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Abstract 

In this paper we investigate the closure ~-* under substitution-composition of a family of 
graphs ~,, defined by a set Lr of forbidden configurations. We first prove that ~-* can be 
defined by a set L~* of forbidden subgraphs. Next, using a counterexample we show that ~*  
is not necessarily a finite set, even when .~ is finite. We then give a sufficient condition for 
~*  to be finite and a simple algorithm for enumerating all the graphs of ~.* As application, we 
obtain new classes of perfect graphs. 
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I. Motivation 

The substitution-composition graph G of two disjoint graphs Gl = (VI,E1) and Gz : 
(V2, E2) is obtained by first removing a vertex v from G2 and then making every vertex 
in G1 adjacent to all the neighbours of v in G2. 

The wide utilization of  the substitution-composition of graphs into theoretical and 
practical problems is certainly due to the fact that this operation preserves many of 
the properties of the composed graphs. Lowlsz, in [14], highlighted its importance: 
for establishing his fundamental result asserting that a graph is perfect if and only if 
its complement is perfect, he relied on the fact that substitution-composition preserves 

perfectness. 
Let ~- be a family of graphs defined by a set ~ of forbidden subgraphs and let 

~-* be the closure by substitution-composition of ~.  Two natural questions concerning 
~ *  arise: 

(i) Is it possible to define ~-* by a set ~e* of forbidden subgraphs? 

(ii) If ~ *  exists, is ~ *  a finite set? 
In this paper, we first show that gLr* exists but its cardinality is not necessarily finite. 
We then give a sufficient condition for establishing the finiteness of ~ *  and we propose 
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a simple algorithm for enumerating all the graphs of ~ * .  As application, we obtain 

new classes of  perfect graphs. 

2. Terminology 

For terms not defined in this paper the reader is referred to [5]. All graphs considered 

here are finite, without loops or multiple edges. The set of  vertices of  a graph G is 

denoted by V(G) or V and the set of  its edges by E(G) or E, with cardinalities 

IV(G)[ = n and [E(G)] = m. For XC_V(G), G[X] will denote the subgraph of G 
induced by X. G[X] will be a proper induced subgraph of G, if X is strictly contained 

into V(G). 
The neighbourhood of a vertex v in G is N(v) = {w [ vw E E(G)}, while N(X) for 

X C V(G) is the set of  vertices outside X which are adjacent to at least one vertex 

of X. A vertex x distinguishes the vertices of X C V(G) if x g X  and x is adjacent to 

some, but not all the vertices of  X. 
Let Q be an induced subgraph of G, then we denote by No(X) the neighbourhood 

of X in Q, namely No(X): -N(X)N V(Q). 
We shall say that (32 contains G1, if G1 is an induced subgraph of G2. Two 

graphs G1 and G2 will be called incomparable if none of them is included into the 

other. 
A chordless path of k vertices will be denoted by Pk and a chordless cycle of 

k vertices will be denoted by Ck. A Ck cycle with k t> 5 is called a hole while its 

complement is called an antihole. 
A graph G will be called .~Af-free, where .~( is a set of  graphs, if no induced subgraph 

of G is isomorphic to a graph of 5(. A set of  graphs ~-~ will be ~- f ree  if  every graph 
of o- ~ is ~(-free. 

2.1. Modular decomposition of a graph G 

A subset M of vertices of  a graph G is said to be a module of G if every vertex 

outside M is either adjacent to all vertices of  M or to none of them. Obviously, M is 
a module in G iff M is a module in G. The empty set, the singletons and V(G) are 
the trivial modules of  G, and whenever G has only trivial modules, G will be called 

prime or indecomposable. Let G be a prime graph; if  n > 2  then n~>4 and G and 
are connected. A nontrivial module M (i.e. 2 ~< [MI < n) is also called a homogeneous 
set. 

Lemma 2.1. Let M be a nontrivial module of graph G and W be a prime induced 
subgraph of G, then either V(W) is included into M or IV(W)NM[<<.I. 

Proof. Otherwise W would contain V(M) N M as a nontrivial module, a 
contradiction. [] 



V. Giakoumakis l Discrete Mathematics 177 (1997) 83-97 85 

An induced prime subgraph G' of a graph G will be called a maximal prime sub- 
graph of G, if G' is not strictly contained into any prime proper subgraph of G. In 
other words, any induced proper subgraph of G strictly containing G' is a decomposable 
graph. 

