Finite set interpretations

Thomas Colcombet Cnrs/Irisa, Rennes Christof Löding RWTH, Aachen

Workshop on Logic and Combinatorics, Szeged 23-24th september 2006

Interpretations: logically defined mappings from structures to structures.

Property: interpretations are closed under composition.

Property: $S \models \tilde{I}(\phi)$ iff $I(S) \models \phi$.

Consequence: Transfer of decidability results (model checking, sat).

Interpretations: logically defined mappings from structures to structures.

Property: interpretations are closed under composition.

Property: $S \models \tilde{I}(\phi)$ iff $I(S) \models \phi$.

Consequence: Transfer of decidability results (model checking, sat).

Example:

Theorem (Rabin): The full binary tree has a decidable MSO-theory.

Def/Thm (Blumensath): Prefix recognizable structures are the MSO-interpretations of the full binary tree.

Consequence (Caucal): Prefix recognizable structures have a decidable MSO-theory.

Interpretations: logically defined mappings from structures to structures.

Property: interpretations are closed under composition.

Property: $S \models \tilde{I}(\phi)$ iff $I(S) \models \phi$.

Consequence: Transfer of decidability results (model checking, sat).

Example:

Theorem (Rabin): The full binary tree has a decidable MSO-theory.

Def/Thm (Blumensath): Prefix recognizable structures are the MSO-interpretations of the full binary tree.

Consequence (Caucal): Prefix recognizable structures have a decidable MSO-theory.

Expressive power? Completeness?

Question: are all structures of decidable MSO-theory prefix recognizable? Seese conjecture: are all structures of decidable MSO-theory MSOinterpretations of a tree? Partially solved (Courcelle & Oum).

OVERVIEW

- Finite set interpretations & Elementary results
- Finite set interpretations of trees
- Focus on car parking
- Conclusion

Finite set interpretations

Def: A relational structure $S = (U, R_1, \ldots, R_k)$

- $\bullet \ \mathcal{U}$ is a set called the universe of the structure
- each R_i is a relation of arity r_i over \mathcal{U}

Isomorphism: $S \simeq S'$ if $R(u_1, \ldots, u_n) \leftrightarrow R'(f(u_1), \ldots, f(u_n))$ (for f bijective)

Def: A relational structure $S = (U, R_1, \ldots, R_k)$

- $\bullet \ \mathcal{U}$ is a set called the universe of the structure
- each R_i is a relation of arity r_i over \mathcal{U}

Isomorphism: $S \simeq S'$ if $R(u_1, \ldots, u_n) \leftrightarrow R'(f(u_1), \ldots, f(u_n))$ (for f bijective)

First-order logic (FO)

FO variables: x, y, x_1, \ldots ranging over \mathcal{U}

FO logic: $x = y, R(x_1, \ldots, x_k), \land, \lor, \neg, \exists x, \forall x$

Def: A relational structure $S = (U, R_1, \ldots, R_k)$

- $\bullet \ \mathcal{U}$ is a set called the universe of the structure
- each R_i is a relation of arity r_i over \mathcal{U}

Isomorphism: $S \simeq S'$ if $R(u_1, \ldots, u_n) \leftrightarrow R'(f(u_1), \ldots, f(u_n))$ (for f bijective)

First-order logic (FO)

FO variables: x, y, x_1, \ldots ranging over \mathcal{U}

FO logic: $x = y, R(x_1, \ldots, x_k), \land, \lor, \neg, \exists x, \forall x$

Weak monadic (second-order) logic (WMSO)

WMSO variables: X, Y, X_1, \ldots ranging over finite subsets of \mathcal{U} WMSO logic: FO + $\exists X, \forall X, x \in X$

Def: A relational structure $S = (U, R_1, \ldots, R_k)$

- $\bullet \ \mathcal{U}$ is a set called the universe of the structure
- each R_i is a relation of arity r_i over \mathcal{U}

Isomorphism: $S \simeq S'$ if $R(u_1, \ldots, u_n) \leftrightarrow R'(f(u_1), \ldots, f(u_n))$ (for f bijective)

First-order logic (FO)

FO variables: x, y, x_1, \ldots ranging over \mathcal{U}

FO logic: $x = y, R(x_1, \ldots, x_k), \land, \lor, \neg, \exists x, \forall x$

Weak monadic (second-order) logic (WMSO)

WMSO variables: X, Y, X_1, \ldots ranging over finite subsets of \mathcal{U} WMSO logic: FO + $\exists X, \forall X, x \in X$

Model: $\mathcal{S} \models \phi, \mathcal{S} \models \phi(a, b, c), \mathcal{S} \models \phi(A, B, C)$

Def: First-order interpretation $(\delta(x), \phi_1(x_1, \ldots, x_{r_1}), \ldots, \phi_k(x_1, \ldots, x_{r_k}))$

- $\delta, \phi_1, \ldots, \phi_k$ are first-order formulas
- x, x_1, \ldots are first-order variables

Def: First-order interpretation $(\delta(x), \phi_1(x_1, \ldots, x_{r_1}), \ldots, \phi_k(x_1, \ldots, x_{r_k}))$

- $\delta, \phi_1, \ldots, \phi_k$ are first-order formulas
- x, x_1, \ldots are first-order variables

