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Labelling Schemes for solving First-Order and  
Monadic Second-Order Queries  

 

Aim : to  check  properties of vertices and to compute functions like 

distance  from  fixed  short  vertex  labels           (label = bit sequence). 

Short  =  of  length O(log(n)) or  O(log2(n)) ; n = number of vertices 

 Wanted : for fixed class of graphs C  and  fixed  property or   function F , 

   two   algorithms : 

    Algo  A  : defines  for  G in C  a label  J(x)  for each x in V = V(G). 

    Algo  B   : computes  F(u,v,X,Y)   from  J(u), J(v), J(X), J(Y)   

   for   vertices  u, v, sets of vertices  X,Y  in   some  G  in C   

 Idea : all necessary information from G is distributed  on vertices;  

         computing  F  need  not process  the graph  (this has been done by A). 
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Results  
Adjacency (implicit representation)  with labels of  size  O(log(n)): 

   Bounded arboricity (includes  planar, bounded tree-width) 
   Bounded clique-width,  
   Interval graphs (unbounded clique-width and arboricity) 
 
Distance   Static : all     Θ(n)   
       trees, bdd tree-width, clique-width    Θ(log2(n))   
       planar between   O(n1/3)   and   O(n1/2)  
       interval  graphs   O(log(n)) 
 
Distance  Dynamic : obstacles (forbidden parts, specified in query) 

      to be computed  :  d(u,v,X,F), the distance of u and v in (G-F)\X 

      X : forbidden vertices,  F : forbidden edges. 

       Clique-width <  k  : O(k2.log2(n))       (B.C., A. Twigg, stacs07) 
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Connectivity labelling (dynamic)  

      Clique-width <  k  : O(k2.log(n))            (B.C., A. Twigg, stacs07) 

      Planar graphs with obstacles :O(log(n))(B.C.,C.Gavoille, M.Kanté,A.T.08) 
    

General  logical  approach  
 

Monadic second-order properties  (optimization  or  counting  functions) 

  Clique-width <  k  : O(f(k).log(n))    (O(f(k).log2(n)) )      (B.C., R. Vanicat 03) 

First-order properties  and  counting  functions : 

Classes of graphs  “nicely  decomposable”,  
of  locally   bounded  tree-width  or  clique-width :  
  O(log(n))   or   O(log2(n))     (B.C.,C.Gavoille,M.Kanté08) 
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Tools   (in red : this talk) 
 

Graph  structure properties : unions of forests, (balanced)  tree-decom-

positions   and   clique-width   expressions,  

 Coverings  by families of  subgraphs  of bounded  clique-width  

          with  limited  overlapping. 

 Straightline  planar   embeddings                   (De Fraysseix et al., Schnyder) 

 Decompositions in 3-connected components  of planar graphs. 

 

Monadic second-order  formulas  on terms  translated into finite automata  
   (Doner, Thatcher-Wright). 

 

First-order  formulas  decomposed into  local and  “connected”  formulas  
   (Gaifman, Frick) 
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Bounded  arboricity  
 

G   is  the  union  of  k  edge-disjoint  rooted  forests   F1, …, Fk 

fi   is  the  (partial)    father    function  in  forest   Fi 

We define   J(x) =  (x, f1(x), …, fk(x))   of size   <  (k+1). ┌ log(n) ┐ 

 (vertices  are  numbered from 1,  and  denoted  by binary bit sequences) 

Adjacency  check : 

u   and   v  are  adjacent   if   and   only  if  : 

u  =  fi(v)   or   v  =  fi(u)  for  some  i. 
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Monadic Second-Order (MS) Logic  
=  First-order logic   on  power-set   structures  
 
=  First-order logic  extended  with (quantified) variables  

denoting  subsets  of  the domains. 
 
MS  properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of  formulas  for   G =  ( VG , edgG(.,.)  ), undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  &  ∃y ∉ X  &  ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∈ X)  ) 

 
2-colorability (i.e.  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∉ X) &∀u,v (u ∉ X  &  edg(u,v) ⇒ v ∈ X) ) 
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1. Short  labels  for  MS  definable  queries  
     (C&V = B.C. & R.Vanicat, Discrete Applied Maths, 2003) 

 

Theorem : 1) Given  k  and a  monadic  second-order  graph property P(X1,…,Xm) : 

For every graph G defined by a clique-width expression of width  k,  

one can define a label J(x) for each vertex  x  of  G  such that,  

 from the sets  of labels  {J(y)  /  y  in  set  of vertices  Ai},     i=1,…,m,   

 one can determine if   P(A1, …,Am)   is true. 

