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Abstract. Graph structure is a flexible concept covering many differ-
ent types of graph properties. Hierarchical decompositions yielding the
notions of tree-width and clique-width, expressed by terms written with
appropriate graph operations and associated with Monadic Second-order
Logic are important tools for the construction of Fixed-Parameter Tracta-
ble algorithms and also for the extension of methods and results of Formal
Language Theory to the description of sets of finite graphs. This informal
overview presents the main definitions, results and open problems and
tries to answer some frequently asked questions.

Tree-width and monadic second-order (MS) logic are well-known tools for
constructing fixed-parameter tractable (FPT) algorithms taking tree-width as
parameter. Clique-width is, like tree-width, a complexity measure of graphs from
which FPT algorithms can be built, in particular for problems specified in MS
logic. These notions are thus essential for constructing (at least theoretically)
tractable algorithms but also in the following three research fields:
- the study of the structure of graphs excluding induced subgraphs, minors

or vertex-minors (a notion related to clique-width, see [48] or [18]);
- the extension of language theoretical notions in order to describe and to

transform sets of finite and even countable graphs;
- the investigation of classes of finite and countable graphs on which MS logic

is decidable.
Although these four research fields have been initially developed indepen-

dently, they are now more and more related. In particular, new structural results
for graph classes have consequences for algorithmic applications (see [7]).
This overview deals only with finite graphs, trees and relational structures.

There is a rich theory of countable graphs described by logical formulas, logically
defined transformations, equation systems and finite automata. The survey [1] is
a good approach of this theory.

Graph structure and logic
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Graph structure is a flexible concept covering many different cases. Hier-
archical decompositions form an important type of structuring. Those yielding
the notions of tree-width and clique-width can be expressed by terms written
with graph operations defined below that generalize the concatenation of words.
There exist other types of hierarchical structurings that are useful for establish-
ing results or for algorithmic purposes. Examples are the modular decomposition
defined by Gallai ([20], [38]), the split decomposition (also called join decom-
position) defined by Cunnigham ([25], [33]), the decomposition in 3-connected
components defined by Tutte ([11], [21]), the clique-sum decomposition ([52], [7]).
The existence of an embedding in a fixed surface, or of a homomorphism

into a fixed graph (a proper vertex coloring with p colors of a loop-free graph
can be defined as a homomorphism of this graph into the clique Kp) is also a
type of structure ([8], [43]). Finally, the non-existence in a graph of particular in-
duced subgraphs, minors or vertex-minors is also an important type of structural
property. (See [48] for vertex-minors).
There exist nontrivial relations between these different types of structures:

graphs without a fixed planar graph P as a minor have tree-width at most
f(size(P )) for some function f ([50]); graphs embeddable in a fixed surface are
characterized by finitely many excluded minors ([51]); forbidding certain induced
subgraphs implies bounded clique-width ([15], [16]), just to take a few examples,
to which one could add the restricted duality theorems of [43]. There are still
many open questions concerning comparisons between various types of graph
structure.
Monadic second-order logic (MS logic in short) is the extension of first-order

logic with quantified variables denoting subsets of the considered relational struc-
tures, hence sets of vertices when it is used for graphs, and sets of edges when a
graph is represented by its incidence graph. It can express many graph proper-
ties: degree constraints, existence of proper colorings with fixed numbers of col-
ors, connectivity, existence of spanning trees with particular properties, absence
or existence of particular induced subgraphs or minors. From characterizations
by forbidden configurations, one obtains that the sets of cographs, of distance-
hereditary graphs, of planar graphs, of graphs embeddable in a fixed surface, of
graphs of tree-width bounded by a fixed constant are MS-definable, i.e., can be
characterized as the finite models of certain MS formulas.
Graph structure notions are related with MS logic in several ways that we can

classify under two main titles: Expressive power of MS logic and Construction
of algorithms. We will discuss later the language theoretical aspects.

