
Tree-structured Graphs and

Monadic Second-order Logic

Speaker: Bruno Courcelle

October 4-7, 2007
Fall School “Algorithmic Graph Structure Theory”, Schloss Blankensee

Scribe: Felix Breuer, Holger Dell, Bastian Laubner, Ruth Urner

Contents

1 Introduction 2

2 Equational (Context-Free) Sets 4

3 Recognizable Sets 5

4 Two Graph Algebras 6
4.1 The Graph Algebra HR . 7

4.1.1 HR-expressions provide tree-decompositions 8
4.2 The Graph Algebra VR . 9

4.2.1 Examples and Properties 10

5 Monadic Second-Order Logic, Recognizability and Decidability 11
5.1 Definability . 11
5.2 Definabiliy implies Recognizability 12
5.3 Positive Decidability Results . 13

6 Inductive Computations and Recognizability: Fixed-Parameter
Tractable Algorithms 14
6.1 Example: Properties of Series-Parallel Graphs 14
6.2 Inductive Computations and Recognizability 16
6.3 Checking MSO-Formulas is Fixed-Parameter Tractable 16

7 Monadic Second-Order Transductions 17

8 Links between MSO logic and combinatorics: Seese’s theorem
and conjecture 21

9 Open Questions 22

1

1 Introduction

This scribe tries to give a brief and comprehensible overview on tree-structured
graphs, monadic second-order logics (MSO) over graphs, and their close rela-
tionship. Our definitions and examples mostly comply with those in [8], and
further details can be found there.

Tree-structured graphs are graphs that can be described by tree-like
structures. One way to give such descriptions is by a decomposition of the graph
into parts that are connected in a tree-like fashion (e.g., the tree-decomposition).
Another way uses formal languages: Expressions in the formal language define
graphs and the tree-structure of a graph is simply the syntax tree of the expres-
sion defining it.

In a formal language (or algebra), we can define atomic objects and the
operations we want to use to construct larger objects. In the case of graphs,
the atoms are typically single edges or vertices, and the operations connect the
atoms to form larger graphs. In order to glue graphs together at the desired
places, it is necessary to use labelled graphs, where every vertex can have a label.

What is astonishing about the formal language approach is: There is a formal
language HR in which the syntax tree of every expression is equivalent to a tree-
decomposition of the graph that is defined by that expression. Furthermore, the
number of labels used in the expression is equal to the width of the corresponding
tree-decomposition.

Changing the operations and atoms used in HR slightly, we can define a
formal language VR, which then gives rise to the notion of clique-width of a
graph: It is the minimum number of labels used in all expressions which define
that graph.

Monadic Second-Order Logic is an extension of first-order logic. In the
context of graph theory, first-order logic (FO) is the language of logical formulas
in which we are allowed to quantify over vertices of the graph. In second-order
logic, we are allowed to quantify over relations on the set of vertices, i.e., we are
able to formulate that there exists a k-ary relation R(x1, . . . , xk) with a certain
property. The term monadic now means that we have to restrict ourselves to
unary relations, that is, we can quantify only over sets of vertices. By MSO2,
we denote monadic second-order logic with the additional possibility to quantify
over edges and sets of edges (see section 5 for a precise definition). A sentence
is a formula without free variables.

The relationship between monadic second-order logics and tree-structured
graph classes is diverse. We identified three main topics (see Fig. 1).

(i) Verification of MSO/MSO2-sentences on single graphs is fixed-parameter
tractable with respect to the clique-width/tree-width.

(ii) Testing validity of MSO/MSO2-sentences on all graphs of a class is decid-
able if this class is the solution to an equation system over VR/HR.

(iii) The former statement is optimal, in the sense that every class, for which

2

Figure 1: Overview of results (i) on the left and (ii) on the right. The vertical ar-
rows indicate extensions of properties: Every MSO-formula is a MSO2-formula,
bounded tree-width implies bounded clique-width, and HR-equational implies
VR-equational [1].

testing validity of MSO2-formulas is decidable, is included in an HR-
equational set.

Note that every equation system over HR has a fixed number of labels, therefore
the solution to the equation system contains only graphs of at most this tree-
width. On the other hand, most “natural” graph classes of bounded tree-width
are equational, which is, however, not true in general. Note that (iii) is not
proven for MSO and VR, but it is conjectured by Seese.

In order to establish (i), it is crucial that every MSO/MSO2-formula can
be translated into an tree automaton over VR/HR-expressions which decides
for input graphs (of bounded tree-width), whether or not they satisfy the for-
mula. Constructing that tree automaton for the input formula, transforming
the input graph into an VR/HR-expression, and running the automaton on
that expression can all be done in fixed-parameter tractable time. Note that
the construction step is only needed once for every input formula, which may
save some preprocessing time in practise.

For (ii), we need the property that intersecting the equational set with the
class of all graphs that satisfy the input formula gives an equational set again.
Since deciding emptiness of equational sets is decidable, we can establish (ii).

Statement (iii) needs the notion of MSO2-transductions, which are MSO2-
expressible mapping from graphs to graphs. HR-equational sets are closed under
these transductions and classes of bounded tree-width are characterized by the
image of trees under these transductions.

In Section 2, we explain equational sets using the example of context-free
grammars over words. In Section 3, we define the notion of recognizable sets in
terms of tree automata over algebraic expressions. In Section 4, we introduce
the two graph algebras HR and VR and the notion of clique-width, and we
relate that notion to the tree-width. Section 5 shows us that we can construct
a tree-automaton from an MSO/MSO2-formula, and it shows us how to solve
problem (ii) from that. In Section 6, we sketch the FPT-algorithm that solves
problem (i). Section 7 introduces MSO-transductions, which are then used to

3

prove statement (iii) in Section 8.

