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Abstract

The model-checking problem for a logic L on a class C of structures asks whether a given
L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for
fixed-parameter tractable model-checking problems for first-order and monadic second-order logic.

We show that unless PTIME= NP, the model-checking problem for monadic second-order
logic on finite words is not solvable in timef (k) · p(n), for any elementaryfunction f and any
polynomial p. Herek denotes the size of the input sentence andn the size of the input word. We
establish a number of similar lower bounds for the model-checking problem for first-order logic, for
example, on the class of all trees.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Model-checking problems

We study the complexity of a fundamental algorithmic problem, the so-calledmodel-
checkingproblem: given a sentenceϕ of some logic L and a structureA, decide whetherϕ
holds inA. Model-checking and closely related problems are of importance in several areas
of computer science, for example, in database theory, artificial intelligence, and automated
verification. In this paper, we prove new lower bounds on the complexity of the model-
checking problems for first-order and monadic second-order logic.

It is known that model-checking for both first-order and monadic second-order logic is
PSPACE-complete [17,20] and thus most likely not solvable in polynomial time. While this
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result shows that the problems are intractablein general, it does not say too much about
their complexity in practical situations. Typically, we have to check whether a relatively
smallsentence holds in alarge structure. For example, when evaluating a database query,
we usually have a small query and a large database. Similarly, when verifying that a finite
state system satisfies some property, the specification of the property in a suitable logic
will usually be small compared to the huge state space of the system. When analysing the
complexity of the problem, we should take this imbalance between the size of the input
sentence and the size of the input structure into account.

1.2. Parameterized complexity theory

Parameterized complexity theory (see [5]) is a relatively new branch of complexity
theory that provides the framework for a refined complexity analysis of problems whose
instances consist of different parts that typically have different sizes. In this framework, a
parameterized problemis a problem whose instances consist of two parts of sizesn andk,
respectively.k is called theparameter, and the assumption is thatk is usually small, small
enough that an algorithm that is exponential ink may still be feasible. A parameterized
problem is calledfixed-parameter tractableif it can be solved in timef (k) · p(n) for an
arbitrary computable functionf and some polynomialp. The motivation for this definition
is that, sincek is assumed to be small, the feasibility of an algorithm for the problem mainly
depends on its behaviour in terms ofn. Under this definition, a running time ofO(2k · n)
is considered tractable, but running times ofO(nk) or O(k · 2n) are not, which seems
reasonable.

Let us remark that although fixed-parameter tractability has proven to be a valuable
concept allowing fine distinctions on the borderline between tractability and intractability,
it seems somewhat questionable to admitall computable functionsf for the parameter
dependence of a fixed-parameter tractable algorithm. Iff is doubly exponential or worse,
anO( f (k) ·n)-algorithm can hardly be considered tractable. The main contribution of this
paper to parameterized complexity theory is to show that there are natural fixed-parameter
tractable problems requiring parameter dependencesf that are doubly exponential or even
non-elementary.

1.3. The parameterized complexity of model-checking problems

Model-checking problems have a natural parameterization in which the sizek of the
input sentence is the parameter. We have argued above thatk is usually small in the prac-
tical situations we are interested in, so a parameterized complexity analysis is appropri-
ate. Unfortunately, it turns out that the model-checking problem for first-order logic is
complete for the parameterized complexity class AW[∗], which is conjectured to strictly
contain the class FPT of all fixed-parameter tractable problems. Thus probably model-
checking for first-order logic is not fixed-parameter tractable. Of course this implies that
model-checking for the stronger monadic second-order logic is also most-likely not fixed-
parameter tractable. As a matter of fact, it follows immediately from the observation that
there is a monadic second-order sentence saying that a graph is 3-colourable that model-
checking for monadic second-order logic is not fixed-parameter tractable unless P= NP.
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It is interesting to compare these intractability results for first-order logic and monadic
second-order logic with the following: the model-checking problem for linear time
temporal logic LTL is solvable in time 2O(k)·n [14], making it fixed-parameter tractable and
also tractable in practise. On the other hand, model-checking for LTL is PSPACE-complete
(as it is for first-order and monadic second-order logic). So parameterized complexity
theory helps us in establishing an important distinction between problems of the same
classical complexity.1 We may argue, however, that the comparison between LTL model-
checking and first-order model-checking underlying these results is slightly unfair. As
the name linear time temporal logic indicates, LTL only speaks about a linearly ordered
sequence of events. On an arbitrary structure, an LTL formula can thus only speak about
the paths through the structure. First-order formulas do not have such a restricted view. It
is therefore more interesting to compare LTL and first-order logic onwords, which are the
natural structures describing linear sequences of events. A well-known result of Kamp [12]
states that LTL and first-order logic have the same expressive power on words. And indeed,
model-checking for first-order logic and even for monadic second-order logic is fixed-
parameter tractable if the input structures are restricted to be words. This is a consequence
of Büchi’s theorem [2], saying that for every sentence of monadic second-order logic one
can effectively find a finite automaton accepting exactly those words in which the sentence
holds. A fixed-parameter tractable algorithm for monadic second-order model-checking
on words may proceed as follows: it first translates the input sentence into an equivalent
automaton and then tests in linear time whether this automaton accepts the input word. But
note that since there is no elementary bound for the size of a finite automaton equivalent
to a given first-order or monadic second-order sentence [18] (also see [15]), the parameter
dependence of this algorithm is non-elementary, thus it does not even come close to the
2O(k) · n model-checking algorithm for LTL. Of course this does not rule out the existence
of other, better fixed-parameter tractable algorithms for first-order or monadic second-order
model-checking.

1.4. Our results

Our first theorem shows that there is no fundamentally better fixed-parameter tractable
algorithm for first-order and monadic second-order model-checking on the class of words
than the automata based one described in the previous paragraph.

Theorem 1. (1) Assume thatPTIME �= NP. Let f be an elementary function and p a
polynomial. Then there is no model-checking algorithm for monadic second-order
logic on the class of words whose running time is bounded by f(k) · p(n).

(2) Assume thatFPT �= AW[∗]. Let f be an elementary function and p a polynomial.
Then there is no model-checking algorithm for first-order logic on the class of words
whose running time is bounded by f(k) · p(n).

1 A critical reader may remark that this distinction between the complexities of LTL model-checking and first-
order model-checking was known before anybody thought of parameterized complexity-theory. This is true, but
how can we be sure that there is no 2O(k) · n model-checking algorithm for first-order model-checking? The role
of parameterized-complexity theory is to give evidence for this.
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Here k denotes the size of the input sentence of the model-checking problem and n the
size of the input word.

Recall that a functionf : N → N is elementaryif it can be formed from the successor
function, addition, subtraction, and multiplication using compositions, projections, boun-
ded additions and bounded multiplications (of the form

∑
z≤y g(x̄, z) and

∏
z≤y g(x̄, z)).

The crucial fact for us is that a functionf is bounded by an elementary function if,
and only if, it is bounded by anh-fold exponential function for some fixedh (see, for
example, [4]).

To prove the theorem, we use similar coding tricks as those that can be used to prove
that there is no elementary algorithm for deciding the satisfiability of first-order sentences
over words [18].

Model-checking for first-order and monadic second-order logic is known to be fixed-
parameter tractable on several other classes of structures besides words: model-checking
for monadic second-order logic is also fixed-parameter tractable on trees and graphs of
bounded tree-width [3]. The latter is a well-known theorem due to Courcelle [3] playing a
prominent role in parameterized complexity theory.Theorem 1implies that the parameter
dependence of monadic-second-order model-checking on trees and and graphs of bounded
tree-width is also non-elementary. In addition to trees and graphs of bounded tree-width,
model-checking for first-order logic is fixed-parameter tractable on further interesting
classes of graphs such as graphs of bounded degree [16], planar graphs [10], and more
generally locally tree-decomposable classes of structures [10]. Theorem 1(2) doesnot
imply lower bounds for the parameter dependence here. The reason for that is a peculiar
detail in the encoding of words by relational structures. The standard encoding includes
the linear order of the letters in a word as an explicit relation of the structure. If we omit
the order and just include a successor relation,Theorem 1(1) still holds, because the order
is definable in monadic second-order logic. However, the order is not definable in first-
order logic, andTheorem 1(2) does not extend to words without order. Indeed, we give a
model-checking algorithm for first-order logic on words without order, and more generally
on structures of degree 2, with a running time 22O(k) · n, that is, with a doubly exponential
parameter dependence. We also give a model-checking algorithm for first-order logic on
structures of bounded degreed ≥ 3 with a triply exponential parameter dependence. We
match these upper bounds by corresponding lower bounds:

Theorem 2. Assume thatFPT �= AW[∗], and let p be a polynomial.