Whenever a graph G has a nontrivial module M, in order to get some of its struc- 
tural properties, it is useful to decompose G into two subgraphs G[M] and Gv where 
G~ is defined as follows: V(Gv)= V(G) - M to {v}, where v is a new vertex called a 
marker. By definition the neighbourhood of v in Gv is the neighbourhood of M in G. 

Hence, E(G~) = E(G\M) tO { vy I Y C N(M) }. In other words, Gv is the graph obtained 
from G by contracting the module M to the marker v. 

Obviously, G~ is isomorphic to an induced subgraph of G. 
If G[M] and/or Gv are not prime graphs, by applying recursively this process to 

G[M] and/or to G~, we can clearly associate with G a binary tree d ( G )  whose nodes 
correspond to the graphs obtained during this decomposition process. More precisely, 
let G(f )  be the graph corresponding to the node f of ~¢(G), then if f is a leaf, 
G(f )  is isomorphic to a prime subgraph of G, otherwise G(f )  is isomorphic to a 
decomposable subgraph of G. 

Notation. We shall denote henceforth by G(f )  the graph corresponding to the node 
f of a binary modular decomposition tree d ( G ) .  

Clearly, since there is no restriction on the method for choosing the modules of G, 
~¢(G) is not necessarily unique. 

The substitution-composition graph G of two disjoint graphs G1 =(VI,E1) and Gz--- 
(V2,E2) arises naturally as the inverse operation of the binary modular decomposition 
of G: G is obtained by first removing a vertex v from G2 and then making every vertex 
in GI adjacent to all the neighbours of v in G2. We shall call also this operation the 
.f-join composition of Gl and G2, and we shall note it henceforth by Y'(G1, G2; v). 

The decomposition of a graph according to its modules has various names in the 
literature: substitution-decomposition [16], ordinal sum [12] and X-join [20] and it 
has been discovered independently by researchers in many different areas (see [16,17] 
for a summary of different applications). The modular decomposition is a form of 
decomposition of a graph G that associates with G a unique modular decomposition 
tree whose leaves are the vertices of G. The efficient construction of the modular 
decomposition tree has been extensively studied and two linear algorithms (on the 
number of edges of G) are proposed for it in [8,15]. 

The binary modular decomposition tree d ( G )  of a graph G will be our frame- 
work for here. This form of decomposition of graphs is a special case of the split 
decomposition of graphs. Cunningham, in [9, 10] established many unique decomposi- 
tion theorems for both directed and undirected variants of the split decomposition of 
a graph. In Theorem 2.1 below, we show that from d ( G )  we can associate with G a 
unique, up to isomorphism, set of prime graphs. This theorem is deduced from a result 
presented in [10]. We need for this the following notation: 
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Notation. n(G) is the set of all graphs G(I), where l is a leaf of zoO(G). 

Theorem 2.1. rffG) is unique up to isomorphism and each graph of  n(G) is isomor- 
phic to a maximal prime subgraph of  G. 

ProoL Indeed, let us associate with G a binary decomposition tree ~¢1(G), constructed 

in using the same process as for ~¢(G), except that no complete or edgeless graph 
will be decomposed. In other words, a graph corresponding to a leaf of zC'(G) is 
either prime or complete or edgeless. Let n '(G) be the set of graphs corresponding 
to the set of leafs of ~¢'(G), then Theorem 5 in [10] asserts that n '(G) is unique 
up to isomorphism. But, the binary modular decomposition of a complete or edge- 
less graph is unique up to isomorphism and consequently re(G) will be unique up to 

isomorphism. 
Consider now a maximal prime subgraph W of G, then by Lemma 2.1, when G 

is decomposed into G[M] and Gv, there will be a prime graph W' isomorphic to W 
in one of G[M] or Go. In using the fact that W is a maximal prime subgraph of 
any subgraph of G containing W, it is easy to see that W' will be a maximal prime 
subgraph of G[M] or Go. The result follows by observing that any graph Gi contains 
a maximal prime subgraph W/(a vertex or an edge can be a maximal prime subgraph) 
and thus Gi will not be decomposable if and only if Gi is exactly Wi. [] 

3. The closure of a family of graphs ~ under substitution-composition 

Let ~- be a family of  graphs defined by a set ~e of forbidden subgraphs and let 
~ *  be the closure of  ~- under substitution-composition. The aim of  this section is to 
show that ~-* can be defined by a set ~ *  of forbidden subgraphs. 