Preliminaries

Tree-width. Let us briefly recall the well-known notion of tree-decompositions
and of the tree-width of a graph G = (V,E). A tree-decomposition of the
graph G is a pair (T,W) where T = (V (T), E(T)) is a tree and W = {Wt | t ∈
V (T)} is a collection of subsets of the vertexset of G satisfying

• V =
⋃

t∈V (T)Wt,

• for every edge uv ∈ E(G), there is a t ∈ V (T) with u, v ∈ Wt, and

• for every vertex u ∈ V (G), the set {t ∈ V (t) | u ∈ Wt} induces a subtree
of T .

The sets Wt are also called boxes. The width of the tree-decomposition (T,W)
is max{|Wt| − 1 | t ∈ V (T)} and the tree-width twd(G) of the graph is the
minimum width over all tree-decompositions of G.

It is easy to see that trees have tree-width 1 (one can simply create one box
per edge) and that cliques of size n have tree-width n − 1. Furthermore, it is
known that the n× n-grid has tree-width n and that outerplanar graphs (these
are planar graphs with all vertices on the outer face) have tree-width 2.

Fixed-Parameter Tractability. We also briefly introduce the notion of fixed-
parameter tractability, FPT for short. Considering a problem, we assume that
the input is equipped with two integer valued functions, a size function d 7→ |d|
and a parameter function d 7→ p(d), such that 0 < p(d) ≤ |d|. We call the
problem fixed-parameter tractable with respect to the parameter p if
it can be solved in time O

(

f(p(d)) · |d|k
)

, where the positive integer k and the
function f do not depend on the input d.

Algebra. An F -algebra is a set M equipped with total functions that map
tuples from Mρ to M , for arbitrary but fixed arities ρ. For simplicity, we may
think of the signature F as the set of these total functions, although it is actually
the syntax only.

An expression (or term) over F is of the form f(t1, . . . , tρ) where ti are
themselves expressions over F and f is a function symbol of arity ρ. When
ρ = 0, we speak of an atom. Throughout this scribe, we assume that that every
element of M can be defined by an expression over F (that is, the expression
evaluates to that element).

2 Equational (Context-Free) Sets

The goal of this section is to translate techniques that cope with languages over
words to the more general case of classes of graphs.

4

Context-free grammars over words are usually looked at as a recursive rewrit-
ing procedure:

S → aSa | b.

To construct a word in the language, we start with the initial non-terminal
symbol S and recursively replace non-terminal symbols by words, using the
rules of the grammar. As soon as the word contains only terminal symbols, we
constructed a word from the language:

S → aSa → aaSaa → aabaa.

In a second view on context-free languages, the rules are replaced by equation
systems, where the non-terminal symbols are the indeterminates, viewed as sets
of words.

S = {a} · S · {a} ∪ {b} .

In the case of context-free languages over words, we get algebraic equation
systems with the binary operator concatenation ·, and with atoms the symbols
a, b, and the empty word ǫ. The language of the equation system is just the
value of the initial indeterminate S in the (unique) least solution of the equation
system. In the example above, the set of all words S = {a, b}∗ is a solution of
the equation system, but it is not the least solution.

The equation system view on context-free languages can be used to define
context-free languages over arbitrary objects, with respect to arbitrary opera-
tions on these objects. A set is called equational with respect to some algebra,
if it is the language of some equation system over that algebra.

In the following section, we introduce a generalization of the recognizability
of languages in terms of automata, but usable in arbitrary F -algebras.

3 Recognizable Sets

In the context of formal language theory over words, a set is called recognizable
if there is a finite-state automaton that decides whether or not a given input
word is in the set. In the more general case of languages over arbitrary algebras,
we have a “tree-automaton” instead of the finite-state machine.

So let us assume that we have an algebra M over a signature F , that is, F
contains the operations on the elements of M . In the case of words, M is the set
of all words and F contains the binary operation concatenation and as constant
operations the symbols and the empty word.

An F -automaton A is a tuple (Q,Qacc, δ) where Q is the finite set of states,
Qacc ⊂ Q is the set of accepting states, and δ : F × Q∗ → Q is the transition
function. The automaton is supposed to accept or reject any given expression
over F . The set of all accepted expression is then called the language of A.

5

In order to specify the acceptance condition, we define the output state h(t)
of the automaton on input t = f(x1, . . . , xk) inductively as

h(f(x1, . . . , xk)) = δ(f, h(x1), . . . , h(xk)).

Note that, if t is an atom of the algebra, then k = 0 and the transition function
determines the state δ(t) for that symbol. This is why the recursion terminates.
We say that the automaton A accepts t if h(t) is an accepting state, that is, if
h(t) is an element of Qacc.

The language of L is exactly h−1(Qacc), that is, the set of all expressions
that lead the automaton into an accepting state. We say that a set L ⊂ M is
F -recognizable if it is the language of some F -automaton. Note that, in the
former step, we first need to identify terms over F with elements of M : Before
running the automaton, we need to find an arbitrary expression over F that
evaluates to the element of M .

Later on, for the fixed-parameter tractable decision procedure, we will need
the fact that, given a description of the automaton and a term t, it takes time
O(|t|) to run the automaton on t and thereby decide whether t is in the language
of that automaton.

In the next section, we will see two particularly useful algebras over graphs.

4 Two Graph Algebras

In this section we will introduce two algebras of (labelled) graphs. The graph
algebras VR and HR are closely related to the graph parameters clique-width
and tree-width. Graphs have bounded clique-width or bounded tree-width if and
only if they can be defined by expressions in these algebras using a bounded
number of labels. Later we will see that the definability of a problem in monadic
second order logic implies that the problem can be solved in linear time on a
graph that is given by a formula in one of the algebras VR and HR. More
precisely, we will see that we will see that definability by an MSO sentence (ie
the characterization as the set of finite models of an MSO sentence) implies
recognizability and we can therefore run the tree-automaton described above
for that problem.