Def: Weak monadic interpretation $(\Delta(x), \Phi_1(x_1, \ldots, x_{r_1}), \ldots, \Phi_k(x_1, \ldots, x_{r_k}))$

- $\Delta, \Phi_1, \ldots, \Phi_k$ are weak monadic formulas
- x, x_1, \ldots are first-order variables

Def: First-order interpretation $(\delta(x), \phi_1(x_1, \ldots, x_{r_1}), \ldots, \phi_k(x_1, \ldots, x_{r_k}))$

- $\delta, \phi_1, \ldots, \phi_k$ are first-order formulas
- x, x_1, \ldots are first-order variables

Def: Weak monadic interpretation $(\Delta(x), \Phi_1(x_1, \ldots, x_{r_1}), \ldots, \Phi_k(x_1, \ldots, x_{r_k}))$

- $\Delta, \Phi_1, \ldots, \Phi_k$ are weak monadic formulas
- x, x_1, \ldots are first-order variables

Def: Finite set interpretation $(\Delta(X), \Phi_1(X_1, \ldots, X_{r_1}), \ldots, \Phi_k(X_1, \ldots, X_{r_k}))$

- $\Delta, \Phi_1, \ldots, \Phi_k$ are weak monadic formulas
- X, X_1, \ldots are weak monadic variables

SEMANTIC OF INTERPRETATIONS

Given an interpretation I and a structure S.

FO interpretation: $I_{FO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \phi(a_1, \dots, a_{r_i})$ Given an interpretation I and a structure S.

FO interpretation: $I_{FO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \phi(a_1, \dots, a_{r_i})$

WMSO interpretation: $I_{WMSO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \Delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \Phi(a_1, \dots, a_{r_i})$ Given an interpretation I and a structure S.

FO interpretation: $I_{FO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \phi(a_1, \dots, a_{r_i})$

WMSO interpretation: $I_{WMSO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \Delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \Phi(a_1, \dots, a_{r_i})$

FS interpretation: $I_{FS}(S)$ is defined by: Universe: $\{E \subseteq \mathcal{U}_{S} : E \text{ finite}, S \models \Delta(E)\}$ Relations: $R_i(E_1, \ldots, E_{r_i})$ iff $S \models \Phi(E_1, \ldots, E_{r_i})$ Given an interpretation I and a structure S.

FO interpretation: $I_{FO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \phi(a_1, \dots, a_{r_i})$

WMSO interpretation: $I_{WMSO}(S)$ is defined by: Universe: $\{a \in \mathcal{U}_S : S \models \Delta(a)\}$ Relations: $R_i(a_1, \dots, a_{r_i})$ iff $S \models \Phi(a_1, \dots, a_{r_i})$

FS interpretation: $I_{FS}(S)$ is defined by: Universe: $\{E \subseteq \mathcal{U}_S : E \text{ finite}, S \models \Delta(E)\}$ Relations: $R_i(E_1, \ldots, E_{r_i})$ iff $S \models \Phi(E_1, \ldots, E_{r_i})$

Motto: Elements of $I_{FS}(S)$ are finite sets of elements of S.

Isomorphism: $f(E) = \sum_{n \in E} 2^n$

Isomorphism: $f(E) = \sum_{n \in E} 2^n$

Define $I_{\text{FS}} = (\Delta(X), \text{Plus}(X, Y, Z))$ with:

Isomorphism: $f(E) = \sum_{n \in E} 2^n$

Define $I_{\rm FS} = (\Delta(X), {\rm Plus}(X,Y,Z))$ with: $\Delta(X) = True$

Isomorphism:
$$f(E) = \sum_{n \in E} 2^n$$

Define $I_{\rm FS} = (\Delta(X), {\rm Plus}(X, Y, Z))$ with: $\Delta(X) = True$

$$Plus(X, Y, Z) = \exists C. \ 0 \notin C \land \forall x. \land \ \langle$$

$$\begin{cases} x \notin X \land x \notin Y \land x \notin C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \notin Y \land x \notin C & \to x \in Z \land \operatorname{Succ}(x) \notin C \\ x \notin X \land x \in Y \land x \notin C & \to x \in Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \in Y \land x \notin C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \notin X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \notin X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \end{cases}$$

Prop: $(\mathbb{N}, \operatorname{Succ}) \models \operatorname{Plus}(A, B, C)$ iff f(A) + f(B) = f(C)

EXAMPLE: $I_{\rm FS}(\mathbb{N}, {\rm Succ}) \simeq (\mathbb{N}, +)$

Isomorphism:
$$f(E) = \sum_{n \in E} 2^n$$

Define $I_{\rm FS} = (\Delta(X), {\rm Plus}(X, Y, Z))$ with: $\Delta(X) = True$

$$Plus(X, Y, Z) = \\ \exists C. \ 0 \notin C \land \forall x. /$$

 $\wedge \begin{cases} x \notin X \land x \notin Y \land x \notin C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \notin Y \land x \notin C & \to x \in Z \land \operatorname{Succ}(x) \notin C \\ x \notin X \land x \in Y \land x \notin C & \to x \in Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \in Y \land x \notin C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \in X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \notin C \\ x \notin X \land x \notin Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \\ x \notin X \land x \in Y \land x \in C & \to x \notin Z \land \operatorname{Succ}(x) \in C \end{cases}$

Prop: $(\mathbb{N}, \operatorname{Succ}) \models \operatorname{Plus}(A, B, C)$ iff f(A) + f(B) = f(C)Conclusion: $I_{\operatorname{FS}}(\mathbb{N}, \operatorname{Succ}) \simeq (\mathbb{N}, +)$

Prop: $I_{\rm FS}(S) \models \phi$ iff $S \models \widetilde{I_{\rm FS}}(\phi)$. Where ϕ is a first order formula, $\widetilde{I_{\rm FS}}(\phi)$ is a WMSO-formula.

