

Short vertex labels for connectivity check in

 planar graphs with forbidden parts

Bruno Courcelle

Université Bordeaux 1, LaBRI and Institut Universitaire de France

References : Articles with R. Vanicat (2003), with A. Twigg (STACS 2007), with C. Gavoille,

M.M. Kanté, A.T. (TGGT, Paris, 2008), and with C.G., M.M.K. (FAW, Changsha, China, 2008)

 See : http://www.labri.fr/perso/courcell/ActSci.html

 2

Labelling Schemes for solving First-Order and
Monadic Second-Order Queries

Aim : to check properties of vertices and to compute functions like

distance from fixed short vertex labels (label = bit sequence).

Short = of length O(log(n)) or O(log2(n)) ; n = number of vertices

 Wanted : for fixed class of graphs C and fixed property or function F ,

 two algorithms :

 Algo A : defines for G in C a label J(x) for each x in V = V(G).

 Algo B : computes F(u,v,X,Y) from J(u), J(v), J(X), J(Y)

 for vertices u, v, sets of vertices X,Y in some G in C

 Idea : all necessary information from G is distributed on vertices;

 computing F need not process the graph (this has been done by A).

 3

Results
Adjacency (implicit representation) with labels of size O(log(n)):

 Bounded arboricity (includes planar, bounded tree-width)
 Bounded clique-width,
 Interval graphs (unbounded clique-width and arboricity)

Distance Static : all Θ(n)
 trees, bdd tree-width, clique-width Θ(log2(n))
 planar between O(n1/3) and O(n1/2)
 interval graphs O(log(n))

Distance Dynamic : obstacles (forbidden parts, specified in query)

 to be computed : d(u,v,X,F), the distance of u and v in (G-F)\X

 X : forbidden vertices, F : forbidden edges.

 Clique-width < k : O(k2.log2(n)) (B.C., A. Twigg, stacs07)

 4

Connectivity labelling (dynamic)

 Clique-width < k : O(k2.log(n)) (B.C., A. Twigg, stacs07)

 Planar graphs with obstacles :O(log(n))(B.C.,C.Gavoille, M.Kanté,A.T.08)

General logical approach

Monadic second-order properties (optimization or counting functions)

 Clique-width < k : O(f(k).log(n)) (O(f(k).log2(n))) (B.C., R. Vanicat 03)

First-order properties and counting functions :

Classes of graphs “nicely decomposable”,
of locally bounded tree-width or clique-width :
 O(log(n)) or O(log2(n)) (B.C.,C.Gavoille,M.Kanté08)

 5

Tools (in red : this talk)

Graph structure properties : unions of forests, (balanced) tree-decom-

positions and clique-width expressions,

 Coverings by families of subgraphs of bounded clique-width

 with limited overlapping.

 Straightline planar embeddings (De Fraysseix et al., Schnyder)

 Decompositions in 3-connected components of planar graphs.

Monadic second-order formulas on terms translated into finite automata
 (Doner, Thatcher-Wright).

First-order formulas decomposed into local and “connected” formulas
 (Gaifman, Frick)

 6

Bounded arboricity

G is the union of k edge-disjoint rooted forests F1, …, Fk

fi is the (partial) father function in forest Fi

We define J(x) = (x, f1(x), …, fk(x)) of size < (k+1). ┌ log(n) ┐

 (vertices are numbered from 1, and denoted by binary bit sequences)

Adjacency check :

u and v are adjacent if and only if :

u = fi(v) or v = fi(u) for some i.

 7

Monadic Second-Order (MS) Logic
= First-order logic on power-set structures

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MS properties : transitive closure, properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

Non connectivity :
∃X (∃x ∈ X & ∃y ∉ X & ∀u,v (u ∈ X & edg(u,v) ⇒ v ∈ X))

2-colorability (i.e. G is bipartite) :
∃X (∀u,v (u ∈ X & edg(u,v) ⇒ v ∉ X) &∀u,v (u ∉ X & edg(u,v) ⇒ v ∈ X))

 8

1. Short labels for MS definable queries
 (C&V = B.C. & R.Vanicat, Discrete Applied Maths, 2003)

Theorem : 1) Given k and a monadic second-order graph property P(X1,…,Xm) :

For every graph G defined by a clique-width expression of width k,

one can define a label J(x) for each vertex x of G such that,

 from the sets of labels {J(y) / y in set of vertices Ai}, i=1,…,m,

 one can determine if P(A1, …,Am) is true.