Obviously, to run that tree-automaton on a graph, we need an expression
defining the graph. In general we can apply parsing algorithms for graphs of
bounded clique-width or bounded tree-width to get an algebraic expression for
the graph. Such parsing algorithms need linear time, for graphs of bounded tree-
width, to construct an expression in the algebra HR. For graphs of bounded
clique-width, the best known parsing algorithm for VR runs in cubic time.
This implies that problems that can be defined in monadic second order logic,
including NP-complete problems like 3-colourability, can be solved in linear
time on graphs of bounded tree-width, and in cubic time on graphs of bounded
clique-width.

6

4.1 The Graph Algebra HR

In this section we consider so called graphs with sources. Let J be the set
of graphs (directed or undirected, possibly with loops or multiple edges) up to
isomorphism. A graph with sources is a pair (G, srcG) where G ∈ J is a
graph and srcG is a bijection from a finite subset of N onto a subset of V (G).
Thus, it is a graph where certain vertices are labelled by natural numbers, such
that each label appears only once. The labelled vertices are called sources.

We let JS denote the set of all graphs with sources. The algebra HR consists
of the set JS equipped with the following operations on sourced graphs:

Basic graphs. There are constants to define all connected graphs with at most
one edge in JS, eg.

1 1 2 4

Parallel composition. For Graphs G,H ∈ JS we set G//H to be the disjoint
union of G and H where vertices with the same label are fused, which
means that, in the resulting graph, these vertices are identified.

3 2

1

G

2

41

H

3 2

1 4

G//H

Forget a source label. If G is a graph in JS and a ∈ N then forgeta(G) is
the graph in JS which is obtained from G by making the vertex labelled
with a (if such exists) a non-source.

Source renaming. For G ∈ JS and a, b ∈ N the graph rena,b(G) is obtained
from G by exchanging the labels of a source labelled a and a source la-
belled b (the operation replaces one label by the other one if one of the
labels does not exist).

The graph algebra HR can be used to get control of the tree-width, as is
formalized by the following proposition.

Proposition 1. A graph has tree-width at most k if and only if it can be con-
structed from basic graphs with at most k + 1 labels by using the operations //,
rena,b, and forgeta.

This implies that all graph classes that are equational with respect to the
algebra HR necessarily have a bounded tree-width: In every equation system
over HR, only a finite number of labels are used, which means that every graph
of its language has a construction (following the equations) with a bounded
number of labels.

7

ren1,2(forget1(Ti//e)) 1

1

2

−→

1

Figure 2: Extending a tree by an edge.

T1//T2// . . . //Tn

1

. . .

Figure 3: Fusing n trees at their roots.

Example 2. Trees have tree-width 1, they can thus be constructed using the
operations from above and only two source labels. Let us explicitly construct a
tree T = (V,E) rooted at some arbitrary vertex r.

1. If T is a basic graph, we return the constant defining T , with its root
labelled by 1.

2. Otherwise, let T1, . . . , Tn denote the subtrees of T rooted at the children
of r. Let e denote the constant that defines a graph, consisting of exactly
one edge with its ends labelled 1 and 2, respectively. We extend each of
the graphs Ti by one edge, forgetting the old root and letting the new
vertex become the new root, again labelled with 1 (see Fig. 2).

Then we successively fuse the extended subtrees at their roots (see Fig. 3).

Note that the procedure above can be written as an equation system over HR,
which means that the class of trees is HR-equational.

4.1.1 HR-expressions provide tree-decompositions

Each expression built from the operations in HR has an expression tree or syntax
tree, in which every node corresponds to an operation and the children of that
node correspond to the input for the operation.

The syntax tree of an expression corresponds, in a natural way, to the al-
ternative tree-decomposition model (see Fig. 4): For this model, we draw every
edge in one of the boxes, it appears in. Furthermore, we draw dotted lines be-
tween the appearances of each vertex in different boxes. Using this technique,
we obtain a model in which both the tree-structure and the underlying graph
are visible.

8

a b

c d

e f

g

h

graph G

a b

c d

c d

e f

e

g

d

h

alternative model

t1

t2 t3

t4

tree-decomposition

Figure 4: An alternative visualization for tree-decompositions.

Thus, if we can construct a graph by a HR-expression, we get its tree-
decomposition for free.

4.2 The Graph Algebra VR

Now we consider vertex-labelled graphs which we will call graphs with ports.
Here, let G denote the set of all simple graphs (directed or not) up to iso-
morphism. A labelled graph or a graph with ports is a pair (G, portG)
where G ∈ G is a graph and portG is a mapping portG : V (G) → N. If
portG(v) = p ∈ N for a vertex v ∈ V (G) we call v a p-port. In contrast to the
graphs with sources from the last section, all vertices of the graphs considered
here are labelled, and different vertices can bear the same label. We let GP
denote the set of graphs with ports up to isomorphism.

We let VR be the algebra on the set GP with the following operations:

Basic graphs. For every a ∈ N there is a constant a defining a graph consisting
of a single vertex labelled with a.

Disjoint union. The graph G⊕H is the disjoint union of two graphs in GP .

Vertex relabellings. The graph rena→b(G) is the graph obtained from G
while every vertex labelled a in G is relabelled into b.

Add edges. For different labels a, b ∈ N the graph adda,b(G) is obtained
from G by adding (un-)directed edges from every a-port to every b-port.

Note, that the number of edges that can be added in one operation is not
bounded. Thus we can easily create large bicliques in a graph.

A well-formed expression from these operations is called a k-expression if
it uses at most k different labels. The clique-width cwd(G) of a graph G is

9

1

1

2

2

3

G

1

1

2

2

3

add1,2(G)

the minimum integer k such that there is a k-expression defining G. Unlabelled
graphs are considered as labelled graphs where all vertices bear the same label.
Thus the above definition applies also to unlabelled graphs.

4.2.1 Examples and Properties

Obviously every graph that contains at least one edge has clique-width at least 2.
It is also easy to see, that cliques have clique-width at most 2: let t1 := 1 denote
the 2-expression defining a single vertex labelled with 1, i.e. K1, and let tn be
a 2-expression defining Kn where all vertices are labelled with 1. Then the
expression

tn+1 = ren2→1(add1,2(tn ⊕ 2))

defines the clique on n+ 1 vertices all labelled with 1.
At this point we should note that the notion of clique-width, unlike tree-

width, is sensitive to edge-directions. Cliques have clique-width 2 whereas tour-
naments (directed cliques) have unbounded clique-width.

