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INTERPRETATIONS

Interpretations: logically defined mappings from sfructures to structures.
Property: interpretations are closed under composition.
Property: S |= I(¢) iff I(S) |= ¢.

Consequence: Transfer of decidability results (model checking, sat).
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INTERPRETATIONS

Interpretations: logically defined mappings from sfructures to structures.
Property: interpretations are closed under composition.
Property: S |= I(¢) iff I(S) |= ¢.

Consequence: Transfer of decidability results (model checking, sat).

Example:
The full binary free has a decidable MSO-theory.

Prefix recognizable structures are the
MSO-interpretations of the full binary tree.

Prefix recognizable structures have a decidable
MSO-theory.

Expressive power? Completeness?
are all structures of decidable MSO-theory prefix recognizable?

are all structures of decidable MSO-theory MSO-
interpretations of a tree”? Partially solved (Courcelle & Oum).
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OVERVIEW

Finite set inferpretations & Elementary results
Finite set interpretations of trees

Focus on car parking

Conclusion
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STRUCTURES AND LOGICS

Def: A relational structure S = (U, Ry, ..., Ry)
e U/ is aset called the universe of the structure
e each R; is arelation of arity r; over U

S~S8"if Rluy,...,un) < R'(f(ur),..., f(u,)) (for f bijective)
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STRUCTURES AND LOGICS

Def: A relational structure S = (U, Ry, ..., Ry)
e U/ is aset called the universe of the structure
e each R; is arelation of arity r; over U

S~S8"if Rluy,...,un) < R'(f(ur),..., f(u,)) (for f bijective)
(FO)

FO variables: x,y, z1,... ranging over Y
FO logic: x =y, R(x1,...,xk), A\, V,, Jz, Vo
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e U/ is aset called the universe of the structure
e each R; is arelation of arity r; over U

S~S8"if Rluy,...,un) < R'(f(ur),..., f(u,)) (for f bijective)

(FO)
FO variables: x,y, z1,... ranging over Y
FO logic: x =y, R(x1,...,xk), A\, V,, Jz, Vo

(WMSO)
WMSO variables: X,Y, X4,... ranging over finite subsets of U
WMSO logic: FO + dX, VX, x € X
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STRUCTURES AND LOGICS

Def: A relational structure S = (U, Ry, ..., Ry)
e U/ is aset called the universe of the structure
e each R; is arelation of arity r; over U

S~S8"if Rluy,...,un) < R'(f(ur),..., f(u,)) (for f bijective)

(FO)
FO variables: x,y, z1,... ranging over Y

FO logic: x =y, R(x1,...,xk), A\, V,, Jz, Vo

(WMSO)
WMSO variables: X,Y, X4,... ranging over finite subsets of U
WMSO logic: FO + dX, VX, x € X

SE?SEdabrc),SE A B,C)
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INTERPRETATIONS

Def: First-order interpretation (6(z), p1(x1,. .., Tr, ),y -y Or(X1, ..., Try )
e 0, ¢1,...,¢, are first-order formulas
e r,x1,... Are first-order variables
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INTERPRETATIONS

Def: First-order interpretation (§(x), p1(x1,. .. xry )y ooy Or(21, .- 20 )
e 0, ¢1,...,¢, are first-order formulas
e r,x1,... Are first-order variables

Def: Weak monadic inferpretafion (A(z), ®1(x1, ..., 2r ), -, Pr(x1, ..., 2p,))
o A ®q,..., P, are weak monadic formulas
e r,x1,... Are first-order variables
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INTERPRETATIONS

Def: First-order interpretation (6(x), ¢1(z1,..., 2 ), ...

e 0, ¢1,...,¢, are first-order formulas
® I.Tq,... irst- '
, L1, are first-order variables

Def: Weak monadic interpretation (A(x), ®1(z4, ...,

o A ®q,..., P, are weak monadic formulas
e x,x1,... Are first-order variables

Def: Finite set inferpretation (A(X), ®1(X1,..., X:,),--.

o A ®q,..., P, are weak monadic formulas
e X Xq,... are weak monadic variables

 Ok(T1, - Ty )

le)’ .. .,(I)k;(ﬂjlg SRR 7$Tk))

7(I)k(X17 <. 7X7“k))
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SEMANTIC OF INTERPRETATIONS

Given an interpretation I and a structure S.

