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1 Introduction

Many graph properties and graph transformations can be formalized inMonadic
Second-Order logic. This language is the extension of First-Order logic allowing
variables denoting sets of elements. In the case of graphs, these elements can
be vertices, and in some cases edges. Monadic second-order graph properties
can be checked in linear time on the class of graphs of tree-width at most k for
any fixed k. These properties are Fixed Parameter Linear, for tree-width as a
parameter.
Monadic second-order logic as a language for specifying graph properties is

interesting from several different points of view : we already mentioned com-
plexity, but another point of view is that of Graph Grammars. For logicians,
monadic second-order logic is attractive because relatively many classes of struc-
tures have a decidable theory for this language.
In this communication we will discuss the point of view of Graph Theory.

Many graph properties concerning colorings, forbidden configurations, connec-
tivity are expressible in Monadic Second-Order logic, but also many graph the-
oretical constructions like the canonical decompositions of a graph in 2- and
3-connected components, its modular and its split decompositions.
We will review a number of cases where a set of graphs or of combinatorial

objects is characterized by a common hierarchical decomposition. In the cases
we will consider, the decomposition can be formalized in monadic second-order
logic and from it, all graphs or objects of the corresponding set can be defined
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by monadic second-order formulas with the help of auxiliary data like a k-tuple
of sets of vertices or a linear order on the vertices.
This general description applies to the following sets of graphs or combina-

torial objects :
1) the connected graphs having the same associated cycle matroid as a given

graph,
2) the different planar embeddings of a planar connected graph,
3) the transitive orientations of a comparability graph,
4) the interval models of an interval graph,
5) the pairs of linear orders representing a partial order of dimension 2,
6) the chord representations of a circle graph,
7) the systems of intersecting closed curves in the plane having a same Gauss

multiword.

In the first three sections, we will present the main concepts underlying these
descriptions. In the fourth one we will apply them to Circle Graphs.
For fixed parameter tractability the references are the books [DF] and [FG].

For the use of monadic second-order logic in the theory of graph grammars the
reference is the book chapter [Cou97]. For the links between graph decomposi-
tions and the decidability of monadic second-order logic the references are the
articles [CouVIII, CouXV, CouOum]. The results for the seven above cases are
explicit or implicit in the articles [CouX, CouXI, CouXII, CouXV, CouXVI,
CouCG, CouDW].

2 Graph properties expressible in monadic sec-
ond-order logic

Let R = {A,B,C, ...} be a finite set of relation symbols ; each of them, say
A, is given with a nonnegative integer ρ(A) called its arity. We denote by
ST R(R) the set of finite R-structures S =< DS ,(AS)A∈R > where AS ⊆
D
ρ(A)
S for each A. A simple graph G can be defined as the {edg}-structure

S(G) =< VG, edgG > where VG is the set of vertices and edgG ⊆ VG × VG is
a binary relation representing the edges. For undirected graphs, the relation
edgG is symmetric. If in addition we need vertex labels, we will represent them
by unary relations. Graphs, either simple or not, can also be represented by
the richer incidence structure I(G) =< VG ∪ EG, incG >, where EG, the set of
edges, is now part of the domain and incG(e, u, v) holds iff e is an edge from u
to v (or between u and v if G is undirected).
Monadic Second-Order logic is the extension of First-Order logic by variables

denoting subsets of the domains of the considered structures, and new atomic
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formulas of the form x ∈ X expressing the membership of x in a set X. (Up-
percase letters will denote set variables, lowercase letters will denote first-order
variables). In the sequel MS will abreviate Monadic Second-order.
We denote by MS(R,W ) the set of MS formulas written with the set R of

relation symbols and having their free variables in a set W consisting of first-
order as well as of set variables. As a typical and useful example, we give an
MS formula τ with free variables x and y expressing that (x, y) belongs to the
reflexive and transitive closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X).

If the relation A is not given in the structure but is defined by an MS formula,
then one replaces A(u, v) by this formula with appropriate substitutions of
variables.