Theorem 3.1. Let W be a prime graph, then the graphs Gl and G2 are W-free if  and 
only if  G=~(G1, G2; v) is W-free. 

Proof. The if part is obvious, since al  and G2 are isomorphic to an induced subgraph 
of  G. Assume now by contradiction that there is an induced subgraph W' of G that is 
isomorphic to W, while G1 and G2 are W-free graphs. Then, since W' is not entirely 
contained into G1 or into G2 - {v}, there must be a proper subset H of the vertices of  
W' belonging to Gl. Since V(Gl ) is a nontrivial module of G and W I a prime graph, 
by Lemma 2.1 H must be a single vertex. Hence, since the neighbourhood of v in G2 
is the neighbourhood of  H in G2, W' would be isomorphic to an induced subgraph of 
G2, a contradiction. [] 

Theorem 3.2. Let W be a prime graph, then the graph G is W-free if  and only if  
every graph of zffG) is W-free. 
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Proof. The only if part is obvious since every graph of n(G) is isomorphic to an 
induced subgraph of G. For the if part consider a binary modular decomposition tree 
~¢(G) associated with G, then G can be obtained by applying substitution-composition 
to the graphs corresponding to the nodes of ~¢(G) following a post-order traversal of 
this tree. The result follows by applying Theorem 3.1. [] 

We give now a necessary and sufficient condition for having ~ =  ~-* 

Theorem 3.3. ~ = ~ *  i f  and only i f  every graph o f  &r is prime. 

Proofl First, assume by contradiction that i f =  i f*  while there exists a graph W in 
&r having a homogeneous set H. Since the graphs of &r are mutually incomparable 
with respect to graph-inclusion, the graph G[H] induced by H clearly belongs to ~ .  
Consider the graph W' induced by V(W)  U {v} - H, where v is a new vertex whose 
neighbourhood in W' is the neighbourhood of H in W. Then W' also belongs to 
since this graph is isomorphic to a proper induced subgraph of W. However, the graph 
~r = (G[H], W'; v) that clearly belongs to ~-* does not belong to f f  since this graph 
is isomorphic to the forbidden graph W, a contradiction. 

Assume now that every graph of &r is a prime graph, while f f  ~ i f*  By the defi- 
nition of if,* ~ is strictly contained into i f*  Let G be a graph of i f * - ~ , ,  then 
there must be an induced subgraph W of G isomorphic to a graph of &r. Consider the 
set of prime graphs re(G) associated with G. Since no prime graph can be obtained 
by substitution-composition, by the definition of ~-* every graph of rt(G) belongs to 
o ~. Hence, rt(G) is &r-free and consequently, by Theorem 3.2, G is also &r-free, a 
contradiction. [] 

The above theorem can also be stated as follows: 

Theorem 3.4. ~,~ is strictly contained Otto ~ *  if  and only if there exists a graph 
W E &r that is decomposable. 

Definition. Let W be a decomposable graph, then a prime graph Q will be called 
W-minimal, if Q contains a graph isomorphic to W and Q is minimal with respect to 
this property and graph-inclusion, namely, there is no prime induced proper subgraph 
Q' of Q containing a graph isomorphic to W. 

Remark. Two W-minimal graphs G1 and G2 are incomparable. 

Notation. Let &rl be the set of prime graphs of &r and &rE its set of decomposable 
ones. Let also &rE* be the set of prime graphs: &rE* ={Z-minimaliZE&r2}. 

Finally, let &r* be the set of graphs obtained as union of &rl with the set of all 
&rl-free graphs in &rE*. 

Observation. Whenever &r2 exists, &r~' also exists since we can always construct a 
prime graph Z' containing as induced subgraph a decomposable graph Z. Indeed, if Z 
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is connected, Z ' can be obtained by adding a new 'private' neighbour to each vertex 
of  Z. Then, either Z ~ is Z-minimal or there is a prime proper subgraph of Z r which is 

Z-minimal. If Z is not connected, we construct as previously a prime graph Z~ from 
Z. Obviously, since the complementary graph of a prime graph is also prime, Z r is a 

prime graph containing Z. 