FO interpretation: Iro(S) is defined by:
Universe: {a clUs : S =d(a)}
Relafions: R;(aq,...,a.,) iffS = ¢(ar,...,a:,)
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Given an interpretation I and a structure S.

FO interpretation: Iro(S) is defined by:
Universe: {a clUs : S =d(a)}
Relafions: R;(aq,...,a.,) iffS = ¢(ar,...,a:,)

WMSQO interpretation: Iwuso(S) is defined by:
Universe: {a cls : S =A(a)}
Relations: R;(a1,...,a.,)ffS = ®(ay,...,a.,)
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Given an interpretation I and a structure S.
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Relafions: R;(aq,...,a.,) iffS = ¢(ar,...,a:,)
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SEMANTIC OF INTERPRETATIONS

Given an interpretation I and a structure S.

FO interpretation: Iro(S) is defined by:
Universe: {a clUs : S =d(a)}
Relafions: R;(aq,...,a.,) iffS = ¢(ar,...,a:,)

WMSQO interpretation: Iwuso(S) is defined by:
Universe: {a cls : S =A(a)}
Relations: R;(a1,...,a.,)ffS = ®(ay,...,a.,)

FS interpretation: Irs(S) is defined by:
Universe: {F CUs : FE finite, S = A(F)}
Relations: R;(F4,...,E.,)IffS = ®(FEy,..., E.)

Motto: of Irs(S) are

of S.
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EXAMPLE: Ipg(N, Suce) ~ (N, +)

Isomorphism: f(E)= ) 2"
nek
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Isomorphism: f(E)= ) 2"
nek

Define Iys = (A(X), Plus(X,Y, Z)) with:
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EXAMPLE: Ipg(N, Suce) ~ (N, +)

Isomorphism: f(E)= ) 2"
nek

Define Ivs = (A(X), Plus(X,Y, Z2)) with:
A(X) = True
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EXAMPLE: Ipg(N, Suce) ~ (N, +)

Isomorphism: f(E)= ) 2"

nek
Define Irxs = (A(X), Plus(X,Y, 7)) with:
A(X) = True
fngX/\a:gZY/\ngC — x & Z A Succ(x) € C
reE XN Y Need(C — xe ZASucc(x)gC
Plus(X.Y, Z) — r€XNrxeYNeed(C — xeZASucc(x)€C
EIC’.OgZC/\V:z:./\<x€X/\xEY/\x¢C — x & Z N\ Succ(x) € C
rZ€XNxgYNhNrelC — xe€ZASucc(x)gC
reXNxgYNeel — x¢&ZASucc(zx)eC
rZ€XNxeYANxeC — x¢& ZANSucc(x)eC
rE€EXANzeYANrel — x€ZASucc(z)eC

(N, Suce) = Plus(4, B, C) iff f(A) + f(B) = £(C)
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EXAMPLE: Ipg(N, Suce) ~ (N, +)

Isomorphism: f(E)= ) 2"

nek
Define Irxs = (A(X), Plus(X,Y, 7)) with:
A(X) = True
fngX/\a:gZY/\ngC — x & Z A Succ(x) € C
reE XN Y Need(C — xe ZASucc(x)gC
Plus(X.Y, Z) — r€XNrxeYNeed(C — xeZASucc(x)€C
EIC’.OgZC/\V:z:./\<x€X/\xEY/\x¢C — x & Z N\ Succ(x) € C
rZ€XNxgYNhNrelC — xe€ZASucc(x)gC
reXNxgYNeel — x¢&ZASucc(zx)eC
rZ€XNxeYANxeC — x¢& ZANSucc(x)eC
rE€EXANzeYANrel — x€ZASucc(z)eC

(N, Succ) = Plus(A4, B, Q) iff f(A) + f(B) = f(C)
Irs(N, Succ) ~ (N, +)
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.
Proof:

Transform in ¢ every FO-variable into a WMSO-variable.

Relaftivise the quantification 1o A.
Substitute the corresponding formula in Irg for every relational symbol.

dz.Vy.dz. ¢ + y = z becomes 4X. VY. 37. Plus(X, Y, Z)
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.

Corollary: If S has a decidable WMSO-theory, Ivg(S) has a decidable
FO-theory.
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.

Corollary: If S has a decidable WMSO-theory, Ivg(S) has a decidable
FO-theory.

Since (N, Succ) has a decidable WMSO theory, pressburger arithmetic
Is decidable.
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.

Corollary: If S has a decidable WMSO-theory, Ivg(S) has a decidable
FO-theory.