(1) There is no model-checking algorithm for first-order logic on the class of words without
order whose running time is bounded by

22o(k) · p(n).

(2) There is no model-checking algorithm for first-order logic on the class of binary trees
whose running time is bounded by

222o(k) · p(n).

Again, k denotes the size of the input sentence and n the size of the input structure.
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Finally, we obtain a non-elementary lower bound for first-order model-checking on
trees, which implies lower bounds for planar graphs and all other classes of graphs that
contain all trees.

Theorem 3. Assume thatFPT �= AW[∗]. Let f be an elementary function and p a
polynomial. Then there is no model-checking algorithm for first-order logic on the class of
trees whose running time is bounded by f(k) · p(n).

2. Preliminaries

A vocabularyis a finite set of relation, function, and constant symbols. Each relation and
function symbol has anarity. τ always denotes a vocabulary. AstructureA of vocabulary
τ , or τ -structure, consists of a setA called theuniverse, and an interpretationTA of each
symbolT ∈ τ : relation symbols and function symbols are interpreted by relations and
functions onA of the appropriate arity, and constant symbols are interpreted by elements
of A. All structures considered in this paper are assumed to have a finite universe. The
reductof aτ -structureA to a vocabularyτ ′ ⊆ τ is theτ ′-structure with the same universe
asA and the same interpretation of all symbols inτ ′. An expansion of a structureA is a
structureA′ such thatA is a reduct ofA′. In particular, ifA is a structure anda ∈ A, then
by (A,a) we denote the expansion ofA by the constanta. We writeA ∼= B to denote that
structuresA andB are isomorphic.

Let Σ be a finite alphabet. We letτ (Σ ) be the vocabulary consisting of a binary relation
symbol≤, a unary function symbolS, two constant symbols ‘min’ and ‘max’, and a unary
relation symbolPs for everys ∈ Σ . A word structureoverΣ is aτ (Σ )-structureW with
the following properties:

– ≤W is a linear order ofW, minW and maxW are the minimum and maximum element of
≤W , andSW is the successor function associated with≤W , where we letSW(maxW) =
maxW .

– For everya ∈ W there exists precisely ones ∈ Σ such thata ∈ PW
s .

We refer to elementsa ∈ W as thepositionsin the word (structure) and, for every position
a ∈ W, to the uniques such thata ∈ PW

s as theletter at a.
It is obvious how to associate a word from the setΣ∗ of all words overΣ with every

word structure overΣ and, conversely, how to associate an up to isomorphism unique word
structure with every word inΣ∗. We identify words with the corresponding word structures
and writeW ∈ Σ∗ to refer both to the word and the structure.

The class of all words (or word structures) over any alphabet is denoted byW. The
length of a wordW is denoted by|W|.

A subwordof a wordW = s0 . . . sn−1 ∈ Σ∗ is either the empty word or a wordsi . . . sj

for somei , j ,0 ≤ i ≤ j < n. We writeV � W to denote thatV is a subword ofW .
We assume that the reader is familiar with propositional logic, first-order logic FO and

monadic second-order logic MSO (see, for example, [7]). If θ is a formula of propositional
logic andα is a truth-value assignment to the variables ofθ , then we writeα |= θ to
denote thatα satisfiesθ . Similarly, if ϕ(x1, . . . , xk) is a first-order or monadic second-
order formula with free variablesx1, . . . , xk, A is a structure, anda1, . . . ,ak ∈ A, then
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we writeA |= ϕ(a1, . . . ,ak) to denote thatA satisfiesϕ if the variablesx1, . . . , xk are
interpreted bya1, . . . ,ak, respectively. Asentenceis a formula without free variables. The
quantifier-rankof a formulaϕ, that is, the maximum number of nested quantifiers inϕ, is
denoted by qr(ϕ).

The model-checking problemfor a logic L on a class C of structures, denoted by
MC(L,C), is the following decision problem:

Input: StructureA ∈ C, sentenceϕ ∈ L
Problem: Decide ifA |= ϕ.

We fix a reasonable encoding of structures and formulas by words over{0,1}. We denote
the length of the encoding of a structureA by ‖A‖ and the length of the encoding of a
formulaϕ by ‖ϕ‖. When reasoning about model-checking problems, we usually usen to
denote the size‖A‖ of the input structure andk to denote the size‖ϕ‖ of the input sentence.

Our underlying model of computation is the standard RAM-model with addition and
subtraction as arithmetic operations (cf. [1,19]). In our complexity analysis we use the
uniform cost measure.

It is well-known that if we are interested in the complexity of first-order or monadic
second-order model-checking on words, the alphabet is inessential. This can be phrased as
follows:

Fact 4. Let L ∈ {FO,MSO}. Then there is a linear time algorithm that, given a sentence
ϕ ∈ L and a wordW ∈ W, computes a sentenceϕ′ ∈ L of vocabularyτ ({0,1}) and a word
W ′ ∈ {0,1}∗ such that‖ϕ′‖ ∈ O(‖ϕ‖), ‖W ′‖ ∈ O(‖W‖), and(W |= ϕ W ′ |= ϕ′).

N denotes the set of natural numbers (including 0). For alln, i ∈ N we let bit(i ,n)
denote thei th bit in the binary representation ofn. (Here we count the lowest priority bit
as the 0th bit.) lg denotes the base-2 logarithm, and, fori ∈ N, lg(i ) denotes thei -fold
logarithm. More formally, lg(i ) is defined by lg(0)(n) = n and lg(i+1)(n) = lg lg(i )(n).

We define thetower function T: N×R → R by T(0, r ) = r andT(h+1, r ) = 2T(h,r )

for all h ∈ N, r ∈ R. ThusT(h, r ) is a tower of 2s of heighth with an r sitting on top.
Observe that for alln,h ∈ N with n ≥ 1 we haveT(h, lg(h) n) = n.

3. Succinct encodings

We introduce a sequence of encodingsµh, for h ≥ 1, of natural numbers by words
over certain finite alphabets. They are more and more “succinct” not in the sense that the
codewords are shorter and shorter, but in the sense that they can be “decoded” by shorter
and shorter first-order formulas. Decoding is actually said too much here, what we mean
is that there are shorter and shorter first-order formulas stating that two words encode the
same number. For example, if we encode numbers in unary, for everyn there is a first-order
formula of lengthO(n) stating that two words encode the same number smaller than 2n.
If we encode numbers in binary, there is a first-order formula of lengthO(n) stating that
two words encode the same number smaller than 22n

. We shall give, for everyh ≥ 0, an
encoding such that for everyn there is a first-order formula of lengthO(n) stating that two
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words encode the same number smaller thanT(h,n). This is whatLemma 8, the key result
of this section, states.

For allh ≥ 1 we letΣh = {0, 1, <1>, </1>, . . . , <h>, </h>}. The “tags”<i> and</i>
represent single letters of the alphabet and are just chosen to improve readability. We define
L : N → N by L(0) = 0, L(1) = 1, L(n) = �lg(n − 1)� + 1 for n ≥ 2. Note that for
n ≥ 1, L(n) is precisely the length of the binary representation ofn − 1.

We are now ready to define our encodingsµh : N → Σ∗
h , for h ≥ 1. We let

µ1(0) = <1></1> and

µ1(n) = <1>bit(0,n − 1) bit(1,n − 1) . . .bit(L(n)− 1,n − 1) </1>

for n ≥ 1. Forh ≥ 2, we letµh(0) = <h></h> and

µh(n) = <h>
µh−1(0) bit(0,n − 1)
µh−1(1) bit(1,n − 1)
...

µh−1(L(n)− 1) bit(L(n)− 1,n − 1)
</h>

for n ≥ 1. Here empty spaces and line breaks are just used to improve readability.

Example 5.

µ2(47) = <2>
µ1(0) 0
µ1(1) 1
µ1(2) 1
µ1(3) 1
µ1(4) 0
µ1(5) 1

</2>

= <2>
<1></1> 0
<1>0</1> 1
<1>1</1> 1
<1>01</1> 1
<1>11</1> 0
<1>001</1> 1

</2>

Lemma 6.

|µh(n)| ∈ O(h · lg2 n).

Proof. We define functionsLi : N → N as follows:L1(n) = L(n) for all n ∈ N and
Li (n) = Li−1(L(n)) for all i ,n ∈ N with i ≥ 2. Moreover, we definePi : N → N for
i ≥ 1 by

Pi (n) =
i∏

j=1

L j (n).