Size of J(x) :     O(log(n)) 

Preprocessing  time  :  O(n.log(n)) 

Answer to query  :   O(a.log(n))      where a = ⎜A1 ∪…∪Am ⎜ 

2)   For MS optimization functions (like distance) or counting functions (number of 

tuples of vertices b1,…,bq  that satisfy P(b1,…,bq,A1,…,Am)  for given A1,…,Am), 

we  replace  log(n)  by   log2(n) 
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2. Short labels for connectivity check in planar graphs with  obstacles.   
         (B.C., C.Gavoille, M.Kanté, A.Twigg    2008) 
  

Question  is :  are  u and v  connected in  (G-F) \ X   ? 

Method  :  

 (1) We  treat  3-connected  planar graphs  and their edge subdivisions (new 

vertices inserted  on edges). 

 (2)  Then   2-connected  planar  graphs  decomposed as trees  of  3-connected 

components. 

 (3) Then connected planar graphs decomposed as trees of 2-connected 

components. 

  

 For case (1) we use a geometric method. For cases (2) and (3) we use a 

labelling (based on C&V, cf. 1.) for querying the decomposition trees, combined with  

labellings  of  type   (1)   for  the  3-connected components 
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(1)  The  case  of  3-connected  planar  graphs 

 

   

  

  

  

  

  

  

 

  A  graph  G       Its   augmented  graph  G+  

          = G   with  face to vertex  edges  

 

 



 11

I 

I 

M 

M 

M 

M 

 

Ii 

 

X  =   the  set of  4  big  blue  vertices.    Deleting   X  separates  

Its barrier  Bar(X)  is  the set  of  thick blue   x  and  y   but  not   y and z. 

edges (consists  of all  u--f--v  where  u,v   The barrier  separates  topolo- 

in   X   and   f   is   a   face-vertex )     gically  x and y,  but not y and z
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To  be  done : 

1) Construct a  straightline  embedding of G+ with integer coordinates of maximum 

value O(n). This is possible since G+  is  simple, because G is 2-connected. (dF, Sch) 

2) From  labels  of  vertices  in  X, we want to  determine the coordinates of the end 

vertices  of  the  line segments  of  the edges  of  Bar(X). 

3) Using a computational geometry algorithm, we can test  whether  two vertices u, v  

given by their coordinates,  are  separated  in  the  plane  by  Bar(X). 

For 2) since  G+ is planar, it is the union of 3 forests. One uses an adjacency 

labelling  for  G+,  from which, for any two vertices  u,v,  one can obtain the at most 

two  faces f and h  to which they are both adjacent, as values of gi(u) or gi(v) for 

some i  = 1,…,30  where  g1,…,g30  is a finite list of partial functions. (Which i’s give 

the faces incident with u and v depends on tests  of  the  form  “gj(u) = gk(v) ?” ). 

Labels :  D(x) = (C(x), C(g1(x)),…,C(g30(x))) where C(u) = integer coordinates  of u. 
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Constructing   these  functions. 

We  cover G+  with 3 forests : red (1),  

green (2) and black (3)  ;  

“father  functions”  are   g1, g2, g3 . 

That  2 vertices belong to face f  is 

described  by  3  cases : 

 

(1) g3(x)  =  g1(y) =  f  

 

(2) g2,3(x) = z  and  g2 (x) = f    where  g2,3 = g2 o g3 

 

(3)  g1(f) = w  and  g2 (f)  =  z    :  more difficult : no function can invert   g1, g2, g3 . 
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We construct  another planar  

graph  H   by  putting  a  triangle  

or  an  edge in  certain  faces. 

We cover  H  with  3   forests,  

giving  3  functions   h1, h2, h3  

(circled numbers in green). 

 

Then   

h1(z) =  w  indicates  that  z   and   w  

belong   to  a  same  face ;   

this   face  is  determined  

by  6  other  unary  functions. 
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Overview  of  the  algorithm(s) : 

 

        D(X)                     D(u), D(v) 

 

G  G+, embedding  {D(v)}    Bar(X)  data      Yes  or  No 
            (decomposition)                                          structure for   u  and  v  
            geometric queries   linked in G\X ? 