Since (N, Succ) has a decidable WMSO theory, pressburger arithmetic
Is decidable.

Prop: If Iro is first-order, Irg is finite set and Iwuso IS weak monadic then

Iro o Irs anNd Igs o Iwnmso are effectively FS-interpretations.
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ELEMENTARY PROPERTIES

Prop: Irs(S) = ¢ iff S = Ies(¢).
Where ¢ is a first order formula, Irs(¢) is @ WMSO-formula.

Corollary: If S has a decidable WMSO-theory, Ivg(S) has a decidable
FO-theory.

Since (N, Succ) has a decidable WMSO theory, pressburger arithmetic
Is decidable.

Prop: If Iro is first-order, Irg is finite set and Iwuso IS weak monadic then

Iro o Irs anNd Igs o Iwnmso are effectively FS-interpretations.

Corollary: The set FS(S) of structures obtainable by finite set interpretations
from S is closed under FO-interpretations.
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr = (A(X),oc(X,Y), P (X1,..., X0y),s oo, Pr(Xiy . .., Xy ) Wit
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y

(I)i(Xl, .. .,Xn.) = E|£C1 .. E|CIJ741/\AX'L7 = {ZCJ} N Ri<$’1, .. .,ZIZTi)
J
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr = (A(X),oc(X,Y), P (X1,..., X0y),s oo, Pr(Xiy . .., Xy ) Wit
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y

(I)i(Xl, coay X?“z) = E|£C1 c. E|CIZTi. /\AXVL7 = {ZCJ} N Ri<331, e oy leri)
j
Description: Pr(S) is the sfructure such that:
e The universe is the set of finite sets of elements of S.
e The relafion Rc coincide with the inclusion.
e [he structure S is replicated over singletons.
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr = (A(X),oc(X,Y), P (X1,..., X0y),s oo, Pr(Xiy . .., Xy ) Wit
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr = (A(X),oc(X,Y), P (X1,..., X0y),s oo, Pr(Xiy . .., Xy ) Wit
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y

(I)i(Xl, .. .,Xn.) = E|£C1 .. E|CIZ741/\AX'L7 = {ZCJ} N Ri<331, .. .,ZIZTi)
J

Prop: For every finite set inferpretation Irg, there exists a first-order
inferpretation Irg such that:

IFS = IFQ OPF .
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr = (A(X),oc(X,Y), P (X1,..., X0y),s oo, Pr(Xiy . .., Xy ) Wit
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y

(I)i(Xl, .. .,Xn.) = E|£C1 .. E|CIJ741/\AX'L7 = {ZCJ} N Ri<$’1, .. .,ZIZTi)
J

Prop: For every finite set inferpretation Irg, there exists a first-order
inferpretation Irg such that:

IFS = IFQ OPF .

Proof: Eliminate FO-variables using C.
Replace syntactically WMSO-variables by FO-variables.
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UNIVERSAL INTERPRETATION/GENERATOR

Def: The universal FS-interpretation Pr is defined by:
Pr=(AX),oc(X,Y),®1(X1,..., X)), ..., O (X, ..., X)) with:
A(X) = True
¢ (X, Y)=Ve. z€ X -z €Y

(I)i(Xl, .. .,Xn.) = E|£C1 .. E|CIZ741/\AX'L7 = {ZCJ} N Ri<331, .. .,ZIZTi)
J

Prop: For every finite set inferpretation Irg, there exists a first-order
inferpretation Irg such that:

IFS = IFQ OPF .

Corollary: FS(S) is the set of structures FO-interpretable in Pr(S) (called
the generator of FS(S))
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AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison, Khoussainov&Nerode Blumensath&Gradel):
A structure is automatic if its universe is a regular language of words, and
its relations are definable by left synchronized finite state automata.

A structure admits an autfomatic presentation if it is isomorphic fo an
automatic structure. (Similarly for free-automatic).
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AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison, Khoussainov&Nerode Blumensath&Gradel):
A structure is automatic if its universe is a regular language of words, and
its relations are definable by left synchronized finite state automata.

A structure admits an autfomatic presentation if it is isomorphic fo an
automatic structure. (Similarly for free-automatic).

Prop: The first order theory of tree-automatic structures is decidable.