An MS property of the structures S of a class C ⊆ ST R(R) is a property P
such that for all S ∈ C :

P(S) holds if and only if S ² ϕ,

for some fixed formula ϕ inMS(R,∅). We say also that P isMS expressible.
(The notation S ² ϕ means that the logical formula ϕ is true in the structure
S.)

Example : For each k one can construct a formula ϕk in MS({edg},∅)
such that for every graph G :

S(G) ² ϕk iff G is k-colorable.

Here is the formula ϕ3 :
∃X1,X2,X3[∀x(x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3)∧

∀x(¬(x ∈ X1 ∧ x ∈ X2) ∧ ¬(x ∈ X2 ∧ x ∈ X3) ∧ ¬(x ∈ X1 ∧ x ∈ X3))
∧∀u, v(edg(u, v) ∧ u 6= v =⇒ ¬(u ∈ X1 ∧ v ∈ X1) ∧ ¬(u ∈ X2 ∧ v ∈ X2)
∧¬(u ∈ X3 ∧ v ∈ X3))].

Many properties based on the existence of paths like connectivity, strong
connectivity, biconnectivity can be expressed in MS logic with the help of the
above written formula τ that defines the reflexive and transitive closure of a
binary relation.
If H is a simple loop-free undirected graph, then the property that a graph

G contains H as a minor is MS expressible. Let H have vertices 1, ..., n. Then
G contains H as a minor iff it has pairwise disjoint sets of vertices X1, ...,Xn

that induce connected subgraphs of G and are such that for every edge i − j
in H, there exists an edge of G linking one vertex of Xi and one of Xj . These
conditions are easily expressible by an MS formula μH . Every minor-closed class
of undirected graphs is characterized by finitely many excluded minors, and is
thus definable by an MS formula. This is the case of planar graphs which are
characterized by the formula ¬μK5 ∧ ¬μK3,3 .
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All properties of a graph G considered above are expressed via the relational
structure S(G). More properties are MS expressible via the relational structure
I(G). In particular the existence of a Hamiltonian cycle in a graph G is MS
expressible by using I(G) and not by using S(G). See [Cou97, CouVIII].

Every property that is MS expressible via the relational structure I(G)
is fixed parameter linear, where the parameter is tree-width. Every property
that is MS expressible via the relational structure S(G) is fixed parameter cu-
bic, where the parameter is clique-width (this follows from [CMR] and [Oum],
the latter article showing that cubic time is enough for finding an appropri-
ate decomposition of the given graph). However, the paradigm MS logic +
bounded tree-width or bounded clique-width extends to other algorithmic prob-
lems than just the verification of properties. One can compute efficiently op-
timization functions [CouMos], one can enumerate queries efficiently ([FFG,
CouLDE, Bag]), one can label graphs in order to facilitate answers to queries
[CouVan].

3 Monadic second-order transductions

The construction of MS formulas for expressing graph properties is not always
an easy task. Our articles contribute to building a toolbox, the big hammer of
which is the notion of Monadic Second-Order transduction (MS transduction in
short). We first present a very simple case.
The edge-complement of a simple loop-free undirected graph G, that we

denote by G, can be defined in logical terms. The edge relation of G is defined
from that of G by :

edgG(x, y)⇐⇒ x 6= y ∧ ¬edg(x, y).
Hence we define G from G by defining its edge relation by a logical (here

first-order) formula to be evaluated in G. We say that the edge-complement
transformation is a first-order transduction.
The notion of an MS transduction generalizes this example on several re-