Expressive power of monadic second-order logic

It is easy to construct an MS formula expressing that a given graph has no
minor or no induced subgraph isomorphic to a fixed finite graph. Hence the set
of graphs of tree-width at most k is MS-definable because it is characterized
by finitely many excluded minors. A set of graphs defined by excluded induced
subgraphs forming a set that is infinite but MS-definable is also MS-definable.
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Perfect graphs and comparability graphs are of this type. Their definitions are
not directly translatable into MS formulas ([17], [38], [24]).
Monadic second-order logic can also be used to specify graph transforma-

tions. By analogy with the transformations of words and terms called transduc-
tions in language theory, I call monadic second-order (MS) transductions certain
transformations of relational structures (hence of trees, graphs and hypergraphs)
that can be specified by MS formulas. They generalize the notion of interpreta-
tion used in model theory and the rational transductions (transforming words
into sets of words) such that the image of every word is finite. (Due to space
limitations, definitions are not given formally. They can be found in the given
references and in my book in preparation [3].)
In many situations concerning graph structure, one needs more than a yes

or no answer. For an example, that a graph does not contain K5 or K3,3 as
a minor implies that it is planar, but this fact does not describe any planar
embedding. In other words, we are not only interested in checking that a given
graph “has some structure”, e.g. a tree-decomposition or a planar embedding,
but also in having an MS transduction that constructs from the given graph
some tree-decomposition or some planar embedding. Such transductions may be
difficult to construct. Sometimes, they use edge set quantifications (decomposi-
tion in 3-connected components, [21]), and/or auxiliary linear orderings of the
input structures. Constructions of planar embeddings, of the modular and split
decompositions, of the chord diagram defining a circle graph, respectively are
considered in this perspective in [22], [20], [25], [26].
Independently of these graph theoretical applications, MS transductions are

useful tools for building MS formulas because the inverse image of an MS-
definable set of graphs or relational structures under an MS transduction is
MS-definable.

Construction of algorithms

Books by Downey and Fellows [4] and by Flum and Grohe [6], survey articles
by Grohe [7], and by Makowsky [9], and many other articles have popularized the
facts that MS expressible graph problems have FPT algorithms for tree-width
and clique-width taken as parameters. We will refer by CMS to the extension of
MS logic allowing set predicates Cardp(X) expressing that the cardinality of a
set X is a multiple of p, by MS2 to the extension allowing edge set quantifications
(also called guarded second-order logic in [39]) and by CMS2 to the combination
of both extensions.
Theorem 1 (Fixed-Parameter Tractability Theorem) : Every CMS2

expressible graph problem has a fixed-parameter linear algorithm for tree-width.
Every CMS expressible graph problem has a fixed-parameter cubic algorithm for
clique-width. These results extend to the counting and optimization problems
specified in these extensions of MS logic.
This result makes particularly interesting the expression of graph properties

in CMS or CMS2 logic. However, monadic second-order logic yields no polyno-
mial algorithm for graphs of unbounded tree-width or clique-width : each level
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of the polynomial hierarchy contains complete problems expressible in MS logic
([45]).

Algebraic characterizations of tree-width and clique-width.

Tree-width and clique-width are based on graph decompositions that can be
expressed with graph operations. Such operations generalize the concatenation
of words. For defining tree-decompositions, we use graphs with distinguished
vertices called sources (or boundary vertices in [4]) specified by labels. Each
label designates a single vertex. The corresponding graph operations are the
parallel-composition that glues two graphs at their sources with same labels and
unary operations that remove or modify source labels. The basic graphs are
isolated vertices and graphs with a single edge. Tree-decompositions correspond
closely to terms built with these operations and the tree-width of a graph is the
minimum number of labels to be used to construct it with these operations.

Clique-width is similar but it is defined with different operations. These op-
erations use also labels but a label may be attached to several vertices. The
relevant operations are disjoint union (denoted by ⊕), unary operations adda,b
that add edges between every vertex labeled by a and every vertex labeled by b,
and unary operations that modify labels. The basic graphs are isolated vertices.
The clique-width of a graph is the minimum number of labels to be used to
construct it with these operations. Whereas words are generated from letters by
a single binary operation, operations that use countably many labels (they form
a countable set) are needed for generating all graphs,

Is Theorem 1 best possible ?

No. That a graph is Hamiltonian can be decided in polynomial time on graphs
of bounded clique-width, although this property is MS2 but provably not CMS
[55]. (The algorithm is not FPT).

However, some converse results do exist : if every existential monadic second-
order property (3-vertex colorability is an example of such a property) is decidable
in polynomial time on all graphs of a set C that is closed under taking minors or
topological minors then C has bounded tree-width. The closure conditions under
taking minors cannot be replaced by closure under taking subgraphs. These
results are proved in [44].

Is Theorem 1 practical usable ?

