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Abstract

Hierarchical decompositions of graphs are interesting for algorithmic purposes. Many NP com-
plete problems have linear complexity on graphs with tree-decompositions of bounded width. We
investigate alternate hierarchical decompositions that apply to wider classes of graphs and still
enjoy good algorithmic properties. These decompositions are motivated and inspired by the study
of vertex-replacement context-free graph grammars. The complexity measure of graphs associ-
ated with these decompositions is called clique width. In this paper we bound the clique width
of a graph in terms of its tree width on the one hand, and of the clique width of its edge
complement on the other. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We investigate a hierarchical graph decomposition that re�nes the well-known modu-
lar decomposition. A graph complexity measure that we call clique width is associated
in a natural way with this graph decomposition, much the same way tree width is
associated with tree decompositions (which are actually hierarchical decompositions of
graphs [23]).
Hierarchical graph decompositions are interesting for algorithmic purposes. In the

following, by a decomposition of a graph, we mean either a tree decomposition, or
the unique modular decomposition, or a decomposition of the type that we shall de�ne
below. A decomposition of a graph G can be viewed as a �nite term, written with
appropriate operations on graphs, that evaluates to G. Tree decompositions [23] and
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modular decompositions are usually not de�ned in such an algebraic way, but they can
be; see [2] for the case of tree decompositions and [11] for modular decomposition.
In�nitely many operations are necessary to de�ne all graphs. By limiting the operations
in terms of some integer parameter k, one obtains complexity measures of graphs. A
graph G has complexity at most k if it has a decomposition de�ned in terms of
operations limited by this number k. (Typically the complexity of a graph is at most
the number of its vertices, but there are in�nitely many graphs of a �xed complexity).
Tree width is associated in this way with tree decompositions [23]. In the case of

modular decomposition, the corresponding width of a graph, let us call it the modular
width, is the largest number of vertices of a prime graph appearing at some node of the
decomposition. As it turns out, the prime graphs which form the basic blocks of the
modular decomposition are no longer basic with respect to the decomposition we shall
introduce. It is well known that many NP-complete problems have linear algorithms on
graphs of tree width or of modular width bounded by some �xed k, and the same will
hold for graphs of clique width at most k. (See the special issue of Discrete Applied
Mathematics [21] devoted to partial k-trees).
The graph operations upon which clique width and the related decompositions are

based have been already introduced in Courcelle et al. [4,13] in relation with the
description of certain context-free graph grammars in terms of systems of mutually
recursive equations. These operations build graphs as gluings of complete bipartite
graphs. We call clique width (cwd, for short) the corresponding graph complexity
measure.
We now discuss another motivation for investigating clique width, coming from re-

search relating logic and graph theory. We �rst recall that a graph can be represented
by a logical structure so that logical languages can be used to express graph proper-
ties. Monadic second-order logic (namely, the extension of �rst-order logic with set
quanti�cations) is of special interest: most of the NP-complete problems which are
linear on hierarchically decomposed graphs correspond to graph properties expressible
in MS (Monadic Second-Order logic) [1,15]; yet another reason is that many classes
of graphs have decidable monadic theories [5,6].
There are actually two main ways to represent a graph by a logical structure: the

domain of this structure may consist of vertices or of vertices and edges. In the latter
case, quanti�ed variables of MS formulas may denote sets of edges. We shall refer to
MS logic with vertex and edge quanti�cations by the notation MS2 and to MS logic
with vertex quanti�cations only by the notation MS1.
Seese [24] proved that if a set of �nite graphs has a decidable MS2 theory, then

it has bounded tree width. He conjectured that if a set L of graphs has a decidable
MS1-theory (which is a weaker condition) then it is “interpretable in a set of trees”.
This condition is equivalent by results in [9,12,13] to saying that L has bounded clique
width.
The result concerning MS2 uses a result of Robertson and Seymour [23] asserting

that graphs of large tree width contain large square grids as minors. At present, we
lack a similar structural characterization of graphs with large clique width that would
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allow us to establish the conjecture. We hope that the investigation of clique width
will yield such a result and will thus make it possible to prove the conjecture.
The paper is organized as follows. Section 2 recalls basic de�nitions, reviews re-

lations with graph grammars and monadic second-order logic, and introduces a kind
of “normal form” as a tool for further proofs. Section 3 contains a characterization
of cwd in terms of a sequence (and not a tree) of basic operations. It follows that
going from a graph to an induced subgraph does not increase cwd. Section 4 shows
that going from a graph to its edge complement increases cwd by a factor of 2, at
most. In Section 5, we bound the cwd of a graph in term of its tree width. Section 6
summarizes the results and o�ers a number of open problems.

2. Basics

The set of subsets of a set C is denoted by P(C). All the graphs in this work are
�nite with no self-loops nor multiple edges. They are directed or not. A graph is a pair
G = (V; E) where E⊆V × V if G is directed, while E is a set of unordered pairs of
vertices if G is undirected. If necessary, we write V =V (G) and E=E(G). A directed
edge will be called an arc. The empty graph is such that V = E = ∅. As usual, we let
|A| denote the cardinality of set A. An abstract graph is an isomorphism class of a
graph.

2.1. De�nitions

We now recall the notion of tree width [23]. A tree decomposition of a graph
G=(V; E) is a pair (T; f) such that T is a tree, f is a mapping associating with every
vertex t in V (T ) a subset f(t) of V such that
(1) V is the union of the sets f(t), t ∈ V (T ),
(2) any two adjacent vertices of G belong to some set f(t),
(3) for any two vertices t and t′ of V (T ), t 6= t′, if v ∈ f(t)∩f(t′) then v belongs to
f(w) for every w on the unique path in T from t to t′.
The width of (T; f) is de�ned as

max{|f(t)|| t ∈ V (T )} − 1:
The tree width of G denoted by twd(G) is the minimal width of its tree decompositions.
All trees have a tree width of 1. A clique Kn has twd n − 1 (because for any tree

decomposition (T; f) of Kn, some set f(t) must contain all vertices.
Tree width is independent of the directions of edges.
One can also observe that |E|¡k|V | (resp. |E|¡ 2k|V |) for an undirected (resp.

directed) graph G = (V; E) of tree width at most k.
We denote by TWD(6k) (resp. ˜TWD(6k)) the set of undirected graphs (resp.

directed graphs) of tree width at most k.
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We now introduce the notion of clique width.
Let C be a countable set of labels. A labeled graph is a pair (G; ) where  maps

V (G) into C. A labeled graph can also be de�ned as a triple G = (V; E; ), and its
labeling function is denoted by (G) whenever the relevant graph G must be speci�ed.
We say that G is C-labeled if C is �nite and (G)(V )⊆C. We denote by G(C) and
by G̃(C) the sets of undirected C-labeled graphs and of directed C-labeled graphs,
respectively. A vertex with label a will be called an a-port.
We introduce the following symbols:

• a nullary symbol a for every a ∈ C;
• a unary symbol �a→b for a; b ∈ C with a 6= b;
• a unary symbol �a;b for a; b ∈ C with a 6= b;
• a unary symbol �a;b for a; b ∈ C with a 6= b;
• a binary symbol ⊕.
These symbols are intended to denote operations on graphs: �a→b “renames” a as

b, �a;b “creates edges”, �a;b “creates arcs”, ⊕ is the disjoint union.
For C ⊆C we denote by T (C) the set of �nite well-formed terms written with the

symbols ⊕; a; �a→b; �a;b, for a; b ∈ C; a 6= b. We denote by T̃ (C) the set of those
written with the symbols ⊕; a; �a→b; �a;b, for a; b ∈ C; a 6= b. Each term in T (C)
(resp. T̃ (C)) denotes a set of labeled undirected (resp. directed) graphs. Since any two
graphs denoted by the same term t are isomorphic, one can also consider that t de�nes
a unique abstract graph.
The de�nitions below are given by induction on the structure of t. We let val(t) be

the set of graphs denoted by t (or the corresponding abstract graph.).
If t ∈ T (C) we have the following cases:

(1) t = a ∈ C: val(t) is the set of graphs with a single vertex labeled by a;
(2) t = t1 ⊕ t2: val(t) is the set of graphs G = G1 ∪ G2 where G1 and G2 are disjoint
and G1 ∈ val(t1); G2 ∈ val(t2);
(3) t = �a→b(t′): val(t) = {�a→b(G) |G ∈ val(t′)} where for every graph G in val(t′),
the graph �a→b(G) is obtained by replacing in G every vertex label a by b;
(4) t=�a;b(t′): val(t)={�a;b(G) |G ∈ val(t′)} where for every undirected labeled graph
G = (V; E; ) in val(t′), we let �a;b(G) = (V; E′; ) such that

E′ = E ∪ {{x; y} | x; y ∈ V; x 6= y; (x) = a; (y) = b};

hence, we add to G all edges joining an a-port and a b-port that are not adjacent. For
terms in T̃ (C), we use the same rules with (4) replaced by
(4′) t= �a;b(t′): val(t)= {�a;b(G) |G ∈ val(t′)} where for every directed labeled graph
G = (V; E; ) we let �a;b(G) = (V; E′; ) such that

E′ = E ∪ {(x; y) | x; y ∈ V; x 6= y; (x) = a; (y) = b}:

Here, we add to G all arcs from an a-port x to a b-port y, such that there does not
exist an arc from x to y.
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Fig. 1. Examples of graphs with cwd = 2.

Fig. 2. Examples of graphs with cwd = 3.

For every labeled graph G we let

cwd(G) = min{|C| |G ∈ val(t); t ∈ T (C)}
if G is undirected. If G is directed, we let

cwd(G) = min{|C| |G ∈ val(t); t ∈ T̃ (C)}:
A term t ∈ T (C) ∪ T̃ (C) such that |C| = cwd(G) and G = val(t) is called optimal

expression of G. Unlabeled graphs are considered as graphs all of whose vertices have
the same label.

Fact 2.1. For every graph G; we have cwd(G)6|V (G)|.