Prop: $I_{\rm FS}(\mathcal{S}) \models \phi$ iff $\mathcal{S} \models \widetilde{I_{\rm FS}}(\phi)$.

Where ϕ is a first order formula, $\widetilde{I_{FS}}(\phi)$ is a WMSO-formula.

Proof:

Transform in ϕ every FO-variable into a WMSO-variable.

Relativise the quantification to Δ .

Substitute the corresponding formula in $I_{\rm FS}$ for every relational symbol.

E.g. $\exists x. \forall y. \exists z. x + y = z \text{ becomes } \exists X. \forall Y. \exists Z. Plus(X, Y, Z)$

Prop: $I_{\rm FS}(\mathcal{S}) \models \phi$ iff $\mathcal{S} \models \widetilde{I_{\rm FS}}(\phi)$.

Where ϕ is a first order formula, $\widetilde{I_{FS}}(\phi)$ is a WMSO-formula.

Corollary: If ${\mathcal S}$ has a decidable WMSO-theory, $I_{\rm FS}({\mathcal S})$ has a decidable FO-theory.

Prop: $I_{\rm FS}(\mathcal{S}) \models \phi$ iff $\mathcal{S} \models \widetilde{I_{\rm FS}}(\phi)$.

Where ϕ is a first order formula, $\widetilde{I_{FS}}(\phi)$ is a WMSO-formula.

Corollary: If ${\mathcal S}$ has a decidable WMSO-theory, $I_{\rm FS}({\mathcal S})$ has a decidable FO-theory.

Ex: Since $(\mathbb{N}, \operatorname{Succ})$ has a decidable WMSO theory, pressburger arithmetic is decidable.

Prop: $I_{\rm FS}(\mathcal{S}) \models \phi$ iff $\mathcal{S} \models \widetilde{I_{\rm FS}}(\phi)$.

Where ϕ is a first order formula, $\widetilde{I_{FS}}(\phi)$ is a WMSO-formula.

Corollary: If $\mathcal S$ has a decidable WMSO-theory, $I_{\rm FS}(\mathcal S)$ has a decidable FO-theory.

Ex: Since $(\mathbb{N}, \operatorname{Succ})$ has a decidable WMSO theory, pressburger arithmetic is decidable.

Prop: If $I_{\rm FO}$ is first-order, $I_{\rm FS}$ is finite set and $I_{\rm WMSO}$ is weak monadic then

 $I_{\rm FO} \circ I_{\rm FS}$ and $I_{\rm FS} \circ I_{\rm WMSO}$ are effectively FS-interpretations.

Prop: $I_{\rm FS}(\mathcal{S}) \models \phi$ iff $\mathcal{S} \models \widetilde{I_{\rm FS}}(\phi)$.

Where ϕ is a first order formula, $\widetilde{I_{FS}}(\phi)$ is a WMSO-formula.

Corollary: If $\mathcal S$ has a decidable WMSO-theory, $I_{\rm FS}(\mathcal S)$ has a decidable FO-theory.

Ex: Since $(\mathbb{N}, \operatorname{Succ})$ has a decidable WMSO theory, pressburger arithmetic is decidable.

Prop: If $I_{\rm FO}$ is first-order, $I_{\rm FS}$ is finite set and $I_{\rm WMSO}$ is weak monadic then

 $I_{\rm FO} \circ I_{\rm FS}$ and $I_{\rm FS} \circ I_{\rm WMSO}$ are effectively FS-interpretations.

Corollary: The set FS(S) of structures obtainable by finite set interpretations from S is closed under FO-interpretations.

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with:

$$\Delta(X) = True$$

$$\Phi_{\subseteq}(X,Y) = \forall x. \ x \in X \to x \in Y$$

$$\Phi_i(X_1,\ldots,X_{r_i}) = \exists x_1 \ldots \exists x_{r_i}. \bigwedge_j X_j = \{x_j\} \land R_i(x_1,\ldots,x_{r_i})$$

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with:

$$\Delta(X) = True$$

$$\Phi_{\subseteq}(X,Y) = \forall x. \ x \in X \to x \in Y$$

$$\Phi_i(X_1,\ldots,X_{r_i}) = \exists x_1 \ldots \exists x_{r_i}. \bigwedge_j X_j = \{x_j\} \land R_i(x_1,\ldots,x_{r_i})$$

Description: $P_{\rm F}(\mathcal{S})$ is the structure such that:

- The universe is the set of finite sets of elements of \mathcal{S} .
- The relation R_{\subseteq} coincide with the inclusion.
- The structure \mathcal{S} is replicated over singletons.