Theorem 3.5 below shows that there exists a definition of ~ *  in terms of forbidden 
configurations. 

Theorem 3.5. G E ~ *  i f  and only i f  G is ~*-free. 

Proof. First, assume by contradiction that a graph G of ~ *  contains an induced sub- 
graph W isomorphic to a graph of o,~..* Then since Wis prime, by Theorem 3.2, there 
must be a graph G' of 7r(G) containing W as induced subgraph. Observe that since no 
prime graph is obtained by substitution-composition, every graph of 7r(G) belongs to 
o ~. Consequently, 7z(G) is ~(-free and thus ~*-free,  a contradiction. 

Assume now that a .~*-free graph G does not belong to ~*, then there must be a 
graph G' in n(G) such that G ~ ~o~. Hence, there must be an induced subgraph W of 
G t isomorphic to a graph of ~v. This graph must be decomposable since G is assumed 
to be ~*-free and consequently ~fl-free. But, since G' is a prime graph, it contains 
an induced subgraph G" that is W-minimal. Thus G" will be isomorphic to a graph 

of -~2", a contradiction. [] 

Let ~ *  and .~(* be the sets of the complementary graphs of o ~ *  and _~(*, respec- 
tively. Since a graph Z is included into a graph G if and only if Z is included into 
O, we can easily obtain the following result: 

Theorem 3.6. G C ~ *  if and only i f  G is Z*-free. 

4. A sufficient condition for ~ *  to be finite 

Assume now that ~( is a finite set, then it is natural to ask if the set .~(* is also 
a finite set. We shall first show in Theorem 4.1 below that this is not necessarily the 
case. Then, in Theorem 4.4 which is the main theorem of this paper, we shall prove 
that if every homogeneous set of any graph of ~( has two vertices, then ~(* is finite. 

Suppose that _~ contains only the graph Z depicted in the Fig. 1 below. This graph 
is constructed by joining a hole C with the chordless path abcd, in such a way that 
the vertex a is adjacent to every vertex of C while there is no edge in Z between 
{b,c,d} and V(C). Thus, Z contains only one nontrivial module, the module formed 
by the set of vertices of C. 

Let .~* be the set of Z-minimal graphs. 

Theorem 4.1. ~e* is not a finite set. 
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b c d 

Fig. 1. 

Proof. Let Z' be the graph obtained by adding a new vertex w to the graph Z, such 

that the neighbourhood of w in Z t is exactly one vertex of C. Clearly, Z p belongs to ~ *  

since it is prime, it contains Z and is a minimal graph with respect to these properties. 

Now, we construct from Z ~ a new graph Z ' ,  by first removing w from Z t and then 

replacing it by a chordless chain l =Xl  . . . . .  xk, k>~2, such that the neighbourhood 
of l in Z" is as follows: Every vertex of l but xk, is adjacent to the vertex a and 

nonadjacent to the vertices b, c and d, the vertex xl is also adjacent to a vertex of the 
hole C while the vertex xk is adjacent only to the vertex xk-1 of I. 

We can easily verify that Z"  is a prime graph containing as induced subgraph the 
graph Z. Moreover, Z"  is Z-minimal. To justify the latter, first observe that there exists 

only one induced subgraph of Z" isomorphic to Z, namely Z itself. Second, whenever 
we consider a proper induced subgraph G t of  Z"  containing the graph Z as induced 
subgraph, G r contains a homogeneous set formed by the vertices of C and the vertices 
of  1 belonging to G' that are adjacent to vertex a. Hence, since the chain l can be 
arbitrarily long, we obtain the claimed result. [~ 

Consider now a connected decomposable graph W, every homogeneous set of  which 
has exactly two vertices. Then we have the following: 

Proposition 4.1. Two nontrivial modules of  W share a common vertex i f  and only if  
W is isomorphic to a C3. 