The following result was shown in [11]:

Proposition 3. If a set of simple graphs has bounded tree-width, it has bounded
clique-width, but not vice-versa. In particular

cwd(G) ≤ 2twd(G)−1 − 1

holds for every undirected simple graph.

As we already know, cliques on n vertices have tree-width n − 1 but their
clique-width is bounded by 2. Therefore, a function bounding the tree-width of
graphs in terms of their clique-width can not exist.

It has been shown that the problem of deciding cwd(G) ≤ k for a given
integer k and a given graph G is NP-complete. Deciding cwd(G) ≤ 3 is possible
in polynomial time but for any other fixed integer k ≥ 4 the complexity of
deciding cwd(G) ≤ k is still unknown.

Nevertheless, there exists a cubic approximation algorithm that, for a given
integer k and a graph G, either answers correctly that cwd(G) > k or produces
a 23k+1-expression, see [13].

This result makes use of the notion of the rank-width. Rank-width is a graph
parameter that is equivalent to clique-width in the sense that every graph class
of bounded clique-width has also bounded rank-width and vice-versa. More

10

specifically it has been shown in [12] that for every graph G the following in-
equalities hold:

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

As we will see in the next sections, the approximation algorithm for deciding
cwd(G) ≤ k yields FPT-algorithms for many hard problems.

5 Monadic Second-Order Logic, Recognizability
and Decidability

Our ultimate goal is to check whether a graph G or a whole set of graphs C
satisfies a property ϕ. Instead of doing this directly, it is equivalent to check
whether G ∈ Lϕ or C ∩ L¬ϕ = ∅, respectively, where Lϕ is the set of all graphs
satisfying ϕ:

Lϕ =
{

G a graph | G � ϕ
}

.

As we will see in this section, the set Lϕ is recognizable, so the question G ∈ Lϕ

can be decided by a tree automaton, which can be constructed and be run
in fixed-parameter tractable time. Furthermore, C ∩ L¬ϕ can be checked for
emptiness in finite time if the expressiveness of C and ϕ are ’balanced’ (with
respect to VR/HR-equational and MSO/MSO2).

5.1 Definability

Let L denote any logic. A set of graphs L is L-definable if there exists some
formula ϕ ∈ L such that Lϕ = L. As an example, the property that a graph is
connected (i.e., the set of connected graphs) is not FO-definable but it is MSO-
definable, as we can express this property by saying that a graph G = (V,E) is
connected if and only if

there is no set X ⊂ V such that X is nonempty, V \X is nonempty
and there are no edges between X and V \X .

In a formal standard syntax, this is:

ϕ = ¬∃X((∃xX(x)) ∧ (∃x¬X(x)) ∧ ∀x∀y(X(x) ∧ ¬X(y) ⇒ ¬E(x, y)))

Recall that MSO allows quantification over vertex sets only. We can ex-
tend the expressive power of MSO by allowing quantification over edge sets,
more precisely by considering edges as elements of the model and replacing
the adjacency predicate by an incidence predicate. This extended language we
denote by MSO2. Formally, the signature of our language consits of a single
ternary relation inc and we interpret inc(x, y, z) as ’x is an edge with tail y
and head z’ or the corresponding statement for undirected graphs. The formula
∃y, z inc(x, y, z) holds if and only if x is an edge and ∃x inc(x, y, z) holds if and
only if y and z are adjacent. Thus we can transform every MSO-formula into
an equivalent MSO2-formula.

11

Figure 5: Overview of all properties of graph classes that we consider. An arrow
indicates an “implies”-relation.

MSO2 is strictly more expressive than MSO. Hamiltonicity is an example for
a property that cannot be expressed in MSO, but which can well be expressed
in MSO2. A graph G = (V,E) has a Hamilton cycle if and only if

there is a set Y ⊂ E such that Y covers all vertices, Y forms a
2-regular graph and no subset of Y forms a 2-regular graph.

5.2 Definabiliy implies Recognizability

We have now seen several formal tools for defining sets of graphs. The automata-
theoretic notion of recognizability, the concept of expressing a set of graphs as
a least solution of a system of equations and now the concept of definability in
a logical language (cf. Fig. 5). Of these, the last concept is closest to everyday
mathematical language. The following fundamental theorem now states that
we can convert a logical formula into a finite-state automaton describing the
same set of graphs. Moreover we have an effective method for constructing the
automaton corresponding to the given formula.

Theorem 4. Let L be a set of finite graphs.

• If L is MSO-definable, then L is VR-recognizable.

• If L is MSO2-definable, then L is HR-recognizable.

This is an analogoue of the theorem of Doner [15] and Thatcher and Wright
[16] concerning languages of words. Note that in contrast to the case of graphs,
recognizability does imply MSO-definability in the case of words.

Theorem 5. Let L be a set of words. L is recognizable ⇔ L is MSO-definable.

The algorithmic consequences of having a description of a set of graphs
in terms of a finite-state automaton we will see in section 6, giving us one
important application of theorem 4. The other application is that we can derive
some positive decidability results.

12

5.3 Positive Decidability Results

Let L be a logic and L a set of graphs. The L-satisfiability problem on L is
the following:
Input: A formula ϕ ∈ L.
Question: Does there exits a G ∈ L such that G � ϕ?

Note that checking whether a formula ϕ holds for some graph in L is equiv-
alent to checking that ¬ϕ holds for all graphs in L. A problem is decidable
if there is an algorithm that for any input returns the correct answer in finite
time. So if an infinite set of graphs L has a decidable MSO-satisfiability prob-
lem, this means that we can decide in finite time whether ϕ holds universally on
the infinite set L, for any MSO formula ϕ. The following corollaries of the main
theorem provide us with rich classes of sets L for which we can do precisely
that.