Not directly, for several reasons. First, because the algorithms need appro-
priate hierarchical decompositions of the input graphs. A tree-decomposition of
width at most k can be found in linear time if there exists one, but the constant
depends exponentially on k, and the algorithm is not implementable [13]. For
clique-width, the situation is similar: one can construct in cubic time a clique-
width expression of width at most 2k+1 − 1 if the given graph has clique-width
at most k by an algorithm derived from [41] and [49], but this algorithm is too
complex to be implemented. Deciding if the clique-width of a graph G is at most
k for given (G, k) is NP-complete [35]. This problem is polynomial for k < 4 and
open for k = 4. A second difficulty comes from the translation of MS formulas
into the finite automata on terms, on which the FPT algorithms are based. Since
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short formulas can express complicated properties, these automata have in the
worst cases non-elementary sizes in terms of the considered formulas ([37]).
Is the situation hopeless ?
Fortunately not! There exist implementable algorithms producing non op-

timal but usable tree-decompositions [14]. For clique-width, there exist algo-
rithms based on modular decomposition that can produce in linear time optimal
clique-width expressions for graphs from particular classes ([16], [30]). Another
possibility consists in inputting graphs that have “natural” tree-decompositions
(just because of the nature of the problems they formalize) or graphs produced
by context-free grammars with their derivation trees, because derivation trees
are hierarchical decompositions of the appropriate types. The second difficulty
appears in the general statement intended to cover all formulas, but concrete
problems may yield automata of reasonable sizes. Softwares like MONA [42]
may be used for graphs defined by terms written with the operations described
above, as well as directly for words and terms [54].
What about first-order formulas ?
There are FPT algorithms for model-checking of first-order formulas on cer-

tain classes of graphs of unbounded tree-width or clique-width, for instance, on
those that have locally bounded tree-width or that exclude a fixed graph as a
minor ([36], [7]). The structural description of the latter types of graphs used in
[52] for proving the Graph Minor Theorem finds here unexpected applications.
Nešeťril and Ossona de Mendez also apply structure theorems to the verification
of first-order formulas expressing graph inclusions [47].
Could one use terms describing graphs written with other operations than

those defining tree-width and clique-width, and that would have good "compati-
bility" with MS logic ?
One could use the unfolding operation that transforms a directed graph into

the tree of finite paths issued from a specified vertex, because the inverse image
under it of a CMS definable set of trees is CMS definable [32]. This operation
is used together with MS transductions in order to construct countable graphs
having decidable MS theories. These graphs form a hierarchy defined by Caucal
(see the survey [1]). This operation has not yet been used to my knowledge to
describe sets of finite graphs in a similar way. By using it, one could obtain
compact representations of large graphs. (Trees with 2n nodes can be described
by terms of size n that encode directed acyclic graphs.)

Language theoretical concepts extended to sets of finite graphs

Two sets of graph operations have been defined above to characterize alge-
braically tree-width and clique-width. They define two algebraic structures on
finite labelled graphs and two types of descriptions of these graphs by terms. Al-
gorithmic applications are based on that, but so are also the language theoretical
notions of context-free graph grammars and recognizability.
Context-free grammars as equation systems.
Context-free grammars are usually defined as sets of rewriting rules, however,

a classical theorem characterizes the context-free languages as the components
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of the least solutions of equation systems that are easily built from context-free
grammars. These systems define languages in a recursive way in terms of set
union, the extension to sets of the concatenation of words, letters and a con-
stant denoting the empty word. Context-free languages are thus the equational
subsets of the free monoid. This characterization extends to arbitrary algebras
(Mezei and Wright [46]), even to those with infinite sets of operations, and in
particular to our graph algebras. We obtain thus context-free graph grammars,
defined formally as equation systems, without having to consider derivation se-
quences, permutation of derivation steps, derivation trees, because these notions
are useless or are given for free in the algebraic setting.

Closure under union and under the operations of the algebra, as well as
decidability results (emptiness, finiteness) can be established once and for all
at the algebraic level. Since systems are finite, algorithms on them make sense
although the global set of operations may be infinite.

Two robust classes of context-free graph grammars.