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with:

$$\Delta(X) = True$$

$$\Phi_{\subseteq}(X,Y) = \forall x. \ x \in X \to x \in Y$$

$$\Phi_i(X_1,\ldots,X_{r_i}) = \exists x_1 \ldots \exists x_{r_i}. \bigwedge_j X_j = \{x_j\} \land R_i(x_1,\ldots,x_{r_i})$$

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with: $\Delta(X) = True$ $\Phi_{\subset}(X, Y) = \forall x. \ x \in X \to x \in Y$

$$\Phi_i(X_1,\ldots,X_{r_i}) = \exists x_1\ldots \exists x_{r_i}.\bigwedge_j X_j = \{x_j\} \land R_i(x_1,\ldots,x_{r_i})$$

Prop: For every finite set interpretation $I_{\rm FS}$, there exists a first-order interpretation $I_{\rm FO}$ such that:

$$I_{\rm FS} = I_{\rm FO} \circ P_{\rm F}$$
.

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with: $\Delta(X) = True$ $\Phi_{\subset}(X, Y) = \forall x. \ x \in X \to x \in Y$

$$\Phi_i(X_1,\ldots,X_{r_i}) = \exists x_1\ldots \exists x_{r_i} \land \bigwedge_j X_j = \{x_j\} \land R_i(x_1,\ldots,x_{r_i})$$

Prop: For every finite set interpretation $I_{\rm FS}$, there exists a first-order interpretation $I_{\rm FO}$ such that:

$$I_{\rm FS} = I_{\rm FO} \circ P_{\rm F}$$
.

Proof: Eliminate FO-variables using \subseteq . Replace syntactically WMSO-variables by FO-variables.

Def: The universal FS-interpretation P_F is defined by: $P_F = (\Delta(X), \Phi_{\subseteq}(X, Y), \Phi_1(X_1, \dots, X_{r_1}), \dots, \Phi_k(X_k, \dots, X_{r_k})$ with: $\Delta(X) = True$ $\Phi_{\subseteq}(X, Y) = \forall x. \ x \in X \to x \in Y$ $\Phi_i(X_1, \dots, X_{r_i}) = \exists x_1 \dots \exists x_{r_i}. \bigwedge X_j = \{x_j\} \land R_i(x_1, \dots, x_{r_i})$

Prop: For every finite set interpretation $I_{\rm FS}$, there exists a first-order interpretation $I_{\rm FO}$ such that:

$$I_{\rm FS} = I_{\rm FO} \circ P_{\rm F}$$
.

Corollary: FS(S) is the set of structures FO-interpretable in $P_F(S)$ (called the generator of FS(S))

AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison,Khoussainov&Nerode,Blumensath&Grädel): A structure is automatic if its universe is a regular language of words, and its relations are definable by left synchronized finite state automata. A structure admits an automatic presentation if it is isomorphic to an automatic structure. (Similarly for tree-automatic).

AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison,Khoussainov&Nerode,Blumensath&Grädel): A structure is automatic if its universe is a regular language of words, and its relations are definable by left synchronized finite state automata. A structure admits an automatic presentation if it is isomorphic to an automatic structure. (Similarly for tree-automatic).

Prop: The first order theory of tree-automatic structures is decidable. **Proof:** Consequence of the closure of tree-automata under projection, union, intersection and complementation, and the decidability of the emptyness problem.
AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison,Khoussainov&Nerode,Blumensath&Grädel): A structure is automatic if its universe is a regular language of words, and its relations are definable by left synchronized finite state automata. A structure admits an automatic presentation if it is isomorphic to an automatic structure. (Similarly for tree-automatic).

Prop: The first order theory of tree-automatic structures is decidable. **Proof:** Consequence of the closure of tree-automata under projection, union, intersection and complementation, and the decidability of the emptyness problem.

Prop: A structure admits an automatic presentation iff it is isomorphic to $I_{FS}(\mathbb{N},+)$ for some finite set interpretation I_{FS} .

A structure admits a tree-automatic presentation iff it is isomorphic to $I_{\rm FS}(\Delta_2)$ for some finite set interpretation $I_{\rm FS}$.

Finite set interpretations of trees

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Objective: Construct as many structures of decidable FO-theory as possible by application of finite set interpretations to a structure of decidable WMSO-theory.

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Objective: Construct as many structures of decidable FO-theory as possible by application of finite set interpretations to a structure of decidable WMSO-theory.

Remark: Automatic and tree-automatic structures can be obtained as finite set interpretations of trees of decidable WMSO-theory.

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Objective: Construct as many structures of decidable FO-theory as possible by application of finite set interpretations to a structure of decidable WMSO-theory.

Remark: Automatic and tree-automatic structures can be obtained as finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it can be written $I_{\text{WMSO}}(t)$ for a WMSO-interpretation I_{WMSO} and a tree t.

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Objective: Construct as many structures of decidable FO-theory as possible by application of finite set interpretations to a structure of decidable WMSO-theory.

Remark: Automatic and tree-automatic structures can be obtained as finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it can be written $I_{\text{WMSO}}(t)$ for a WMSO-interpretation I_{WMSO} and a tree t.