Corollary 6. Every VR-equational set of graphs has a decidable MSO-satisfi-
ability problem.

Corollary 7. Every HR-equational set of graphs has a decidable MSO2-satisfi-
ability problem.

The corollaries can be derived from the theorem via the following two im-
portant facts (Theorem 3.51 and 3.58 and Proposition 3.59 of [8]).

Lemma 8. The intersection of an F -equational and an F -recognizable set is F -
equational. The equations defining the intersection can be effectively computed.

Lemma 9. Given the defining set of equations, it is decidable whether an F -
equational language is empty or not.

This is analogous to the situation in formal language theory: The intersec-
tion of a context-free and a regular language is context-free and a context-free
language can be tested for emptiness effectively. (See e.g. [17].)

The two positive decidability results are strong, but graph theorists need not
fear that computers will take over their jobs. There are two reasons for that.

First, the proofs are constructive and the algorithms we obtain from them
even come with an upper bound on the running time. Yet, the decision algo-
rithms we obtain from them have a running time that is not anywhere near
practical.

Second, most infinite sets of graphs that are of interest have unbounded
clique-width and thus cannot have a VR or HR description. Furthermore, many
interesting graph properties are not MSO(2)-definable. The negative decidability
results in section 8 tell us that this is not a shortcoming of the theorem but a
fundamental problem: They state that, in a certain sense, the two corollaries
are best possible.

13

6 Inductive Computations and Recognizability:
Fixed-Parameter Tractable Algorithms

In this section we will establish the connection between recognizability in graph
algebras and fixed parameter tractability for certain problems on graphs, namely
for those that are definable in monadic second order logic.

Beforehand, we will introduce the notion of an inductive set of properties,
which yields an alternative characterisation for recognizable sets, which might
appeal more to our intuition than the definition via automatons. Reading the
subsections 6.1 and 6.2 is not necessary in order to understand the FPT-result
though. They can as well be skipped.

6.1 Example: Properties of Series-Parallel Graphs

We consider the task of checking properties for certain sets of graphs. Again, we
refer to [8] for further details on the proposed definitions, results, and examples.
We consider examples for properties on graphs that can be checked by inductive
computation if the graph is given by a defining term.

Let D2 denote the set of finite directed graphs with two distinct vertices
marked 1 and 2 up two isomorphism. We consider a sub-algebra of HR on D2

with the operations //, • and e, where e denotes a constant defining a graph,
that consists of exactly one edge with its ends marked 1 and 2 respectively. The
operation // is defined as under 4.1 and • is defined by

G •H = forget3(ren2,3(G)// ren1,3(H)).

1 2

G

1 2

H

1 2

G •H

The graphs generated by terms in this algebra are called series-parallel
graphs. These graphs are defined by the equation

S = S//S ∪ S • S ∪ {e}

where S ⊆ D2. We will now show how to prove properties for this set of graphs
by induction. Our aim to prove that properties Pi hold for all graphs in S, or
to determine if they hold for particular graphs in S, where

P1(G) : ⇐⇒ G is connected
P2(G) : ⇐⇒ G is planar
P3(G) : ⇐⇒ G is 2-colourable.

As for the first property, it is routine to see that the following two facts hold:

14

Basis. e is connected

Induction. P1(G) ∧ P1(H) ⇒ P1(G//H) ∧ P1(G •H).

This implies that every graph in S is connected. Although every graph in S is
in fact also planar it is not possible to see this using exactly the same argument
as above: Consider as H the complete simple directed graph on 5 vertices minus
one edge such that H//e is complete, hence not planar. Therefore, it is not true
that the planarity of two graphs G and H in S implies the planarity of G//H .
However, in order to see that every graph in S is planar we can use the stronger
property

Q(G) : ⇐⇒ G has a planar drawing with its two sources on the outer face.

This property admits the same inductive prove that we saw for P1 and this
implies that P2 is also true for all series-parallel graphs.

The property P3 does not hold for all series-parallel graphs. The graph

T = e//(e • e)

is a triangle, thus it is not 2-colourable. This example shows also that we can not
conclude P3(G//H) from P3(G) and P3(H), since e and e • e are 2-colourable,
but T is not. We are therefore interested in checking 2-colourability for a given
series-parallel graph, where we assume that such a graph is given by a formula.
To achieve this, we introduce the following auxiliary properties:

same(G) : ⇐⇒ G is 2-colourable with sources of the same colour
diff(G) : ⇐⇒ G is 2-colourable with sources of different colours

For these properties we can prove the following rules:

same(e) = false
diff(e) = true

same(G//H) ⇐⇒ same(G) ∧ same(H)
diff(G//H) ⇐⇒ diff(G) ∧ diff(H)

same(G •H) ⇐⇒ (same(G) ∧ same(H)) ∨ (diff(G) ∧ diff(H))
diff(G •H) ⇐⇒ (same(G) ∧ diff(H)) ∨ (diff(G) ∧ same(H))

Now, for every term t in < D2, //, •, e > we can use these rules two compute
the pair of boolean values (same(val(t)), diff(val(t))), where val(t) denotes the
graph that is defined by the term t. The graph is 2-colourable if and only if
one of these values is true. Thus, we can check 2-colourability of series-parallel
graphs by induction on the structure of the term t.

It is important to note that, using these rules, we can compute the values of
same(f(G,H)) and diff(f(G,H)), where f ∈ {//, •}, by means of finitely many
(in this case 4) values of same and diff of the arguments of f . This example
motivates the definition of an inductive set of properties that we will introduce
next.

15

6.2 Inductive Computations and Recognizability

We will now generalize the method we used to check 2-colourability in the
algebra of series-parallel graphs to check properties in arbitrary F -algebras M.
A property P in such an algebra is a mapping P : M → {true, false}.