Proof: Consequence of the closure of tree-automata under projection,
union, infersection and complementation, and the decidability of the
emptyness problem.
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AUTOMATIC/TREE AUTOMATIC STRUCTURES

Def(Hodgson,Dauchet&Tison, Khoussainov&Nerode Blumensath&Gradel):
A structure is automatic if its universe is a regular language of words, and
its relations are definable by left synchronized finite state automata.

A structure admits an autfomatic presentation if it is isomorphic fo an
automatic structure. (Similarly for free-automatic).

Prop: The first order theory of tree-automatic structures is decidable.

Proof: Consequence of the closure of tree-automata under projection,
union, infersection and complementation, and the decidability of the
emptyness problem.

Prop: A structure admits an automatic presentation iff it is isomorphic to
Irs (N, +) for some finite set inferpretation Ixg.

A structure admifs a free-automatic presentation iff it is isomorphic fo
Irs(A2) for some finite set interpretation Igs.
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Finite set interpretations of frees
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MOTIVATION

Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.
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MOTIVATION

Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.

Construct as many structures of decidable FO-theory as
possible by application of finite set interpretations fo a stfructure of
decidable WMSO-theory.
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Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.

Construct as many structures of decidable FO-theory as
possible by application of finite set interpretations fo a stfructure of
decidable WMSO-theory.

Automatic and tree-automatic structures can be obtained as
finite set interpretations of trees of decidable WMSO-theory.
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MOTIVATION

Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.

Construct as many structures of decidable FO-theory as
possible by application of finite set interpretations fo a stfructure of
decidable WMSO-theory.

Automatic and tree-automatic structures can be obtained as
finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it
can be written Iwuso (t) for a WMSO-inferpretation Iywyso and a tree ¢,
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MOTIVATION

Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.

Construct as many structures of decidable FO-theory as
possible by application of finite set interpretations fo a stfructure of
decidable WMSO-theory.

Automatic and tree-automatic structures can be obtained as
finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it
can be written Iwuso (t) for a WMSO-inferpretation Iywyso and a tree ¢,

All structures obtainable by application of a finite set
interpretation to a structure of decidable WMSO-theory can be obtained
by applications of a finite set inferpretation tfo a tree.

Proof: Irg (S) = Irg (IWMSO (t)) = Ilé‘S (t)
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MOTIVATION

Def: By tree we infend (possibly infinite) binary rooted labeled frees. In the
signature it is possible to distinguish leff-child and right child.

Construct as many structures of decidable FO-theory as
possible by application of finite set interpretations fo a stfructure of
decidable WMSO-theory.

Automatic and tree-automatic structures can be obtained as
finite set interpretations of trees of decidable WMSO-theory.

Conjecture of Seese: If a structure has a decidable WMSO-theory, then it
can be written Iwuso (t) for a WMSO-inferpretation Iywyso and a tree ¢,

All structures obtainable by application of a finite set
interpretation to a structure of decidable WMSO-theory can be obtained
by applications of a finite set inferpretation tfo a tree.

Proof: Irg (S) = Irg (IWMSO (t)) = Ilé‘S (t)

Conclusion: Structures obtainable by finite set interpretations of trees are
an important class o stuay.

Goal: Study FS(t) for t a deterministic tree.
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QUOTIENT OF STRUCTURES

Def: An equivalence relation ~ is a congruence over a structure S if for
every nand uj ~ v, ..., Uy, ~ Up

Ry(ui,...,upr ) Iff Rp(vi,...,v. )

The quoftient sfructure S/ has the equivalence classes of ~ as universe,
and the image of the relations by the canonical surjection as relations.
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QUOTIENT OF STRUCTURES

Def: An equivalence relation ~ is a congruence over a structure S if for
every nand uj ~ v, ..., Uy, ~ Up

Ry(ui,...,upr ) Iff Rp(vi,...,v. )

The quoftient sfructure S/ has the equivalence classes of ~ as universe,
and the image of the relations by the canonical surjection as relations.

Prop: If S = (U, Ry, ..., Rk, ~) has a decidable FO-theory, §/.. also has a
decidable FO-theory.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Proof: Let S contain four elements: no relations.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Proof: Let S contain four elements; no relations.
FS(S) contains no structure with 3 elements.

Finite et interpretations/Szeged 25.09.2006 - p. 1-



QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Proof: Let S contain four elements; no relafions.
FS(S) contains no structure with 3 elements.
There is a 3-elements structure in Quotient(FS(S)).
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~

Constfruct a formula ¥ such that one and only one E C ¢ safisfies t = U (F)
per equivalence class in Irg(t). E.g. The minimum in some well-ordering.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~

Constfruct a formula ¥ such that one and only one E C ¢ safisfies t = U (F)
per equivalence class in Irg(t). E.g. The minimum in some well-ordering.