Example 2.2.
1. All cliques Kn; n¿2, and all acyclic tournaments of order n, for n¿2, have
cwd(Kn) = 2; for other graphs with cwd= 2 the reader is referred to Fig. 1.

2. The undirected cycles Cn, for n=5 and n=6 have cwd(Cn) = 3: additional graphs
with cwd = 3 are featured in Fig. 2 below. The undirected cycles Cn with n¿7
have clique width equal to 4.
The cycle C6 (with all vertices labeled by a) is de�ned by the following term:

�b→a(�c→a(�b;c(c ⊕ (�c→a(�a;c(c ⊕ (�a;b(a⊕ b)⊕ �a;b(a⊕ b)))))))):

Fact 2.3. If G is an undirected graph obtained from a directed graph G′ by omitting
the directions of the edges then cwd(G)6cwd(G′). (It su�ces to replace �a;b by �a;b
in any expression denoting G′ to obtain one denoting G:) The inequality can be strict
as our examples show.

Example 2.4.
1. All trees (with undirected edges) are of cwd at most 3.
2. The cographs [3] are the undirected (simple, loop-free) graphs of cwd at most 2. We
recall that cographs are generated from isolated vertices by two binary operations:
the disjoint union discussed above and the product (G × H is obtained from the
disjoint union of G and H by the addition of all edges between the vertices of G
and those of H .) From this de�nition, the characterization in term of cwd is easy
to obtain. (Recall that the cographs are exactly the graphs without induced paths on
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four vertices, but this “negative property” does not help here).All trees have tree
width equal to 1, all cliques have clique width equal to 2. Our terminology (clique
width) is intended to recall this fact.

3. The terms of the form

�a; b(a⊕ a⊕ · · · ⊕ a⊕ b⊕ b⊕ · · · ⊕ b)
de�ne complete bipartite graphs. Together with cliques, this yields examples of
graphs of bounded cwd having a number of edges not linearly bounded in terms
of the number of vertices. This should be contrasted with the case of graphs of
bounded tree width.

We note here that a notion similar to our clique width, along with some algorithmic
applications, is de�ned by Wanke in [26].

Notation.

CWD(k)=the set of undirected labeled graphs G with cwd(G) = k,
CWD(6k)=the set of undirected labeled graphs G with cwd(G)6k,
CWD(¿k)=the set of undirected labeled graphs G with cwd(G)¿k,
˜CWD(k), ˜CWD(6k); ˜CWD(¿k) denote the similar sets of directed graphs.

2.2. Relationships with graph grammars

Several notions of context-free grammars generating sets of graphs or hypergraphs
have been de�ned. One of them, based on the replacement of vertices by graphs that
are right-hand sides of rules is discussed in detail by Engelfriet and Rozenberg [20].
We call a VR set a set of graphs de�ned by such a grammar (VR stands for Vertex

Replacement). These sets can be de�ned equivalently (see [13]) as components of least
solutions of systems of equations.
As an example of an equation one can consider

u= a ∪ �b→a(�a;b(u⊕ b)):
Its least solution (in the set of sets of undirected labeled graphs) is the set of all cliques
Kn, all vertices of which are a-ports. We will use the following characterization.

Proposition 2.5. A set of directed (undirected) graphs L is VR if and only if it is a
component of the least solution of a system of equations written with set union and
the symbols ⊕; a; �a→b; and �a;b (resp. �a;b) for a; b ∈ C; a 6= b. There exists a �nite
set C ⊆C such that every graph in L is the value of a term in T̃ (C) (resp. T (C)).

The set C is nothing but the �nite set of labels (from C) occurring in the operations
used in the system which de�nes L.

Corollary 2.6. Every VR set of graphs is included in CWD(6k) or in ˜CWD(6k) for
some k.
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Proposition 2.7. For every k; the sets CWD(6k) and ˜CWD(6k) are VR.

Question 2.8. Are the sets CWD(k) and ˜CWD(k) VR?

2.3. Relationships with monadic second-order logic

We refer the reader to Courcelle [4–11] for the de�nition of monadic second-order
logic (MS) in its two variants MS1 and MS2. We only recall here that MS1 is monadic
second-order logic with quanti�ed variables denoting vertices and sets of vertices only,
whereas MS2 is the more powerful language where quanti�ed variables can also denote
edges and sets of edges. The reader who does not know MS logic can skip this
subsection; the results in this paper will not use it.
We nevertheless recall that a set of graphs is MSi-de�nable (i = 1; 2), if and only

if it is the set of graphs which satisfy a MSi-formula. A set L of graphs has a de-
cidable MSi-theory if and only if there exists an algorithm that decides whether a
given MSi-formula is satis�ed by every graph in L. The following results are proved
in [4].

Proposition 2.9. If L is VR and K is MS1-de�nable then L ∩ K is VR.

Corollary 2.10. The MS1-theory of a VR set of graphs is decidable.

Proof. Given an MS1 formula ’, one lets K be the set of graphs that do not satisfy ’.
One can construct a system of equations (i.e. a VR grammar), that de�nes L∩K . One
can test whether L∩K = ∅. And L∩K = ∅ if and only if ’ belongs to the MS1-theory
of L (i.e. if ’ holds in every graph in L).

The following conjecture by Seese [24] can be stated as follows by [12,19].

Conjecture 2.11. If a set of graphs has a decidable MS1-theory; then it is included
in CWD(6k) (or ˜CWD(6k)) for some k.

A related result is known from Seese [24].

Theorem 2.12. If the MS2-theory of L is decidable then L⊆TWD(6k) or L⊆ ˜TWD
(6k) for some k.

The proof of Theorem 2.12 sketched in Courcelle [9] uses the deep result of
Robertson and Seymour [23] that for every k∈N, every graph of tree width more
than f(k) contains a k × k-grid as a minor, where f is some function. In order to
prove Conjecture 2.11, one would need a similar result, telling us something about the
structure of graphs of “large” clique width. Special cases of Conjecture 2.11 are known
to hold.
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Theorem 2.13 (Courcelle [9]). If L is a set of graphs having a decidable MS1-theory
and if it satis�es one of the following conditions 1–6; then it is included in CWD(6k)
or ˜CWD(6k) for some k:
1: the graphs in L have bounded degree;
2: the graphs in L are planar;
3: the graphs in L do not contain a �xed graph as a minor;
4: L is the set of all orientations of the graphs of a set of undirected graphs;
5: L contains all subgraphs of its members;
6: L is a set of (undirected) chordal graphs such that each vertex belongs to a
bounded number of maximal cliques.

In cases (1)–(5), one can even prove that L has bounded tree width, whence it
follows that L has bounded cwd (see Section 5).
From the lemmas making it possible to prove Proposition 2.9 and Corollary 2.10,

we get the following result (see [4]).

Theorem 2.14. For every MS1 formula �; for every �nite set C of labels; one can
construct an algorithm that decides; for every term t in T (C) ∪ T̃ (C); in time O(|t|)
whether the graph val(t) satis�es formula �.

Note that the algorithm is linear in |T |, not in the size of the graph val(t). In
order to obtain a polynomial algorithm in |G| for G ∈ CWD(6k) ∪ ˜CWD(6k), we
need a polynomial algorithm to “parse” G, i.e. to construct t from G (such that G ∈
val(t)). Such an algorithm exists in special cases: cographs [3], P4-sparse graphs [14].
Furthermore, Theorem 2.14 extends to optimization problems speci�ed by MS1-formulas
(see [1,14,15]).

2.4. Auxiliary graph operations

In this subsection, we introduce a graph operation that deletes edges, whence the
possibility of denoting graphs by more complex terms. However, as it turns out, this
new operation can be eliminated from terms, without adding new labels. It follows that
the corresponding complexity measure is still the clique width.
For every a; b ∈ C with a 6= b, we let �−a;b be the unary operation that deletes

all edges of the argument graph with one endpoint labeled by a and the other by b.
Formally, �−a;b(G) is the graph G

′ such that:
• V (G′) = V (G);
• E(G′) = E(G)− {{x; y} ∈ E(G) | {(x); (y)}= {a; b}}.

Proposition 2.15. For every a; b; c; d ∈ C with a 6= b; c 6= d:
(1) �−a;b(G) = G; whenever G has only one vertex;
(2) �−a;b(G ⊕ G′) = �−a;b(G)⊕ �−a;b(G′); whenever G and G′ are disjoint;
(3) �−a;b(�a;b(G)) = �

−
a;b(G);
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(3′) �−a;b(�c;d(G)) = �c;d(�
−
a;b(G)) if {a; b} 6= {c; d};

(4) �−a;b(�a→c(G)) = �a→c(G) if a 6= c (we allow b= c);
(4′) �−a;b(�c→a(G)) = �c→a(�−a;b(�

−
b;c(G))) if c 6= a and c 6= b;

(4′′) �−a;b(�c→d(G)) = �c→d(�−a;b(G)) if {a; b} ∩ {c; d}= ∅:

Proof. Straightforward veri�cation from the de�nitions.

We let T+(C) denote the set of �nite terms constructed with the operations ⊕; �a;b,
�−a;b; �a→b and the nullary symbols a, for all a; b in C, with b 6= a. Two terms are
said to be equivalent if they denote the same sets of concrete graphs (or, equivalently,
the same abstract graph).

Corollary 2.16. Every term in T+(C) can be transformed into an equivalent one
in T (C).

Proof. We �rst prove the result for terms of the particular form E(t) where t ∈ T (C)
and E is a sequence of operations of the form �−a;b.
We let N (E(t)) be the term in T (C), intended to be equivalent to E(t), and de�ned

by induction on the structure of t as follows:
(1) N (E(t)) = t if t ∈ C (i.e. t denotes a graph with a single vertex);
(2) N (E(t1 ⊕ t2)) = N (E(t1))⊕ N (E(t2));
(3) N (E(�a;b(t1))) = N (E(t1)) if �−a;b occurs in E;
(3′) N (E(�a;b(t1))) = �a;b(N (E(t1))) if �−a;b does not occur in E;
(4) N (E(�a→b(t1))) = �a→b(N (E′(t1))) where E′ is obtained from E as follows:
• one deletes all operations of the form �−a;c for c ∈ C (note that �−a;c and �−c;a are just
two notations for the same operation),

• one adds all operations of the form �−a;c for c such that �
−
b;c belongs to E.