Size of J(x) : O(log(n))

Preprocessing time : O(n.log(n))

Answer to query : O(a.log(n)) where a = ⎜A1 ∪…∪Am ⎜

2) For MS optimization functions (like distance) or counting functions (number of

tuples of vertices b1,…,bq that satisfy P(b1,…,bq,A1,…,Am) for given A1,…,Am),

we replace log(n) by log2(n)

 9

2. Short labels for connectivity check in planar graphs with obstacles.
 (B.C., C.Gavoille, M.Kanté, A.Twigg 2008)

Question is : are u and v connected in (G-F) \ X ?

Method :

 (1) We treat 3-connected planar graphs and their edge subdivisions (new

vertices inserted on edges).

 (2) Then 2-connected planar graphs decomposed as trees of 3-connected

components.

 (3) Then connected planar graphs decomposed as trees of 2-connected

components.

 For case (1) we use a geometric method. For cases (2) and (3) we use a

labelling (based on C&V, cf. 1.) for querying the decomposition trees, combined with

labellings of type (1) for the 3-connected components

 10

(1) The case of 3-connected planar graphs

 A graph G Its augmented graph G+

 = G with face to vertex edges

 11

I

I

M

M

M

M

Ii

X = the set of 4 big blue vertices. Deleting X separates

Its barrier Bar(X) is the set of thick blue x and y but not y and z.

edges (consists of all u--f--v where u,v The barrier separates topolo-

in X and f is a face-vertex) gically x and y, but not y and z

 12

To be done :

1) Construct a straightline embedding of G+ with integer coordinates of maximum

value O(n). This is possible since G+ is simple, because G is 2-connected. (dF, Sch)

2) From labels of vertices in X, we want to determine the coordinates of the end

vertices of the line segments of the edges of Bar(X).

3) Using a computational geometry algorithm, we can test whether two vertices u, v

given by their coordinates, are separated in the plane by Bar(X).

For 2) since G+ is planar, it is the union of 3 forests. One uses an adjacency

labelling for G+, from which, for any two vertices u,v, one can obtain the at most

two faces f and h to which they are both adjacent, as values of gi(u) or gi(v) for

some i = 1,…,30 where g1,…,g30 is a finite list of partial functions. (Which i’s give

the faces incident with u and v depends on tests of the form “gj(u) = gk(v) ?”).

Labels : D(x) = (C(x), C(g1(x)),…,C(g30(x))) where C(u) = integer coordinates of u.

 13

Constructing these functions.

We cover G+ with 3 forests : red (1),

green (2) and black (3) ;

“father functions” are g1, g2, g3 .

That 2 vertices belong to face f is

described by 3 cases :

(1) g3(x) = g1(y) = f

(2) g2,3(x) = z and g2 (x) = f where g2,3 = g2 o g3

(3) g1(f) = w and g2 (f) = z : more difficult : no function can invert g1, g2, g3 .

 14

We construct another planar

graph H by putting a triangle

or an edge in certain faces.

We cover H with 3 forests,

giving 3 functions h1, h2, h3

(circled numbers in green).

Then

h1(z) = w indicates that z and w

belong to a same face ;

this face is determined

by 6 other unary functions.

 15

Overview of the algorithm(s) :

 D(X) D(u), D(v)

G G+, embedding {D(v)} Bar(X) data Yes or No
 (decomposition) structure for u and v
 geometric queries linked in G\X ?

 time O(n.log(n)) time O(⎜X ⎜.log(⎜X⎜)) time O(log(⎜X ⎜))
 n vertices

First we process G and define label D(v) for each vertex v.

Then we process a set of vertices X given by D(X) = set of D(x), x in X.

Then connectivity queries for various u,v, and the fixed set X.

 16

General case : Two difficulties

 1st : If G is not 2-connected, G+ is not simple and has no

straightline embedding.

 2nd : If G is 2-connected but not 3-connected :

 x and y are incident with an unbounded number of faces.

One cannot specify all of them with a fixed number of functions ; one

cannot find the coordinates of all segments (edges) in Bar({x,y}).

 17

 Tool 1 : The (auxiliary) tree of 2-connected components.
 Its nodes are the vertices of G and nodes representing the 2-connected compo-

nents (A,B,C,…). Adjacency = membership of a vertex in a 2-connected component.

Fact : X separates u and v in the

graph G if u and v are separated

by X in the tree or if they are

separated in G by X∩B, where B

is a problematic biconnected

component.

Problematic means : B has > 2 vertices in X and it is on the path from u to v.