spects, and in particular by the use of MS formulas instead of first-order ones.
As in Language Theory, a binary relation R ⊆ A × B where A and B are sets
of relational structures is called a transduction : A→ B. An MS transduction
transforms a structure S, given with an n-tuple of subsets of its domain called
the parameters, into a structure T , the domain of which is a subset of DS × [k].
( [k] = {1, ..., k}). Furthermore, each such transduction, has an associated back-
wards translation, a mapping that transforms effectively every MS formula ϕ
relative to T , possibly with free variables, into one, say ϕ#, relative to S having
free variables corresponding to those of ϕ (k times as many actually) together
with those denoting the parameters. This new formula expresses in S the prop-
erty of T defined by ϕ. We now give some details. (The main reference for this
section is [Cou97].)
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We let R and Q be two finite sets of relation symbols. Let W be a finite set
of set variables, called the parameters. A (Q,R)-definition scheme is a tuple of
formulas of the form :
∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k)
where k > 0,Q∗k := {(q,�j) | q ∈ Q,�j ∈ [k]ρ(q)},
ϕ ∈MS(R,W ), ψi ∈MS(R,W ∪ {x1}) for i = 1, · · · , k,
and θw ∈MS(R,W ∪ {x1, · · · , xρ(q)}), for w = (q,�j) ∈ Q∗k.

These formulas are intended to define a structure T in ST R(Q) from a
structure S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S. A
Q-structure T with domain DT ⊆ DS × [k] is defined in (S, γ) by ∆ if :
(i) (S, γ) |= ϕ
(ii) DT = {(d, i) | d ∈ DS , i ∈ [k], (S, γ, d) |= ψi}
(iii) for each q in Q : qT = {((d1, i1), · · · , (dt, it)) ∈ Dt

T | (S, γ, d1, · · · , dt) |=
θ(q,�j)}, where �j = (i1, · · · , it) and t = ρ(q).

By (S, γ, d1, · · · , dt) |= θ(q,�j), we mean (S, γ
0) |= θ(q,�j), where γ0 is the

assignment extending γ, such that γ0(xi) = di for all i = 1, · · · , t ; a similar
convention is used for (S, γ, d) |= ψi.

Since T is associated in a unique way with S, γ and ∆ whenever it is defined,
i.e., whenever (S, γ) |= ϕ, we can use the functional notation def∆(S, γ) for T .
The transduction defined by ∆ is the binary relation :

D∆ := {(S, T ) | T = def∆(S, γ) for some W -assignment γ in S}.

Hence D∆ ⊆ ST R(R)×ST R(Q). A transduction f ⊆ ST R(R)× ST R(Q)
is an MS transduction if it is equal, up to isomorphism of structures, to D∆ for
some (Q,R)-definition scheme ∆.

An MS-transduction is defined as a binary relation. Hence it can be seen
as a "nondeterministic" partial function associating with an R-structure one
or more Q-structures. However, it is not really nondeterministic because the
different outputs come from different choices of parameters. In the case where
W = ∅ it defines a partial function. It may also happen that different choices of
parameters yield isomorphic output structures. This is the case in the example
of edge contraction detailed below. We will refer to the integer k by saying that
∆ and D∆ are k-copying ; if k = 1 we will say that they are noncopying. A
noncopying definition scheme can be written more simply : ∆ = (ϕ,ψ, (θq)q∈Q).

Example : Edge contraction.

We consider a graph G with two types of edges, the ordinary edges and the
ε−edges. It is represented by a structure < VG, edgG, ε − edgG > where the
binary relation ε − edgG represents the ε−edges. We want to define the graph
H obtained from G by the contraction of all ε−edges.
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It is formally defined as < VH , edgH > where VH = VG / ∼, ∼ is the
equivalence relation such that x ∼ y if and only if x and y are linked by an
undirected path made of ε−edges, and edgH([u], [v]) holds if and only if x ∈ [u],
y ∈ [v] for some (x, y) in edgG ([u] denotes the equivalence class of u). The MS
formula ξ(x, y) defined as :

∀X[(x ∈ X∧∀ u, v{u ∈ X∧(ε−edg(u, v)∨ε−edg(v, u)) =⇒ v ∈ X}) =⇒ y ∈ X]

expresses x ∼ y. For defining VH we must select a set containing one and
only one vertex of each equivalence class. This can be done with a set variable Y
that will be a parameter of the MS transduction, satisfying the formula ϕ(Y )
saying that for every x there is a unique y such that y ∈ Y ∧ξ(x, y) holds. Edge
contraction can thus be defined by the transduction with noncopying definition
scheme ∆ = (ϕ,ψ, θedg) where ψ(Y, x) is x ∈ Y and :

θedg(Y, x, y) is the formula x ∈ Y ∧ y ∈ Y ∧ ∃u, v.[edg(u, v) ∧ ξ(x, u) ∧ ξ(y, v)].