Proof. The ' i f '  part holds by observing that every pair of  vertices of a C3 forms a 

nontrivial module. Assume now that I V(W)I > 3 and consider two nontrivial modules 
H and H '  of W such that H ¢ H '  and H N H '  ¢ 0. Then, by a property of modules, 
H O H '  will be a nontrivial module of  W (see e.g. [8]), contradicting our assumption 
that every nontrivial module of  W has two vertices. We can easily check now that 

since W is supposed to be connected W must be isomorphic to a C3. [] 

Whenever W is isomorphic to a C3, we know that the set of  W-minimal graphs is 
finite. Indeed, Olariu in [19] proved the following result: 

Theorem 4.2 (Olariu [19]). The closure of C3-free graphs under substitution is de- 
fined by the three forbidden configurations QI, Q2 and 03 depicted in Fig. 2 below. 
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Q1 

F 
0 2 03 

Fig. 2. 

Hence, by Theorem 3.5, {01 ,02 ,03}  is the set of  C3-minimal graphs. 
Assume then in what follows that W is not isomorphic to a Ca. By Proposition 4.1 

two homogeneous sets of W do not share a common vertex. In Theorem 4.3 below 
we shall show that the number of vertices of every W-minimal graph is at most equal 
to IV(W)[ + k, where k is the number of the nontrivial modules of  W. 

We use as a prerequisite: 

Proposition 4.2. Let H be a proper subset o f  the vertices o f  a prime 9raph G, then 

i f  H does not induce a stable set in G (resp. a clique), then there exist two adjacent 

(resp. nonadjacent) vertices x, y in H and a vertex z outside H such that xz E E(G) 

and yz flE(G). 

Proof. Consider the connected components of the subgraph G[H] of G, then if H is 
not a stable set, there must be a connected component C in G[H] having at least two 
vertices. Since C is not a homogeneous set of G (G is a prime graph), there exists a 
vertex z outside C adjacent to some but not all vertices of C. By connectedness of C, 
we find an edge x y  in C such that x z E E ( G )  and yz f [E(G) .  Whenever G[H] is not 
a clique, the result holds by considering the connected components of G[H]. [] 

Let H1 . . . . .  Hk be the nontrivial modules of W and denote by {xi, Yi} the two vertices 
of  Hi, i =  1 . . . . .  k. Since we assumed that W is connected and nonisomorphic to a C3, 
by Proposition 4.1 Hi MHj =0 ,  for i # j  and i , j  = 1 . . . . .  k. 

Theorem 4.3. Let Q be a W-minimal 9raph then IV(W)[ < IV(Q)I~Iv(w)I + k. 

Proof. Instead of providing here just an existence proof, we choose to present a slightly 
more involved constructive one, which is used later in the algorithm below for enu- 
merating all W-minimal graphs. 

Let A1 be the set of vertices of Q such that for any vertex u of A1 and for any 
vertex v of  W -  HI, uv E E(Q) if  and only if xlv E E(W).  Clearly, A1 is not empty 
since it contains HI. Since Q is prime, by Proposition 4.2 we can find two vertices al 
and bi in Al and a vertex t outside A1 such that t is adjacent to exactly one vertex of 
{al, bl}. Moreover, we can choose ai and bl adjacent (resp. nonadjacent) whenever xl 
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and yl are adjacent (resp. nonadjacent). Obviously t ~ W. Let W~ be the graph induced 

by V(W)  - {xl,yl} tO {al,bl}. 

Claim 1. W1 is a 9raph isomorphic to W whose nontrivial modules are {al,bl}, 

H2 . . . . .  Hk. 

Proof. Indeed, since every homogeneous set of W has exactly two vertices, no ver- 
tex of A1 - H1 (if any) belongs to W. Moreover, since HiAHj=O,  for i ¢ j  and 

i , j =  1 . . . . .  k, {al ,bl} is distinct from any Hi, i ¢  1. [] 

Observe that Claim 1 is not necessarily true when W is isomorphic to a C3. Indeed, 
suppose that W is a C3 with V ( W ) = { x l , Y l , Z l }  and assume that al is the vertex Xl 
while bl is adjacent to al and to zl and nonadjacent to yl. Then the graph W1 induced 
by {ah bl,Zl } is isomorphic to W but its nontrivial modules are {al, bl}, {al,zl } and 
{ bl,zl }. 