Hence, for example

N (�−a;d(�
−
c;d(�

−
b;d(�

−
e;b(�a→b(t)))))) = �a→b(N (�−c;d(�

−
b;d(�

−
a;d(�

−
e;b(�

−
e;a(t))))))):

One can prove by induction on the structure of t that:

(a) N (E(t)) is well-de�ned for every t ∈ T (C) and every sequence E, and
(b) N (E(t)) is equivalent to E(t).
(The proof of (b) relies on properties of the operation �−a;b stated in Proposition 2.15.)
We next extend N to arbitrary terms in T+(C) as follows:

• N (t) = t if t is a nullary symbol;
• N (t1 ⊕ t2) = N (t1)⊕ N (t2);
• N (f(t1)) = f(N (t1)) if f is �a;b or �a→b;
• N (�−a;b(t1)) = N (�−a;b(N (t1)).
Note that the last case uses two “calls” to N ; by assuming inductively that the

internal one, that computes N (t1), terminates (so that N (t1) ∈ T (C)), we conclude that
N (�−a;b(N (t1))) is well-de�ned by the �rst part of the proof.
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One proves also by the same induction that N (t) is equivalent to t for every t ∈
T+(C).

Remark. Corollary 2.16 guarantees that the alternative complexity measure cwd′ on
graphs in G(C) de�ned by cwd′(G) = min{|C′| |G ∈ val(t); t ∈ T+(C′)} is the same
as cwd(G).
A term t in T (C) is said to be irredundant if for every subterm of t of the form

�a;b(t′), no a-port of val(t′) is adjacent to a b-port.

Corollary 2.17. Every term in T (C) is equivalent to some irredundant term in T (C).

Proof. Let t ∈ T (C). We let I(t) be the term in T (C) constructed by induction on the
structure of t as follows:

I(t) = t if t ∈ C;
I(t1 ⊕ t2) = I(t1)⊕ I(t2);
I(�a→b(t)) = �a→b(I(t));
I(�a;b(t)) = �a;b(N (�−a;b(I(t)))), where N is as in Corollary 2.16.

It is clear that I(t) is well-de�ned and belongs to T (C) for every t ∈ T (C).

Claim 2.18.
1: I(t) is irredundant;
2: I(t) is equivalent to t.

Both assertions can be proved by induction on the structure of t, by using
Corollary 2.16. The only fact to verify is the following one stated in the notation
of this corollary:

Claim 2.19. If t ∈ T (C) is irredundant and E is an arbitrary sequence of operations
of the form �−a;b then N (E(t)) is irredundant.

Proof. We use the same induction as in the de�nition of N , in the proof of
Corollary 2.16. All cases are trivial except possibly case (3′):

N (E(�a;b(t1))) = �a;b(N (E(t1))):

But we assume here that �a;b(t1) is irredundant. Hence no a-port of val(t1) is adjacent
to a b-port. The same holds a fortiori in val(N (E(t1))) = val(E(t1)) since this graph
has no more edges than val(t1). Hence, together with the induction hypothesis, saying
that N (E(t)) is irredundant, we get that �a;b(N (E(t1))) is also irredundant, as desired.

For directed graphs, we have an operation similar to �−a;b and de�ned as follows:

�−a;b(G) = G
′ whenever V (G′) = V (G) and

E(G′) = E(G)− {(x; y) ∈ E(G) | ((x); (y)) = (a; b)}:
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The results of Propositions 2:15–2:17 extend in an obvious way. (Note that �−a;b and
�−b;a are not the same operation.)

3. Two characterizations of clique width

Let C be a �nite subset of C and let G;G′ be graphs in G(C). We write G → G′

whenever V (G′) = V (G) and one of the following conditions holds:
1. G = G1 ⊕ G2; G′ = G1 ⊕ �a→b(G2) or
2. G = G1 ⊕ G2; G′ = G1 ⊕ �a;b(G2)
for some graphs G1 and G2 and for some labels a; b ∈ C with b 6= a.
We write G →i G′ if G → G′ and, whenever condition (2) applies, no a-port of G2

is adjacent to a b-port.
A C-construction of G is a sequence (G0; G1; : : : ; Gn) of graphs in G(C) such that

1. G0 has no edge;
2. Gj → Gj+1 for every j = 0; 1; : : : ; n− 1;
3. Gn = G.
Clearly, V (Gj) = V (G) for every j = 0; : : : ; n. Such a construction is irredundant if
Gj →i Gj+1 for every j = 0; : : : ; n − 1. Similar de�nitions can be given for directed
graphs: one simply uses �a;b instead of �a;b, G̃(C) instead of G (C), etc.

Proposition 3.1. For every k ∈ N and for every undirected (resp. directed) labeled
graph G; the following conditions are equivalent:
1: G has clique width at most k;
2: G has a C-construction for some set C of cardinality k;
3: G has an irredundant C-construction for some set C of cardinality k.

Proof. We will only consider undirected graphs. The case of directed graphs is simi-
lar. We will prove the following implications: (1)⇒ (3)⇒ (2)⇒ (1). The implication
(3)⇒ (2) is trivial.
To prove the implication (1) ⇒ (3), let G ∈ val(t) for some irredundant term t in

T (C). We de�ne an irredundant C-construction of G by induction on the structure of t.
If t = a ∈ C then (G) is a C-construction of G.
If t = �a→b(t′) or if t = �a;b(t′), then we let (G0; G1; : : : ; Gn) be an irredundant

C-construction of val(t′) and then, (G0; G1; : : : ; Gn; G) is an irredundant C-construction
of G.
If t= t′⊕ t′′ then G=G′⊕G′′ where G′ ∈ val(t′); G′′ ∈ val(t′′) and G′; G′′ are dis-

joint. We let (G′
0; : : : ; G

′
n) be an irredundant C-construction of G

′, we let (G′′
0 ; : : : ; G

′′
m)

be an irredundant C-construction of G′′. Then the sequence

(G′
0 ⊕ G′′

0 ; G
′
1 ⊕ G′′

0 ; : : : ; G
′
n ⊕ G′′

0 ; G
′
n ⊕ G′′

1 ; G
′
n ⊕ G′′

2 ; : : : ; G
′
n ⊕ G′′

m)

is an irredundant C-construction of G = G′ ⊕ G′′ = G′
n ⊕ G′′

m.
Finally, to prove the implication (2)⇒(1) let (G0; : : : ; Gn) be a C-construction of Gn.
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Claim 3.2. Every connected component of Gn is the value of some term in T (C).

Observe that Claim 3.2 implies the desired result because Gn is the disjoint union
of its connected components, say H1; : : : ; Hm. If ti is a term in T (C) denoting Hi then
t1 ⊕ t2 ⊕ · · · ⊕ tm is a term in T (C) denoting Gn.

Proof of Claim 3.2. We shall proceed by induction on n.
Case n = 0: Clear, because the connected components are graphs with one vertex

and no edge, denoted by symbols from C.
Case n¿ 0: We consider two subcases.
Subcase 1: Gn−1=H⊕K;Gn=�a→b(H)⊕K . A connected component L of Gn is either

a connected component of K , hence of Gn−1 and the result follows by the induction
hypothesis, or a graph of the form �a→b(H ′) where H ′ is a connected component of
H , hence of Gn−1. By the induction hypothesis, H ′ = val(t) for some term t ∈ T (C)
and the term �a→b(t) denotes L.
Subcase 2: Gn−1 = H ⊕ K;Gn = �a;b(H) ⊕ K . We may assume that H has at least

one a-port and one at least b-port (otherwise Gn = Gn−1 and the results holds by the
induction hypothesis).
A connected component L of Gn is:

• either �a;b(H ′) where H ′ is the union of the connected components of H , say
H1; : : : ; Hm, that contain at least one a-port or b-port,

• or a connected component of H without a-port or b-port,
• or a connected component of K .
In the �rst case the graph L is de�ned by the term �a;b(t1⊕· · ·⊕tm) where t1; : : : ; tm are

terms in T (C) denoting respectively H1; : : : ; Hm. They exist by the induction hypothesis.
In the last two cases, the result follows from the induction hypothesis as in Subcase 1.
This completes the proof of Claim 3.2, whence Proposition 3.1.

Proposition 3.1 implies that a graph of cwd at most k can be “marked” in a way
that witnesses this fact: this marking “encodes” on the graph one of its irredundant
C-constructions, where C has cardinality at most k.
Let (G0; G1; : : : ; Gn) be an irredundant C-construction of G=Gn. We de�ne a marking

as follows:
1. Every edge created by a step Gi−1 → Gi is marked i; since G0 has no edge, every
edge has a mark in {1; : : : ; n}; since the construction is irredundant, every edge is
“created only once” hence has only one mark; the set of edges marked i forms a
complete bipartite subgraph of each Gj for i6j6n.

2. Every vertex is marked a0 where a is its label in G0; if at step Gi−1 → Gi, a vertex
gets a new label b, then we add to its marks the new mark bi; hence, every vertex
of Gn has a sequence of marks say a0bi1ci2 : : : dim where 0¡i1¡i2¡ · · ·¡im
recording the history of the vertex: initially marked by a, it got the successive
labels b in Gi1 , c in Gi2 ; : : : ; and �nally d in Gim . The label of this vertex in Gj is
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Fig. 3. Illustrating a construction and the corresponding marking.

f∈C if it has mark fik for some k ∈ {0; 1; : : : ; m} (where we let i0 = 0) and no
mark with subscript j′ for ik ¡ j′6j.
It is clear that each irredundant construction is speci�ed unambiguously by the above

described marking of the graph it constructs.