Observe that for alli ≥ 2 andn ≥ 1 we havePi (n) = L(n) · Pi−1(L(n)).
We first prove, by induction onh ≥ 1, that for alln ≥ 1,

|µh(n)| ≤ 4h · Ph(n). (1)
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We haveµ1(n) = 2+ L(n) ≤ 4L(n) = 4P1(n), so (1) is true forh = 1. Leth ≥ 2 an
suppose that (1) holds forh − 1. Then

|µh(n)| = 2+ L(n)+
L(n)−1∑

i=0

|µh−1(i )|

= 2+ L(n)+ 2+
L(n)−1∑

i=1

|µh−1(i )|

≤ 4+ L(n)+
L(n)−1∑

i=1

4(h − 1) · Ph−1(i )

≤ 4+ L(n)+ 4(L(n)− 1) · (h − 1) · Ph−1(L(n))

≤ L(n)+ 4(h − 1) · L(n) · Ph−1(L(n))

≤ L(n)+ 4(h − 1) · Ph(n)

≤ 4h · Ph(n).

This proves (1).
Since L(n) ∈ Θ(lg n), to complete the proof of the lemma it suffices to show that

there is a constantc such that for allh,n ≥ 1 we havePh(n) ≤ c · L(n)2. Since
L(L(n)) ∈ O(lg lg n) and L(n) ∈ Ω(lg n), there is ann0 such that for alln ≥ n0 we
have

L(L(n))2 ≤ L(n).

Note thatP = {Ph(m) | m< n0,h ≥ 1} is a finite set and letc = max(P).
We prove thatPh(n) ≤ c · L(n)2 by induction onh ≥ 1. SinceP1(n) = L(n),

this statement is true forh = 1. For h ≥ 2, we havePh(n) = L(n) · Ph−1(L(n)). If
L(n) < n0, we havePh−1(L(n)) ≤ c and thusPh(n) ≤ cL(n). If L(n) ≥ n0, we have
L(L(n))2 ≤ L(n). By induction hypothesis,Ph−1(L(n)) ≤ c · L(L(n))2. Thus

Ph(n) = L(n) · Ph−1(L(n)) ≤ L(n) · c · L(L(n))2 ≤ c · L(n)2. �
Lemma 7. There is an algorithm that, given h,n ∈ N, computesµh(n) in time
O(|µh(n)|) = O(h · lg2 n).

Proof. The algorithm computesµh(n) in a straightforward recursive manner. We get the
following recurrence for the running timeR(h,n):

R(h,n) ≤ O(L(n))+
L(n)∑
i=0

R(h − 1, L(i )).

This recurrence is very similar to the one we obtained in the proof ofLemma 6and can
easily be solved using the same methods.�

Observe that for allm ≥ 1 we have

2m = max{n ∈ N | L(n) ≤ m}.
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Recall thatT(h, �) is a tower of 2s of heighth with an� on top. Thus, in particular, for all
h, � ≥ 1 we have

T(h, �) = max{n ∈ N | L(n) ≤ T(h − 1, �)}. (2)

Lemma 8. Let h≥ 1, � ≥ 0. There is a first-order formulaχh,�(x, y) of size O(h· lg h+�)
such that for all wordsW , a,b ∈ W, and m,n ∈ {0, . . . , T(h, �)} the following holds:

If a is the first position of a subwordU � W with U ∼= µh(m) and b is the first position
of a subwordV � W with V ∼= µh(n), then

W |= χh,�(a,b) m = n.

Furthermore, the formulaχh,� can be computed from h and� in time O(h · lg h + �).

Proof. Let h = 1. Recall that theµ1-encoding of an integerp ≥ 1 is just the binary
encoding ofp − 1 enclosed in<1>, </1>. Hence to say thatx andy areµ1-encodings of
the same numbers, we have to say that for all pairsx + i , y + i of corresponding positions
betweenx respectivelyy and the next closing</1>, there are the same letters atx + i
andy + i . For numbersp in {0, . . . , T(1, �)}, there are at mostL(p) ≤ � positions to be
investigated. To express this, we let

χ1,�(x, y) = ∃x1 . . . ∃x�∃y1 . . . ∃y�(
Sx= x1 ∧

�−1∧
i=1

((P</1>xi ∧ xi = xi+1) ∨ (¬P</1>xi ∧ Sxi = xi+1))

∧ Sy= y1 ∧
�−1∧
i=1

((P</1>yi ∧ yi = yi+1) ∨ (¬P</1>yi ∧ Syi = yi+1))

∧
�∧

i=1

((P0xi ↔ P0yi ) ∧ (P1xi ↔ P1yi ))

)
.

Now leth ≥ 2 and suppose that we have already definedχh−1,�(x, y). It will be convenient
to have the following auxiliary formulas available:

χh
int(x, y) = x < y ∧ ∀z ((x < z∧ z ≤ y)→ ¬P</h>z) ,

χh
last(x, y) = x < y ∧ P</h>y ∧ ∀z ((x < z∧ z< y)→ ¬P</h>z) .

Intuitively,χh
int(x, y) says thaty is in the interior of the subword of the formµh(p) starting

atx andχh
last(x, y) says thaty is the last position of the subword of the formµh(p) starting

at x, provided such a subword indeed starts atx.
To say that the subwords starting atx andy areµh-encodings of the same numbers, we

have to say that for all positionsw betweenx and the next closing</h> and all positionsz
betweeny and the next closing</h>, if w andz are first positions of subwords isomorphic
toµh−1(q) for someq ∈ N, then the positions following these two subwords are either both
1s or both0s. For all subwords ofµh(p) of the formµh−1(q) we haveq ∈ {0, . . . , L(p)}.
In order to apply the formulaχh−1,� to test equality of such subwords, we must have
q ≤ L(p) ≤ T(h − 1, �). By (2), the last inequality holds for allp ≤ T(h, �). Thus for
suchp we can use the formulaχh−1,� to test equality of subwords ofµh(p) of the form
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µh−1(q). As a first approximation to our formulaχh,�, we let

χ ′
h,�(x, y) = ∀w

((
χh

int(x, w) ∧ P<h - 1>w
)

→ ∃z
(
χh

int(y, z) ∧ P<h - 1>z∧ χh−1,�(w, z)
))

∧ ∀z
((
χh

int(y, z) ∧ P<h - 1>z
)

→ ∃w(χh
int(x, w) ∧ P<h - 1>w ∧ χh−1,�(w, z)

))
∧ ∀w∀z

((
χh

int(x, w)∧ P<h - 1>w∧χh
int(y, z)∧P<h - 1>z∧χh−1,�(w, z)

)
→ ∃w′∃z′

(
χh−1

last (w,w
′) ∧ χh−1

last (z, z
′) ∧ (P1Sz′ ↔ P1Sw′)

))
.

The first line of this formula says that every subword of the formµh−1(q) in the subword
of the formµh(p) starting atx also occurs in the subword of the formµh(p) starting aty.
The second line says that every subword of the formµh−1(q) in the subword of the form
µh(p) starting aty also occurs in the subword of the formµh(p) starting atx. The third
and fourth lines say that ifw andz are the first positions of isomorphic subwords of the
formµh−1(q), then they are either both followed by a1 or both by a0 (since the only two
letters that can appear immediately after a subwordµh−1(q) in a wordµh(p) are0 and1).

This formula says what we want, but unfortunately it is too large to achieve the desired
bounds. The problem is that there are three occurrences of the subformulaχh−1,�(w, z).
We we can easily overcome this problem. We let

ζ(w, z) = ∃w′∃z′
(
χh−1

last (w,w
′) ∧ χh−1

last (z, z
′) ∧ P1Sz′ ↔ P1Sw′)

and

χh,�(x, y) = ∀w∃z

((
χh

int(x, w)→ χh
int(y, z)

)
∧ (χh

int(y, w)→ χh
int(x, z)

)
∧ (P<h - 1>w → P<h - 1>z

)
∧
(((

χh
int(y, w) ∨ χh

int(x, w)
) ∧ P<h - 1>w

)
→ χh−1,�(w, z) ∧ ζ(w, z)

))
.

It is not hard to see thatχh,�(x, y) has the desired meaning.
Observing that‖χ1,�‖ ∈ O(�) and that‖χh,�‖ = ‖χh−1,�‖+c· lg h for some constantc,

we obtain the desired bound on the size of the formulas. To see why we need the factor lgh
here, recall that‖ϕh,�‖ is the length of abinary encoding ofϕh,�. The vocabulary of the
formulaϕh,� is of sizeO(h), thus the binary encoding of the symbols in this vocabulary
will require O(lg h) bits.