There are many possible graph algebras, and each of them yields a notion of
equational set. However, two of them have emerged as particularly robust and
interesting. These are the HR algebra whose operations are those characterizing
tree-width, and the VR algebra related similarily to clique-width. The acronym
HR stands for Hyperedge Replacement and refers to an algebra of graphs, the
equational sets of which are exactly those defined independently by hyperedge
replacement (hypergraph) grammars. Its operations are those from which tree-
width can be defined. In particular, the set of graphs of tree-width at most k is
HR-equational. Similarly, VR stands for Vertex Replacement and refers to other
graph grammars that actually generate the VR-equational sets. Its operations
have been designed in [28] so that the sets defined by certain grammars be the
corresponding equational sets. The set of graphs of clique-width at most k is
VR-equational.

In which sense are these classes robust ?

Our robustness criterium is stability under MS transductions, generalizing
the fact that the families of context-free and of regular languages are closed un-
der rational transductions. Furthermore, context-free languages are generated by
rational transductions from particular context-free languages that describe trees.
(Rational transductions are compositions of homomorphisms, inverse homomor-
phisms, intersections with regular languages. They are closed under composition
and under inverse. Monadic second-order transductions are closed under com-
position, but not under inverse.)

The family of HR equational sets of graphs is characterized as the set of im-
ages of binary trees under MS2 transductions (those that transform graphs via
their incidence graphs), hence is closed under these transductions ([27]). It fol-
lows also that MS2 transductions preserve bounded tree-width. The family of VR
equational sets is the set of images of binary trees under MS transductions, hence
is closed under these transductions ([34]) which consequently preserve bounded
clique-width. These facts give characterizations independent of the chosen alge-
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bras. Furthermore, they help to prove that “small variations” on the signatures
preserve the corresponding classes of equational sets ([12], [29]).

What do we get from definitions of sets of graphs by equation systems ?

We get relatively compact descriptions. By using derived operations, one can
make them (hopefully) more readable. For example, series-composition of graphs
with two sources, denoted by •, is not a basic operation of the HR algebra,
but it is defined by a term over the basic operations, and • can replace this
term in an equation system. The equation defining series-parallel graphs is then
S = S//S∪S•S∪e where // and e that denote respectively parallel-composition
and a single edge, are basic operations. Every generated graph has at least one
derivation tree, which is a term over the operations of types HR and VR and
their extensions with derived operations. This term can be used for storing the
graph as a string of symbols, and as input to algorithms. Extensions of the Semi-
Linearity Theorem for context-free languages (Parikh’s theorem) make it pos-
sible to extract numerical informations, like the possible numbers of vertices
and/or edges in a generated graph. Incorrect graphs can thus be detected by
using this result as a preliminary test. Filtering theorems (see below) make it
possible to transform equation systems. Parsing is more difficult for context-free
graph grammars than for context-free word grammars. It is NP-complete for
certain particular grammars and polynomial for others. (See the first two chap-
ters of [10]). Unambiguous graph grammars would be interesting for counting
purposes, like are unambiguous context-free grammars, (see the book by Flajolet
and Sedgewick [5]). Ambiguity for a graph grammar is actually not that obvious
to define, in particular because of associative and commutative operations like
// in the above definition of series-parallel graphs.

Recognizability

Two of the various equivalent characterizations of regular languages are in-
teresting for dealing with graphs. First, their characterization in terms of fi-
nite congruences, because it applies to every algebra (Mezei and Wright in [46])
and second their characterization as the set of MS-definable languages. MS-
definability is only meaningful for logical structures or for objects represented
by such structures, and this is the case for graphs. In the case of languages,
MS-definability is equivalent to recognizability, but for graphs one has only one
implication : MS-definability implies recognizability. (It is open to find restric-
tions on the congruences used in the definition of HR- (or VR-) recognizability
so as to make it equivalent to CMS2- (or CMS-) definability.)

Theorem 2 (Recognizability Theorem): Every CMS2-definable set of
graphs is recognizable in the HR algebra. Every CMS-definable set of graphs is
recognizable in the VR algebra.