Example. Fig. 3 shows a construction (G0; G1; G2; G3; G4) de�ning the graph G =G4,
along with the marking of G recording the steps of this construction. The corresponding
term reads

�b;c(�c→b(�b;c(�a;b(a⊕ b)⊕ b⊕ c))⊕ c):

Corollary 3.3. If G is an induced subgraph of H then cwd(G) is at most cwd(H).

Proof. Let H0; H1; : : : ; Hn be a C-construction of H . For each i, let Gi be the induced
subgraph of G with set of vertices V (G). Then G0; G1; : : : ; Gn is a C-construction of G,
except that two consective graphs may be equal. After deletion of repeated elements
in the list, we get a C-construction of G.
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These de�nitions and results extend in a straightforward way to directed graphs.
We will improve Corollary 3.3 by showing that the cwd of a graph G is the least
upper bound of the cwds of its prime induced subgraphs. It will follow that an optimal
expression of a graph G can be obtained as a re�nement of the unique modular de-
composition of G. This latter decomposition can be constructed in time O(|V |+ |E|),
where G = (V; E) [17].
We recall the de�nition of the substitution of a vertex in a graph by another graph.

Let G = (V; E) and H = (V ′; E′) be disjoint directed graphs, and let x be a vertex in
G. The graph G[H\x] called the result of the substitution in G of H for x is de�ned
as follows. Its set of vertices is V ∪V ′−{x}; its set of edges is E′∪ (E∩ ((V −{x})×
(V −{x})))∪{(y; z) |y ∈ V ′; z ∈ V −{x} and (x; z) ∈ E}∪{(z; y) |y ∈ V ′; z ∈ V −{x}
and (z; x) ∈ E}.
This de�nition extends to undirected graphs by handling E and E′ as symmetric

relations.
A graph P = (V; E) is prime if |V |¿2 and P is not equal to G[H\x] unless G or

H is reduced to a single vertex. Examples of prime graphs include P2, P̃2, 2K1, P̃3,
P4, and the graphs Cn for n¿5.
For every set of graphs C we denote by F(C) the least set of graphs that contains

C and is closed under isomorphism and substitution. The set of cliques with at least
two vertices can thus be characterized as F({K2}).

Lemma 3.4. Let G and H be disjoint C-labeled graphs denoted respectively by terms
t and s in T (C). Let x be a vertex of G. Let u be the occurrence in T of the nullary
symbol a (a ∈ C) that corresponds to x. Let us assume that all vertices of H are
labeled by a. Then the term t[s\u] in T (C) obtained from t by substituting s for u
denotes the graph G[H\x].

Proof. Straightforward induction on the structure of the term t.

Proposition 3.5. If C is a set of graphs and G ∈ F(C) then cwd(G)6sup({cwd(H)
|H ∈ C}).

Proof. Let G = G′[G′′\x] where G′, G′′, are denoted by t and s, respectively, all
vertices of G′ are labeled by b and all vertices of G′′ are labeled by c, u is an
occurrence in t of the nullary symbol a, (a ∈ C), that corresponds to the vertex x.
The term t[�c→a(s)\u] denotes G if c 6= a and the term t[s\u] denotes G if c = a.

Hence, cwd(G)6max{cwd(G′); cwd(G′′)}. The result follows from the de�nition of
F(C) since isomorphism of graphs preserves cwd.

Every graph has a unique modular decomposition that is an algebraic term using
the substitution and (isomorphic copies of) its induced subgraphs, see [11,18], and
hence belongs to F(Prime(G)), where F(Prime(G)) denotes the set of prime induced
subgraphs of G.
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Corollary 3.6. For every graphs G; cwd(G) = max{cwd(H) |H ∈ Prime(G)}.

Proof. The inequality ¿ follows from Corollary 3.3. The inequality 6 follows from
Proposition 3.5 and the fact that every graph G belongs to F(Prime(G)).

The modular decomposition of a graph can be constructed e�ciently [17,22]. It
follows from Lemma 3.4 that one obtains an optimal expression of a graph by com-
bining optimal expressions of its prime induced subgraphs. The combination is based
on the modular decomposition. The technique is used in [14]. It follows that the (open)
problem of characterizing the complexity of the problem “cwd(G)6k” reduces to the
special case of prime graphs G.

4. Graph transformations that do not increase the clique width too much

For every graph G we denote by �G its edge complement, that is, the graph with
V ( �G)=V (G) and E( �G)=(V (G)×V (G))−E(G)−{(x; x) | x ∈ V (G)} if G is directed
and with E( �G) =P2(V (G))− E(G) if G is undirected. We denote by P2(V ) the set
of unordered pairs of elements of a set V .

Theorem 4.1. For every graph G; we have cwd( �G)62 ∗ cwd(G).

Note that if G has several vertices and no edges, then cwd(G) = 1 but cwd( �G) = 2
regardless of whether �G is undirected or directed. We ask the following question.

Question 4.2. Does there exist for every value of n larger than 1 a graph G such
that cwd(G) = n and such that cwd( �G) = 2n?

We will �rst consider the case of undirected graphs. We will actually prove a more
general form of Theorem 4.1. Let C be a �nite subset of C and let P be a subset
of P62(C) = C ∪ P2(C). We let KP be the operation on graphs in G(C) such that
G′ = KP(G) whenever
• V (G′) = V (G); and
• E(G′) = (E(G) − {{x; y} ∈ E(G) | {(G)(x); (G)(y)} ∈ P}) ∪ {{x; y} | {(G)(x);
(G)(y)} ∈ P; {x; y} 6∈ E(G)}.
The following proposition yields Theorem 4.1 for undirected graphs because if we

let C be the set of labels of a term denoting G and P =P62(C) then �G = KP(G):

Proposition 4.3. For every graph G in G(C); and for every P⊆P62(C) we have
cwd(KP(G))62 ∗ cwd(G).

The proof of Proposition 4.3 will use terms in T (C) of a special form to denote
graphs.
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De�nition 4.4 (Separated terms). The type of a graph G is the set (V (G)) of labels
of its vertices. The type of a term t ∈ T (C) is the type of the graph val(t), that we
shall denote by �(t). Clearly, �(t)⊆C. A term t is said to be separated if for every
subterm of t of the form t1 ⊕ t2; we have �(t1) ∩ �(t2) = ∅.

Lemma 4.5. Every term in T (C) is equivalent to a separated term in T (D) for some
set D of cardinality at most 2 ∗ |C|.

Proof. We let C′ = {c′ | c ∈ C} and D = C ∪ C′. Notice that C ∩ C′ = ∅. We denote
by R the operation:

R(G) = �a→a′(�b→b′(: : : (�d→d′(G)) : : :))

where {a; b; : : : ; d}= C, and we denote by R′ the operation
R′(G) = �a′→a(�b′→b(: : : (�d′→d(G)) : : :)):

We let S be the transformation:

T (C) ∪ T (C′)→ T (C ∪ C′)

de�ned below by induction on the structure of terms as follows. The inductive de�nition
will use a mapping

t 7→ t̃ : T (C ∪ C′)→ T (C ∪ C′)

that replaces everywhere in t every label a ∈ C by the corresponding label a′ ∈ C′,
and every label a′ ∈ C′ by the corresponding label a ∈ C. We let, similarly, G̃ be
obtained from G where G ∈ G(C ∪ C′). It is clear that we have

val(t̃) = ]val(t):

It should be noted that the mapping ∼ applied to a term t modi�es the labels used at
intermediate steps of the construction it de�nes.
We now de�ne the mapping S by setting:

• S(a) = a if a ∈ C ∪ C′;
• S(�a→b(t)) = �a→b(S(t)),
• S(�a′→b′(t)) = �a′→b′(S(t)),
• S(�a;b(t)) = �a;bS(t)),
• S(�a′ ;b′(t)) = �a′ ;b′S(t)),
• S(t1 ⊕ t2) = R′(S(t1)⊕ S( t̃2)) if t1; t2 ∈ T (C) (and hence t̃2 ∈ T (C′)),
• S(t1 ⊕ t2) = R(S(t1)⊕ S( t̃2)) if t1; t2 ∈ T (C′) (and hence t̃2 ∈ T (C)).

Claim 4.6. For every t ∈ T (C) ∪ T (C′); S(t) is a separated term in T (C ∪ C′) that
is equivalent to t.

Proof. We prove by induction on the structure of t that for every t ∈ T (C) ∪ T (C′):
(1) S(t) is separated,
(2) S(t) is equivalent to t,
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(3) �(S(t))⊆C if t ∈ T (C) and �(S(t))⊆C′ if t ∈ T (C′).
(4) S(t̃) = S̃(t).
(1) The claim that S(t1⊕t2) is separated is clear from the de�nition and the inductive

hypothesis that (3) holds for t1 and t2 and that S(t1) and S(t̃1) are separated. All other
cases follow from the inductive hypothesis that S(t) is separated.
(2) The fact that S(t1⊕t2) is equivalent to t1⊕t2 follows from the inductive hypothesis

that S(t1) is equivalent to t1 and that S(t2) is equivalent to t2 so that, by (4), we also
have S(t̃2) equivalent to t̃2, and the remark that for G1; G2 ∈ G(C) (resp. G(C′))

G1 ⊕ G2 = R′(G1 ⊕ G̃2) (resp: R(G1 ⊕ G̃2)):
All other cases are straightforward. Properties (3) and(4) are also straightforward to
verify by induction.

Proof of Lemma 4.5. (Conclusion). Lemma 4.5 follows then immediately from Claim
4.6 since |C ∪ C′|= 2 ∗ |C|.

The next proposition states some properties of the operations KP . We refer the reader
to Section 2 for the de�nitions of the operation �−a;b and of the set of terms T

+(C).