The fact thatχh,� can be computed in time linear in the size of the output is immediate
from the construction. �
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4. Encodings of propositional formulas

In this section, we give a sequence encoding of propositional formulas in conjunctive
normal form and assignments to the variables of these formulas such that there are shorter
and shorter first-order formulas stating that the encoded assignment satisfies the encoded
formula. The key idea is to use the encodingsµh of the natural numbers to encode
propositional variables by their index. Then byLemma 8, we can check with a very
short first-order formula if two subwords of a codeword that represent variables actually
represent the same variable. This way we can look up the value of a variable in a table
representing the assignment.

The class of all formulas in conjunctive normal form is denoted by CNF, and for every
k ≥ 1 the class of all formulas ink-conjunctive normal form, that is, conjunctions of
clauses of size at mostk, is denoted byk-CNF.

We assume that propositional formulas only contain variablesXi , for i ∈ N. For a setΘ
of propositional formulas, we letΘ(n) denote the set of all formulas inΘ whose variables
are amongX0, . . . , Xn−1.

To encode formulas and assignments, we will use an alphabet that is obtained from the
alphabetΣh introduced in the previous section by adding a number of symbols in several
stages throughout this section. We start by adding the symbols

+, -, <lit>, </lit>, <clause>, </clause>, <cnf>, </cnf>.

We fix h and define an encoding of CNF-formulas by words as follows: For a literalλ, we
let

µh(λ) =
{
<lit> µh(i ) + </lit> if λ = Xi

<lit> µh(i ) - </lit> if λ = ¬Xi

(for everyi ∈ N). For a clauseδ = (λ1 ∨ · · · ∨ λm) we let

µh(δ) = <clause> µh(λ1) · · ·µh(λm) </clause>,

and for a CNF-formulaγ = (δ1 ∧ · · · ∧ δm) we let

µh(γ ) = <cnf> µh(δ1) · · · µh(δm) </cnf>.

Next, we need to encode assignments. LetA(n) denote the set of all assignments

α : {X0, . . . , Xn−1} → {TRUE, FALSE}.
We add the symbols<val>, </val>, <asn>, </asn>, true, false to our alphabet. For
an assignmentα ∈ A(n), we let

µh(α) = <asn>
<val>µh(0) α(X0)</val>

...

<val>µh(n − 1) α(Xn−1)</val>
</asn>.
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Of course what is meant byα(Xi ) here is the symboltrue if α(Xi ) = TRUE and the
symbolfalse otherwise. For a pair(γ, α) ∈ CNF(n) × A(n) we simply letµh(γ, α) =
µh(γ ) µh(α).

The following lemma is an immediate consequence ofLemmas 6and7:

Lemma 9. Let h∈ N and(γ, α) ∈ CNF(n)×A(n). Then|µh(γ, α)| = O(h·lg2 n·(‖γ ‖+
n)) and there is an algorithm that computesµh(γ, α) in time O(h · lg2 n · (‖γ ‖+ n)) (that
is, linear in the size of the output).

Lemma 10. For all h, � ∈ N there is a first-order sentenceϕh,� of size O(h · lg h+�) such
that for all n ≤ T(h, �) and(γ, α) ∈ CNF(n)× A(n),

µh(γ, α) |= ϕh,� α |= γ.

Furthermore, the formulaϕh,� can be computed in time O(h · lg h + �).

Proof. Let χh,�(x, y) be the formula defined inLemma 8. Recall that it says that the
subwords of the formµh(m) and µh(n) starting atx, y, respectively, are identical,
provided that such subwords start atx and y and thatn,m ≤ T(h, �). Also recall the
formula

χh
last(x, y) = x < y ∧ P</h>y ∧ ∀z((x < z∧ z< y)→ ¬P</h>z),

defined in the proof ofLemma 8, which says thaty is the last position of the subword of
the formµh(n) starting atx.

We first define a formulaϕ lit
h,�(x) such that if the subword ofγ starting atx is the

encoding of a literal, then it is satisfied byα. We let

ψ lit
h,�(x) = ∃y∃x′∃y′(P<val>y ∧ χh,�(Sx, Sy) ∧ χh

last(Sx, x′) ∧ χh
last(Sy, y′)

∧ (P+Sx′ ↔ PtrueSy′)).

Suppose that the encoding of the literal(¬)Xi starts atx. The formulaψΓ
h,�,0(x) looks for

a y such that the encoding of a pair( j , α(X j )) starts aty, then comparesi and j , and if
they are equal, checks that the symbol indicating the sign of the literal is+ if, and only if,
α(X j ) = TRUE. Next, we define a formulaϕclause

h,� (x) such that if the subword ofγ starting
at x is the encoding of a clause, then it is satisfied byα. We let

ψclause
h,� (x) = ∃y(∀z((x < z∧ z ≤ y)→ ¬P</clause>z) ∧ P<lit>y ∧ ψ lit

h,�(y)).

It simply says that there is a positiony which is still within the boundary of the clause
starting atx such that a literal starts aty and this literal is satisfied. Finally, we let

ψh,�(x) = ∀y(P<clause>y → ψclause
h,� (y)).

This formula says that all clauses and thus the whole CNF-formula are satisfied.�

For reasons that will become clear in the next section, we will also have to encode tuples
(γ,V1, . . . ,Vt ), whereγ ∈ CNF(n) andV1, . . . ,Vt is a partition of{1, . . . ,n}. We add
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symbolsV1, . . . , Vt to the alphabet. So now our alphabet depends on the two parameters
h andt . For everyi ∈ {0, . . . ,n − 1} and 1≤ j ≤ t we let part(i ) = Vj if Xi ∈ Vj . Then
we let

µh(γ,V1, . . . ,Vt ) = µh(γ )<asn>
<val> µh(0) part(0) </val>

· · ·
<val> µh(n − 1) part(n − 1) </val>

</asn>.

Even in the caset = 1 it will be useful to work with the encodingµh(γ, {0, . . . ,n − 1})
instead of justµh(γ ), because the wordµh(γ, {0, . . . ,n − 1}) already provides
the “infrastructure” for an assignment. For brevity, we writeµh(γ, �) instead of
µh(γ, {0, . . . ,n − 1}).

5. Satisfiability testing through model-checking

In this section, we proveTheorem 1.

5.1. Monadic second-order logic

Theorem 11. Assume thatPTIME �= NP. Let h∈ N and p a polynomial. Then there is no
algorithm forMC(MSO,W) whose running time is bounded by

T(h, k) · p(n).

As usual, k denotes the size of the input sentence and n the size of the input word.

Proof. Suppose that there is an algorithmA for MC(MSO,W) whose running time is
bounded by

T(h, k) · p(n),

for someh ∈ N and polynomialp.
We shall prove that the satisfiability problem for 3-CNF-formulas is in polynomial time,

which, by contradiction, proves the theorem. For all� ∈ N, let

ϕ̃h+1,� = ∃X(∀x(Xx → PV1x) ∧ ϕ′
h+1,�),

whereϕ′
h+1,� is the formula obtained from the formulaϕh+1,� of Lemma 10by replacing

the subformulaPtrueSy′ by X Sy′. Recall thatPtrueSy′ is the only subformula ofϕh+1,�
that involves eitherPtrue or Pfalse. The subformula∀x(Xx → PV1x) says thatX only
contains elements that are at a position with symbolV1, which may simply be viewed as a
placeholder fortrue or false in an assignment. The intended meaning ofX is to indicate
all variables set toTRUE. It is easy to see that for everyn′ ≤ T(h+1, �) andγ ∈ 3-CNF(n′)
we have

µh+1(γ, �) |= ϕ̃h+1,� γ is satisfiable. (3)
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Consider the algorithm displayed inFig. 1, which decides if the input formulaγ is
satisfiable. The correctness of the algorithm follows from (3) and

n′ = T(h + 1, lg(h+1)(n′)) ≤ T(h + 1,  lg(h+1)(n′)!).
For the running time analysis, without loss of generality we can assume thatn′ ≤ ‖γ ‖ ≤
O((n′)3), that is, that‖γ ‖ andn′ are polynomially related. We claim that the running time
of the algorithm is bounded byq(n′) for some polynomialq depending only on the fixed
constanth.

Lines 1–3 of the algorithm can be implemented in time polynomial inh,n′. Recall that
by Lemma 9, |µh+1(γ, �)| is polynomially bounded in terms ofh and n′. Thus by our
assumption on the algorithmA, Line 4 requires time

T(h, ‖ϕ̃h+1,�‖) · p(|µh+1(γ, �)|) ≤ T(h, ‖ϕ̃h+1,�‖) · p′(h,n′),

for some polynomialp′. By Lemma 10and the definition of̃ϕh+1,� we have‖ϕ̃h+1,�‖ ∈
O(h · lg h + �), that is,‖ϕ̃h+1,�‖ ≤ c(h · lg h + �) ≤ c(h · lg h + lg(h+1)(n′)+ 1) for some
constantc. Since

lim
m→∞

lg lg m

lg m
= 0,

there is ann0 (depending onc,h) such that for alln′ ≥ n0 we have

c(h · lg h + lg(h+1)(n′)+ 1) ≤ lg(h)(n′).