Let Q1 the graph induced by V(W1)to T1 with T1 reduced to {t}. 
If k > 1, we construct a sequence of graphs Q2 . . . . .  Qk such that V(Qi)= V(W,.) to 

T/, i = 2 . . . . .  k where Wi is a graph isomorphic to W whose nontrivial modules are 
{al,bl} . . . . .  {ai, bi}, Hi+l . . . . .  Ilk. W,. and Ti are constructed from Qi-l as follows: 

Let Ai be the set of vertices of Q such that the neighbourhood of any vertex of A i 
in the graph induced by V(W/_ 1 ) - Hi, is the neighbourhood of the nontrivial module 

Hi = {xi, Yi} in W,-_ 1. 
Since [Hi[ =2 ,  no vertex of Ai - H i  (if any) belongs to W/_I. Assume that xi is 

adjacent (resp. nonadjacent) to Yi. First examine if there is a vertex of Ti-1 (T,._1 is the 
set V ( Q i - 1 ) -  V(W/_ 1 )), that distinguishes a pair {ai, hi} of adjacent (resp. nonadjacent) 
vertices of Ai. If this is the case, Wi will be the graph induced by V(W/_I ) -  {xi, Yi} to 
{ai,bi} and Ti will be the set Ti-l. 

If no vertex of Ti-1 distinguishes any pair of adjacent (resp. nonadjacent) vertices of  
Ai, then by Proposition 4.2 we can find a pair {ai, bi} of adjacent (resp. nonadjacent) 
vertices of Ai and a vertex v of Q outside Ai that distinguishes ai and b~. Obviously, 
vf[Qi- l .  Then Wg will be the graph induced by V(W~_1) - {x~,yi} tO {ai, b~} and T~ 
will be the set T,._1 U {v}. 

Using an analogous argumentation to the one used in Claim 1, we deduce that W,. 
is isomorphic to W having {al ,bl} . . . . .  {ai, bi}, Hi+l . . . . .  Hk as nontrivial modules. 

At the end of this process we obtain a graph Qk having at most IV(W)[ + k  vertices 
and strictly containing a graph Wk isomorphic to W. Moreover, since W is supposed 
to be connected, the construction of Qk implies immediately that this graph is also 
connected. 

We shall show now by contradiction that Qk is a prime graph. 
Let us denote by ~g the nontrivial module {ai,bi} of Wk, i =  1 . . . . .  k. Then by the 

definition of Tk we have the following properties: 

Fact 1. There is no pair o f  vertices o f  Tk having the same neighbourhood in Qk. 
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Fact 2. For each o~ i there exists a vertex o f  Tk that distinguishes the vertices o f  o~i, 

i = 1  . . . . .  k. 

Denote henceforth by t~, a vertex of Tk that distinguishes the vertices of ~i, i = 1, . . . ,  k. 

Fact 3. Nwk(x) ~ Nw~(~i), xE  Tk and i =  1 . . . . .  k. 

Assume now that Qk contains a nontrivial module M. 

Claim 2. Let x and y be two vertices o f  Wk such that x E M and y riM, then there 

exists a vertex o f  Wk belonging to NQ~(M). 

Proof. Indeed, since Wk is connected, there must be a chain in Wk joining x to y, and 

this chain clearly contains at least one vertex of NQA(M). [] 

Claim 3. At least one o f  the vertices o f  Tk belongs to M. 

Proof. Indeed, assume that no vertex of Tk belongs to M. Then, Fact 2 implies that M 

contains at most one vertex of each ~i. Hence, Claim 2 implies that the set of  vertices 
NQk(M ) contains a vertex of Wk and consequently M would be a nontrivial module of 

Wk distinct from any c~i, a contradiction. [] 

Let t~, be a vertex of Tk belonging to M. 

Claim 4. One o f  a~ or b~ does not belong to M. 

Proof. Indeed, assume to the contrary that both a~ and b~ belong to M. Then Fact 3 
implies that there exists a vertex, say x, in Wk that distinguishes t~, and CCr. Since M 

is an homogeneous set of  Qk, clearly x belongs to M. 
Observe now that NQ~(M) cannot contain only vertices of  Tk. Indeed, let t~, be a 

vertex of NQ~(M), then since by definition t~ is not adjacent to both vertices of  ~s, 
one at least of  as or bs belongs to V ( Q k ) -  M. Thus, since both, a~ and b~ belong to 
M, Claim 2 implies that NQk(M ) contains a vertex of Wk. 