Remark that the structures associated with all values of the parameter Y
satisfying ϕ(Y ) are isomorphic. They only differ regarding the concrete subsets
Y of VG used as sets of vertices of H. ¤

The fundamental property of MS transductions

The following proposition says that if T = def∆(S, γ), then the monadic second-
order properties of T can be expressed as monadic second-order properties of
(S, γ). The usefulness of definable transductions is based on this proposition.

Let ∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written
with a set of parameters W . Let V be a set of set variables disjoint from W .
For every variable X in V , for every i = 1, · · · , k, we let Xi be a new variable.
We let V 0 := {Xi/X ∈ V , i = 1, · · · , k}. Let S be a structure in ST R(R) with
domain D. For every mapping η : V 0 −→ P(D), we let ηk : V−→ P(D × [k])
be defined by ηk(X) = η(X1)× {1}∪ · · ·∪ η(Xk)× {k}. With this notation we
can state :

Proposition 1: For every formula β in MS(Q,V ) one can construct a
formula β# in MS(R, V 0 ∪W ) such that, for every S in ST R(R), for every
assignment γ :W −→ S, for every assignment η : V 0 −→ S we have :

(S, η ∪ γ) |= β# if and only if :
def∆(S, γ) is defined, ηk is a V —assignment in def∆(S, γ),
and (def∆(S, γ), ηk) |= β.

We call β# the backwards translation of β relative to the transduction def∆.
The composition of two transductions is defined as the composition of the cor-
responding binary relations (equivalently, multivalued functions). From Propo-
sition 1 we get :
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Proposition 2 : 1) The composition of two MS transductions is an MS
transduction.
2) The inverse image of an MS-definable class of structures under an MS

transduction is MS-definable.

The mapping from I(G) to the set of spanning forests of a graph G or
to the set of its subgraphs, or of its minors (represented by their incidence
structures) are MS transductions. The mapping from S(G) to the set of its
induced subgraphs for a simple graph G is an MS transduction (a subgraph H
of G is represented by S(H)).

4 Graph decompositions defined by MS trans-
ductions

Of particular interest are graph decompositions. They are useful for the con-
struction of efficient algorithms, and also because they give structural descrip-
tions of the considered graphs. The general results of [CE80, Cun82] define
canonical decompositions which include as particular instances the modular de-
composition and the Tutte decomposition of a graph in 3-connected components.
(Tree-decompositions, rank decompositions [Oum], optimal decompositions for
clique-width are not canonical.)
We show that these canonical decompositions can be defined by monadic

second-order formulas "inside" the considered graphs. In our language the map-
ping from a (linearly ordered) graph to its decomposition of this type is an MS
transduction. We first review informally the modular decomposition. (See [Kel,
MoRad] for thorough studies of this notion).

Modular decomposition

The modular decomposition of a graph is a canonical expression of this
graph in terms of (nested) substitutions. Let G and H be two simple loop-free
undirected graphs with disjoint sets of vertices. The substitution of H for a
vertex u of G is the graph G[H/u] defined as the union of G and H, minus the
vertex u and the incident edges, plus edges between w and all vertices of H for
every edge w − u in G. Substitutions can be done in parallel (disjoint graphs
for distinct vertices) giving G[H1/u1, ...,Hn/un] and nested in expressions like
G[H[L/u]/v].
Let K be a graph and M a set of vertices. The graph K can be expressed

as G[H/u] with M = VH iff M is a module of K, that is, a set of vertices such
that every vertex not in M is linked either to no vertex of M or to all of them.
A module is strong if does not overlap any module. (Two sets overlap if they

have a nonempty intersection and none is a subset of the other. The strong
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modules of a graph G form a tree for inclusion, called its modular decomposi-
tion. This tree is the syntactic tree of a canonical expression of G in terms of
substitutions. (The modular decomposition is called substitution decomposition
in some works). This tree can be enrich by labels and additional edges, and this
gives the graph representation of the modular decomposition. From it the graph
G can be reconstructed.
The mapping from a graph G given with a linear order 4 of its vertices is an