Thus for n′ ≥ n0 we haveT(h, ‖ϕ̃h+1,�‖) ≤ T(h, lg(h)(n′)) ≤ n′. This proves the
polynomial time bound. �

5.2. First-order logic

We need a few preliminaries from parameterized complexity theory. Aparameterized
problem is a setP ⊆ Σ∗ × N for some finite alphabetΣ . If (x, k) ∈ Σ∗ × N is an
instance of a parameterized problem, we refer tox as theinput and tok as theparameter.
A parameterized problemP ⊆ Σ∗×N is fixed-parameter tractableif there is a computable
function f : N → N, a polynomialp, and an algorithm that, given a pair(x, k) ∈ Σ∗ ×N,
decides if(x, k) ∈ P in time at mostf (k) · p(|x|) steps. The class of all fixed-parameter
tractable problems is denoted by FPT.
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Thealternating weighted satisfiability problemfor a classΘ of propositional formulas
is a parameterized version of the satisfiability problem for quantified Boolean formulas
defined as follows:

AWSAT [Θ ]
Input: α ∈ Θ , t ∈ N, a partitionV1 ∪̇ . . . ∪̇ Vt of the variables ofα

Parameter: k, t ∈ N

Problem: Decide if there exists a sizek subsetU1 of V1 such that
for all sizek subsetsU2 of V2 there exists . . . such that the
truth assignment setting all variables inU1 ∪ . . . ∪ Ut to
TRUE and all other variables toFALSE satisfiesα

The parameterized complexity class AW[∗] is defined in terms of the alternating
weighted satisfiability problem for a hierarchy of classes of propositional formulas. All
we need to know here, however, is the following theorem:

Theorem 12 (Downey et al. [6], Flum and Grohe [9]). If AWSAT[3-CNF] is fixed-pa-
rameter tractable then

AW[∗] = FPT.

We are now ready to prove our theorem:

Theorem 13. Assume thatFPT �= AW[∗]. Let h ∈ N and p a polynomial. Then there is
no algorithm forMC(FO,W) whose running time is bounded by

T(h, k) · p(n).

As usual, k denotes the size of the input sentence and n the size of the input word.

To prove this theorem, we will use the following alternative characterization of fixed-
parameter tractability. A parameterized problemP ⊆ Σ × N is eventually in polynomial
time if there is a computable functionf and an algorithm, whose running time is
polynomial in|x| that, given an instance(x, k) ∈ Σ∗ × N of P with |x| ≥ f (k) correctly
decides if(x, k) ∈ P. (The behaviour of the algorithm on instances(x, k) ∈ Σ∗ × N with
|x| < f (k) is irrelevant.)

Lemma 14 (Flum and Grohe [8]). A parameterized problem is fixed-parameter tractable
if, and only if, it is computable and eventually in polynomial time.

Proof of Theorem 13. Suppose that there is an algorithmA for MC(FO,W) whose
running time is bounded by

T(h, k) · p(n),

for someh ∈ N and polynomialp. We shall prove that AWSAT[3-CNF] is in FPT.

For all h, �, k, t ∈ N, let ϕ′
h+1,�,k,t be the formula obtained from the formulaϕh+1,� of

Lemma 10by replacing the (unique) subformulaPtrueSy′ by
∨t

i=1
∨k

j=1 Sy′ = xi j , for
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new variablesxi j ,1 ≤ i ≤ t,1 ≤ j ≤ k. Let

ϕ̃h+1,�,k,t = ∃x11 . . . ∃x1k

(
k∧

i=1

PV1x1i ∧
k−1∧
i=1

x1i < x1(i+1)∧

∀x21 . . .∀x2k

((
k∧

i=1

PV2x2i ∧
k−1∧
i=1

x2i < x2(i+1)

)
→

...

Qxt1 . . .Qxtk

((
k∧

i=1

PVtxti ∧
k−1∧
i=1

xti < xt (i+1)

)
∧→ ϕ′

h+1,�,k,t

)
· · ·
)
.

HereQ is ∀ if t is even and∃ otherwise. Moreover,
∧→ represents→ if t is even and∧ if t

is odd.
Then for everyn ≤ T(h + 1, �), γ ∈ 3-CNF(n), k ∈ N, and for every partition

V1, . . . ,Vt of {0, . . . ,n − 1} we have

µh+1(γ,V1, . . . ,Vt ) |= ϕ̃h+1,�,k,t (γ,V1, . . . ,Vt )

with parameters(k, t) is a ‘yes’-instance AWSAT[3-CNF]. (4)

To see this, note that the first line of̃ϕh+1,�,k,t says “there exists a subsetU1 =
{x11, . . . , x1k} of V1 of size k” (the inequalities are used to make sure that thex1 j are
distinct). The second line says “for all subsetsU2 = {x21, . . . , x2k} of V2 of sizek”, etc.
Finally, by Lemma 10, the formulaϕ′

h+1,�,k,t in the last line of̃ϕh+1,�,k,t says thatγ is
satisfied if precisely the variables inU1 ∪ · · · ∪ Ut are set toTRUE.

Consider the algorithm displayed inFig. 2. The correctness of the algorithm follows
from (4) and

n′ = T(h + 1, lg(h+1)(n′)) ≤ T(h + 1,  lg(h+1)(n′)!).
For the running time analysis, without loss of generality we assume thatn′ ≤ ‖γ ‖ ≤
O((n′)2). We claim that ifn′ is sufficiently large, then the running time of the algorithm
is bounded byq(n′) for some polynomialq. More precisely, we claim that there is a
polynomialq and ann0 ∈ N, which is computable fromh, k′, t , such that forn′ ≥ n0 the
running time of the algorithm is bounded byq(n′). Sinceh is fixed and since AWSAT[3-
CNF] is computable, byLemma 14this implies that AWSAT[3-CNF] is in FPT.
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Lines 1–3 of the algorithm can be implemented in time polynomial inh,n′. By our
assumption on the algorithmA, Line 4 requires time

T(h, ‖ϕ̃h+1,�,k′,t‖) · p(n) = T(h, ‖ϕ̃h+1,�,k′,t‖) · p′(h,n′),

for some polynomialp′, becausen = |µh+1(γ,V1, . . . ,Vt )| is polynomially bounded
in terms ofn′ andh. Since we only replace one subformulaPtrueSy′ by the disjunction∨t

i=1
∨k

j=1 Sy′ = xi j , we have

‖ϕ̃h+1,�,k′,t‖ ∈ p′′(h, k′, t)+ O(�)

for a suitable polynomialp′′. Using a similar argument as in the proof ofTheorem 11, we
can now derive that there is a computablen0 depending onh, k′, t such that for alln′ ≥ n0
we have

T(h, ‖ϕ̃h+1,�,k′,t‖) ≤ T(h, lg(h)(n′)) ≤ n′.

This proves our claim that ifn′ is sufficiently large, then the running time of the algorithm
is bounded byq(n′) for some polynomialq and thus the theorem.�

Remark 15. For readers familiar with least fixed-point logic, let us point out that with the
same techniques it can be proved that there is no model-checking algorithm formonadic
least fixed-pointlogic on words whose running time is bounded byT(h, k) · p(n), for any
h ∈ N and polynomialp, under the weaker assumption thatAW[P] �= FPT.

AW[P] is a parameterized complexity class that contains AW[∗]. A complete problem
for AW[P] is the alternating weighted satisfiability problem for arbitrary Boolean circuits
(as opposed to bounded depth circuits for AW[∗]).

6. First-order model-checking on structures of bounded degree

In this and the next section, we investigate the parameterized complexity of first-order
model-checking over structures of bounded degree. LetA be a τ -structure for some
vocabularyτ . We call two elementsa,b ∈ A adjacentif they are distinct and there is
an R ∈ τ , say,r -ary, and a tuplea1 . . .ar ∈ RA such thata,b ∈ {a1, . . . ,ar }. Thedegree
of an elementa ∈ A in the structureA is the number of elements adjacent toa, and the
degree ofA is the maximum degree of its elements. Ford ≥ 1, we denote the class of all
structures of degree at mostd by D(d).