Proposition 4.7. Let C ⊆C be �nite and let P⊆P2(C). For every G;G′ ∈ G(C) such
that G;G′ are disjoint and �(G) ∩ �(G′) = ∅; and for every a; b ∈ C with a 6= b:
1. KP(G) = G if G has only one vertex;
2. KP(G⊕G′) = · · ·= (�c;d(: : : (KP(G)⊕KP(G′)) : : :)) where the composition extends
to all c ∈ �(G) and d ∈ �(G′) such that {c; d} ∈ P;

3. KP(�a→b(G)) = �a→b(KP′(G)) where P′ = {p ∈ P | a 6∈ p} ∪ {{a; c}|{b; c} ∈ P};
4. KP(�a;b(G)) = �−a;b(KP′(G)) if {a; b} ∈ P and P′ = P − {{a; b}};
5. KP(�a;b(G)) = �a;b(KP(G)) if {a; b} 6∈ P;
6. KP(�−a;b(G)) = �a;b(KP′(G)) if {a; b} ∈ P and P′ = P − {{a; b}};
7. KP(�−a;b(G)) = �

−
a;b(KP(G)) if {a; b} 6∈ P.

Proof. Straightforward veri�cation from the de�nitions.

Proof of Proposition 4.3. Let G be undirected and de�ned by a term t in T (C) where
|C| = cwd(G). By Lemma 4.5 one can transform t into an equivalent separated term
u ∈ T (D) with |D|= 2cwd(G).
For every P⊆P62(D), one can construct from u a term w(u; P) in T+(D) that is

equivalent to KP(u): it is easy to transform the equalities of Proposition 4.7 into a
de�nition of w(u; P) that is inductive on the structure of u.
By Corollary 2.16, one can transform w(u; P) into an equivalent term �w(u; P) in

T (D). Hence �w(u; P) de�nes the graph KP(G), as desired.

We have already observed that Proposition 4.3 yields Theorem 4.1 for undirected
graphs. We now consider the case of directed graphs. The proof is essentially the same.
We only indicate the modi�cations in the de�nitions.
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If P⊆C × C we let K̃P be the operation on G̃(G) such that K̃P(G) = G′ whenever
• V (G′) = V (G), and
• E(G′) = (E(G) − {(x; y) ∈ E(G) | ((x); (y)) ∈ P}) ∪ {(x; y) ∈ V (G) × V (G) | x 6=
y; ((x); (y)) ∈ P and (x; y) 6∈ E(G)}.

Proposition 4.8. For every graph G in G(C) and for every P⊆C × C; we have
cwd(K̃P(G))62 ∗ cwd(G)

From this proposition follows immediately Theorem 4.1 for directed graphs. Lemma
4.5 works for terms denoting directed graphs as well. In the proof, one uses �a;b instead
of �a;b.

5. Comparison with tree width

In this section, given a graph G we compare its clique width, cwd(G), with its tree
width, twd(G). We will prove that for every undirected graph G, cwd(G)62twd(G)+1+1
and that for every directed graph G cwd(G)622twd(G)+2 + 1
There is no hope to get a relation of the form

twd(G)6f(cwd(G)) (1)

valid for all graphs since the complete graphs have unbounded tree width yet their
clique width is at most 2. However, we will obtain inequalities of the form (1) for
graphs belonging to particular classes, like the class of planar graphs. For our proofs
we need some de�nitions, that we borrow from [4,6].

De�nition 5.1 (Sourced graphs). Let k ∈ N, k ¿ 0. We let [k] = {1; 2; 3; : : : ; k} and
[0; k]={0; 1; 2; 3; : : : ; k}. A k-sourced graph is a tuple G=(V; E; s) where V; E are as in
Section 2 (graphs may be directed or not) and s is an injective map : [k]→ V . Vertex
s(i) is called a source and is referred to as the i-source of G. We shall consider such
a graph as labeled by  :V → [0; k] with (s(i)) = i for i = 1; : : : ; k and (v) = 0 if
v 6∈ s([k]). We now de�ne some operations on k-sourced graphs. (They are borrowed
from [2].)

5.1. Parallel composition

If G and G′ are k-sourced graphs G = (V; E; s) and G′ = (V ′; E′; s′), we let H =
G==G′ = (V ′′; E′′; s′′) if the following conditions hold:
• V ′′ = V ∪ V ′,
• V ∩ V ′ = s([k]) ∩ s′([k]),
• s= s′ = s′′,
• E′′ = E ∪ E′.
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We say that H is the parallel composition of G and G′. Note that G==G′ is not
always de�ned. However, for any two graphs G and G′, one can �nd a graph G′′

isomorphic to G′ such that G==G′′ is well-de�ned. The graphs G==G′′ de�ned in this
way are all isomorphic.

5.2. Series composition

The following k-ary operation is a generalization of the usual series composition of
graphs with two sources. If G1; : : : ; Gk are k-sourced graphs we let

S(G1; : : : ; Gk) = fg(i1(G1)== : : : ==ik(Gk)==e1== : : : ==ek)

where fg, in; en are de�ned as follows.
• The mapping fg maps (k+1)-sourced graphs to k-sourced graphs in such a way that

fg(V; E; s) = (V; E; s′)

where s′ is the restriction of s to the set [k]; in other words one “forgets” the last
source, whence the notation.

• The mapping in, 16n6k, transforms a k-sourced graph into a (k+1)-sourced graph
by inserting a new isolated vertex at the nth position in the sequence of sources. In
other words:

in(V; E; s) = (V ′; E; s′)

whenever

V ′ = V ∪ {s′(n)}; (s′(n) is “new”);

s(i) = s′(i) if 16i6n− 1
s(i) = s′(i + 1) if n6i6k:

• The (k+1)-sourced graph en; 16n6k, has k+1 sources, no other vertex and one
edge between the nth source and the (k+1)th one.

We let I be the graph without edges consisting of k isolated vertices that are the
sources numbered arbitrarily from 1 to k. We let K be the k-sourced graph consisting
of one edge between any two sources.
We let T and U be the sets of k-sourced graphs de�ned recursively by

T = {K}==U;
U = U==U ∪ S(U;U; : : : ; U) ∪ {I}: (2)

Then T is the set of k-sourced k-trees. To take a concrete example, with k = 2 the
2-sourced 2-tree in Fig. 4 below can be described by the expression:

K==S(S(I; I); S(I; I))==S(S(S(I; I); I)); I):
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Fig. 4.

The mapping S can be described concretely as follows: G = S(H;K) if and only if
G is obtained from the union of two disjoint copies of H and K modi�ed as follows:
• sH (2) and sK (2) are fused into a new vertex u which is not a source of G,
• sG(1) = sK (1) and this vertex is linked to u by a new edge,
• sG(2) = sH (1) and this vertex is linked to u by a new edge.
For every subset P of [k], we let

SP(G1; : : : ; Gk) = fg(i1(G1)== : : : ==ik(Gk)==ej1 == : : : ==ejn) (3)

where P = {j1; : : : ; jn}. We let also D denote the set of graphs obtained from K by
edge deletions. (Hence D has 2k elements and contains I and K which are the minimal
and maximal elements with respect to the number of edges).
We let T ′; U ′ be the sets of k-sourced graphs de�ned recursively by

T ′ = D==U ′;
U ′ = U ′==U ′ ∪

⋃
{SP(U ′; U ′; : : : ; U ′) |P⊆ [k]} ∪ {I}: (4)

The set T ′ is the set of k-sourced partial k-trees.

Lemma 5.2. An undirected graph G with at least k vertices has tree width at most
k i� (G; s) ∈ T ′ for some source mapping s.

Proof. See van Leeuwen [25, Lemma 1:24].

We need additional concepts that we introduce next.

De�nition 5.3 (Multiply labeled graphs). We let C be a �nite set of vertex labels. A
multiply labeled graph (m.l. graph, for short) is a graph given with a labeling mapping
� such that �(v)⊆C for every vertex v. Each label in �(v) is a label of the vertex v.
Hence a vertex may have zero, one, or several labels chosen in C.

We will use the operations ⊕, the disjoint union, and �a;b, which creates an edge
between x and y if a ∈ �(x) and b ∈ �(y) and if no such edge already exists. We will
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also use the following extension of the renaming operation: G′ = �a→P(G) is obtained
from G by replacing the labeling function � by �′ such that

�′(v) = �(v) if a 6∈ �(v);
�′(v) = (�(v)− a) ∪ P otherwise:

(5)

We may have a ∈ P (i.e. new labels are “added” to a) and P = ∅ (i.e. label a is
“deleted”). We will use the notation �a→b;c;:::;d for �a→P , if P = {b; c; : : : ; d} and �a→
if P = ∅. We can thus denote m.l. graphs by �nite terms built with ⊕; �a;b; �a→P , and
the nullary symbols a for a ∈ C. We will denote by M (C) the set of these terms.
Clearly, T (C)⊆M (C). The m.l. graph (or the set of isomorphic m.l. graphs) de�ned
by t ∈ M (C) is denoted by val(t). For every m.l. graph G, we let

4(G):={�(v) | v ∈ V (G)}⊆P(C):

For every term t in M (C) we let

4(t):=4 (val(t))

and

4∗(t):=
⋃

{4(t′) | t′ is a subterm of t}:
For every m.l. graph G, we let ‘(G) be the corresponding labeled graph where we

take (G) = �(G): the vertex labels of ‘(G) are thus elements of P(C). We will use
P(C) as set of vertex labels.

Proposition 5.4. For every m.l. graph G de�ned by t ∈ M (C) we have
cwd(‘(G))6| 4∗ (t)|:

In particular

cwd(G)62k

for every unlabeled graph G de�ned by t ∈ M (C) where k = |C|.

Proof. We de�ne a transformation m : M (C)→ T (P(C)) by the following induction:
• m(a) = {a} (the graph with a single vertex labeled by {a}),
• m(t1 ⊕ t2) = m(t1)⊕ m(t2),
• m(�a;b(t)) = (�P1 ;P′

1
(�Pi;P′

j
(: : : �Pn;P′

m
(m(t))) : : :))

• m(�a→P(t)) = �P1→Q1 (�P2→Q2 (: : : (�Pn→Qn(m(t))) : : :)
where P1; : : : ; Pn is an enumeration of the sets of 4(t) that contain a, where P′

1; : : : ; P
′
m

is an enumeration of those containing b, and Qi=(Pi−{a})∪P for every i=1; : : : ; n.
Note that {Q1; : : : ; Qn}⊆4(�a→P(t)). We omit the operation �Pi→Qi if Qi = Pi.