                

           time O( n.log(n) )       time O( ⎜X ⎜.log(⎜X⎜) )       time  O(log( ⎜X ⎜)) 
   n vertices  

 

First  we  process  G and define  label D(v) for each vertex v.    

Then  we  process  a set of  vertices X  given by  D(X) = set of D(x), x in X.   

Then  connectivity  queries  for  various  u,v,  and  the  fixed  set  X. 
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General case :  Two   difficulties  

 1st  :  If  G is not 2-connected,  G+  is not simple and has no 

straightline embedding.  

 2nd  :  If  G  is  2-connected  but  not  3-connected : 

 

 

 
 

 

 

 x  and  y  are  incident  with  an  unbounded number of faces. 

One cannot specify all of them with a  fixed  number of  functions ; one  

cannot  find the coordinates  of  all  segments (edges)  in   Bar({x,y}). 
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 Tool  1  :    The  (auxiliary)  tree  of  2-connected  components. 
 Its nodes are the vertices of  G and nodes representing the 2-connected compo-

nents (A,B,C,…). Adjacency = membership  of a  vertex in a 2-connected  component. 

 

Fact : X separates u and v in the  

graph G  if  u and v are  separated   

by  X in the tree  or if   they are  

separated in G  by  X∩B,  where B  

is  a  problematic  biconnected  

component.   

 

Problematic  means : B  has  > 2  vertices  in X  and  it  is  on  the path from u  to  v. 

Example  :   A,B,E   are problematic. 
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By C&V’s technique, a log-labelling  K  of  this  tree can be built   from  which : 

(a)  one  can  detect  if  the  first  case  holds   

  (u, v are  separated  by  a  separating  vertex  of  G  that  is  in  X) 

and 

(b) if it does not, one gets  the  problematic   2-connected components relative  

to X,u,v :  they may separate u and v.  For each of them, the geometric  

method   based   on  labelling  D,  can  be  used. 

 

 The label  of  x  is defined as  (D(x), K(x))  of  size  O(log(n)).     (Omitting details). 

 

Remark :  We  define  D  from  a  straightline  embedding  of  Simple(G+), the graph  
obtained from G+ by fusing  parallel edges. We do not claim that we can combine 
“independent”  log-labellings  for the biconnected components  into a single log-
labelling.  
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Tool 2 :   Decomposition of  2-connected  planar graphs  in “3-blocks” 
(3-connected components, cycles  and “bonds”, sets of parallel edges ). 

 

Method  : We replace  the  barrier  by  a  reduced barrier   RBar(X) : 

if x and y in X  are incident with  at  least  3  faces, f1,…,fk  we put in 

RBar(X)    only    x— f1  and  y— f1.  

 

Problem : The reduced barrier RBar(X)  will  miss  some cases  where  

the  given  vertices  are  separated  by  the  “full barrier”  Bar(X).  

 

These cases will be detected on the tree  representing the 

decomposition  of the graph in 3-blocks, by means of  a  labelling  of  this 

tree  with  C&V’s theorem  and  several  additional  nice (?)  tricks. 
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Proposition : u and v  are separated by 

Bar(X)  iff  either they are   separated  

by  RBar(X)  or  P(u,v,x,y)   holds   for 

some  x,y  in X,   

where  P(u,v,x,y)   means : 

 x  and  y  are  incident  with  at  least 

 3  faces  and  {x,y}  separates   u  

 and  v   in  the graph.  

 

Proof: Let u,v be separated by Bar(X) and not by RBar(X) with X minimal  
for inclusion. On  figure, o  are vertices representing faces. Edges ___o___ 
are those in Bar(X) not in RBar(X).  Hence, one  of  u,v (v on figure) is inside 
an open set of  R2 –Bar(X) with frontier vertices  x and y,  incident with at 
least  3  faces.  These vertices separate  u  and  v   in  G. 

 



 21

Next  goal :  a  log-labelling  for checking   P(u,v,x,y) , built  on  the  

tree  T  of  3-connected components. 
 

Bipolar  graphs  :  Directed, acyclic ; every vertex is  on a  path  from 

the   South Pole   s(G)   to  the  North  Pole  n(G). 
 

Every  2-connected  has  a bipolar orientation  with  adjacent  poles. 
 

Operations on bipolar  plane  graphs :  

Parallel  composition : G // H :  glues two (disjoint) plane  graphs  G  and  

H  by  their  poles  (it  is  not  commutative). 