Theorem 16 (Seese [16]). Let d ≥ 1. Then there is a function f: N → N and an
algorithm solvingMC(FO,D(d)) in time f(k,d) · n, where, as usual, k denotes the size of
the input sentence and n the size of the input structure.

It is quite easy to derive from Seese’s proof a triply-exponential upper bound onf for a
non-uniformversion of this theorem, stating that for every fixed first-order sentenceϕ there
is a triply exponential functionf and an algorithm checking whether a given structureA
of degree at mostd satisfiesϕ. We shall prove a uniform version of this result, which has
the additional benefit that our algorithm is quite simple.

The crucial idea, which has also been explored by Seese, is to use the locality of first-
order logic. Without loss of generality we assume that vocabularies only contain relation
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and constant symbols. (Functions can easily be simulated by relations.) We need some
additional notation. Apathof lengthl is a sequence of verticesa0, . . . ,al ∈ A such that
ai−1,ai , i = 1, . . . , l are adjacent inA. The distance between two elementsa,b ∈ A of
the universe is 0, ifa = b andr , if the shortest path betweena andb has lengthr . Let
r ≥ 1 anda ∈ A. Ther -neighbourhoodof a in A, denoted byNA

r (a) is the set ofb ∈ A
such thata,b have distance at mostr . Let NA

r (a) denote the substructure induced byA
on NA

r (a). For elementsa,b of a structureA we writea ∼=A
r b if there is an isomorphism

fromNA
r (a) toNA

r (b) that mapsa to b.
Recall that qr(ϕ) denotes the quantifier-rank of a formulaϕ.

Lemma 17 ([11,13]). For every first-order formulaϕ(x) there is an r≥ 1 such that for
every structureA and a,b ∈ A we have(a ∼=A

r b (A |= ϕ(a) A |= ϕ(b))).
Furthermore, r can be chosen to be2qr(ϕ).

Fig. 3displays a recursive model-checking algorithm for first-order sentences in prenex
normal form that is based onLemma 17. Since we can easily transform arbitrary first-order
sentences into sentences in prenex normal form (algorithmically, this can be done in linear
time), this also gives us an algorithm for arbitrary sentences.

Note that in the recursive callsmodel-check(ψ(a), (A,a)) of the algorithm, we
replace all occurrences ofx in ψ by a new constant symbol which is interpreted by the
elementa ∈ A and check if this new sentence holds in the expanded structure(A,a). The
correctness of the algorithm follows from an easy induction on the structure of the input
formulaϕ applyingLemma 17in each step. Note that this algorithm works for arbitrary
input structuresA.

Theorem 18. The algorithmmodel-check (displayed inFig. 3) decidesMC(FO,D(2))
in time

22O(k) · n,
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andMC(FO,D(d)) for d ≥ 3 in time

22lg d·2O(k) · n,

where as usual k denotes the size of the input sentence and n the size of the input
structure.

Proof. We denote the running time ofmodel-check(ϕ,A) by R(n, p,q), wheren =
‖A‖, q = qr(ϕ), andp is the size of the quantifier-free part ofϕ. Note thatp + q ≤ k(=
‖ϕ‖). Let r = r (q) = 2q,

s(q) = max
a∈A,A∈C

‖NA
r (a)‖,

the maximal size of anr -neighbourhood, and lett (q) denote the number of equivalence
classes of∼=A

r . Note that there exist upper bounds fors(q) andt (q) only depending on the
degree of the input structure (and not onn or ϕ). Remember that the degree is constant for
the classes under consideration.

Now consider the algorithm displayed inFig. 3. Line 1 only requires constant time. If
Line 2 is executed, it requires timeO(p · n), and the algorithm stops. Otherwise, it proceeds
to Line 3, which can be executed in constant time. To execute Line 4, we maintain a list
of pairs(NA

r (a),a) such that no induced substructure(NA
r (a),a) occurs twice. The size

of this list never exceedst (q), hence for eacha in turn, we simply compute the induced
substructure, and look if it is already in the list. This requires timeO(n · f (s(q)) · t (q)),
if we denote the time to check isomorphism of structures of sizem by f (m). The loop in
Lines 5–9 requires time

O(t (q))+ t (q) · R(n, p,q − 1).

Putting everything together, we obtain the following recurrence forR:

R(n, p,0) ≤ c1 · p · n

R(n, p,q) ≤ c2 · n · f (s(q)) · t (q)+ t (q)R(n, p,q − 1) (for q ≥ 1),

for suitable constantsc1, c2. To solve this equation, we use the following simple lemma:

Lemma 19. Let F, g,h : N → N such that

F(0) ≤ g(0)

F(m) ≤ g(m)+ h(m) · F(m− 1)

for all m ∈ N. Then

F(m) ≤
m∑

i=0

g(i ) ·
m∏

j=i+1

h( j )

for all m ∈ N.
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The lemma can be proved by a straightforward induction onq.
Applied to our functionR, the lemma yields

R(n, p,q) ≤ c1 · p · n ·
q∏

j=1

t ( j )+
q∑

i=1

c2 · n · f (s(i )) · t (i ) ·
q∏

j=i+1

t ( j )

≤
q∏

j=1

t ( j )

(
c1 · p · n +

q∑
i=1

c2 · n · f (s(i ))

)
.

Degree 2:The size of anr -neighbourhood in a structureA ∈ D(2) is at most 2r + 1.
Thus

s(q) ≤ 2O(q) ≤ 2O(k).

To give an upper bound ont (q), we have to take into account the numberu of symbols in
the vocabulary. Since we only have to consider symbols that actually appear inϕ, we can
assume thatu ≤ k. Moreover, without loss of generality we can assume that the vocabulary
only contains unary and binary relation symbols (because we are considering structures of
degree 2).

Let us count the number of isomorphism types of anm-vertex structureB of degree 2
whose vocabulary containsu1 unary relation symbols andu2 binary relation symbols.
The unary relations can take at most 2u1·m different values. There are at mostm pairs
of elements which can be connected by a binary relation, thus the binary relations can take
at most 2u2·m different values. Thus the overall number of isomorphism types is bounded
by 2(u1+u2)m.

Our r -neighbourhoods have size at most 2r + 1, so we obtain

t (q) ≤ 2O(k·r ) = 2O(k·2q).

Thus
q∏

j=1

t ( j ) ≤
q∏

j=1

2O(k·2 j ) ≤ 2O(k
∑q

j=1 2 j ) ≤ 22O(k)
.

Since isomorphism of structures of degree 2 can be decided in polynomial time, we
obtain(

c1 · p · n +
q∑

i=1

c2 · n · f (s(i )) · t (i )

)
≤ O(22O(k) · n)

and thus

R(n, p,q) ≤ 22O(k) · n.

Degree at least 3:The calculations are similar in this case, the only important difference
being that anr -neighbourhood may be of sizeΘ(dr ) and thus doubly exponential inq,
which yields a triply exponential bound forR. �
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7. Lower bounds for first-order model-checking on structures of bounded degree

In this subsection we prove lower bounds for first-order model-checking on two
particularly simple classes of structures of degree two and three, respectively: The class
of words without orderand the class ofordered binary trees.

7.1. Words without order

Formally, a word without order over an alphabetΣ is a reduct of a word overΣ to
the vocabularyτS(Σ ) = τ (Σ )\{≤}. We denote the class of all words without order byS.
Since we will only consider words without order in the following, for simplicity we often
just refer to them as words.

In this section we will only work with the encodingµ1 (recall the definition from
Section 3), but we need a refined version ofLemma 8for h = 1:

Lemma 20. Let � ≥ 1 and let Σ ⊇ Σ1. There is a first-order formulaχ�(x, y) of
vocabularyτS(Σ1) and size O(�) such that for all words without orderW ∈ Σ∗, a,b ∈ W,
and m,n ∈ {0, . . . ,22�} the following holds:

If a is the first position of a subwordU � W with U ∼= µ1(m) and b is the first position
of a subwordV � W with V ∼= µ1(n), then

W |= χ�(a,b) m = n.

Furthermore, the formulaχ� can be computed from� in time O(�).

Note thatLemma 8only provides a formulaχ1,l (x, y) that works form,n ≤ 2�.
Before we prove the lemma, we define a few basic formulas and notations that we need

in dealing with words without order. Letψ(x, y) be a formula. For a structureA, elements
a,b ∈ A, and� ≥ 0, aψ-path of length� from a to b is a sequencea0,a1, . . . ,a� of
elements ofA such thata0 = a, a� = b, andA |= ψ(ai ,ai+1) for 0 ≤ i < �. We let
b −ψ a be the minimum length of aψ-path froma to b if there is such a path. If there is
noψ-path froma to b, we letb −ψ a = ∞.