Relativise the formulas in Irg tO ¥. = the obtained finite set
interpretation I.g safisfies Iq(t) ~ Irs(t)/~.
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~

Constfruct a formula ¥ such that one and only one E C ¢ safisfies t = U (F)
per equivalence class in Irg(t). E.g. The minimum in some well-ordering.

Relativise the formulas in Irg tO ¥. = the obtained finite set
interpretation I.g safisfies Iq(t) ~ Irs(t)/~.

A well ordering is definable on finite frees, or on (N, Succ).
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~

Constfruct a formula ¥ such that one and only one E C ¢ safisfies t = U (F)
per equivalence class in Irg(t). E.g. The minimum in some well-ordering.

Relativise the formulas in Irg tO ¥. = the obtained finite set
interpretation I.g safisfies Iq(t) ~ Irs(t)/~.

A well ordering is definable on finite frees, or on (N, Succ).

It is to define a well ordering on the full binray tree (Shellah)
(even over elements).
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QUOTIENT OF STRUCTURES

Fact: In general FS(S) is not closed under quoftient.

Theorem (quotient): For a tree ¢, FS(t) is closed under quotient.
Attempt of proof: Let Irg, t such that Irg(t) contains a congruence ~

Constfruct a formula ¥ such that one and only one E C ¢ safisfies t = U (F)
per equivalence class in Irg(t). E.g. The minimum in some well-ordering.

Relativise the formulas in Irg tO ¥. = the obtained finite set
interpretation I.g safisfies Iq(t) ~ Irs(t)/~.

A well ordering is definable on finite frees, or on (N, Succ).
It is to define a well ordering on the full binray tree (Shellah)
(even over elements).

Corollary: The tree-automatic structures are closed under quotient.
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MAIN REPRESENTATION THEOREM

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :
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MAIN REPRESENTATION THEOREM

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Proof (easy direction): Assume S ~ Iywuso(t).
Then PF(S) ~ PF(IWMSO(t)) = I{;S(t)
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MAIN REPRESENTATION THEOREM

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Proof (easy direction): Assume S ~ Iywuso(t).
Then PF(S) ~ PF(IWMSO(t)) = I{;S(t)

Corollary of corollary: S is a structure, t a tree then

FS(S) C FS(t) iff S = Iwmso(t) for some WMSO-interpretation Iyws
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.
Let f: (a*b)* —  P(N)

a™ba™b...a™b — {ny,...,ng}
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.
Let f: (a*b)* —  P(N)

a™ba™b...a™b — {ny,...,ng}

Let 6(z) = (z € (a™b)") [(Vy.Vz. (z =y.2) >z =y)V (Jyz =y.b)|
Prop: f(u) is defined iff M = d(u).
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.
Let f: (a*b)* —  P(N)
a™ba™b...a" b — {ny,...,ni}

Let o(z) = (z € (a™b)*) (VyVz. (zr=y.2) =z =y)V (Jy.x =1y.b)]
Prop: f(u) is defined iff M = 6(u).

r=<y=Vzea*b (', 2" € (a*b)*. x =2’ .z.2") — Ty, y" € (a*b)*. y = .2.y")
Prop: f(u) C f(v) Iif M =u <X v.
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.

Let f: (a*b)* —  P(N)
a™ba™b...a™b — {ny,...,ng}
Let o(z) = (z € (a™b)*) (VyVz. (zr=y.2) =z =y)V (Jy.x =1y.b)]

Prop: f(u) is defined iff M = 6(u).

r=<y=Vzea*b (', 2" € (a*b)*. x =2’ .z.2") — Ty, y" € (a*b)*. y = .2.y")
Prop: f(u) C f(v) Iif M =u <X v.

r~yYy=r =y \N\y=x
Prop: M =u ~viff f(u) = f(v)
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.