Consequence: All structures obtainable by application of a finite set interpretation to a structure of decidable WMSO-theory can be obtained by applications of a finite set interpretation to a tree.

Proof: $I_{\rm FS}(\mathcal{S}) = I_{\rm FS}(I_{\rm WMSO}(t)) = I'_{\rm FS}(t)$

Def: By tree we intend (possibly infinite) binary rooted labeled trees. In the signature it is possible to distinguish left-child and right child.

Objective: Construct as many structures of decidable FO-theory as possible by application of finite set interpretations to a structure of decidable WMSO-theory.

Remark: Automatic and tree-automatic structures can be obtained as finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it can be written $I_{WMSO}(t)$ for a WMSO-interpretation I_{WMSO} and a tree t.

Consequence: All structures obtainable by application of a finite set interpretation to a structure of decidable WMSO-theory can be obtained by applications of a finite set interpretation to a tree. **Proof:** $I_{\rm FS}(S) = I_{\rm FS}(I_{\rm WMSO}(t)) = I'_{\rm FS}(t)$

Conclusion: Structures obtainable by finite set interpretations of trees are an important class to study.

Goal: Study FS(t) for t a deterministic tree.

Def: An equivalence relation \sim is a congruence over a structure S if for every n and $u_1 \sim v_1, \ldots, u_{r_n} \sim v_{r_n}$:

$$R_n(u_1,\ldots,u_{r_n})$$
 iff $R_n(v_1,\ldots,v_{r_n})$

The quotient structure $S/_{\sim}$ has the equivalence classes of \sim as universe, and the image of the relations by the canonical surjection as relations.

Def: An equivalence relation \sim is a congruence over a structure S if for every n and $u_1 \sim v_1, \ldots, u_{r_n} \sim v_{r_n}$:

$$R_n(u_1,\ldots,u_{r_n})$$
 iff $R_n(v_1,\ldots,v_{r_n})$

The quotient structure $S/_{\sim}$ has the equivalence classes of \sim as universe, and the image of the relations by the canonical surjection as relations.

Prop: If $S = (U, R_1, ..., R_k, \sim)$ has a decidable FO-theory, $S/_{\sim}$ also has a decidable FO-theory.

Fact: In general FS(S) is not closed under quotient.

Fact: In general FS(S) is not closed under quotient.

Proof: Let S contain four elements; no relations.

Fact: In general FS(S) is not closed under quotient.

Proof: Let S contain four elements; no relations. FS(S) contains no structure with 3 elements.

Fact: In general FS(S) is not closed under quotient.

Proof: Let S contain four elements; no relations. FS(S) contains no structure with 3 elements. There is a 3-elements structure in Quotient(FS(S)).

Fact: In general FS(S) is not closed under quotient.

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Fact: In general FS(S) is not closed under quotient.

Theorem (quotient): For a tree t, FS(t) is closed under quotient. Attempt of proof: Let I_{FS} , t such that $I_{FS}(t)$ contains a congruence \sim

Theorem (quotient): For a tree t, FS(t) is closed under quotient. Attempt of proof: Let I_{FS} , t such that $I_{FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Attempt of proof: Let $I_{\rm FS}$, t such that $I_{\rm FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Relativise the formulas in $I_{\rm FS}$ to Ψ . \Rightarrow the obtained finite set interpretation $I'_{\rm FS}$ satisfies $I'_{\rm FS}(t) \simeq I_{\rm FS}(t)/_{\sim}$.

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Attempt of proof: Let $I_{\rm FS}$, t such that $I_{\rm FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Relativise the formulas in $I_{\rm FS}$ to Ψ . \Rightarrow the obtained finite set interpretation $I'_{\rm FS}$ satisfies $I'_{\rm FS}(t) \simeq I_{\rm FS}(t)/_{\sim}$.

A well ordering is definable on finite trees, or on $(\mathbb{N}, \text{Succ})$.

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Attempt of proof: Let $I_{\rm FS}$, t such that $I_{\rm FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Relativise the formulas in $I_{\rm FS}$ to Ψ . \Rightarrow the obtained finite set interpretation $I'_{\rm FS}$ satisfies $I'_{\rm FS}(t) \simeq I_{\rm FS}(t)/_{\sim}$.

A well ordering is definable on finite trees, or on $(\mathbb{N}, \text{Succ})$. It is **impossible** to define a well ordering on the full binray tree (Shellah) (even over elements).

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Attempt of proof: Let $I_{\rm FS}$, t such that $I_{\rm FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Relativise the formulas in $I_{\rm FS}$ to Ψ . \Rightarrow the obtained finite set interpretation $I'_{\rm FS}$ satisfies $I'_{\rm FS}(t) \simeq I_{\rm FS}(t)/_{\sim}$.

A well ordering is definable on finite trees, or on $(\mathbb{N}, \text{Succ})$. It is **impossible** to define a well ordering on the full binray tree (Shellah) (even over elements).

The real proof works differently.

Theorem (quotient): For a tree t, FS(t) is closed under quotient.