Lemma 21. Let� ≥ 1 andψ(x, y) a first-order formula.

(1) There exists a first-order formulaβψ� (x1, x2) of size O(�) such that for every structure
A and all a1,a2 ∈ A,

A |= β
ψ
� (a1,a2) a2 −ψ a1 ≤ 2�.

(2) There exists a first-order formulaδψ� (x1, x2, y1, y2) of size O(�) such that for every
structureA and all elements a1,a2,b1,b2 ∈ A,

A |= δ
ψ
� (a1,a2,b1,b2) a2 −ψ a1 ≤ 2� ∧ a2 −ψ a1 = b2 −ψ b1.

Proof. We only prove (2); the proof of (1) is similar, but simpler. We let

δ
ψ

0 (x1, x2, y1, y2) = (x1 = x2 ∧ y1 = y2)

∨ (¬x1 = x2 ∧ ¬y1 = y2 ∧ ψ(x1, x2) ∧ ψ(y1, y2)
)
,
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and for� ≥ 1

δ
ψ
� (x1, x2, y1, y2) = δ

ψ

0 (x1, x2, y1, y2)

∨∃x3∃y3∀x∀x′∀y∀y′((
(x = x1 ∧ x′ = x3 ∧ y = y1 ∧ y′ = y3)

∨ (x = x3 ∧ x′ = x2 ∧ y = y3 ∧ y′ = y2)
)

→ δ
ψ

�−1(x, x
′, y, y′)

)
. �

Proof of Lemma 20. We letψ(x, y) = (¬P</1>x ∧ Sx= y) ∨ (P</1>x ∧ x = y) and

χ�(x, y) = ∀x′∀y′(δψ� (x, x
′, y, y′)→ ((P0x′ ↔ P0y′) ∧ (P1x′ ↔ P1y′))),

whereδψ� is taken fromLemma 21(2). �

Recall that 3-CNF(n) denotes the set of all formulas in 3-conjunctive normal form
whose variables are amongX0, . . . , Xn−1 and thatA(n) denotes the set of all truth-value
assignments to these variables. Recall further the encodings of propositional formulas
introduced inSection 4.

Lemma 22. For all l ∈ N there is a first-order sentenceϕl of size O(l ) such that for all
n ≤ 22l

and(γ, α) ∈ 3-CNF(n)× A(n)we haveµ1(γ, α) |= ϕl α |= γ . Furthermore,
ϕl can be computed in time O(l ).

Proof. Recall the proof ofLemma 10. Instead of the formulaχh,� we now useχ� of
Lemma 20. We have to eliminate all occurrences of the order symbol<, which is used
in the formulasχh

last(x, y) andψclause
h,� .

Observe that the length of an encodingµ1(n) for ann ≤ 22� is in O(2�). We have seen
above that we can describe subwords of length up to 2� by formulas of lengthO(�) that
only use the successor relation. Therefore, replaceχh

last(x, y) by a formula of lengthO(�)
that only involves the successor relation.

Moreover, since we are only considering 3-CNF(n) formulas forn ≤ 22� , subwords
describing clauses have lengthO(�). Thus again we can replace the subformulas involving
the order symbol by suitable formulas of lengthO(�). �

Note that the previous proof does not work for arbitrary CNF-formulas; it is crucial that
the clauses have bounded length.

We are now ready to prove the main result of this section (which isTheorem 2(1)):

Theorem 23. Assume thatFPT = AW[∗], and let p be a polynomial. Then there is no
algorithm forMC(FO,S) whose running time is in

22o(k) · p(n),

where k denotes the size of the input sentence and n the size of the input word.
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Fig. 4.

Proof. Essentially, we proceed as for words with order. Suppose that there is an algorithm
A for the problem MC(FO,W) whose running time is bounded by

22 f (k) · p(n),

for some polynomialp and a functionf (k) ∈ o(k). We shall prove that AWSAT[3-CNF]
is in FPT.

For all �, k, t ∈ N, let

ϕ̃�,k,t = ∃x11 . . . ∃x1k

(
k∧

i=1

PV1x1i ∧
k−1∧
i=1

x1i < x1(i+1)∧

∀x21 . . .∀x2k

((
k∧

i=1

PV2x2i ∧
k−1∧
i=1

x2i < x2(i+1)

)
→

...

Qxt1 . . .Qxtk

((
k∧

i=1

PVtxti ∧
k−1∧
i=1

xti < xt (i+1)

)
∧→ ϕ′

�,k,t

)
· · ·
)
,

whereϕ′
�,k,t is the formula obtained from the formulaϕ� of Lemma 22by replacing

the (unique) subformulaPtrueSy′ by
∨t

i=1
∨k

j=1 Sy′ = xi j . Then for everyn ≤ 22� ,
γ ∈ 3-CNF(n), k ∈ N, and for every partitionV1, . . . ,Vt of {0, . . . ,n − 1} we have

µ1(γ,V1, . . . ,Vt ) |= ϕ̃�,k,t (γ,V1, . . . ,Vt )

with parameters(k, t)is a ‘yes’-instance of AWSAT[3-CNF]. (5)

The algorithm decidingk′-satisfiability of 3-CNF is displayed asFig. 4.
The correctness of this algorithm follows from (5). For the analysis, without loss of

generality we assume thatn′ ≤ ‖γ ‖ ≤ O((n′)2). We claim that ifn′ is sufficiently large,
then the running time of the algorithm is bounded byq(n′) for some polynomialq. Then
Lemma 14implies that AWSAT[3-CNF] is in FPT.

Lines 1–3 of the algorithm can be done in time polynomial inn′. The crucial part is
Line 4. By the assumption on algorithmA this line requires time

22
f (‖ϕ̃�,k′ ‖) · p(n),
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Fig. 5. The treeν(38).

wheren = |µ1(γ, �)| is polynomial inn′. It follows from Lemma 22that

‖ϕ̃�,k′ ‖ ≤ p′(k′, t)+ c · �.
for some polynomialp′ and constantc. Hence for sufficiently largen′ we have‖ϕ̃l ,k′ ‖ ≤
c′ lg lg n′, say, forc′ = 2c. Since f (k) ∈ o(k), there is ann0 such that for alln′ ≥ n0 we
have f (c′ lg lg n′) ≤ lg lg n′ and thus

22
f (‖ϕ̃l,k′ ‖) ≤ 22 f (c′ lg lg n′) ≤ 22lg lg n′ ≤ n′.

This gives us the desired upper bound on the running time of our algorithm.�

7.2. Ordered binary trees

We viewordered binary treesas{S0, S1}-structuresT , with ST0 andST1 being the left
child and right child relations. We allow nodes to only have one child. For a finite alphabet
Σ , we let τB(Σ ) = {S0, S1} ∪ {Ps | s ∈ Σ }, wherePs, for s ∈ Σ , is a unary relation
symbol. An ordered binary treeoverΣ is aτB(Σ )-structure whoseτ -reduct is an ordered
binary tree in which each vertex is contained in precisely onePT

s , for s ∈ Σ . We denote
the class of all ordered binary trees over some finite alphabet byB. For a nodea of a tree
T ∈ B andd ≥ 1, thedepth d subtree below ais the subtree ofT whose nodes are all
descendants ofa of distance at mostd from a.

To proceed as in the word cases, we will encode natural numbers by trees and provide
“short” formulas allowing to compare “large” encoded numbers. For� ∈ N, let T� be the
ordered binary tree with vertex set{0, . . . , �} and root 0 in which the children ofi are 2i +1
and 2i + 2. Recall thatL(n) denotes the length of the binary encoding ofn ∈ N. We let
ν(n) be the ordered binary tree over{0, 1} whose underlying tree isTL(n) and in which, for
i = 0,1,

PT (n)
i = { j ≤ L(n) | bit( j ,n) = i }.

Example 24. Fig. 5 shows the encoding of 38, the binary representation of which is
100110.

The next lemma corresponds toLemmas 8and20.
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Lemma 25. Let � ≥ 1. There is a formulaχ�(x, y) of vocabularyτB({0, 1}) of size O(�)

such that for all ordered binary treesT ∈ B, a,b ∈ T and m,n ∈ {0, . . . ,222l } the
following holds:

If the depth2� subtree below a is isomorphic toν(n) and the depth2� subtree below b
is isomorphic toν(m) then

T |= χ�(a,b) m = n.

Furthermoreχ�(x, y) can be computed in time O(�).