Substitution :  R(G1,…,Gm) : substitution of G1,…,Gm  to the directed 

edges  of   a  simple  bipolar  plane graph  R. 
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G                                                                                                        Tree  T 

 

 

 

 

 

 

Proposition : Every bipolar plane  graph has a unique decomposition in 
terms of  parallel  composition, substitutions and edges  e  =   s                n.  

Definition : Two vertices that are the poles of a subgraph defined by 
subterm  with  root  label   //  form  a  polar  pair.  

Example  above  :  (s,b), (b,n), (a,f)   
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Proposition:  Let G  be  plane bipolar, G  =  e // H.  If  two  vertices of  G  

belong  to  more   than   2   faces, they form  a   polar pair. 
 

 

Fact :  If  u  is  a  vertex of an edge  below  a   //-node  w  with  polar  

pair (x,y), and   v  is  a  vertex of  an  edge  not  below  w, then  {x,y}  

separates  u  and  v . 
 

 

We  want a  labelling  that  checks  this fact, called  property P(u,v,x,y), 

based on the decomposition tree T.  
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We  add to  T  nodes representing vertices  of the graphs, and links 

between them representing identical vertices. Problem: this graph has 

unbounded   clique-width,  hence   C&V’s  result  does  not  work. 
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Trick :  We  keep  in   T*  only one  node 

for  each  vertex ; edges  are defined 

by  unary  functions : 

gs(a) = gs(b) = d  , (towards South) 

gn(c) = gn(b) = e  , (towards  North) 

g1(a) = g1(b) = c  ,  g2(a) = b   

 8 functions  suffice  for all  graphs  R  (because of planarity). 

 

Fact :  P(u,v,x,y)  holds  iff   

T+green edges   ⎜=  ϕ(u,v,x,y)      iff       

T* ⎜=  ψ(u,v,x,gs(x), gn(x), g1(x),…,g6(x),y, gs(y), gn(y), g1(y),…,g6(y)) 

where   ψ(u,v,x,xn,…,x6,y, yn,…,x6)   is  a  monadic second-order formula.  
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For  this  ψ , and for each  T*   we  construct  (with C&V’s result)  a  

labelling  L  ;  for  every  vertex  x of  G  we  define  : 

  K(x) = (L(x), L(gs(x)),L(gn(x)), L(g1(x)),…,L(g6(x)). 

 

Hence  given   K(u), K(v), K(x), K(y)  we  can  check  P(u,v,x,y)  on T*     

because we get  from   K(x)  and  K(y)   the necessary informations  : 

L(u), L(v), L(gs(x)),L(gn(x)), L(g1(x)),…,L(g6(x))   

and  L(gs(y)),L(gn(y)), L(g1(y)),…,L(g6(y)), 
 

The  final  labelling of  each  vertex  x   of   G   combines : 

 the  above  K(x), 

 the  label  for  querying  the  tree  of  biconnected components, 

 the  integer  coordinates  of  x  and  of   30  vertices of  G+     

           (at distance at most 2 of x). 
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Summary   (omitting some details) : 

Labelling  algorithm  A   
Input  :  a  simple planar connected graph G  
1. Choose a  root vertex and build the tree B of 2-connected 

components  C. 

2. In each component C, let n(C) be maximal in that tree, let s(C) be 

adjacent to n(C)  in C and make C  bipolar with poles s(C)  and  n(C). 

3. Decompose  C  and determine the 8 functions gs, gn, g1,… describing 

the internal structure of  the  blocks   R.  

4. Build the corresponding  trees  T*(C)  and  combine them with tree B 

into  a  single   tree   BT*(G).   
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5. Build  for this tree  a  log-labelling for checking  the  separation 

properties  in  the  trees  B  and  T*(C).   

6. Define the graph  G-  equal to  G+  with  multiple edges fused.  

    Ask  Schnyder to embed it in the plane with straightline segments and 

small  integer coordinates. 

7. Compute the 30  unary  functions  that will help to  construct  the 

reduced  barriers  RBar(X). 

8. Set  vertex  label  J(x)  for each x, by using steps  5-7. 
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Decoding algorithm B   

Input   :  J(u), J(v), J(X). 

a. Check  for each  x and each pair (x,y)  such that  x,y ∈ X  if  u and v 

are separated  by  {x}  or  by  {x,y}  (we use here  the  tree  BT*(G)). 