MS transduction. We sketch the construction which is given in [CouX, CouXVI,
CouDel]. There exists an MS formula ϕ(X) that is valid in the given graph iff
X is a strong module. To build the tree of strong modules, we specify in each
strong module that is not a singleton a representing vertex x that will be the
corresponding non-leaf node of the modular decomposition. This specification
is done by an MS formula ψ(x,X). Furthermore we need that distinct strong
modules are represented by distinct vertices. The order 4 on vertices is here
useful. For a set Y ⊆ VG, we let fl(Y ) be the 4-smallest vertex of Y . Each
strong moduleM contains a unique maximal proper strong module N such that
fl(N) is minimal. (Maximal is understood for set inclusion). We take fl(M −
N) as the representative vertex of M . Two non-singleton strong modules are
represented by different vertices. (This would not be the case if we would
represent M by fl(M)). We can thus construct the tree of strong modules by
an MS transduction as a tree with set of nodes VG × {1} ∪ RG × {2}, where
RG is the set of vertices which represent a non-singleton strong module. The
remaining parts of the construction are routine. Note that this construction
uses a linear order on vertices, but for any two linear orders, the corresponding
outputs are isomorphic relational structures.

Split decomposition

This decomposition due to Cunningham ([Cun82]) generalizes the modular
decomposition. We review it briefly. We only consider simple loop-free directed
graphs. An undirected edge can be considered as pair of opposite directed edges.
Hence, this definition also applies to undirected graphs.
A split of a strongly connected graph G is a bipartition {A,B} of VG such

that A and B have at least 2 elements and EG = EG[A] ∪ EG[B] ∪ (A1 ×B1) ∪
(B2 × A2) for some Ai ⊆ A, Bi ⊆ B. If {A,B} is a split, then G can be
expressed as the union of G[A] and G[B] linked by two directed, complete
bipartite graphs. (Since G is strongly connected the set (A1 ×B1) ∪ (B2 ×A2)
is not empty). If G is undirected, then strong connectivity is just connectivity.
The inverse of splitting is the join operation, defined as follows. Let H and

K be two disjoint graphs with distinguished vertices h in H and k in K. We
define H £(h,k)K as the graph with set of vertices VH ∪ VK − {h, k} and edges
x −→ y such that, either x −→ y is an edge of H, or an edge of K, or we have
x −→ h in H and k −→ y in K, or we have h −→ y in H and x −→ k in K.
If {A,B} is a split, then G = H £(h,k)K where H is G[A] augmented with

a new marker vertex h and edges x −→ h whenever there are in G edges from
x to some u in B, and edges h −→ x whenever there are edges from some u in
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Figure 1: Graph G

Figure 2: The split decomposition of G.

B to x. The graph K is defined similarly from G[B], with a new vertex k. The
graphs H and K have at least 3 vertices and strictly less vertices than G.
A decomposition of a strongly connected graph G is defined as follows : {G}

is the only decomposition of size 1 ; if {G1, ..., Gn} is a decomposition of size n,
and Gn = H£(h,k)K, then {G1, ..., Gn−1,H,K} is a decomposition of G of size
n + 1. The graphs Gi are called the components of the decomposition. The
graph G can be reconstructed without ambiguity provided the marker vertices
and their matchings are specified. The components of a decomposition form
an unrooted tree for the "matching" relation. By decomposing iteratively a
strongly connected graph and by using only good splits defined as those that
do not overlap any other, one gets the Unique (Canonical) Split Decomposition.
The restriction to good splits generalizes the restriction to strong modules. These
restrictions are important for having canonical decompositions. Figure 1 shows
an undirected graph G and Figure 2 its split decomposition.

Theorem 1 ([CouX, CouXVI]) : There are MS transductions that associate
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with a linearly ordered graph the graph representations of its modular and split
decompositions. Up to isomorphism, the constructed relational structures do
not depend on the chosen ordering of the vertices.