The opposite implications cannot hold since there are uncountably many
HR- and VR- recognizable sets of graphs. This uncountability result is linked
to the infiniteness of the signatures of the HR and VR algebras. However a
result stated in [40] says that a set of graphs of bounded tree-width is CMS2-
definable if and only if it is HR-recognizable. No similar result is known for
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VR-recognizability. An important consequence of the Recognizability Theorem is
the Filtering Theorem.
Theorem 3 (Filtering Theorem): The intersection of an HR-equational

set of graphs with a CMS2-definable one is effectively HR-equational. The in-
tersection of a VR-equational set with a CMS-definable one is effectively VR-
equational.
Direct constructions for particular properties like planarity (which is MS

definable) would be particularly long and technical.
How can one prove the Recognizability Theorem ?
One proof can be sketched as follows : let Θk be the set of monadic second-

order sentences (closed formulas) of quantifier height at most k over a fixed
relational signature, and written in a certain normal form. This set has large
cardinality but is finite. For a structure S we let Mk(S) be the level k theory of
S, i.e., the set of sentences in Θk that are true in S. The main lemma states that
Mk(S⊕T ) can be computed fromMk(S) andMk(T ) by a function that depends
only on k (⊕ is disjoint union). A second (straightforward) lemma states that if
t is a transformation of structures that can be expressed by quantifier free (QF)
formulas, (this is the case of a relabelling, of the edge creation operation adda,b
and of the edge complement to take typical examples) then Mk(t(S)) can be
computed from Mk(S) by a function that depends only on k and t. Since all VR
and HR operations are expressible in terms of ⊕ and operations definable by
QF formulas, the proof can be completed as follows: one defines a congruence
on relational structures by S ≡ T iff Mk(S) = Mk(T ). Technical details are
omitted but everything is on the table. The lemma about ⊕ has generalizations
involving combinations of infinite families of structures presented in [9]. The case
of a mapping t such that Mk(t(S)) can be computed from Mf(k)(S) for some
fixed function f by a function that depends only on k and t, is also interesting.
This is the case of unfolding ; such operations are discussed in [9].
Recognizability is a difficult notion to handle (the emptiness of an HR-

recognizable set of graphs of unbounded tree-width is undecidable) but MS logic
provides a handy language for specifying recognizable sets. In many cases the
expression of a graph property by a monadic second-order formula is straight-
forward. Finite automata and regular expressions make it easy to specify recog-
nizable languages, and monadic second-order formulas play a similar role for
recognizable sets of graphs. They replace finite automata. No existing notion of
graph automaton gives an equivalence with monadic second-order logic. If graph
automata of some type would be effectively equivalent to monadic second-order
formulas for all graphs, their emptiness problem would be undecidable because
so is the corresponding problem for MS logic.
Back to equational sets.
The Filtering Theorem stated above is a direct application of the Recogniz-

ability Theorem and of the following fact : in every algebra the intersection of an
equational set and an effectively given recognizable set is effectively equational.
This generalizes the fact that the intersection of a context-free language and a
regular one is context-free. Together with the decidability of emptiness, we get
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that MS logic is decidable on VR-equational sets, and that CMS2 logic is decid-
able on HR-equational sets. This means that one can test if every graph of the
considered equational set satisfies the considered formula.
Could one prove or disprove mechanically (at least theoretically) some con-

jectures of graph theory by using this theorem ?
Only those of the form : every graph in a particular VR- or HR-equational

set, or of clique-width or tree-width at most some given k, satisfies some property
expressible in MS logic. But most graph theoretic conjectures (like Hadwiger’s
Conjecture) concern all graphs, and are not restricted to equational sets. An-
other difficulty with this idea is that graph properties involving comparisons of
cardinalities are not MS expressible in general.
On which classes can one decide MS logic ?
There is a structural necessary (but not sufficient) condition.
Theorem 4 (Structural preresquisite for MS decidability) : (1) Every

set of graphs having a decidable MS2 theory has bounded tree-width, hence is a
subset of some HR-equational set. (2) Every set of graphs having a decidable
C 2MS theory has bounded clique-width, hence is a subset of some VR-equational
set.
The first statement is proved in [53], and the second one in [18]. The hypoth-

esis that the C2MS theory (C2MS = MS with the even cardinality set predicate
Card2(X)) is decidable is stronger than requiring that the MS theory is de-
cidable. These proofs use the result of [50] that excluding a planar graph as a
minor implies bounded tree-width, and an extension of it to matroids. Hence in
the case of sets of graphs, there are two obstacles to the decidability of CMS (or
CMS2) logic: unbounded clique-width (or tree-width), and, for sets of bounded
clique-width or tree-width, the “internal complexity” of the considered sets. Sets
of words can be complex enough so as to forbid the decidability of MS logic, al-
though words are, considered as graphs, of tree-width 1.
By using the unfolding operation applied to directed acyclic graphs and MS