It follows that M - Tk is a nontrivial module of Wk of at least three vertices, namely 
at, b~ and x and this contradicts our assumption that any homogeneous set of  Wk has 
exactly two vertices. [] 

Claim 5. Exactly one vertex o f  ~x r belongs to M. 

Proof. Indeed, by Claim 4 one of ar and br does not belong to M. Suppose now that 
none of these two vertices belong to M. Let ar be the only vertex of c~r that is adjacent 
to tr, then clearly ar belongs to NQ~(M). Observe that since by Fact 1 no pair of  vertices 
of  Tk has the same neighbourhood in Wk, M cannot contain only vertices of  Tk. Let d 
be a vertex of/4~ belonging to M, then since {ar, br} is a nontrivial module of  14~, d 
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is adjacent to both a~ and br and consequently br ENQk(M). It follows that t~ r is also 
adjacent to b~, a contradiction. [] 

We are in position now to conclude the proof of the theorem. 
Let ar be the only vertex of ~r belonging to M. Then by Fact 3 there exists a 

vertex x of I4~ that distinguishes ar and t,,. Thus, since M contains both a~ and t~r, 
clearly x must be a vertex of M. Since br does not belong to M, Claim 2 implies that 
NQ~(M) contains at least one vertex of Wk. Consequently, the set of vertices M - Tk 
is a nontrivial module of W' distinct from any ai, i = 1 . . . . .  k, a contradiction. 

Thus, Qk is a prime graph containing a subgraph isomorphic to W. Clearly, since 
Q is supposed to be W-minimal, Qk is exactly Q and Wk is exactly W. [] 

Notation. The set of  W-minimal graphs will be denoted henceforth by ~(W). 

We are in position now to state our main result. 

Theorem 4.4 (Main result). I f  every nontrivial module of any graph of 5( has two 
vertices, then 5(* is a finite set. 

Proof. Let W be a decomposable graph of 5(. If W is connected then by Theorems 
4.2 and 4.3 we clearly have that ~ ( W )  is finite. 

If on the contrary W is not connected, consider W that is connected and observe 
that: 

(i) ~ = { H 1  . . . . .  Hk} is the set of the nontrivial modules of W if and only if 3¢f 
is the set of the nontrivial modules of W; 

(ii) A graph Q is W-minimal if and only if ~) is W~-minimal. 
Hence, the set of W-minimal graphs will be the set of the complementary graphs of 

~ ( ~ ) .  To conclude the proof, we recall that 5(* is obtained as union of 5(1 (the set 
of prime graphs of 5() with the sets ~(Z) ,  Z E 5(2 (5(2 is the set of decomposable 
graphs of 5(). From each such ~ ( Z )  we remove the graphs that are not 5(1-free. [] 

4.1. A simple algorithm for enumerating all graphs of 5(* 

Step 1 Construct the modular decomposition tree T(W) of any graph W of 5( (e.g. 
using the linear algorithm in [8]), and determine the set 5(1 of prime graphs of 5( and 
the set 5(2 of decomposable ones. 

Step 2: Test on using T(W) if each nontrivial module of any graph W of 5(2 
contains exactly two vertices. If yes go to step 3, else exit. 

Step 3: For each graph W of 5(2, if W is connected construct the set of graphs 
~ ( W )  and if W is nonconnected, construct the set of the complementary graphs of 
~(w). 

Step 4: Define 5(* as the union of the graphs of 5(1 with the set of 5(1-free graphs 
obtained on step 3. 
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In step 3, when a connected graph W of ~2 is not isomorphic to a C3, by means of 
the construction used in the proof of Theorem 4.3, we can easily find all the graphs 
~ (W)  as follows: 

(i) Associate W with a set T =  {q . . . . .  tk} of new vertices. 
(ii) Construct a prime graph Q by making each vertex ti of T adjacent to exactly 

one of the vertices of the nontrivial module Hi of W, i = 1 . . . . .  k. 
(iii) Construct from Q all possible prime graphs obtained by identification of the 

vertices of T and/or by adding to Q edges from vertices of T to vertices of W, or 
edges between vertices of T, with the following restriction: if a vertex ti is adjacent 
to Hj, i ~ j ,  ti must be adjacent to both vertices of/-/j. 