Claim. For every t ∈ M (C) we have
1. m(t) ∈ T (4∗(t));
2. val(m(t)) = ‘(val(t)).
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Proof. Straightforward induction on the structure of t. Assertion (1) uses the fact that

4∗(t1 ⊕ t2) =4∗(t1) ∪4∗(t2)

and that the sets Pi; P′
j (resp. Pi; Qi of the de�nition of m) are in 4∗(�a;b(t)) (resp.

in 4∗(�a→P(t))).

Proof of Proposition 5.4. (Conclusion). Proposition 5.4 follows immediately from the
claim.

Theorem 5.5. (1) For every undirected graph G we have cwd(G)62twd(G)+1 + 1. (2)
For every directed graph G we have cwd(G)622twd(G)+1 + 1.

Proof. (1) Let k= twd(G). If G has k− 1 vertices then cwd(G)6k− 1 and the result
holds since k−162k+1 +1 for k¿1. Otherwise, by Lemma 5.2, one can make G into
a k-source partial k-tree and we only need prove that

cwd(G)62k+1 + 1: (6)

The k-sourced partial k-trees are of the form G = H==G′ where G′ ∈ U ′; H ∈ D and
U ′ is de�ned by the recursive equation (4) that we recall:

U ′ = U ′==U ′ ∪ {I} ∪
⋃

{SP(U ′; : : : ; U ′)=P⊆ [k]}:

It is clear that the graphs in U ′ have pairwise non-adjacent sources and that G as
above satis�es

G = : : : (�i; j(: : : (G′) : : :))

where we have one operation �i; j for every pair i; j with 16i¡ j6k such that the
i-source and the j-source of H are adjacent. Hence it is enough to prove that the graphs
in U ′ have clique width at most 2k+1 + 1.
For every graph G in U ′, we let Int(G) be its interior, i.e. the m.l. graph G′

constructed as follows:
• V (G′) is the set of internal (non-source) vertices of G,
• G′ = G[V (G′)] (the induced subgraph of G with set of vertices V (G′)),
• �(G′)(v) = {0} ∪ {i ∈ [k]=v is adjacent to the ith source in G}.
The vertex labels are thus elements of {0; 1; : : : ; k}. It follows then from this construc-
tion that

G = �1′→1(· · · (�k′→k(�1→(· · · (�k→(�1;1′(· · · (�k;k′(Int(G)⊕ 1′ ⊕ · · · ⊕ k ′)) · · ·):
(7)

The right-hand side of (7) is a term in M ({0; 1; : : : ; k; 1′; : : : ; k ′}). This equality is still
valid if G= I , in which case Int(G) is the empty graph. It is illustrated in Fig. 5 with
k = 2.
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Fig. 5.

Fact 5.6. For G; G′ ∈ U ′; we have Int(G==G′) = Int(G)⊕ Int(G′).

Fact 5.7. For G1; : : : ; Gk ∈ U ′ and G = SP(G1; : : : ; Gk) we have

Int(G) = �∗→P∪{0}(�$→(�$;∗(R1(Int(G1))⊕ · · · ⊕ Rk(Int(Gk))⊕ ∗)) : : :)); (8)

where for every graph H and for every i = 1; : : : ; k we write

Ri(H):=�i→i+1(: : : ((�k−1→k(�k→$(H)))):

The operations appearing in (8) use the labels 0; 1; 2; : : : ; k; $; ∗.

Proof of Fact 5.7. The graph Int(G) is the disjoint union of the graphs Int(G1); : : : ;
Int(Gk), augmented with a new vertex, say, v, with edges as described below, and
modi�ed by some changes of labels also described below. In a k-sourced partial k-tree
G, we say that a vertex v is a pre-i-source for i ∈ {1; : : : ; k} if it is not a source but
is adjacent to the i-source, i.e. if it has label i in Int(G). The edges in Int(G) that are
not in Int(G1); : : : ; Int(Gk) join v and the pre-k-sources of G1; : : : ; Gk . They are created
in Int(G) by the operation �$;∗ with the help of the operations �k→ of Ri (16i6k).
The new vertex v is a pre-i-source of Int(G) for 16i6k if and only if i ∈ P: the

corresponding labeling is done in (7) by �∗→P∪{0}. Note that the vertex v is created
in Eq. (8) with label ∗.
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A pre-j-source of Gi for 16j6k − 1, where 16i6k becomes a pre-j′-source of G
as follows:
• if j¡ i then j′ = j,
• if j¿i then j′ = j + 1
This is done correctly by the operations �n→n+1 in Ri (for i6n6k − 1) and �$→ in

(8). This completes the proof of Fact 5.7.

Proof of Theorem 5.5. (Conclusion). (1) Let G ∈ U ′. Its interior Int(G) is the empty
graph in the case G = I and it follows from Facts 5.6 and 5.7 that it can be de�ned
by a term t in M (C) where C = {0; 1; 2; : : : ; k; ∗; $}. We can observe that only the
following sets can appear in 4∗(t): the set {∗} and the set P ∪ {0} for every subset
P of [k] ∪ {$}.
It follows from Proposition 5.4 that Int(G) can be de�ned by a term in T (C′) for

some set C′ in bijection with 4∗(t), where

Card(4∗(t))6Card(C′) = 2k+1 + 1:

We now get G from Int(G) by (7). But we can use {i; $} instead of i′ for 16i6k.
It follows that G can be de�ned by a term in T (C′). Hence, cwd(G)62k+1 + 1.
(2) We now consider the case of directed graphs. We shall mainly adapt the previous

proof. We denote by u the mapping that transforms a directed graph into an undirected
graph by replacing every directed edge (x; y) by the undirected one {x; y}. In this
transformation two opposite directed edges (x; y) and (y; x) get fused into a single
undirected one.
For every undirected graph G, the graphs in the set u−1(G) are obtained from G

by the replacement of every undirected edge {x; y} by either the unique directed edge
(x; y) or the unique directed edge (y; x) or the two directed edges (x; y) and (y; x).
Going back to the proof of (6) one can see that it is enough to prove that

cwd(H)622k+2 + 1

for every graph H ∈ u−1(G) where G ∈ U ′. Recall that the set U ′ was de�ned in
Eq. (4).
For every P; P′ ⊆ [k] we let SP;P′ , be the k-ary mapping on directed k-sourced graphs

de�ned by

SP;P′(G1; : : : ; Gk) = fg(i1(G1) : : : ==ik(Gk)==fl1 == : : : ==fln ==f
′
j1 == : : : ==f

′
jm)

where P = {l1; : : : ; ln}; P′ = {j1; : : : ; jm} and for i = 1; : : : ; k:
• fi is the (k+1)-sourced graph with no internal vertex and an edge from the i-source
to the (k + 1)-source,

• f′
i is the same graph with its edge in the reverse direction.

The set W = u−1(U ′) is characterized by the recursive equation

W =W==W ∪ · · · ∪ SP;P′(W; : : : ; W ) : : : ∪ {I}; (9)

where the union extends to all subsets P; P′ of [k]. We de�ne the interior Int(G) of a
graph G in W as in the proof of (7) except that we let {0} ∪ [k]∪ {i′=i ∈ [k]} be the
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set of vertex labels (of cardinality 2k + 1) and that a vertex v of Int(G) has always
label 0 and has label i; i=1; : : : ; k; if and only if there is an arc in G from the i-source
to v and label i′; i=1; : : : ; k if and only if there is an arc in G from v to the i-source.
It follows then that

G = : : : (�i′′→i(: : : (�i→(: : : (�i′→(: : : �i′′ ; i : : : (�i′ ; i′′(: : : Int(G)⊕ 1′′ ⊕ · · · ⊕ k ′′) : : :);
(10)

where i ranges from 1 to k, so that i′ ranges over {1′; : : : ; k ′} and i′′ ranges over
{1′′; : : : ; k ′′}.
Fact 5.6 is valid for graphs in W , and Fact 5.7 is modi�ed as follows.

Fact 5.7′. For G1; : : : ; Gk ∈ W and G = SP;P′(G1; : : : ; Gk) we have

Int(G) = �∗→P∪Q∪{0}(�$→(�$′→(�$′ ;∗(�∗;$(R1(Int(G1))⊕ · · · ⊕ Rk(Int(Gk))
⊕∗)) : : :))

where Q = {i′=i ∈ P′} and for every graph H and i ∈ [k]; we let
Ri(H):=�i→i+1(: : : (�k−1→k(�i′→(i+1)′(: : : (�(k−1)′→k′(�k→$(�k′→$′(H)) : : :)):

For every graph G ∈ W , the graph Int(G) can be denoted by a term t in M ({0; 1; : : : ;
k; 1′; : : : ; k ′; $; $′; ∗}). By observing that only the set {∗} and the subsets of {0; 1; : : : ; k;
1′; : : : ; k ′; $; $′} containing 0 can appear in 4∗(t), we get that

cwd(‘(Int(G)))622k+2 + 1;

completing the proof.

Corollary 5.8. For every undirected graph G we have cwd(G)62min{twd(G)+1; twd( �G)}+2.

Proof. By Theorem 4.1, we have cwd(G)62cwd( �G). By Theorem 5:1 applied to �G
we have 2cwd( �G)62twd( �G)+2 + 2. By Theorem 5:1, again, cwd(G)62twd(G)+1 + 1,
whence the result.