5 Circle Graphs

A circle graph is the intersection graph of a set of chords of a circle. An equivalent
combinatorial characterization can be given in terms of words where each letter
has two occurrences. If a letter represents a chord, a set of chords is a word
corresponding to the sequences of extremities of chords read around the circle,
and the chords represented by a and b intersect iff the word can be written
aubvawbx for some words u, v, w, x.
Circle graphs which are prime, i.e., indecomposable for the split decomposi-

tion have unique representations as words (or as sets of chords), where unique is
meant up to some obvious transformations. The main results are the following
ones :
1. If two words define the same connected circle graph and have the same

subword of first occurrences of letters, then they are equal.
2. If a circle graph is prime, the unique word representing it can be con-

structed by formulas of MS logic.
3. If a circle graph is not prime, then all its representations by double oc-

currence words can be defined from it and the linear orders of its set of vertices,
by a fixed MS formula.
Result 2 uses MS formulas written with set predicates of the form Even(X)

expressing that a set X has even cardinality. These formulas will be called
C2MS formulas. They are needed because the proof uses a result by Courcelle
and Oum [CouOum] showing that the characterization of circle graphs by the
three excluded vertex-minors given by Bouchet [Bou94] is expressible by C2MS
formulas. Even helps to express computations in GF(2), and these computa-
tions occur because the notion of a vertex-minor is handled through that an
isotropic system, which is a vector space over GF(2).
Result 3 makes a crucial use of Theorem 1 for split decompositions. Every

circle graph has a canonical split decomposition the components of which are
prime circle graphs, cliques and stars. For a circle graph, the prime components
have constructible word representations by Result 2. The other components
have word representations constructible by means of the linear order. By varying
the linear order one gets all word representations (those corresponding to the
first occurrence words of the word representations of the given graph actually
suffice). The results of this section are proved in [CouCG].
Concerning the unique representability of prime circle graphs, a quite similar

result holds for comparability graphs (see [Kel]). Those which are undecompos-
able for the modular decomposition have unique transitive orientations (actually
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Figure 3: A circle graph and a chord representation of it

they have two, one and its reversal) and it is possible to construct these ori-
entations by MS formulas by a proof similar to the one used for circle graphs.
This proof uses a characterization of comparability graphs by forbidden induced
subgraphs. This characterization is expressible in MS logic although there are
infinitely many forbidden subgraphs. See [CouXV].

Circle graphs.

Let A be a countable set called the set of letters. We letW be the set double
occurrence words i.e., of finite nonempty words over A having two occurrences
or no occurrence of each letter. We let V (w) be the set of letters occuring in
w and G(w) be the graph with set of vertices V (w) and an undirected edge
between a and b iff w = u1au2bu3au4bu5 or w = u1bu2au3bu4au5 for some
u1, ..., u5 in A∗. The graphs G(w) are also called circle graphs. It is clear that
G(w) = G(w0) if w0 = ew (the mirror image of w) or if w and w0 are conjugate,
denoted by w ∼ w0, which means w = uv and w0 = vu for some u, v in A∗; w
and w0 are equivalent, denoted by w ≡ w0, iff either w ∼ w0 or ew ∼ w0. Two
equivalent words represent the same circle graph. Figure 3 shows a circle graph
G and its chord representation defined by the word : axbcuyvbycauxv.
A circle graph G is uniquely representable if G = G(w) = G(w0) implies

w ≡ w0. The circle graphs with at most 3 vertices are uniquely representable,
so are C4, P4, the graph K4 minus one edge. The graphs K4, S3 are not. To
take an example the star S3 with center a is represented by the two inequivalent
words abcdadcb and acbdadbc.

Theorem 2: A circle graph with at least 5 vertices is uniquely representable
iff it is prime for the split decomposition.
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Proof : "if" is proved in [Bou87, Gab]. "Only if" is claimed in [Gab] but
not actually proved. ¤

Theorem 3 : There exist C2MS formulas that associate with every prime
circle graph G a word w ∈W such that G(w) = G.