5. Applications 

In this section we shall obtain new classes of perfect graphs by applying the algo- 
rithm of the previous section to some classes of perfect graphs. 

We recall that the notion of perfect graph was first introduced by Berge in [2]. 
In that paper, a graph G is defined as perfect if for every induced subgraph H of 
G the chromatic number x(H) of H equals the largest number co(H) of pairwise 
adjacent vertices in H. A graph is minimal imperfect if G itself is imperfect but 
every induced subgraph of G is perfect. The only known minimal imperfect graphs 
are the odd long cycles (or holes) and their complements. Berge [3] conjectured that 
these are the only minimal imperfect graphs, conjecture that is still open (see also 
[4] for the history of perfect graphs). The above question, known also as the Strong 
Perfect Graph Conjecture (SPGC), stimulated over the years intensive research that 
established the perfection of many families of graphs. We could expect that improving 
our knowledge about perfection by increasing the list of known classes of perfect graphs 
takes us closer to the solution of SPGC. This part of our paper is an attempt in this 
direction. 

5.1. New classes of  perfect 9raphs 

Each family of graphs ~ presented below has been shown perfect and is defined 
by forbidden configurations that are not all prime graphs. Each nontrivial module of a 
decomposable forbidden subgraph Z contains exactly two vertices. Thus, we can apply 
the algorithm of the previous section for enumerating all the forbidden configurations 
of ~ * .  ~ *  is the closure by substitution-composition of ~ and by Theorem 3.4 
contains strictly f t .  Hence, since Lovasz established in [14] that the family of perfect 
graphs is closed under substitution-composition, each ~ *  will be a class of perfect 
graphs. 
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By Theorem 3.6 and the fact that a graph G is perfect if and only if G is perfect 
(proved by Lov/tsz in [14]), we can also characterize by forbidden configurations each 
perfect class ~-*, the family of the complementary graphs of o~-.. 

We shall focus on the forbidden configurations of if1*. The enumeration of the 
remaining configurations does not raise any particular problem and is left to the 
reader. 

Definition. A graph G is called Berge graph, i f  none of  its induced subgraph is an 
odd hole or the complement of  an odd hole. 

5.2. Subclasses of  P s-free graphs 

We note by ~ a family of Berge graphs that are (Ps, Zi)-free, where Zi, 1 <<. i <<. 7, 
is depicted in Fig. 3 at the end of this paper. 

The perfection of these classes was established in the following references: ~1 in 
[18], ~2 in [13], ~3 in [11] and ~4 . . . . .  ~ in [1]. 

We can easily verify that ~1" is the family of Berge graphs that are Ps, Z*-free, 
where Z*, 1 ~<i~<4, is depicted in Fig. 3. 

5.3. Welsh-Powell perfect graphs 

Given a graph G, a graph-coloring heuristics consists in defining first a linear order 
< on the set of vertices of G and next by assigning to each vertex x the smallest 
positive integer assigned to no neighbour y of x (y < x). Chv/ttal [6] proposed to call 
< a perfect order, if for each induced subgraph H of G, the number of colors used 
by the above heuristic on H, equals the chromatic number of H. 

Welsh and Powell [21] define < in such a way that 

d(x)>~d(y) whenever x < y, where d(x) is the degree of x in G. (*) 

A graph will be called Welsh-Powell perfect if the order < satisfying ( . )  is perfect. 
In [7] it is proved that the Welsh-Powell perfect graphs can be defined by a set of 

17 forbidden configurations denoted by F1,F2 . . . . .  F17. We can easily verify that F8, 
F9, and Fll . . . . .  FI6 are decomposable graphs such that each nontrivial module of any 
of these graphs has exactly two vertices, while the remaining forbidden configurations 
are prime graphs. 

The family ~8: 
In [11] the Berge graphs that are (ZbZs)-free are shown to be perfect. We can easily 

verify that Z8 is a prime graph. 
The family ~9: 
In [22] the Berge graphs that are Ca and Z9-free are shown to be perfect. We can 

easily verify that every nontrivial module of Z9 and of a Ca has exactly two vertices. 
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