Definition 10. Let M be a F -algebra and let P be a finite set of properties. The
set P is F -inductive if for every P ∈ P and f ∈ F of arity n > 0 there exists
a boolean formula B depending only on P and f that computes the boolean
value P (fM(m1, . . . ,mn)) for all m1, . . . ,mn in terms of l (finitely many) values
Qj(mi) where Ql ∈ P and i = 1, . . . , n,j = 1, . . . , l.

In our previous example the set {same, diff} is an inductive set of proper-
ties in the algebra < D2, //, •, e > of series-parallel graphs. If we consider for
example the operation • and the property same we can express same(G •H) by

same(G •H) = B(same(G), diff(G), same(H), diff(H))

where B is the boolean formula

B(p1, p2, p3, p4) = (p1 ∧ p3) ∨ (p2 ∧ p4).

In Section 3, we defined the notion of a recognizable set with respect to an
arbitrary algebra as the set that is accepted by an F -automaton. The following
proposition establishes the connection between recognizable sets and inductive
properties:

Proposition 11. A subset L of an F -algebra M is recognizable if and only if it
is the set of elements that satisfy a property belonging to a finite inductive set
of properties P.

We already saw in 5 that for the graph algebras HR and VR the definability
in monadic second order logic implies recognizability in these algebras.

Proposition 11 now shows us that an inductive set of properties can be
translated into a tree-automaton. Checking m properties that form an inductive
set can thus be implemented by this tree-automaton with 2m states that work
on terms t formed by the operations of the algebra. Such a computation takes
time O(|t|), the running time is thus linear in the size of the expression. We
will now see that we get thereby fixed parameter tractability results for graph
problems that are definable in MSO Logic.

6.3 Checking MSO-Formulas is Fixed-Parameter Tractable

In this section, we will show that checking MSO-formulas on graphs of bounded
tree-width or clique-width is fixed-parameter tractable with respect to the width
as a parameter. The theorem is a result from the relationship between MSO
logic and recognizability. By a MSO-problem we mean the problem of deciding
whether or not a graph satisfies a certain MSO-formula.

16

Theorem 12. Every MSO-problem on J is fixed parameter linear with respect
to tree-width. Every-MSO2 problem on G is fixed parameter cubic with respect
to clique-width.

Recall that J and G are classes of labelled graphs as defined in Section 4.1
and 4.2. The most important steps of the proof of this theorem are as follows:

1. Given a graph G ∈ J we can check for every k in time O(g(k)m) whether
or not G has tree-width at most k and if so produce a term t which uses
at most k labels defining G. (For the size of the graph m we can take the
number of edges). This result is due to Bodlaender, see [14].

2. For graphs G ∈ G we can use a similar result that is due to Oum, see [13].
For these graphs we can we can either verify that a graph has clique-width
more than k or construct a 23k+1 expression for it (without knowing the
exact value when it is between k and the exponential upper bound) for
each k. This takes time O(g′(k)n), where n denotes the number of vertices
of the graph.

3. In section 5 saw that MSO definability implies recognizability.

4. For each k and each MSO formula ϕ we can built the tree-automaton
corresponding to the recognizable set. This construction is independent
of the input graph. It can be done once and for all for each pair (ϕ, k).
The automaton checks in linear time O(|t|) whether or not the input graph
defined by t satisfies ϕ or not.

We should note that this result is of purely theoretical interest, since there
are large constants involved. This is due to the large number of states in the
tree-automaton and to the parsing algorithms. Nevertheless, if the input graph
is given by a defining term, we can check MSO properties in linear time for
graphs of bounded clique-width or bounded tree-width:

Theorem 13. For graphs of clique-width at most k,

• each monadic second-order property (eg. 3-colourability),

• each monadic second-order optimization function (eg. distance), and

• each monadic second-order counting function (eg. number of paths),

can be evaluated in linear time if the graph is given by a VR-expression.
Computing a VR-expression for a graph takes O(n3) time in general, and

only linear time if the graph has tree-width bounded by k.

7 Monadic Second-Order Transductions

We can use logical formulas to define transformations of graphs into other
graphs. Considering such logical transformations is particularly useful as there

17

is no standard machine model for graph transductions. Actually, logical trans-
formations are defined in a much broader sense not only for graphs, but between
any two classes of relational structures. So technically speaking, a logical trans-
duction is binary relation R ⊆ A× B, where A and B are classes of relational
structures and R will be considered a multivalued partial mapping.

We will only give the more intuitive definition for MSO transductions of
graphs here. The full definition for arbitrary structures can be found in [5] or
[6].

Definition 14. A definition scheme is a tupleDf = (ψ, δ1, . . . , δk, ϕ11, ϕ12, . . . , ϕkk)
of MSO formulas for some k ∈ N where ψ, δi, and ϕij have zero, one, and two
free variables, respectively, and may have free set variables from a finite set W
of unary relation variables. W is called the set of parameters and may be empty.
Df induces a partial mapping f from graphs and parameters to graphs so that
for every graph G the structure f(G,W) is defined in the following way:

f(G,W) =

{

(Vf(G,W), Ef(G,W)) if W |= ψ,
undefined otherwise

where

Vf(G,W) =
k

⋃

i=1

{(u, i) ∈ VG × {i} | G,W |= δi(u)}

Ef(G,W) = {((u, i), (v, j)) | G,W |= δi(u) ∧ δj(v) ∧ ϕij(u, v)}

Then f is called an MSO transduction with parameters W .

Some examples will illustrate this definition. They are taken from [8] where
further examples can be found.

Example: Edge Complement

For a simple, undirected graph G = (V,E) the edge compliment G∗ = (V,E∗)
is the graph on V with edges uv ∈ E∗ ⇔ uv 6∈ E. The assiciated definition
scheme simply consists of the formulas δ and ϕ with

δ(u) := u = u (Boolean constant True)

ϕ(u, v) := u 6= v ∧ ¬E(u, v) where E is viewed as a binary relation on V.

As we do not use any parameter dependence, we tacitly assume ψ to be set to
True, so that our map is total. Notice that in this example, we do not need the
power of MSO logic, so that edge complement is really a first-order transduction
without parameters.