    If  one  is  found, then stop and report  that  X  separates  u and  v. 

b. If no such separation is found, determine the  sets X∩Vertex(C) for all 

problematic 2-connected components C, and their vertices yC, zC  that 

are separating  in G  and are  on the path  in  B  between u  and  v. 

c. For each such C  build  RBar(X∩Vertex(C)) from the straightline 

embedding  of  G-  and   check  whether  Conn(yC, zC, X∩Vertex(C)).  

d. If  all  answers   are   positive, then report that  Conn(u,v,X)   holds. 

Otherwise that it fails. 
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Computation  times  : 

n =  number  of  vertices. 

Algorithm  A  : O(n)  for  graph  decompositions ; 

        O(n.log(n))  for  computing  the  labels  of  tree  BT*(G).   

   O(log(n))    for   defining   each   label  J(x). 

   Total  :  O(n.log(n)). 

 

Algorithm  B  : N =  number  of  vertices  in  X      (not = 0) 

   O(N.log(n))  for  checking  separations ; 

        O(N.log(N).log(n))  if  checking  topological  separations 

   (reduced  barriers in the plane)  is  needed .   

   Total  :  O(N.log(N).log(n)). 
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Extension  1 :  deleting  edges  and  adding  new links  
 

X  :  N  deleted vertices, 

F   : deleted edges, handled   as  degree 2  vertices  in  a subdivided  

graph 

H   :  h  new  links  between pairs of vertices  (repairing  the network). 

 

Query :  Are  u and  v connected  by a path in ( (G – F) \ X ) + H ? 
The  data structure  is  built   for   X   and   F  

Query takes time  O(N.h 2)



 32

Extension  2 :  Graph  covers  with  limited  overlaps : 

Combinations  of  labelling  schemes 
 

 

 

 

 

 

 

Connected  blocks with      Skeleton graph 

    log-labelling                bipartite, degree  <  d 

           log-labelling 
 

The two labelling schemes can be combined into a single log-labelling 
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Open questions : 
 

 Graphs  on  nonplanar  surfaces 
 

 How  hard is it to update  the  labels  if  one  adds  vertices and  edges ? 

(deletions  are  handled  by  set  arguments  included  in  queries). 
 

 Reachability   in  directed   planar  graphs  with  obstacles. 
 

      log2-labelling  for distance  in  directed  planar  graphs with obstacles. 

 (The geometric  method  does not extend obviously  to  distances). 
 

 Which  properties  (generalizing adjacency, “same face”, etc…)  

 can  be represented by  k  unary functions ? 
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Appendix  : Definitions  and  previous results 

Cographs 
Built  from vertices  with   two binary  

operations :  

⊕  : disjoint union  

         ⊗ :  complete join  = disjoint union plus  

 all edges between the  two arguments 

Adjacency labels  are  words (branches) 

J(x) =  ⊗ 1 ⊕ 1 ⊗ 2 

J(y) =   ⊗ 2 ⊗ 1 ⊕ 2 ⊗ 1 ⊗ 1 

 The least common ancestor of  x and y  is labelled by ⊗, hence they 

are adjacent.  The size  of  J(u) is not  O(log(n)). By using other graph 

operations one  makes   terms   balanced   i.e., of height  O(log(n)). 
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Graph   operations  defining  Clique-width 

 

Clique-width has no  combinatorial  characterization  but is defined in terms of  

few very simple  graph operations  (giving  easy  inductive proofs). 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties. 
 

Graphs are simple, directed or not.   

k   labels  :  a , b , c,  ..., h.   Each vertex has one and only  one label ;  

a  label  p  may label several vertices, called  the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G augmented with (un)directed edges  from every   a-

port   to every  b-port. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G  with every vertex  labelled by  a   relabelled into b 

 

Basic graphs   are those with a single vertex. 

 

Definition: A  graph  G has  clique-width ≤ k  ⇔  it can be constructed from 

basic graphs  with the  operations ⊕, Add-edga,b  and  Relaba      b  with  k 

labels.    Its  clique-width  cwd(G)  is the   smallest  such  k. 

 

  

Proposition : (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  

bounded  clique-width, but  not  vice-versa. 
 

(2) Unlike tree-width, clique-width is  sensible to edge directions: Cliques 

have clique-width  2, tournaments have unbounded clique-width. 
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Classes of unbounded tree-width and bounded clique-width. 
 