Attempt of proof: Let $I_{\rm FS}$, t such that $I_{\rm FS}(t)$ contains a congruence \sim

Construct a formula Ψ such that one and only one $E \subseteq t$ satisfies $t \models \Psi(E)$ per equivalence class in $I_{FS}(t)$. E.g. the minimum in some well-ordering.

Relativise the formulas in $I_{\rm FS}$ to Ψ . \Rightarrow the obtained finite set interpretation $I'_{\rm FS}$ satisfies $I'_{\rm FS}(t) \simeq I_{\rm FS}(t)/_{\sim}$.

A well ordering is definable on finite trees, or on $(\mathbb{N}, \text{Succ})$. It is **impossible** to define a well ordering on the full binray tree (Shellah) (even over elements).

The real proof works differently.

Corollary: The tree-automatic structures are closed under quotient.

MAIN REPRESENTATION THEOREM

Corollary of Main Theorem: Fix $I_{\rm FS}.$ There exists $I_{\rm WMSO}$ such that for every ${\cal S}$ and t,

 $P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t)$ iff $\mathcal{S} \simeq I_{\rm WMSO}(t)$.

MAIN REPRESENTATION THEOREM

Corollary of Main Theorem: Fix $I_{\rm FS}.$ There exists $I_{\rm WMSO}$ such that for every ${\cal S}$ and t ,

 $P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t)$ iff $\mathcal{S} \simeq I_{\rm WMSO}(t)$.

Proof (easy direction): Assume $S \simeq I_{\text{WMSO}}(t)$. Then $P_{\text{F}}(S) \simeq P_{\text{F}}(I_{\text{WMSO}}(t)) = I'_{\text{FS}}(t)$. Corollary of Main Theorem: Fix $I_{\rm FS}.$ There exists $I_{\rm WMSO}$ such that for every ${\cal S}$ and t ,

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

 $\begin{array}{ll} \mbox{Proof (easy direction):} & \mbox{Assume } \mathcal{S} \simeq I_{\rm WMSO}(t). \\ & \mbox{Then } P_{\rm F}(\mathcal{S}) \simeq P_{\rm F}(I_{\rm WMSO}(t)) = I_{\rm FS}'(t). \end{array}$

Corollary of corollary: S is a structure, t a tree then

 $FS(S) \subseteq FS(t)$ iff $S = I_{WMSO}(t)$ for some WMSO-interpretation $I_{WMSO}(t)$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \to \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \rightarrow \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$
Let $\delta(x) = (x \in (a^*b)^*) \qquad [(\forall y.\forall z. (x = y.z) \rightarrow x = y) \lor (\exists y.x = y.b)]$
Prop: $f(u)$ is defined iff $M \models \delta(u)$.

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \rightarrow \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$
Let $\delta(x) = (x \in (a^*b)^*) \qquad [(\forall y.\forall z. \ (x = y.z) \rightarrow x = y) \lor (\exists y.x = y.b)]$
Prop: $f(u)$ is defined iff $M \models \delta(u)$.
 $x \leq y = \forall z \in a^*b. \ (\exists x', x'' \in (a^*b)^*. \ x = x'.z.x'') \rightarrow (\exists y', y'' \in (a^*b)^*. \ y = y'.z.y''$
Prop: $f(u) \subseteq f(v)$ iff $M \models u \leq v.$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \to \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$
Let $\delta(x) = (x \in (a^*b)^*) \qquad [(\forall y.\forall z. \ (x = y.z) \to x = y) \lor (\exists y.x = y.b)]$
Prop: $f(u)$ is defined iff $M \models \delta(u)$.
 $x \preceq y = \forall z \in a^*b. \ (\exists x', x'' \in (a^*b)^*. \ x = x'.z.x'') \to (\exists y', y'' \in (a^*b)^*. \ y = y'.z.y'')$
Prop: $f(u) \subseteq f(v)$ iff $M \models u \preceq v$.
 $x \Rightarrow u = x \preceq u \land u \preceq x$

 $x \sim y = x \preceq y \land y \preceq x$ **Prop:** $M \models u \sim v \text{ iff } f(u) = f(v)$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \to \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$
Let $\delta(x) = (x \in (a^*b)^*) \quad [(\forall y.\forall z. \ (x = y.z) \to x = y) \lor (\exists y.x = y.b)]$
Prop: $f(u)$ is defined iff $M \models \delta(u)$.
 $x \leq y = \forall z \in a^*b. \ (\exists x', x'' \in (a^*b)^*. \ x = x'.z.x'') \to (\exists y', y'' \in (a^*b)^*. \ y = y'.z.y''$
Prop: $f(u) \subseteq f(v)$ iff $M \models u \leq v.$
 $x \sim y = x \leq y \land y \leq x$
Prop: $M \models u \sim v$ iff $f(u) = f(v)$

 $\begin{array}{l} \mathrm{Plus}(x,y,z) = \exists x' \in a^*. \exists y' \in a^*. \ (x \sim x'.b) \land (y \sim y'.b) \land (z \sim x'.y'.b) \\ \text{Prop: } M \models \mathrm{Plus}(u,v,w) \\ \text{ iff } f(u), f(v), f(w) \text{ are singletons and } f(u) + f(v) = f(w) \end{array}$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Idea: Encode $P_{\mathrm{F}}(\mathbb{N},+)$ in M.