transductions, one can construct classes of graphs that are not VR equational,
that have decidable CMS-theories but (necessarily by Theorem 4) have bounded
clique-width. That such graphs have bounded clique-width follows more directly
from the fact that unfolding makes a graph into a tree. The use of unfolding
increases the “internal complexity” of the described graphs, while keeping de-
cidability of MS logic.
Are there fragments of MS logic that have decidable theories on classes of

graphs of unbounded clique-width ?
An example is first-order logic, which is decidable on square grids (but not

on all planar graphs). The satisfiability problem for existential monadic second-
order logic (sentences of the form ∃X1, . . . ,Xnϕ with ϕ first-order) is undecidable
on square grids. However one might look for improvements of Theorem 4 where
the hypotheses are the decidabilities of L-theories for fragments L of MS logic.
Does the decidability of a fragment L of MS logic on a set of graphs C imply

the existence of a polynomial time algorithm for each L-expressible property over
the graphs in C ?
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For CMS logic and clique-width, and for CMS2 logic and tree-width, the
Recognizability Theorem implies simultaneously Theorem 1 and the decidabilities
of CMS and CMS2 logics over graphs of bounded clique-width and tree-width
respectively, but, the only implication uses the detour through Theorem 4.

Couldn’t we extend the languages CMS and CMS2 while keeping decidability
of the corresponding theories on graphs of bounded clique-width and tree-width ?

No such extension exists to my knowledge. The extension of CMS logic by
an equal cardinality predicate Eq(X,Y ) expressing that sets X and Y have
equal cardinality is undecidable on the set of words over a single letter. Another
possibility could be with a cardinality oracle. That is we fix a recursive set of
integers A and we let CardA(X) mean : X has cardinality in A. If A is the set
of numbers that are either a power of 2 or a power of 3, then the corresponding
extension of MS is undecidable on words. If A is the set of prime numbers the
decidability is unknown. (This extension is stronger than the extension of the
linear order of natural numbers with a predicate PA(x) expressing that x ∈ A
because bijections are not definable by monadic second-order formulas).

Can’t one define all graphs with a finite set of operations ?

Yes, one can define all linearly ordered loop-free undirected graphs from
four unary operations : addition of a new isolated vertex as new last vertex,
addition of a new edge between the first two vertices, exchange of the first two
vertices and circular shift (the first vertex becomes the last one, the second one
becomes the first, etc. . . ). As single constant, one can use the empty graph.
With these operations and the one that forgets the ordering, one can define
all graphs by terms, but these terms that are nothing but lists of vertices and
edges. No interesting hierarchical structure is obtained like with the HR and
VR operations. MS logic is undecidable on the corresponding equational sets.
Although “small” and “powerful” this set of graph operations is uninteresting.

Relational structures.

The results of Theorems 1,2,3 have been stated for graphs, but their exten-
sions to relational structures over finite relational signatures are straightforward,
because most results are proved either at the Universal Algebra level or are valid
for relational structures (cf. the proof sketch of the Recognizability Theorem).
What are the relevant algebras ? One of them, generalizing the VR algebra uses
disjoint union and QF operations. Another one can be defined that extends the
HR algebra. More manageable sets of operations that generate the same equa-
tional sets and the same recognizable sets have been considered in [19], [31], [12].
In most cases, proofs in terms of relational structures are no more difficult than
for classes of graphs and give more general statements.

A challenging open problem : Is it true that if a set of relational structures
has a decidable CMS theory, then it is the image of a set of binary trees under
an MS transduction ? If true, this would generalize Theorem 4 (2) but the tools
used for its proof do not extend obviously. I consider this question as the main
one in the area of relationships between MS logic and graph structure. The
corresponding extension of Theorem 4 (1) is not difficult.
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Here is a last result that indicates how nicely recognizability and MS logic
fit together.
Theorem 5 ([12]) : The inverse image of a recognizable set of relational

structures under a CMS transduction is recognizable.
In this statement, recognizability is understood with respect the algebra

based on disjoint union and QF operations. This result generalizes the fact that
the inverse image of a CMS definable set of relational structures under a CMS
transduction is CMS definable.

Acknowledgement : I thank A. Blumensath, M. Fellows and I. Walukiewicz
for many useful comments on a first draft of this overview.

The first 11 references are books and survey articles.
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