Example : A,B,E are problematic.

 18

By C&V’s technique, a log-labelling K of this tree can be built from which :

(a) one can detect if the first case holds

 (u, v are separated by a separating vertex of G that is in X)

and

(b) if it does not, one gets the problematic 2-connected components relative

to X,u,v : they may separate u and v. For each of them, the geometric

method based on labelling D, can be used.

 The label of x is defined as (D(x), K(x)) of size O(log(n)). (Omitting details).

Remark : We define D from a straightline embedding of Simple(G+), the graph
obtained from G+ by fusing parallel edges. We do not claim that we can combine
“independent” log-labellings for the biconnected components into a single log-
labelling.

 19

Tool 2 : Decomposition of 2-connected planar graphs in “3-blocks”
(3-connected components, cycles and “bonds”, sets of parallel edges).

Method : We replace the barrier by a reduced barrier RBar(X) :

if x and y in X are incident with at least 3 faces, f1,…,fk we put in

RBar(X) only x— f1 and y— f1.

Problem : The reduced barrier RBar(X) will miss some cases where

the given vertices are separated by the “full barrier” Bar(X).

These cases will be detected on the tree representing the

decomposition of the graph in 3-blocks, by means of a labelling of this

tree with C&V’s theorem and several additional nice (?) tricks.

 20

Proposition : u and v are separated by

Bar(X) iff either they are separated

by RBar(X) or P(u,v,x,y) holds for

some x,y in X,

where P(u,v,x,y) means :

 x and y are incident with at least

 3 faces and {x,y} separates u

 and v in the graph.

Proof: Let u,v be separated by Bar(X) and not by RBar(X) with X minimal
for inclusion. On figure, o are vertices representing faces. Edges ___o___
are those in Bar(X) not in RBar(X). Hence, one of u,v (v on figure) is inside
an open set of R2 –Bar(X) with frontier vertices x and y, incident with at
least 3 faces. These vertices separate u and v in G.

 21

Next goal : a log-labelling for checking P(u,v,x,y) , built on the

tree T of 3-connected components.

Bipolar graphs : Directed, acyclic ; every vertex is on a path from

the South Pole s(G) to the North Pole n(G).

Every 2-connected has a bipolar orientation with adjacent poles.

Operations on bipolar plane graphs :

Parallel composition : G // H : glues two (disjoint) plane graphs G and

H by their poles (it is not commutative).

Substitution : R(G1,…,Gm) : substitution of G1,…,Gm to the directed

edges of a simple bipolar plane graph R.

 22

G Tree T

Proposition : Every bipolar plane graph has a unique decomposition in
terms of parallel composition, substitutions and edges e = s n.

Definition : Two vertices that are the poles of a subgraph defined by
subterm with root label // form a polar pair.

Example above : (s,b), (b,n), (a,f)

 23

Proposition: Let G be plane bipolar, G = e // H. If two vertices of G

belong to more than 2 faces, they form a polar pair.

Fact : If u is a vertex of an edge below a //-node w with polar

pair (x,y), and v is a vertex of an edge not below w, then {x,y}

separates u and v .

We want a labelling that checks this fact, called property P(u,v,x,y),

based on the decomposition tree T.

 24

We add to T nodes representing vertices of the graphs, and links

between them representing identical vertices. Problem: this graph has

unbounded clique-width, hence C&V’s result does not work.

 25

Trick : We keep in T* only one node

for each vertex ; edges are defined

by unary functions :

gs(a) = gs(b) = d , (towards South)

gn(c) = gn(b) = e , (towards North)

g1(a) = g1(b) = c , g2(a) = b

 8 functions suffice for all graphs R (because of planarity).

Fact : P(u,v,x,y) holds iff

T+green edges ⎜= ϕ(u,v,x,y) iff

T* ⎜= ψ(u,v,x,gs(x), gn(x), g1(x),…,g6(x),y, gs(y), gn(y), g1(y),…,g6(y))

where ψ(u,v,x,xn,…,x6,y, yn,…,x6) is a monadic second-order formula.

 26

For this ψ , and for each T* we construct (with C&V’s result) a

labelling L ; for every vertex x of G we define :

 K(x) = (L(x), L(gs(x)),L(gn(x)), L(g1(x)),…,L(g6(x)).