We illustrate these constructions with an example, taking k=2. Fig. 6 shows a graph
G from W and its interior Int(G). One can verify Eq. (10) namely, we have

G = �1′′→1(�2′′→2(�1→(�2→(�1′→(�2′→(�1′′ ;1(�2′′ ;2(�1′ ;1′′(�2′ ;2′′

(Int(G)⊕ 1′′ ⊕ 2′′)) : : :)):
We have G=SP;Q(G1; G2) where P={2}; Q={1; 2} and the graphs G1 and G2 are

shown in Fig. 7. We also show in this �gure the graphs Int(G1) and Int(G2).
We can verify Fact 5.7’, namely, that the following holds:

Int(G) = �∗→{0;2;1′ ;2′}(�$→(�$′→(�$′ ;∗(�∗;$((�1→2(�1′→2′(�2→$(�2′→$′(Int(G1)))))

⊕�2→$(�2′→$′(Int(G2))⊕ ∗)) : : :)):
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Fig. 6.

Fig. 7.
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Fig. 8.

We now proceed and consider G1. We have

G1 = SP′ ;Q′(G3; G4)

where P′= {1; 2}; Q′= ∅ and G3; G4 are illustrated in Fig. 8. We can verify Fact 5.7′
which gives

Int(G1) = �∗→{0;1;2}(�$→(�$′→(�$′ ;∗(�∗;$(�1→2(�1′→2′(�2→$(�2′→$′(Int(G3)))

⊕�2→$(�2′→$′(Int(G4)))⊕ ∗))) : : :)):
By proceeding in this way, one would get terms de�ning Int(G4); Int(G3), whence
Int(G1), then Int(G2), whence Int(G) and G.

As observed at the beginning of this section, one cannot bound the tree width of an
arbitrary graph in terms of its clique width. However, this is possible under additional
conditions.
For a set of graphs L, we let

twd(L):=Sup{twd(G)=G ∈ L} ∈ N ∪ {∞},
cwd(L):=Sup{cwd(G)=G ∈ L} ∈ N ∪ {∞},
deg(L):=Sup{deg(G)=G ∈ L} ∈ N ∪ {∞}

where deg(G) is the maximal degree of a vertex of G,

bip(L):=Sup{bip(G)=G ∈ L} ∈ N ∪ {∞}
where bip(G) is the largest integer m such that Km;m⊆G, (where ⊆ denotes subgraph
inclusion).
By an integer function we mean a monotone total function (N ∪{∞})m → (N ∪

{∞}) where m= 1; 2 such that the result is ∞ i� at least one argument is ∞.
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Theorem 5.9. There exists integer functions f1; : : : ; f4; fH where fH is associated
with each undirected graph H; such that for every set of undirected graphs L the
following hold:
1: twd(L)6f1(cwd(u−1(L)));
2: twd(L)6f2(cwd(L)); if L contains all subgraphs of its graphs;
3: twd(L)6f3(deg(L); cwd(L));
4: twd(L)6f4(bip(L); cwd(L));
5: twd(L)6fH (cwd; (L)); if L does not contain a �xed graph H as a minor.

Proof. (1) Let L be such that u−1(L)⊆CW̃D(6k). It is proved in Courcelle [9] that
if a set of directed graphs of the form u−1(L) has a decidable MS1-theory, then it has
bounded tree width. The proof actually gives slightly more: it is enough to assume
that u−1(L) is a subset of a set having a decidable MS1-theory in order to get that
u−1(L) (equivalently L) has bounded tree width. This gives the desired result since
CW̃D(6k) has a decidable MS1-theory (see [8,13]).
(2) Let L⊆CWD(6k) contain all subgraphs of its graphs. Consider L∩PLANAR.

It is contained in L′ = CWD(6k)∩PLANAR which is VR because the set of planar
graphs is MS1-de�nable [7]. But, by Proposition 3:7 of [12], L′ is of bounded tree
width, and we obtain the existence of f2(k).
(3) Let n; k ∈ N. Let L be such that deg(L)6n and cwd(L)6k. Let Lk;n =

CWD(6k) ∩ DEG(6n); hence L⊆Lk;n: Since CWD(6k) is VR and DEG(6n) is
MS1-de�nable, the set Lk;n is VR (by Proposition 3:2:1). Since every VR set of bounded
degree has bounded tree width (Lemma 3:6 of [12]), the set Lk;n has its graphs of
tree width bounded, say, by m. Hence L⊆TWD(6m). This proves the existence of
f3(k; n).
(4) Let n; k ∈ N. Let L⊆L′k;n = CWD(6k) ∩ BIP(6n) where BIP(6n) is the set

of graphs that do not contain the complete bipartite graph Kn;n as a subgraph. This last
set is MS1-de�nable, hence L′k;n is VR. Whence L

′
k;n has bounded tree width (because

it is a VR set that does not contain some �xed graph Km;m as a subgraph and by
Theorem 4.1 [10]). Again, we obtain the existence of f4(k; n).
(5) Let k ∈ N and H be an undirected graph. Let L⊆Lk;H=CWD(6k)∩FORB(H)

where FORB(H) is the set of graphs that do not contain H as a minor. It is MS1-
de�nable [7]. The proof of case (3) works with FORB(H) instead of DEG(6m) and
yields the existence of fH (k). It is proved in [12] that every VR set that is included
in FORB(H) for some graph H has bounded tree width.

6. Open questions

We are sure that there exist graphs of arbitrary high cwd, otherwise the MS1-
theory of the set of graphs would be decidable, and we know that this is not the
case.
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At this point, we lack the techniques for establishing that a given graph has cwd
at least some given integer. In particular, it would be useful to have rules that reduce
the size of a given graph but preserve its cwd. We state without proof a preliminary
result in this direction.
A string in an undirected graph G is a path P joining a vertex x to a vertex

y (y 6= x), such that all intermediate vertices on P have degree 2. We say that a
string P in a graph G labeled by  :V (G) → C is reducible if its length is at least 2
(the length is the number of edges) and the graph G′ obtained from G by contracting
the edge of P incident with x, say {x; v}, has a coloring ′ that coincides with  on
(V (G) − V (P)) ∪ {x; y} and is such that ′(V (P) − {x; y; v})⊆ (V (P) − {x; y}) and
cwd(G′; ′)6cwd(G; ). (We let x be the vertex of G′ resulting from the fusion of x
and v.)

Proposition 6.1. Let G be a labeled undirected graph of cwd at least 4. Every string
of length 11 is reducible.

The proof being long is not included in this paper. The reader can �nd it in the
authors’ homepages [16].
Here are other open questions:

Question 6.2. Find a function f such that for every graph G=(V; E); we have cwd(G)
at most f(|V |). The identity function is a trivial upper bound. It remains to �nd a
good one.

Question 6.3. How di�erent can be cwd(G) and cwd(G′) when G and G′ di�er by
exactly one edge?

Question 6.4. What is the complexity of recognizing the class of graphs of cwd at
most k? Is it NP-complete for �xed k; say k=4? Note that for k=2 the complexity
is linear because the cographs are recognizable in linear time [3].

Even if we have no answer to this last question, even if the problem of exhibiting
a C-construction in the sense of Section 3 of a given graph for a minimal set C is
untractable, the hierarchical decompositions of graphs that we have investigated are of
algorithmic interest.
If C is a class of graphs for which there exists a polynomial algorithm constructing

for every graph G in C an expression of width at most k for some �xed value k, then
every MS1 property is decidable in polynomial time for graphs in C. This technique
is used in Courcelle et al. [14] for P4-sparse graphs (for these graphs k = 4). It is
certainly applicable to other classes, as well.
Another approach would be to de�ne a polynomial algorithm that constructs for

every graph G a decomposition that would be of width “close to” cwd(G).
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Appendix Some graph transformations that preserve clique width

We prove that certain edges can be subdivided or contracted without increasing
the cwd.
Let G be an undirected graph. A path P in G joining a vertex x and a vertex y 6= x

is called a string if every vertex in P di�erent from x and y has degree 2. The length
of the string is the number of its edges, i.e. the number of vertices minus 1. In this
terminology, an edge is a string of length 1.
Let G be labeled by  :V (G) → C. We say that a string P in G is reducible if

its length is at least 2 and the graph G′ obtained from G by contracting the edge
of P incident with x, say, {x; v} has a coloring ′ that coincides with  on the set
V (G) − V (P) ∪ {x; y}, and is such that ′(V (P) − {x; y; v})⊆ (V (P) − {x; y}) and
cwd(G′; ′)6cwd(G; ). We let x be the vertex of G′ resulting from the fusion of x
and v: hence V (G′) = V (G)− {v}:
We say that a string P is extendible if it has length at least 2 and the graph G′

obtained from G by subdividing one edge of P by inserting a new vertex, say v,
has a coloring ′ that coincides with  on the set V (G) − V (P) ∪ {x; y} and is such
that ′(V (P) − {x; y}) ∪ {v}⊆ (V (P) − {x; y}) and cwd(G′; ′)6cwd(G; ). (Here,
V (G′) = V (G) ∪ {v}):
A string P is dangling if one of its ends has degree 1 and has a label di�erent from

all others in the graph.

Proposition A.1. Let G be a labeled undirected graph of cwd at least 4.
(1) Every dangling string of length at least 2 is reducible.
(2) Every dangling string of length at least 5 is extendible.