Example: The largest connected subgraph of G containing
X

In this example, X will serve as a parameter so that our map f returns the con-
nected component of an undirected graph G containing X 6= ∅. The definition

18

scheme is (ψ, δ, ϕ) with

ψ(X) := X 6= ∅ ∧ ∃Y (X ⊆ Y ∧ CONN(Y))

δ(X,u) := ∃Y (X ⊆ Y ∧ CONN(Y) ∧ u ∈ Y)

ϕ(X,u, v) := ∃Y (X ⊆ Y ∧ CONN(Y) ∧ u ∈ Y ∧ v ∈ Y ∧E(u, v))

CONN(X) is an MSO formula expressing that X is connected.
Another example is the transduction with two (edge and vertex) set param-

eters X and Y that returns the minor of G after contracting edges in X and
deleting edges and vertices in Y .

In the above example, the parameter X is obviously needed in order to
specify the connected component of our choice. In general, MSO transductions
may have to use a parameter even when its description does not seem to require
one. An example is the transduction from a directed graph to its directed
acyclic graph where the strongly connected components have been contracted.
This transduction needs as a parameter a set that contains exactly one vertex
from every strongly connected component because there is no canonical way to
find such vertices within MSO formulas. This example is worked out in [8, p.31].

Example: Graph duplication with links between copies

This example demonstrates how the duplication of the graph is useful in MSO
transductions. The duplication of an undirected graph G = (V,E) is the
graph GB = (VB , EB) on vertices VB = V × {1, 2} with edges (u, 1)(v, 2) ∈
EB ⇔ uv ∈ E. The associated transduction is given by the definition scheme
(δ1, δ2, ϕ11, ϕ12, ϕ21, ϕ22) with

δ1 := δ2 := True

ϕ11 := ϕ22 := False

ϕ12(u, v) := ϕ21(u, v) := E(u, v)

This justifies the statement that a transduction maps S to a structure “inside”
S ⊕ . . .⊕ S.

Generally, MSO transductions are defined for general structures. For exam-
ple, there is an MSO transduction between cograph-terms built from {⊕l,⊗l,1l}
and their associated cographs. This example is worked out in [8, p.33].

Properties of MSO transductions

Proposition 15. The composition of two MSO transductions is an MSO trans-
duction.

The proof consists in the construction of the resulting transduction by con-
junction of the original MSO formulas. Writing the proof down is not trivial,
though, because one has to take care of parameters and copies of structures.

Next is the so-called fundamental property of MSO transductions.

19

Theorem 16. Let τ be an MSO transduction that associates to every structure
S a structure τ(S). Then for every MSO formula ψ there is an effectively
computable MSO formula τ#(ψ) such that

S |= τ#(ψ) ⇔ τ(S) |= ψ (1)

τ#(ψ) is called the backwards translation of ψ.

Intuitively, the structure S contains enough information to describe τ(S).
For graph transductions without duplication, τ#(ψ) is constructed from ψ by
replacing the edge relation E(u, v) with δ(u) ∧ δ(v) ∧ ϕ(u, v) and restricting
quantifiers ∃xµ and ∃Xµ by replacing them with ∃x(δ(x) ∧ µ) and ∃X(∀x(x ∈
X ⇒ δ(x)) ∧ µ), respectively. When the transduction uses duplication of the
graph, the construction of the formula uses disjunction over the several vertex
and edge conditions within restrictions and edge relation replacements. A full
construction for general structures is contained in [2].

Corollary 17. If the MSO satisfiability problem is decidable on a class of struc-
tures L, then it is decidable on the image of L under any MSO transduction.

This corollary gives us more detailed insight on the relationship between
MSO and MSO2 logic. Any MSO2 statement about a graph G transforms into
an MSO statement about G’s incidence graph inc(G). The following theorem
tells us that on many classes of graphs, the incidence graphs are just images of
MSO transductions:

Theorem 18. The mapping G → inc(G) is an MSO transduction on the fol-
lowing classes of graphs:

• degree < d,

• tree-width < k,

• planar graphs,

• graphs without some fixed graph H as a minor,

• uniformly k-sparse graphs (graphs of average degree < k).

Thus, on the classes of graphs from Theorem 18, the MSO2 satisfiability
problem is decidable if and only if the MSO satisfiability problem is decidable.

Here are some more results that involve MSO transductions:

Proposition 19. A set of graphs is VR-equational if and only if it is the image
of (all) binary trees under an MSO transduction. VR-equational sets of graphs
are stable under MSO transductions. A set of graphs has bounded clique-width
if and only if it is the image of a set of binary trees under an MSO transduction.

Proposition 20. A set of graphs is HR-equational if and only if it is the image
of (all) binary trees under an MSO2 transduction. HR-equational sets of graphs
are stable under MSO2 transductions. A set of graphs has bounded tree-width if
and only if it is the image of a set of binary trees under an MSO2 transduction.

20

8 Links between MSO logic and combinatorics:
Seese’s theorem and conjecture

In the context of Theorem 18, a result from Seese [4, 10] is interesting:

Theorem 21. If the MSO2 satisfiability problem is decidable on a class of
graphs L (i.e., the MSO satisfiability problem is decidable on inc(L)), then it
has bounded tree width.

Analogously, Seese conjectured that if MSO satisfiability is decidable on L,
then L has bounded clique-width. This is known as Seese’s Conjecture. In 2004,
Courcelle and Oum proved the following [7]:

Theorem 22. If C2MSO satisfiability is decidable on a class of graphs L, then
L has bounded clique-width.

Here C2MSO denotes MSO logic augmented with a predicate that expresses
that a set has even cardinality. This statement is weaker than Seese’s conjecture
because a smaller amount of classes satisfies the premise. Seese’s conjecture can
be considered a converse to the statement that on the classes Lk of graphs with
clique-width ≤ k MSO satisfiability is decidable.

Here is a proof sketch of Theorem 21:

• Suppose L has unbounded tree-width, then L’s set of minors contains all
k × k grids by a result from Robertson and Seymour.