Hence given K(u), K(v), K(x), K(y) we can check P(u,v,x,y) on T*

because we get from K(x) and K(y) the necessary informations :

L(u), L(v), L(gs(x)),L(gn(x)), L(g1(x)),…,L(g6(x))

and L(gs(y)),L(gn(y)), L(g1(y)),…,L(g6(y)),

The final labelling of each vertex x of G combines :

 the above K(x),

 the label for querying the tree of biconnected components,

 the integer coordinates of x and of 30 vertices of G+

 (at distance at most 2 of x).

 27

Summary (omitting some details) :

Labelling algorithm A
Input : a simple planar connected graph G
1. Choose a root vertex and build the tree B of 2-connected

components C.

2. In each component C, let n(C) be maximal in that tree, let s(C) be

adjacent to n(C) in C and make C bipolar with poles s(C) and n(C).

3. Decompose C and determine the 8 functions gs, gn, g1,… describing

the internal structure of the blocks R.

4. Build the corresponding trees T*(C) and combine them with tree B

into a single tree BT*(G).

 28

5. Build for this tree a log-labelling for checking the separation

properties in the trees B and T*(C).

6. Define the graph G- equal to G+ with multiple edges fused.

 Ask Schnyder to embed it in the plane with straightline segments and

small integer coordinates.

7. Compute the 30 unary functions that will help to construct the

reduced barriers RBar(X).

8. Set vertex label J(x) for each x, by using steps 5-7.

 29

Decoding algorithm B

Input : J(u), J(v), J(X).

a. Check for each x and each pair (x,y) such that x,y ∈ X if u and v

are separated by {x} or by {x,y} (we use here the tree BT*(G)).

 If one is found, then stop and report that X separates u and v.

b. If no such separation is found, determine the sets X∩Vertex(C) for all

problematic 2-connected components C, and their vertices yC, zC that

are separating in G and are on the path in B between u and v.

c. For each such C build RBar(X∩Vertex(C)) from the straightline

embedding of G- and check whether Conn(yC, zC, X∩Vertex(C)).

d. If all answers are positive, then report that Conn(u,v,X) holds.

Otherwise that it fails.

 30

Computation times :

n = number of vertices.

Algorithm A : O(n) for graph decompositions ;

 O(n.log(n)) for computing the labels of tree BT*(G).

 O(log(n)) for defining each label J(x).

 Total : O(n.log(n)).

Algorithm B : N = number of vertices in X (not = 0)

 O(N.log(n)) for checking separations ;

 O(N.log(N).log(n)) if checking topological separations

 (reduced barriers in the plane) is needed .

 Total : O(N.log(N).log(n)).

 31

Extension 1 : deleting edges and adding new links

X : N deleted vertices,

F : deleted edges, handled as degree 2 vertices in a subdivided

graph

H : h new links between pairs of vertices (repairing the network).

Query : Are u and v connected by a path in ((G – F) \ X) + H ?
The data structure is built for X and F

Query takes time O(N.h 2)

 32

Extension 2 : Graph covers with limited overlaps :

Combinations of labelling schemes

Connected blocks with Skeleton graph

 log-labelling bipartite, degree < d

 log-labelling

The two labelling schemes can be combined into a single log-labelling

 33

Open questions :

 Graphs on nonplanar surfaces

 How hard is it to update the labels if one adds vertices and edges ?

(deletions are handled by set arguments included in queries).

 Reachability in directed planar graphs with obstacles.

 log2-labelling for distance in directed planar graphs with obstacles.

 (The geometric method does not extend obviously to distances).

 Which properties (generalizing adjacency, “same face”, etc…)

 can be represented by k unary functions ?

 34

Appendix : Definitions and previous results

Cographs
Built from vertices with two binary

operations :

⊕ : disjoint union

 ⊗ : complete join = disjoint union plus

 all edges between the two arguments

Adjacency labels are words (branches)

J(x) = ⊗ 1 ⊕ 1 ⊗ 2

J(y) = ⊗ 2 ⊗ 1 ⊕ 2 ⊗ 1 ⊗ 1

 The least common ancestor of x and y is labelled by ⊗, hence they

are adjacent. The size of J(u) is not O(log(n)). By using other graph

operations one makes terms balanced i.e., of height O(log(n)).

 35

Graph operations defining Clique-width

Clique-width has no combinatorial characterization but is defined in terms of

few very simple graph operations (giving easy inductive proofs).

Equivalent notion: rank-width (Oum and Seymour) with better structural and

algorithmic properties.

Graphs are simple, directed or not.

k labels : a , b , c, ..., h. Each vertex has one and only one label ;

a label p may label several vertices, called the p-ports.