Let f: (a*b)* —  P(N)
a™ba™b...a™b — {ny,...,ng}
Let o(z) = (z € (a™b)*) (VyVz. (zr=y.2) =z =y)V (Jy.x =1y.b)]

Prop: f(u) is defined iff M = 6(u).

r=<y=Vzea*b (', 2" € (a*b)*. x =2’ .z.2") — Ty, y" € (a*b)*. y = .2.y")
Prop: f(u) C f(v) Iif M =u <X v.

r~yYy=r =y \N\y=x

Prop: M =u ~viff f(u) = f(v)

Plus(z,y,z) =3z’ € a*. 3y € a*. (x ~ 2" D) AN (y ~ 4y . D) AN (z ~ 2’9y .b)
Prop: M &= Plus(u, v, w)
iff f(u), f(v), f(w) are singletons and f(u) + f(v) = f(w)
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Idea: Encode Pr(N, +) in M.

Let f: (a*b)* —  P(N)
a”ba™b...a" b — {ny,...,ni}
Let o(z) = (z € (a™b)*) (VyVz. (zr=y.2) =z =y)V (Jy.x =1y.b)]

Prop: f(u) is defined iff M = 6(u).

r=<y=Vzea*b (', 2" € (a*b)*. x =2'.z.2") — Ty, y" € (a*b)*. y =y .2.9")
Prop: f(u) C f(v) Iif M =u <X v.

r~yYy=r =y \N\y=x

Prop: M =u ~viff f(u) = f(v)

Plus(z,y,z) =3z’ € a*. 3y € a*. (x ~ 2" D) AN (y ~ 4y . D) AN (z ~ 2’9y .b)
Prop: M &= Plus(u, v, w)
iff f(u), f(v), f(w) are singletons and f(u) + f(v) = f(w)

Hence Pr(N,+) ~ Ivo(M)/~
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ivo(M)/~
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ivo(M)/~

Assume now M = Irg(t) for some free t.
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ivo(M)/~
Assume now M = Igg(t) for some free t¢.
Then PF(N, —I—) ~ IFQ(Ips(t))/N
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ipo(M)/~

Assume now M = Igg(t) for some free t¢.
Then Pr(N,+) ~ Iro(Irs(t))/~

Then Pp(N, +) ~ I14(t)/~ (COmposition)
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ipo(M)/~

Assume now M = Igg(t) for some free t¢.
Then Pr(N,+) ~ Iro(Irs(t))/~

Then Prp(N, +) ~ I.4(t)/~ (composition)
Then Pr(N, +) ~ If¢(t) (Quotient theorem)
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ipo(M)/~

Assume now M = Igg(t) for some free t¢.
Then Pr(N,+) ~ Iro(Irs(t))/~

Then Prp(N, +) ~ I.4(t)/~ (composition)
Then Pr(N, +) ~ If¢(t) (Quotient theorem)

Then (N, +) ~ Iwwmso(t) (Main theorem)
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EXAMPLE 1: THE FREE MONOID

Example: M = ({a,b}*,a,b,.) is not FS-interpretable in a tree.

Hence Pr(N,+) ~ Ipo(M)/~

Assume now M = Igg(t) for some free t¢.
Then Pr(N,+) ~ Iro(Irs(t))/~

Then Pp(N, +) ~ I14(t)/~ (COmposition)
Then Pr(N, +) ~ If¢(t) (Quotient theorem)
Then (N, +) ~ Iwwuso(t) (Main theorem)

Contradiction. (N, +) is not of bounded clique-width.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to

all vertices in X but none inY.
(Formal definition by fransfinite induction.)
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all vertices in X but none inY.
(Formal definition by fransfinite induction.)

R has a decidable FO-theory
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Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to

all vertices in X but none inY.
(Formal definition by fransfinite induction.)

R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of verfices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of verfices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.

Prop: R is not FS-interpretable in a tree.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of verfices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.

Prop: R is not FS-interpretable in a tree.
Proof: Assume fR is finite set inferpretation of some free.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of vertices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.
Prop: R is not FS-interpretable in a tree.
Proof: Assume $R is finite set inferpretation of some free.

Consfruct a such that:
for every finite graph G, Pr(G) ~ Irg(t) for some tree t.
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of vertices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.
Prop: R is not FS-interpretable in a tree.
Proof: Assume $R is finite set inferpretation of some free.

Consfruct a such that:
for every finite graph G, Pr(G) ~ Irg(t) for some tree t.

for every finite graph G, G ~ Iwwuso(t) for some free ¢ (main theorem).
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EXAMPLE 2: RANDOM GRAPH

Def: The random graph fR is a countable graph (nonoriented and without
loops) such that for all finite sets X, Y, there exists a vertex x connected to
all vertices in X but none inY.