 Cliques (2),  

 Complete bipartite graphs (2),  

 Distance hereditary graphs (3),  

 Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced 
subgraphs.  (many similar results for exclusion of induced  subgraphs  with 4 and 5 
vertices).  
 

 

Classes of unbounded clique-width : 
 Planar graphs of degree 3,  

 Tournaments,  

 Interval graphs,  

 Graphs  without induced  P5. 
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Example : Cliques have clique-width 2.  

 
 

Kn  is   defined   by tn where  tn+1  =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Another  example :  Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H)) 

            = G ⊕ H  with  “all edges”  between  G  and  H. 
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Proposition :  (a) Deciding  “Clique-width < 3” is a polynomial problem. (Habib et al.) 
 

(b) The complexity (polynomial or NP-complete) of  “Clique-width = 4” is unknown. 
 

(c ) It is  NP-complete  to  decide  for given k and G  if  cwd(G) < k. (Fellows et al.) 
 

(d) There exists  a cubic approximation algorithm  that for given k and G  answers 

(correctly) :  

either  that cwd(G) >k, 

  or  produces  a  clique-width  term using  22k+1 labels. (Hlineny and Oum 2007) 
 

 This  yields  Fixed Parameter Cubic  algorithms  for many hard problems 

(MS  property, (ex. 3-colorability), MS optimization function, (ex. distance), MS 

counting  function, (ex. #  of paths). 
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A log-labelling for MSO properties on graphs of bounded clique-width (C&V) 

Basic result :  the case  of  terms     (instead of graphs). 
 

We consider  terms   t  in T(F,C)       (F : binary operations, C : constants),  

Every  MS  formula  ϕ(X1, …,Xm)  with free variables denoting sets of occurrences  of 

constants  in t  can  be translated  into a deterministic finite automaton A for the  

signature  F ∪ Cx{0,1}m   such that A  accepts  a term  t  in T(F,Cx{0,1}m)  iff  

     t   ⎜=   ϕ(A1, …, Am) 

where  t  is  t   with the  {0,1}m labels  attached to occurrences u of constants and  

 Ai  is  the  set of occurrences u  of some (c,w) in Cx{0,1}m  such that   w[i]   = 1. 

(Intuition  : u  occurrence  of   (c,0,1)  means that   u  is  in  X2  and  not  in  X1. 
The  set of terms  accepted  by A  encodes  terms and the m-tuples  of sets  of 
occurrences of constants (leaves  of  t   as a tree)   that satisfy ϕ  in  these  terms.) 
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The  method   for  ϕ(X,Y)  (m=2). 

Assuming   A  constructed   and   t  in T(F,C)  be given : 

We run A  on  t  with  each c  replaced by (c,0,0)  (i.e.,  for empty  sets X,Y), 

we mark each node with the  corresponding  states : p,q,r,s, …  

If X∪Y is not empty, we modify accordingly some leaves. The new  run  will only  

modify  the states  on the  branches  from  these  leaves  to  the root. 
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 These new states can be obtained from : 

the states on these  branches and those at distance 1  of these branches (because  

the new run is the same  on the corresponding subterms).  

 This  information  for  a branch from x  can be stored  in  a word J(x)  like : 

[f,0,p] [g,1,s] [h,0,p] [f,1,r] [g,0,q] [h,0,p]c 
of size proportional to the length of the branch ( = O(log(n)) for a balanced term with  n  leaves).  
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The case of graphs : 
For  graph  G  defined as val(t)  for a term  t  in T(F,C)  (F, C operations defining 

clique-width), then  V(G)  =  the set of occurrences  of constants  in t. 

 Every  MS  formula  ϕ(X1, …, Xm)  can  be translated  into  an equivalent MS  

formula  ψ(X1, …, Xm)  on the term : 

G   ⎜=   ϕ(A1, …, Am)      iff      t   ⎜=   ψ(A1, …, Am). 

 

 We apply to   ψ   the   previous   construction. 

 Counting functions : at each node w of t, we store numerical information : for 

each state p, the number of assignments  of   0,1’s  to the leaves below  w  that  yield 

state  p  at  this node. This  table  has   size  :   #-of-states. ┌ log(n) ┐ 

 Optimization :  similar method, the table indicates the maximum value reachable 

with state p  for some  assignments  of   0,1’s. 

 