One binary operation: disjoint union : ⊕

 36

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with (un)directed edges from every a-

port to every b-port.

 H = Add-edga,b(G) ; only 5 new edges added

The number of added edges depends on the argument graph.

 37

Vertex relabellings :
Relaba b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed from

basic graphs with the operations ⊕, Add-edga,b and Relaba b with k

labels. Its clique-width cwd(G) is the smallest such k.

Proposition : (1) If a set of simple graphs has bounded tree-width, it has

bounded clique-width, but not vice-versa.

(2) Unlike tree-width, clique-width is sensible to edge directions: Cliques

have clique-width 2, tournaments have unbounded clique-width.

 38

Classes of unbounded tree-width and bounded clique-width.

 Cliques (2),

 Complete bipartite graphs (2),

 Distance hereditary graphs (3),

 Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced
subgraphs. (many similar results for exclusion of induced subgraphs with 4 and 5
vertices).

Classes of unbounded clique-width :
 Planar graphs of degree 3,

 Tournaments,

 Interval graphs,

 Graphs without induced P5.

 39

Example : Cliques have clique-width 2.

Kn is defined by tn where tn+1 = Relabb a(Add-edga,b(tn ⊕ b))

Another example : Cographs are generated by ⊕ and ⊗ defined by :

G ⊗ H = Relabb a(Add-edga,b (G ⊕ Relaba b(H))

 = G ⊕ H with “all edges” between G and H.

 40

Proposition : (a) Deciding “Clique-width < 3” is a polynomial problem. (Habib et al.)

(b) The complexity (polynomial or NP-complete) of “Clique-width = 4” is unknown.

(c) It is NP-complete to decide for given k and G if cwd(G) < k. (Fellows et al.)

(d) There exists a cubic approximation algorithm that for given k and G answers

(correctly) :

either that cwd(G) >k,

 or produces a clique-width term using 22k+1 labels. (Hlineny and Oum 2007)

 This yields Fixed Parameter Cubic algorithms for many hard problems

(MS property, (ex. 3-colorability), MS optimization function, (ex. distance), MS

counting function, (ex. # of paths).

 41

A log-labelling for MSO properties on graphs of bounded clique-width (C&V)

Basic result : the case of terms (instead of graphs).

We consider terms t in T(F,C) (F : binary operations, C : constants),

Every MS formula ϕ(X1, …,Xm) with free variables denoting sets of occurrences of

constants in t can be translated into a deterministic finite automaton A for the

signature F ∪ Cx{0,1}m such that A accepts a term t in T(F,Cx{0,1}m) iff

 t ⎜= ϕ(A1, …, Am)

where t is t with the {0,1}m labels attached to occurrences u of constants and

 Ai is the set of occurrences u of some (c,w) in Cx{0,1}m such that w[i] = 1.

(Intuition : u occurrence of (c,0,1) means that u is in X2 and not in X1.
The set of terms accepted by A encodes terms and the m-tuples of sets of
occurrences of constants (leaves of t as a tree) that satisfy ϕ in these terms.)

 42

The method for ϕ(X,Y) (m=2).

Assuming A constructed and t in T(F,C) be given :

We run A on t with each c replaced by (c,0,0) (i.e., for empty sets X,Y),

we mark each node with the corresponding states : p,q,r,s, …

If X∪Y is not empty, we modify accordingly some leaves. The new run will only

modify the states on the branches from these leaves to the root.

 43

 These new states can be obtained from :

the states on these branches and those at distance 1 of these branches (because

the new run is the same on the corresponding subterms).

 This information for a branch from x can be stored in a word J(x) like :

[f,0,p] [g,1,s] [h,0,p] [f,1,r] [g,0,q] [h,0,p]c
of size proportional to the length of the branch (= O(log(n)) for a balanced term with n leaves).

 44

The case of graphs :
For graph G defined as val(t) for a term t in T(F,C) (F, C operations defining

clique-width), then V(G) = the set of occurrences of constants in t.

 Every MS formula ϕ(X1, …, Xm) can be translated into an equivalent MS

formula ψ(X1, …, Xm) on the term :

G ⎜= ϕ(A1, …, Am) iff t ⎜= ψ(A1, …, Am).

 We apply to ψ the previous construction.

 Counting functions : at each node w of t, we store numerical information : for

each state p, the number of assignments of 0,1’s to the leaves below w that yield

state p at this node. This table has size : #-of-states. ┌ log(n) ┐

 Optimization : similar method, the table indicates the maximum value reachable

with state p for some assignments of 0,1’s.