(Formal definition by fransfinite induction.)
R has a decidable FO-theory
All finite graphs are induced subgraphs of fA.

Fix a finite set Z of vertices of R, then X C Z can be identified by
a single vertex x; connected to all elements in X buf none in Z \ X.
Prop: R is not FS-interpretable in a tree.
Proof: Assume $R is finite set inferpretation of some free.

Consfruct a such that:
for every finite graph G, Pr(G) ~ Irg(t) for some tree t.

for every finite graph G, G ~ Iwwuso(t) for some free ¢ (main theorem).
Confradiction: The set of finite graphs is not of bounded clique-width.
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Focus on car parking
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OVERVIEW OF THE PROOF

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :
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OVERVIEW OF THE PROOF

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Rc is an order on Irg(t) which has all the properties of C over
finite sets. In particular it a minimal element L.
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Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Rc is an order on Irg(t) which has all the properties of C over
finite sets. In particular it a minimal element L.

Def: Call Atoms the set of Rc-minimal non-_L elements (FO-definable).
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OVERVIEW OF THE PROOF

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Rc is an order on Irg(t) which has all the properties of C over
finite sets. In particular it a minimal element L.

Def: Call Atoms the set of Rc-minimal non-_L elements (FO-definable).
IFS (t)|At0ms ~ S.
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OVERVIEW OF THE PROOF

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Rc is an order on Irg(t) which has all the properties of C over
finite sets. In particular it a minimal element L.

Def: Call Atoms the set of Rc-minimal non-_L elements (FO-definable).
Irs(t)|Atoms = S.
Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) is an injection.
A — u Witht = V(A u)
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OVERVIEW OF THE PROOF

Corollary of Main Theorem: Fix Irg. There exists Iywnso such that for
every S and t,

PF<S) ~ Ips(t) iff S~ IWMSQ(t) :

Rc is an order on Irg(t) which has all the properties of C over
finite sets. In particular it a minimal element L.

Def: Call Atoms the set of Rc-minimal non-_L elements (FO-definable).
IFS (t)|At0ms ~ S.

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection,
A — u Witht = V(A u)

By sending Irs(?)|atoms =~ S ViA f, one obtains Iywyso(t) ~ S.

Finite et interpretations/Szeged 25.09.2006 — p. 1



SPARSITY

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)
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SPARSITY

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)

Step 1: Constfruct g : Atoms — dom(t)
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Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)

Step 1: Constfruct g : Atoms — dom(t)

Step 2: Turn g into the injection f.
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SPARSITY

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)

Step 1: Constfruct g : Atoms — dom(t)

Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t).
The frontier nodes Iz are the extremities of Z.
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SPARSITY

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)

Step 1: Constfruct g : Atoms — dom(t)
Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t).
The frontier nodes Iz are the extremities of Z.

Lemma: Every WMSO-definable mapping ¢g such that for every zone 7,
g7 2)| < |Z| + K.|F| (K-sparsity)

can be turned into an injection in a WMSO-definable way.
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SPARSITY

Consfruct ¥(X, z) WMSO st:
f: AtomsC P(dom(t)) — dom(t) IS an injection.
A — u Witht = V(A u)

Step 1: Constfruct g : Atoms — dom(t)

Step 2: Turn g into the injection f.

Def: A zone Z is a finite connected subset of dom(t).
The frontier nodes Iz are the extremities of Z.

Lemma: Every WMSO-definable mapping ¢g such that for every zone 7,
g7 2)| < |Z| + K.|F| (K-sparsity)

can be turned into an injection in a WMSO-definable way.

Idea: Each f(X) is a car. Compute the flow of cars, and an ifinerary for
each car.

At the end, one must have at most one car per node.
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CONCLUSION

New object: finitfe set interpretations
Elementary properties:

e Composition: Ixp o Irs ANd Igg o Iwnmso Are FS-interpretation.
o Transfer: Ips(S) = ¢ iff S = Irs(¢).
e Existence of a universal FS-interpretation Pr.

Advanced results:
e Closure of FS(t) under quoftient.
e Main result: PF(S) ~ Ips(t) iff S ~ IWMSO(t)-

Applications:
e The free monoid (fwo elements) non FS-interpretable in a tree.
e Random graph non FS-interpretable in a tree.
e Strictness of the tree-automatic hierarchy (variant by Blumensath).
e Intrinsic regularity in Pr(N, Succ) (extension of (Barany)).
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