Let
$$f: (a^*b)^* \to \mathcal{P}(\mathbb{N})$$

 $a^{n_1}ba^{n_2}b\dots a^{n_k}b \mapsto \{n_1,\dots,n_k\}$
Let $\delta(x) = (x \in (a^*b)^*) \qquad [(\forall y.\forall z. \ (x = y.z) \to x = y) \lor (\exists y.x = y.b)]$
Prop: $f(u)$ is defined iff $M \models \delta(u)$.
 $x \leq y = \forall z \in a^*b. \ (\exists x', x'' \in (a^*b)^*. \ x = x'.z.x'') \to (\exists y', y'' \in (a^*b)^*. \ y = y'.z.y'')$
Prop: $f(u) \subseteq f(v)$ iff $M \models u \leq v.$
 $x \sim y = x \leq y \land y \leq x$
Prop: $M \models u \sim v$ iff $f(u) = f(v)$

 $\begin{array}{l} \mathrm{Plus}(x,y,z) = \exists x' \in a^*. \exists y' \in a^*. \ (x \sim x'.b) \land (y \sim y'.b) \land (z \sim x'.y'.b) \\ \text{Prop: } M \models \mathrm{Plus}(u,v,w) \\ \text{ iff } f(u), f(v), f(w) \text{ are singletons and } f(u) + f(v) = f(w) \end{array}$

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Then $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(I_{\mathrm{FS}}(t))/_{\sim}$

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Then $P_{\rm F}(\mathbb{N},+) \simeq I_{\rm FO}(I_{\rm FS}(t))/_{\sim}$

Then $P_{\mathrm{F}}(\mathbb{N},+)\simeq I_{\mathrm{FS}}'(t)/_{\sim}$ (composition)
EXAMPLE 1: THE FREE MONOID

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Then $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(I_{\mathrm{FS}}(t))/_{\sim}$

Then $P_{\rm F}(\mathbb{N},+)\simeq I_{\rm FS}'(t)/_{\sim}$ (composition)

Then $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FS}}''(t)$ (quotient theorem)

EXAMPLE 1: THE FREE MONOID

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Then $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(I_{\mathrm{FS}}(t))/_{\sim}$

Then $P_{\rm F}(\mathbb{N},+)\simeq I_{\rm FS}'(t)/_{\sim}$ (composition)

Then $P_{\rm F}(\mathbb{N},+) \simeq I_{\rm FS}''(t)$ (quotient theorem)

Then $(\mathbb{N}, +) \simeq I_{\text{WMSO}}(t)$ (main theorem)

EXAMPLE 1: THE FREE MONOID

Example: $M = (\{a, b\}^*, a, b, .)$ is not FS-interpretable in a tree.

Hence $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(M)/_{\sim}$

Assume now $M = I_{FS}(t)$ for some tree t.

Then $P_{\mathrm{F}}(\mathbb{N},+) \simeq I_{\mathrm{FO}}(I_{\mathrm{FS}}(t))/_{\sim}$

Then $P_{\rm F}(\mathbb{N},+)\simeq I_{\rm FS}'(t)/_{\sim}$ (composition)

Then $P_{\rm F}(\mathbb{N},+) \simeq I_{\rm FS}''(t)$ (quotient theorem)

Then $(\mathbb{N}, +) \simeq I_{\text{WMSO}}(t)$ (main theorem)

Contradiction. $(\mathbb{N}, +)$ is not of bounded clique-width.

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \Re .

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \mathfrak{R} .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \Re .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Prop: \Re is not FS-interpretable in a tree.

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \mathfrak{R} .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Prop: \mathfrak{R} is not FS-interpretable in a tree.

Proof: Assume \Re is finite set interpretation of some tree.

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \Re .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Prop: \mathfrak{R} is not FS-interpretable in a tree.

Proof: Assume \mathfrak{R} is finite set interpretation of some tree.

Construct a finite set interpretation $I_{\rm FS}$ such that: for every finite graph G, $P_{\rm F}(G) \simeq I_{\rm FS}(t)$ for some tree t.

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \Re .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Prop: \mathfrak{R} is not FS-interpretable in a tree.

Proof: Assume \Re is finite set interpretation of some tree.

Construct a finite set interpretation $I_{\rm FS}$ such that: for every finite graph G, $P_{\rm F}(G) \simeq I_{\rm FS}(t)$ for some tree t.

for every finite graph $G, G \simeq I_{WMSO}(t)$ for some tree t (main theorem).

Def: The random graph \Re is a countable graph (nonoriented and without loops) such that for all finite sets X, Y, there exists a vertex x connected to all vertices in X but none in Y.

(Formal definition by transfinite induction.)

Remark: \Re has a decidable FO-theory

Remark: All finite graphs are induced subgraphs of \Re .

Remark: Fix a finite set Z of vertices of \mathfrak{R} , then $X \subseteq Z$ can be identified by a single vertex x; connected to all elements in X but none in $Z \setminus X$.

Prop: \mathfrak{R} is not FS-interpretable in a tree.

Proof: Assume \Re is finite set interpretation of some tree.