Proof. We construct a formulaχ�(x, y) characterizing depth 2� subtrees up to
isomorphism. This formula identifies binary encodings of length up to 22� , which proves
the claim. We proceed as in the proof ofLemma 21. First, we say that to go from vertices
x1 to x2 and fromy1 to y2 we must follow the same sequence ofS0, S1-successors. Let

ψ0(x1, x2, y1, y2) = (S0x1x2 ∧ S0y1y2)

∨ (S1x1x2 ∧ S1y1y2)

∨ (x1 = x2 ∧ y1 = y2),

and forl ≥ 1

ψl (x1, x2, y1, y2) = ∃x3∃y3∀x∀x′∀y∀y′((x1 = x ∧ x3 = x′ ∧ y1 = y ∧ y3 = y′)
∨ (x3 = x ∧ x2 = x′ ∧ y3 = y ∧ y2 = y′)

→ ψl−1(x, x
′, y, y′)).

Using this formula we let

χl (x, y) = ∀x′∀y′(ψl (x, x
′, y, y′)→ ((P1x′ ↔ P1y′) ∧ (P0x′ ↔ P0y′)),

which is the sought formula.�

Now we proceed as before and encode formulas of 3-CNF(n) for somen as an ordered
binary tree over some alphabetΣ . Forγ ∈ 3-CNF letν(γ ) be the binary treeT constructed
as follows: letW be the word without orderµ1(γ ), and considerW as a tree ofS1-
successors without anyS0-successors. To getT we substitute each subwordU of W of
the formµ1(m) by a single vertexv such thatv’s S0-successor is the root of a copy of
ν(m), while its S1-successor is the first position afterU in W . v itself carries the new
symbolvar.

We extend the definition ofν to pairs (γ, α) ∈ 3-CNF(n) × A(n) and tuples
(γ,V1, . . . ,Vt ) by applying the same substitution process. This encoding gives us the
following lemma, whose proof is omitted since it resembles the proof ofLemma 10using
the newly introduced encodingν together with the decoding formulasχ�(x, y).

Lemma 26. For all � ∈ N there is a first-order sentenceψ� of size O(l ) such that for all

n ≤ 222�

and(γ, α) ∈ 3-CNF(n)×A(n)we haveν(γ, α) |= ψ� α |= γ . Furthermore,
ψ� can be computed in time O(�).

Now we are ready to state the second main result of this section, which isTheorem 2(2).
We omit the proof, which is analogous to the proof ofTheorem 23.
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Fig. 6. The treeν3(40 961).

Theorem 27. Assume thatFPT = AW[∗], and let p be a polynomial. Then there is no
algorithm forMC(FO,B) whose running time is in

222o(k) · p(n),

where k denotes the size of the input sentence and n the size of the input tree.

8. Lower bounds for first-order model-checking on trees

In this last section we prove a non-elementary lower bound for first-order model-
checking over unranked trees. We need the same ingredients as before: suitable encodings
of natural numbers and small formulas for comparing two numbers.

For simplicity, we work withdirected labelled trees. In Remark 33we describe how to
get rid of labels and directed edges in order to transfer the results to plain undirected trees.
But for now we view atreeas an{E}-structuresT with ET being the child-relation. For
a finite alphabetΣ we letτT (Σ ) = {E} ∪ {Ps | s ∈ Σ }. Then a treeoverΣ is aτT (Σ )-
structureT whose{E}-reduct is a tree and in which each vertex is contained in precisely
onePT

s , for s ∈ Σ . We denote the class of all trees over some alphabet byT.
Recall thatT(h,2) denotes a tower of 2s of heighth + 1 and that bit(i ,n) denotes the

i th bit in the binary representation ofn. For everyh ≥ 0 andn ∈ {0, . . . , T(h,2)− 1} we
defineνh(n) to be the following tree over{0, 1, *}:
(1) If h = 0, we letν0(0) be a single node labelled by0. Likewise, letν0(1) be a single

node labelled by1.

(2) If h ≥ 1, we letνh(n) be the tree formed by taking a new root, labelling it by*, and
attaching to it the treeνh−1(i ) for eachi such that bit(i ,n) = 1.

Example 28. Fig. 6 shows theν3-encoding of 40 961= 215 + 213 + 20. The tree is
constructed as follows:
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– To constructν3(40 961), by clause (2), we take a new root labelled by* and attach three
trees to this root:ν2(0), ν2(13), ν2(15).

– The binary representation of 0 consists of 0s only. Thus to constructν2(0), we take a
new root labelled by* and attach no children. This explains the leftmost leaf labelled*.

– We have 13= 20 + 22 + 23. Thus to constructν2(13), we take a new root labelled by*
and attach three children labelledν1(0), ν1(2), andν1(3).

– ν1(0) is again a tree consisting of just one node labelled*. This explains the second leaf
labelled*.

– We have 2= 21. Thus to constructν1(2), we take a new root labelled by* and attach
one child labelled byν0(1).

– ν0(1) is the 1-node tree labelled1.
– The remaining subtrees are constructed similarly.

Lemma 29. There is an algorithm that, given h and n∈ {0, . . . , T(h,2)}, computesνh(n)
in time O(h · lg2 n). Furthermore,|νh(n)| ∈ O(h · lg2 n).

Proof. A simple recursive procedure will do. The running time analysis uses the same
ideas as the proofs ofLemmas 6and7. �

The next lemma corresponds toLemmas 8and20.

Lemma 30. Let h ≥ 1. There is a first-order formulaξh(x, y) of size O(h) such that for
all treesT overΣ , a,b ∈ T , and m,n ∈ {0, . . . , T(h,2)− 1} the following holds:

If the subtrees ofT rooted at a,b are isomorphic toνh(m) andνh(n), respectively, then
T |= χh(a,b) if, and only if, m= n.

Proof. ξ0(x, y) simply is the formulaP0x ↔ P0y. Let ξh(x, y) already be defined.
ξh+1(x, y) says that for each successorx1 of x there is a successory1 of y such that
ξh(x1, y1) and vice versa. As usual, we have to take care to avoid duplication of the
subformulaξh. We let

ξh+1(x, y) = ∀z1((Exz1 ∨ Eyz1)→ ∃z2((Exz1 → Eyz2)

∧ (Eyz1 → Exz2) ∧ ξh(z1, z2))),

which has the intended meaning and the desired size.�

We encode 3-CNF-formulas as trees over a suitable alphabetΣ in essentially the same
way we did with binary trees inSection 7.2, using the encodingνh instead ofν. Then for
everyh we get an encodingνh of formulas in 3-CNF(n) for n < T(h,2). We extended the
definition ofνh to pairs(γ, α) ∈ 3-CNF(n)× A(n) and to tuples(γ,V1, . . . ,V�).

Lemma 31. For all h ∈ N there is a first-order sentenceζh of size O(h) such that for all
n < T(h,2) and(γ, α) ∈ 3-CNF×A(n)we haveνh(γ, α) |= ζh ⇔ α |= γ . Furthermore,
ζh can be computed in time O(h).

We omit the simple proof.

Theorem 32. Assume thatFPT �= AW[∗]. Let h ∈ N and p a polynomial. Then there is
no algorithm forMC(FO,T) whose running time is bounded by
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T(h, k) · p(n),

where k denotes the size of the input sentence and n the size of the input tree.

The proof is analogous to our earlier lower bound proofs.

Remark 33. Even though we only stated the lower bound result for labelled binary trees,
it also holds for unlabelled undirected trees, that is, connected acyclic undirected graphs.
To see this, we first note that the alphabet and thus the vocabulary of the formulaζh of
Lemma 31does not depend onh. Suppose the vocabulary ofζh is {E, P1, . . . , Pp}. To get
rid of the directed edges, we replace each directed edge from a vertexv to a vertexw by
the following subgraph:

To get rid of the unary relations, we attach(i + 2) new children to each node inPi and
deletePi .

9. Conclusions

It is interesting to observe that the complexity-theoretic assumptions we use to prove
our theorems, that is, PTIME�= NP for the theorem on MSO and FPT�= AW[∗] for the
theorems on MSO, are precisely the assumptions needed to prove that the model-checking
problem for the respective logic on arbitrary structures is not FPT. It remains an open
problem to weaken the complexity-theoretic assumptions to PTIME�= PSPACE. Note
that PTIME �= PSPACE is a necessary assumption for all our lower bounds, because if
PTIME = PSPACE then model-checking for monadic second-order logic is in PTIME.

There is a significant gap between the lower bounds for model-checking on words
provided byTheorem 1and the upper boundT(O(k),1) ·n (a tower of 2s of heightO(k)).
It would be nice to narrow this gap, maybe by proving that there is noT(o(k),1) · p(n)
algorithm for first-order or monadic second-order model-checking on words.
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