A double occurrence word can be defined for logical treatment as a directed
circuit with a binary relation representing pairs of positions bearing the same
letter. Whether this letter is a or b does not matter.

Eulerian trails of 4-regular graphs

We need a lemma concerning the Eulerian trails of 4-regular graphs without
loops and multiple edges. We prove that these trails can be encoded by tuples
of sets, hence defined and used by MS formulas.

Lemma : There exist MS formulas that associate with every connected
4-regular undirected graph H the structures < VH , edgH , edgG(E) > for all
Eulerian trails E of H, where edgG(E) is the edge relation of the corresponding
circle graph G(E).

Proof sketch of Theorem 3 : Let w ∈W , a, b ∈ V (w), a 6= b.We say that
a and b are neighbours in w if w ≡ abw0 for some w0 in A∗. This means that
on the representation of G(w) by intersecting chords, chords a and b have two
consecutive ends on the circle. If G is prime with at least 5 vertices, this notion
depends only on G, and not on the word w representing it. Each letter occurring
in w has four different neighbours. We let N(G) be the graph of neighbourhood,
with set of vertices V (w) and an edge a − b iff a and b are neighbours in G.
This graph is 4-regular. We can prove that its adjacency relation is definable
by a C2MS formula over the given prime circle graph G, and that w can be
constructed from N(G). Figure 4 shows with solid lines the graph N(G) for the
graphG associated with the word : axbcuyvbycauxv . The dotted lines around the
vertices show the Eulerian trail which corresponds to the chord representation
of G, i.e., to the circular sequence of the ends of the chords corresponding to
letters.
For a, b ∈ VG(⊂ A), a 6= b, we let G(a, b;u, v) be the graph G augmented

with the path a− u− v − b where u, v ∈ A− VG.

Claim 1 : G(a, b;u, v) is a circle graph iff a, b are neighbours in G.

Claim 2 : That a and b are neighbours in G is expressible by a C2MS
formula.

Hence the mapping associating N(G) with a prime circle graph G is a C2MS
transduction. This claim uses the C2MS characterization of circle graphs given
in [CouOum]. That a given graph G a prime circle graph with at least 5 vertices
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Figure 4: The neighbourhood graph N(G).

is a C2MS property. Assuming this satisfied, one can build from G and by C2MS
formulas (Claim 2) the 4-regular graph N(G). This graph is connected and has
an Eulerian trail F such that G(F ) = G. The Eulerian trails of N(G) are
defined by tuples of sets of vertices (by the Lemma) and an MS formula can
select the one defining F . ¤

First occurrence words

For every word w in A∗ we denote by F (w) the subword of w consisting of
the first occurrence of each letter. For an example, F (abbdacdcefef) = abdcef .

Theorem 4 : If w,w0 are double occurrence words such that G(w) = G(w0)
is connected and F (w) = F (w0), then w = w0.

Proof : The proof is by induction on the length of w. ¤

Theorem 5 : There exist MS formulas that associate with (G,4) where
G is a circle graph and 4 a linear order on VG, the unique double occurrence
word w representing it such that F (w) = (VG,≺), provided such a word does
exist.

Proof sketch: On a structure given with a linear order, the set predicate
Even(X) can be expressed by an MS formula (see [Cou97]). Hence on these
structures, every C2MS formula can be translated into an equivalent MS for-
mula. In particular, an MS formula can check that the given graph is a circle
graph. By Theorem 1 (Theorem 4.21 of [CouXVI]), one can construct from
(G,4) its split decomposition Split(G) by an MS transduction. For those com-
ponents of Split(G) which are prime, an MS formula can build double occurrence
words representing them by Theorem 3. For the other components, which are
isomorphic to stars and to cliques, the linear order 4 makes it possible to define
by MS formulas representing double occurrence words. One obtains a tree of
relational structures S1, ..., Sk representing double occurrence words for the k
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components of Split(G). From this tree one can produce a double occurrence
word for G. It remains to check that it matches the first occurrence word defined
by F (w) = (VG,≺). ¤
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