Construct a finite set interpretation $I_{\rm FS}$ such that:

for every finite graph G, $P_{\rm F}(G) \simeq I_{\rm FS}(t)$ for some tree t.

for every finite graph G, $G \simeq I_{WMSO}(t)$ for some tree t (main theorem).

Contradiction: The set of finite graphs is not of bounded clique-width.

Focus on car parking

 $P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t)$ iff $\mathcal{S} \simeq I_{\rm WMSO}(t)$.

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

Remark: R_{\subseteq} is an order on $I_{FS}(t)$ which has all the properties of \subseteq over finite sets. In particular it a minimal element \perp .

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

Remark: R_{\subseteq} is an order on $I_{FS}(t)$ which has all the properties of \subseteq over finite sets. In particular it a minimal element \perp .

Def: Call Atoms the set of R_{\subset} -minimal non- \perp elements (FO-definable).

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

Remark: R_{\subseteq} is an order on $I_{FS}(t)$ which has all the properties of \subseteq over finite sets. In particular it a minimal element \perp .

Def: Call Atoms the set of R_{\subseteq} -minimal non- \perp elements (FO-definable). Fact: $I_{FS}(t)|_{Atoms} \simeq S$.

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

Remark: R_{\subseteq} is an order on $I_{FS}(t)$ which has all the properties of \subseteq over finite sets. In particular it a minimal element \perp .

Def: Call Atoms the set of R_{\subseteq} -minimal non- \perp elements (FO-definable). Fact: $I_{FS}(t)|_{Atoms} \simeq S$.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \operatorname{with} t \models \Psi(A, u) \end{array}$

```
P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t) iff \mathcal{S} \simeq I_{\rm WMSO}(t).
```

Remark: R_{\subseteq} is an order on $I_{FS}(t)$ which has all the properties of \subseteq over finite sets. In particular it a minimal element \perp .

Def: Call Atoms the set of R_{\subseteq} -minimal non- \perp elements (FO-definable). Fact: $I_{FS}(t)|_{Atoms} \simeq S$.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \operatorname{with} t \models \Psi(A, u) \end{array}$

Conclusion: By sending $I_{\rm FS}(t)|_{\rm Atoms} \simeq S$ via f, one obtains $I_{\rm WMSO}(t) \simeq S$.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $f: \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) \to \operatorname{dom}(t) \quad \text{is an injection.}$ $A \qquad \mapsto u \quad \text{with } t \models \Psi(A, u)$

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \text{with } t \models \Psi(A, u) \end{array}$

Step 1: Construct g : Atoms $\rightarrow dom(t)$ injective-like (sparse).

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \text{with } t \models \Psi(A, u) \end{array}$

Step 1: Construct g : Atoms $\rightarrow dom(t)$ injective-like (sparse).

Step 2: Turn g into the injection f.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \text{with } t \models \Psi(A, u) \end{array}$

Step 1: Construct g : Atoms $\rightarrow dom(t)$ injective-like (sparse). Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t). The frontier nodes F_Z are the extremities of Z.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \text{with } t \models \Psi(A, u) \end{array}$

Step 1: Construct g : Atoms $\rightarrow dom(t)$ injective-like (sparse). Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t). The frontier nodes F_Z are the extremities of Z.

Lemma: Every WMSO-definable mapping g such that for every zone Z,

 $|g^{-1}(Z)| \le |Z| + K.|F|$ (K-sparsity)

can be turned into an injection in a WMSO-definable way.

Objective: Construct $\Psi(X, x)$ WMSO st:

 $\begin{array}{rcl} f: & \operatorname{Atoms} \subseteq \mathcal{P}(\operatorname{dom}(t)) & \to & \operatorname{dom}(t) & \text{ is an injection.} \\ & A & \mapsto & u & \text{with } t \models \Psi(A, u) \end{array}$

Step 1: Construct g : Atoms $\rightarrow dom(t)$ injective-like (sparse). Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t). The frontier nodes F_Z are the extremities of Z.

Lemma: Every WMSO-definable mapping g such that for every zone Z,

 $|g^{-1}(Z)| \le |Z| + K.|F|$ (K-sparsity)

can be turned into an injection in a WMSO-definable way.

Idea: Each f(X) is a car. Compute the flow of cars, and an itinerary for each car.

At the end, one must have at most one car per node.

Conclusion

New object: finite set interpretations

Elementary properties:

- Composition: $I_{\rm FO} \circ I_{\rm FS}$ and $I_{\rm FS} \circ I_{\rm WMSO}$ are FS-interpretation.
- Transfer: $I_{FS}(S) \models \phi$ iff $S \models \widetilde{I_{FS}}(\phi)$.
- Existence of a universal FS-interpretation $P_{\rm F}$.

Advanced results:

- Closure of FS(t) under quotient.
- Main result: $P_{\rm F}(\mathcal{S}) \simeq I_{\rm FS}(t)$ iff $\mathcal{S} \simeq I_{\rm WMSO}(t)$.

Applications:

- The free monoid (two elements) non FS-interpretable in a tree.
- Random graph non FS-interpretable in a tree.
- Strictness of the tree-automatic hierarchy (variant by Blumensath).
- Intrinsic regularity in $P_{\rm F}(\mathbb{N}, {\rm Succ})$ (extension of (Barany)).