions 

 ¬ P (negation) :  as  FA  are  run deterministically (by computing at each 

position the finite set of reachable states), it suffices  to  exchange  accepting  

and  non-accepting  states. 

 P ∧ Q, P ∨ Q :  products  of  automata. 

 How  to  handle  free  variables  for  queries ϕ(X) and for  ∃X.ϕ(X) ? 
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vp  to  the  free  set  variables  X1,…,Xp  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F  each  a   by  the  nullary  symbol  

  (a, (w1,…,wp)), wi ∈ {0,1} :  we  get  F(p) (only  nullary symbols are  modified); 

  2)  a  term   s   in  T(F(p) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vp   to  the  set  variables  X1,…,Xp :   

   if   u  is  an  occurrence  of  (a, (w1,..,wp)),  then    

     wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vp)    
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Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct,  for  each  ϕ(X),  X=(X1,…,Xp),    

a fly-automaton    A(ϕ(X))  that  recognizes: 

L(ϕ(X)) : =  { t * (V1,…,Vp) ∈ T(F(p) )  /  ( G( t ), V1,…,Vp )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( L ( ϕ(X1, ..., Xp+1)  ) 

  A(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( A ( ϕ(X1, ..., Xp+1)  ) 

 

where   prp+1  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic  FA  denoted  by  prp+1( A ( ϕ(X1, ..., Xp+1)  ), 

to   be  run deterministically. 
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Remark:  If a graph is denoted by a clique-width term t, then each of its 

vertices is represented in t  at a single position (an occurrence of a nullary 

symbol). 

 If the operation // is also used   ( G // H  is obtained  from disjoint G and H 

by fusing some vertices of G  to some vertices of  H, in a precise way  fixed by 

labels), then a vertex  of  G//H  is represented by several positions of the 

term. The automaton that checks a property  ϕ(X1, ..., Xp) of  G  denoted 

by  a term t  must also check that the Booleans that specify  (X1, ..., Xp)  

agree on all positions of t  that specify a same vertex of G. 

 We have no such difficulty if we use disjoint union instead of  //. Hence, 

for representing tree-decompositions, clique-width terms may be more 

convenient. 
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 Application  to  MSO2  properties of graphs  of  bounded  tree-

width  via   incidence   graphs. 
 

 

 1) Recall : From  of  a  tree-decomposition   of  G  of  width k, we  

construct  a  term  t  for  Inc(G) of “small” clique-width  k+3  (or 2k+4).   

 2) Recall :  We translate an MSO2  formula  ϕ  for G  into  an  MSO 

formula  θ  for Inc(G).   

 3) The corresponding  automaton A(θ) takes  term  t  as  input. But  an 

atomic formula  edg(X,Y) of  ϕ  is  translated  into  ∃U. inc(X,U) ∧ inc(U,Y) 

in  θ  which  adds  one  level  of  quantification.    

Fact  :  The  automaton  A(θ) remains  manageable.  
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 For  certain graph  properties  P, for example  “connectedness”, 

“contains a directed cycle”  or   “outdegree  <  p”, we  have : 

      P(G) ⇔  P(Inc(G)). 

 The  automaton  for  graphs G  defined by clique-width terms  can be 

used  “directly”  for  the clique-width  terms  that define  the  graphs Inc(G).
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Summary  :  Checking  properties  of  G  of  tree-width  < k 

 

MSO  property MSO2  property 

cwd  term  for  G 

of width O(k) or O(kq)  

in  “good cases”  and  

exponential  in bad ones 

cwd  term  for  Inc(G) 

of  width  O(k);  

more complicated  

automaton in some cases, 

because  of  edg(X,Y) 
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General  conclusion 
 

1) By uniform constructions, we get  dynamic programming  algorithms 

based on fly-automata, that can be quickly constructed  from  logical  

descriptions  �  flexibility.  A  small modification of the input 

formula  is reflected  easily in the automaton.  

2) It is hard to obtain upper-bounds to time computations. We do not 

get better algorithms than the specific ones that have been 

developed.  
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3) Even for graphs given by tree-decompositions, clique-width terms 

are appropriate because of  two facts:  

(a) Fly-automata are simpler to construct  and  

(b) it is practically possible  to  translate tree-decompositions  of  

“certain”  sparse graphs into clique-width terms. 

4) Fly-automata are implemented. Tests have been made for 

colorability  and  connectedness problems.  

  

 

 