• If a class contains all k × k grids, then its MSO2 satisfiability problem is
undecidable.

• All minors of L constitute the image of L under an MSO2 transduction.

• Similarly as in Corollary 17, this implies that if L’s MSO2 satisfiability
problem is decidable, then so is that of its minors, which yields the con-
tradiction.

The proof of Theorem 22 follows a similar pattern. For clique-width, a
special kind of minor relation, called vertex minors, is introduced (see e.g. [9]).
A vertex minor of a graph G is constructed by repeated vertex deletions and
local complementations where the edge relations between the neighbors of a
vertex v are reversed. Courcelle and Oum prove that if L’s C2MSO satisfiability
problem is decidable, then so is that of the class of all vertex-minors of L because
constructing the vertex-minors of L is a C2MSO transduction. Also, if a class
of bipartite graphs C has unbounded clique-width, then the set of its vertex-
minors contains all Sk graphs, which can be further transformed by an MSO
transduction into the k× k grids, on which MSO is not decidable. They finally
establish an equivalence between (directed and undirected) graphs and bipartite
undirected graphs that finishes the proof.

In this specific setting, the cardinality predicate in C2MSO gives us the power
to speak about edge relations in G∗ v, the graph G after local complementation

21

at v. If we apply local complementation to n different vertices that all have two
vertices u and v as neighbors, then the edge relation between u and v is reversed
exactly when n is odd.

The definition of the bipartite graphs Sk is as follows: Sk = (A,B,E) with
A = {1, . . . , k2 − 1} and B = {1, . . . , k2 − k} so that ij ∈ E ⇔ i ≤ j ≤ i+ k− 1.
Figure 6 shows an S3 and a 3 × 4 grid that can be constructed from S3 using
an MSO transduction.

Figure 6: An S3 and the corresponding grid.

The C2MSO transduction from Sk is then defined by first using C2MSO to
define an ordering on A and B by x is consecutive to y ⇔ |nG(x)△nG(y)| = 2.
Thus, we can identify edges from i ∈ B to i ∈ A and from i ∈ B to i+k−1 ∈ A
in C2MSO. Thus we can add and delete the relevant edges in order to make the
Sk into a k × k grid.

This technique uses the parity predicate only to define a linear order. If we
are given a natural order on the vertices in another way, MSO is just as powerful
as C2MSO. This is illustrated by the following Corollary:

Corollary 23. If MSO satisfiability is decidable in a class of directed acyclic
graphs with Hamiltonian directed paths, then the class has bounded clique-width
and it is the image of a class of trees under an MSO transduction.

9 Open Questions

Question 1 (Blumensath, Weil, Courcelle)

Which operations, quantifier-free definable or not, yield equivalent extensions
of VR, HR, that is, alternative signatures giving the same equational and rec-
ognizable sets?

22

Question 2

Under which operations, quantifier-free definable or not, are REC(VR) and
REC(HR) closed? The case of HR is considered in [3].

Question 3

Is it true that the decidability of MSO satisfiability implies bounded clique-
width, as conjectured by Seese?

References

[1] Achim Blumensath and Bruno Courcelle (2006) Recognizability, hypergraph
operations, and logical types. Information and Computation, 204 (853-919).

[2] Bruno Courcelle (1991) The monadic second-order logic of graphs V: on
closing the gap between definability and recognizability. Theoretical Com-
puter Science, 80 (153-202).

[3] Bruno Courcelle (1994) Recognizable sets of graphs: equivalent definitions
and closure properties. Math. Struct. Comput. Sci. 4:1-32.

[4] Bruno Courcelle (1995) The monadic second-oder logic of graphs VIII: ori-
entations. Annals of Pure Applied Logic 72 (103-143).

[5] Bruno Courcelle (1997) The Expression of Graph Properties and Graph
Transformations in Monadic Second-Order Logic. In G. Rozenberg, Ed.,
Handbook of graph grammars and computing by graph transformations,
vol. 1: Foundations (313-400), World Scientific, London.

[6] Bruno Courcelle (2003) The monadic second-order logic of graphs XIV:
uniformly sparse graphs and edge set quantifications. Theoretical Computer
Science, 299 (1-3).

[7] Bruno Courcelle and Sang-Il Oum (2007) Vertex-Minors, Monadic Second-
Order Logic, and a Conjecture by Seese. J. Combin. Theory, Ser. B 97
(91-126).

[8] Bruno Courcelle (to appear) Graph algebras and monadic
second-order logic. Retrieved on October 24, 2007, from
http://www.labri.fr/perso/courcell/ActSci.html.

[9] Sang-Il Oum (2005) Rank-width and vertex-minors. J. Combin. Theory,
Ser. B 95 (79-100).

[10] Detlef Seese (1991) The structure of the models of decidable monadic theo-
ries of graphs. Annals of Pure Applied Logic, 53:169:195.

[11] Bruno Courcelle and Stephan Olariu (2000) Upper bounds to the clique
width of graphs. Discrete Appl. Math., 101:77-114.

23

[12] Sang-il Oum and Paul Seymour(2006) Approximating clique-width and
branch-width. J. Combin. Theory Ser. B, 96(4):514-528.

[13] Sang-il Oum (2005) Approximating Rank-Width and Clique-Width Quickly.
Springer Lecture Notes in Computer Science 3787 (49-58).

[14] Hans Bodlaender (1996) A linear time algorithm for finding tree-
decompositions of small treewidth, SIAM J. Comput. 25 (1305-1317).

[15] J. Doner (1970) Tree acceptors and some of their applications, J. Comput.
System Sci. 4 (406-451).

[16] J.W. Thatcher and J.B. Wright (1968) Generalized finite automata the-
ory with an application to a decision problem of secondorder logic, Math.
Systems Theory 2 (57-81).

[17] Michael A. Harrison, Introduction to Formal Language Theory, Addison
Wesley Longman Publishing Co, 1978.

24