Proof. (1) Let G be obtained by an irredundant C-construction (G0; G1; : : : ; Gn = G).
Our aim is to prove that G′ obtained by reduction of a string P has cwd at most
Card(G).
The proof is by induction on n. We consider the last step Gn−1 = L → G of the

construction.
Case 1: L=K ⊕H;G=K ⊕ �a;b(H). P is a dangling string in G: let c be the label

of an end of P of degree 1 that does not occur anywhere else in G. Call v this end.
Subcase 1.1: P is in K . Then K has a construction of length at most n − 1 and P

can be reduced (in K), giving K ′. The graph G′ = K ′ ⊕ �a;b(H) has cwd at most

Max{cwd(K ′); cwd(�a;b(H))}6Max{cwd(K); cwd(G)}6cwd(G)

and is obtained from G by reduction of P as desired.
Subcase 1.2: P is in �a;b(H). We cannot have a= c (because a does not label any

vertex of �a;b(H)). If we have b= c this means that v has label a or c in H and that
no other vertex of H has label a or c. Hence P is dangling in H . The same is true
if c 6= b. The string P can thus be reduced giving H ′. The graph G′ = K ⊕ �a;b(H ′)
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Fig. 9.

satis�es the desired properties and

cwd(K ⊕ �a;b(H ′)) =Max{cwd(K); cwd(�a;b(H ′))}6cwd(G):
Case 2: G′′=K ⊕H;G=K ⊕�a;b(H): Let P and v be as in Case 1. We assume that

H has at least one a-port and at least one b-port. Furthermore, no a-port is adjacent
to a b-port since the construction is irredundant.
Subcase 2.1: P is in K . Similar to Subcase 1:1.
Subcase 2.2: P is in �a;b(H) but no edge of P is created by �a;b: P is actually

already in H and c 6∈ {a; b}. We reduce P in H; obtaining H ′ and we can take
G′ = K ⊕ �a;b(H ′).
Subcase 2.3: P is in �a;b(H) and one or two edges of P is (or are) created by �a;b:

Again we have several cases to consider
Subsubcase 2.3.1: H=H ′′⊕c; c=b, a is the label of the end of a dangling string in

H ′′; no other vertex in H ′′ is labeled a or b.We take G′=K⊕H ′ where H ′=�a→c(H ′′):
See Fig. 9 which shows H and H ′.
For the following cases, we shall denote by w where w = a1a2; : : : ; an ∈ C+ (with

n 6= 1; a1; a2; : : : ; an ∈ C) any graph with n vertices x1; x2; : : : ; xn, linked by edges
between xi and xi+1, and such that xi has label ai. A word and its mirror image denote
the same graphs.
Subsubcase 2.3.2: H=H ′′⊕bc; c 6∈ {a; b} and a is the label of the end of a dangling

string in H ′′; no other vertex in H ′′ is labeled a or b or c. We take G′ = K ⊕ H ′;
where H ′ = �a;c(H ′′ ⊕ c):
Fig. 10 illustrates the graphs H and H ′.
Subsubcase 2.3.3: H =H ′′ ⊕ bwc; c 6∈ {a; b} and w ∈ (C−{a; b; c})∗ (recall that C

has cardinality at least 4); we let n be the length of w; we let d be a label occurring
in w. The graph bdn−1c can be constructed with at most 4 labels (2 if n = 1; 3 if
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Fig. 10.

Fig. 11.

n= 2; 4 if n¿3): We let then G′ = K ⊕ �a;c(H ′); where H ′ =H ′′ ⊕ bdn−1c. We have:
cwd(G′)6max{cwd(K);max{cwd(H ′′); 4}}6cwd(G)

since cwd(G)¿4. See Fig. 11 with n= 5; w = deffe shows H and H ′.
Subcase 2.3.4: H = H ′′ ⊕ a ⊕ bc; c 6∈ {a; b} and H ′′ has a dangling string with

end vertex labeled by b. (here; two edges of P are created simultaneously by �a;b).
Clearly, H ′′ has no vertex labeled by a or c. We let

G′ = K ⊕ �a;b(�a;c(H ′′ ⊕ a⊕ c)):
For an illustration of H ′′ ⊕ a⊕ bc we refer the reader to Fig. 12. Clearly (cf. 1.2)

cwd(G′)6Max{cwd(K); cwd(H ′′)}6cwd(G):
Subcase 2.3.5: H = H ′′ ⊕ a ⊕ bwc; c 6∈ {a; b}; w ∈ (C − {a; b})+ and H ′′ has a

dangling string with end vertex labeled by b and no a-port or c-port. We let d occur
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Fig. 12.

Fig. 13.

in w and n= |w|. As in Subsubcase 2:3:3, we let
G′ = K ⊕ �a;b(H ′′ ⊕ a⊕ bdn−1c):

See Fig. 13 where w = ddef; n = 4. It illustrates H ′′ ⊕ a ⊕ bwc and H ′′ ⊕ a ⊕ bd3c.
Clearly

cwd(G′)6Max{cwd(K); cwd(H ′′); 4}6cwd(G):
(See Case 2:3:3). This completes the proof of assertion (1).
(2) We now consider the extension of strings. We use the same case analysis as in

(1) but we assume that P has length at least 5.
Case 1: Same proof as in Part 1.
Case 2:
Subcases 2.1 and 2.2: Same proofs as in Part 1.
Subcase 2.3: G=K⊕�a;b(H); P is in �a;b(H) and one or two edges of P are created

by �a;b.
Subsubcase 2.3.1: H =H ′′⊕ c. Since P has length larger than 3, the dangling string

in H ′′ has an intermediate vertex. Let d its label: d 6∈ {a; c} (recall that b = c). We
let G′ = K ⊕ H ′ where

H ′ = �a;c(�c→a(�a→d(�a;c(H ′′ ⊕ c))))⊕ c):
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Fig. 14.

Fig. 15.

See Fig. 14 showing H ′′ ⊕ c and H ′.
The edge marked 1 is created by the innermost operation �a;c and the one marked

2 by the outermost one. The changes of vertex label are recorded from top to bottom.
Subsubcase 2.3.2: H =H ′′⊕bc. Since P has length at least 5, the dangling string in

H ′′ has an intermediate vertex. Let d its label. Then d 6∈ {a; b; c}: We let G′=K ⊕H ′

where H ′ = �a;b(H ′′ ⊕ bdc) See Fig. 15 showing H ′′ ⊕ bc and H ′. The proof is as in
Case 2:3:3 of part 1.
Subsubcase 2.3.3: H=H ′′⊕bwc with w ∈ (C−{a; b; c})+. We assume that d occurs

in w. The construction is as in 2:3:3 of part 1 with bdn+1c instead of bd−1c.
Subsubcase 2.3.4: H = H ′′ ⊕ a ⊕ bc; c 6∈ {a; b}; H ′′ has a dangling string P′′ with

end vertex labeled by b. Since P has length at least 5, P′′ has length at least two,
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hence has an intermediate vertex labeled by, say, d:(d 6∈ {a; b; c}): We let

G′ = K ⊕ �a;b(H ′′ ⊕ a⊕ bdc):

Subsubcase 2.3.5: H =H ′′⊕a⊕bwc; c 6∈ {a; b}; w ∈ (C−{a; b; c})+. We let d occur
in w, n be the length of w and

G′ = K ⊕ �a;b(H ′′ ⊕ a⊕ bdn+1c):

We have cwd(G′)6cwd(G) by the same argument as in Case 2:3:5 of part 1. This
completes the proof of Proposition A.1.

A string P is separating if its two ends are not linked by any other path than P.
After removal of one edge of P its two ends belong to di�erent connected components.

Proposition A.2. Let G be a labeled undirected graph of cwd at least 4.
(1) Every separating string of length at least 5 is reducible.
(2) Every separating string of length at least 11 is extendible.

Proof. (1) We let G be given by a C-construction (G0; G1; : : : ; Gn). We let P be a
string of length at least 5.
We consider the last step Gn−1 = L→ G of this construction.
Case 1: L=K⊕H;G=K⊕�a;b(H). If P is in K , we transform K into K ′ (induction

on n) and we take G′=K ′⊕�a→b(H). If P is in �a→b(H), then we also have a string
P′ in H . We transform H into H ′ and we take G′ = K ⊕ �a→b(H ′).
Case 2: L=K ⊕H;G=K ⊕�a;b(H). If P is in K , the proof is as in the �rst subcase

of Case 1. If P is in �a;b(H) but �a;b creates no edge of P this means that P is already
in H . We transform H into H ′ and we let G′ = K ⊕ �a;b(H ′).
Finally, we consider cases where P is in �a;b(H) and �a;b creates one or two edges

in P. There are several cases; see Fig. 16 showing H .
Subcase 2.1: H has two connected components, each with a dangling string. Since

P has length larger than 4, at least one of these dangling strings has length at least 2:
A dangling string of length at least 2 is reducible by Proposition 9:1, which gives H ′

whence G′ = K ⊕ �a;b(H) as desired.
Subcase 2.2: Again since P has length at least 5, H has at least one connected

component with a dangling string of length at least 2. This string can be reduced and
we conclude the proof as in Subcase 2:1.
Subcase 2.3: Here the operation �a;b creates an edge in P but simultaneously one

or more edges not in P. Since P has length larger than 3, one connected component
has a dangling string of length at least 2, which can be reduced and we conclude as
in the preceding two cases.
(2) We want to extend the considered string. The argument is the same. We need

only assume that P has length at least 11 in order to apply Proposition A.1 in Subcase
2:2. We omit the details.
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Fig. 16.

Proposition A.3. Let G be a labeled undirected graph of cwd at least 4. The following
conditions hold:
(1) Every string of length at least 11 is reducible.
(2) Every string of length at least 23 is extendible.

Proof. (1) Similar to that of Proposition A.2. We only review the various subcases.
Subcase 2.1: We are like in Case 2:1 of Fig. 16 except that H1 and H2 may be

connected by a path (that does not cross P). Since a and b have no other occurrence
in H than the ends of the two strings, H has a dangling string of length at least 2 and
the proof goes on as in Proposition A.2.
Subcase 2.2: We are like in Case 2:2 of Fig. 16 with possibly a path connecting

H1 and H2. Since b may have two occurrences in a same connected components, the
two strings with end labeled by b are not necessarily dangling. However, they are
separating. Since P has length larger than 10, at least one of them has length at least
5. They are both separating hence, at least one of them can be reduced by Proposition
A.2. The proof continues as usual.
Subcase 2.3: Same argument as in Subcase 2:2. Since P has length larger than 5

the strings linked to H2 (see Fig. 16, Case 2:3) is separating and can be reduced by
Proposition A.2.
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(2) Same proofs as in Part 1. Since we assume that the length of P is larger than 22,
we can �nd in Cases 2.1–2.3 a separating string of length at least 11 that is extendible.

Corollary A.4. Let G be a graph of cwd at least 4 having a string P of length at
least 23. All graphs obtained from G by repeated subdivisions of the edges of P have
the same cwd as G.

Open Question:. Is 23 the optimal lower bound?

We conjecture that it is not.
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