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We establish that every equational graph can be characterized, up to isomorphism, by a 

formula of monadic second-order logic. It follows that the isomorphism of two equational 

graphs is decidable. We also establish that a graph specified in an equational graph by monadic 

second-order formulas is equational. 

Introduction 

This paper continues the study of the monadic second-order logic of countable 
graphs that has been initiated in Courcelle [ll]. The aspects of this research 
concerning finite graphs are presented in Courcelle [9, 10, 12-151. 

In order to introduce our results, we review a few basic definitions. A graph is 
dejinable if it is characterized, up to isomorphism, by a closed formula of monadic 
second-order logic. It is equational if it is a component of the least solution of a 
system of equations in graphs. A graph is offinite width if it is expressible by a 
finite or infinite graph expression constructed with finitely many of the graph 
operations introduced in Bauderon and Courcelle [4] (see also [15]). Not every 
infinite graph is of finite width, but every equational graph is. All these properties 
hold in a more or less trivial way, for finite graphs. We only consider countably 
infinite graphs in this paper. 

It is proved in [ll] that every definable graph of finite width is equational. The 
main result of this paper is that every equational graph is definable. Hence a 
graph is equational iff it is definable and is of finite width. (A graph is of finite 
width iff it is of finite tree-width, in the sense of Robertson and Seymour [21].) 

Since the monadic second-order theory of an equational graph is decidable 
(Courcelle [ll]), it follows that the isomorphism of two equational graphs is 
decidable. 

* This work has been supported by the “Programme de Recherches Coordonnees: Mathematiques 
et Informatique”, and by the ESPRIT-Basic Research Action contract No. 3299, “Computing by 
graph transformations”. 
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greco-prog.fr. 
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We also introduce the relative definability of graphs. A graph G is definable in a 
graph H if, roughly speaking, its vertices and edges can be defined from those of 
H, by means of monadic second-order formulas. (A precise definition is given in 
Section 3.) The connected component of a designated vertex of a graph H is 
definable in H in this sense. We also establish that, if a graph is definable in an 
equational graph, then it is equational. 

We now sketch the technique used to establish the main result. An equational 
graph G can be described by an infinite regular tree called its syntactic tree. This 
tree can be defined in G in the above sense. A formula can express that the 
defined tree is the desired syntactic tree. Another formula can “verify” that the 
considered graph is isomorphic to the “value graph” of the defined syntactic tree. 

The paper is organized as follows. Section 1 gives preliminary definitions on 
graphs and graph operations. Section 2 introduces systems of graph equations and 
states a few preliminary results concerning them. Section 3 defines monadic 
second-order logic and definability notions concerning graphs. Sections 4 and 5 
contain the proof of the main theorem. The result on the relative definability of 
equational graphs is proved in Section 6. An appendix contains some technical 
proofs that are omitted in Section 2. 

1. Notations and definitions concerning graphs 

We denote by N the set of nonnegative integers, and by N, the set of positive 
ones. We denote by [n] the interval {1,2,3, . . . , n} for n > 0 (with [0] = 0). 

For sets A and B, we denote by A - B the set {a E A 1 a 4 B}. By a partition of 
a set A, we mean an indexed set (Ai)isr of possibly empty, pairwise disjoint 
subsets of A, such that A = lJ {Aj ( i E I}. 

The domain of a partial mapping f :A-, B is denoted by Dam(f). The 

restriction off to a subset A’ of A is denoted by f 1 A’. The partial mapping with 
an empty domain is denoted by 0, as the empty set. If two partial mappings 
f :A+ B and f’:A’+B coincide on Dam(f) flDom(f’) we denote by f Uf’ 
their common extension into a partial mapping: A U A’ --* B, with domain 
Dam(f) U Dom(f’). 

The cardinality of a set A is denoted by Card(A). The powerset of A is denoted 

by p(A). 
A binary relation R on a set A is considered as a subset of A x A. Hence, x R y 

and (x, y) E R are equivalent notations. The transitive closure of R is denoted by 

R+, and its reflexive and transitive closure is denoted by R*. The set of 
equivalence relations on A is denoted by Eq(A). 

The set of nonempty sequences of elements of a set A is denoted by A+. The 
generic sequence is denoted by (al, . . . , a,,) with commas and parentheses. The 
empty sequence is denoted by ( ), and A* is A+ U {( )}. When A is an alphabet, 
i.e., when its elements are letters, a sequence (al, . . . , a,,) in A+ can be written 
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unambiguously ala, - + - a,,. The empty sequence is denoted by E, a special symbol 
reserved for this purpose. The elements of A* are called words. The length of a 
sequence p is denoted by (p 1. 

We shall use := for “equal by definition”, i.e., for introducing a new notation. 
The notation :e will be used similarly for defining logical conditions. 

Graphs 

As in [4, 10-141, we deal with labeled, directed hypergraphs equipped with a 
sequence of distinguished vertices called the sequence of sources. The labels are 
chosen in a ranked alphabet, i.e., in a set A, each element of which has an 
associated integer (in N) that we call its type. The type mapping is t : A + N. The 
type of the label of a hyperedge must be equal to the length of its sequence of 
vertices. (This type may be 0, i.e., we allow hyperedges with no vertex.) In order 
to shorten the statements we shall simply call graphs these hypergraphs, and 
edges their hyperedges. 

1.1. Definitions (Concrete and abstract graphs). Let A (and t) be as above, let 
n E N. A concrete n-graph is a quintuple G = (V,, EG, lab,, ve&, srcG) where: 
-VG is the set of vertices of the graph, 
- EG is its set of edges, 
- labG : EG +A is a total mapping that assigns to each edge of G a label in the 

alphabet A, 
-vertc : EG+ Vg is a total mapping that associates with an edge e of G, the 

sequence of its vertices (this sequence must be of length r(e) : = z(lab,(e)) and 
its ith element is also denoted by vert,(e, i)), and finally 

- srcG is a sequence of length n in V& (or equivalently a mapping: [n]-* V,), 
called the sequence of sources. 
We shall denote by src&i) the ith element of the sequence srcG. (If n = 0, then 

G has no source.) “Source” is just an easy sounding word for “distinguished 
vertex”. There is no notion of flow involved. The integer n is the type of G. 

Whenever we need to specify the alphabet A, we say that G is a concrete 
n-graph over A. A concrete graph is a concerte n-graph for some n > 0. 

Let G and H be concrete graphs of the same type n. A homomorphism : G-, H 
is a pair of mappings h = (hv, hE) where hv: VG + V,, h,: EG -+ EH, and such 
that: 

lab, 0 hE = labG, 

hv(vertG(e, i)) = vert,(h,(e), i) for all i E [z(e)], all e E EC, 

hv(srcG(i)) = srcH(i) for all i E [n]. 

If no ambiguity can arise, we denote hv and h, by h. 
An iSomorphi.sm is a homomorphism such that hv and hE are bijective. The 

isomorphism class of a concrete graph is called an abstract graph, or simply a 
graph in the sequel. 
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A graph G is finite if VG and EG are finite. Otherwise, a graph has at most 
countably many vertices and edges. 

We denote by FCG(A),, by FCG(A), by FG(A),, and by FG(A), the sets of 
finite concrete n-graphs, of finite concrete graphs, of finite n-graphs, and of finite 
graphs respectively, over A. The notations CG(A),, CG(A), G(A),, and G(A) are 
used similarly for the corresponding sets of finite and infinite graphs. 

A vertex TV belongs to an edge e, if TV = vert&e, i) for some i. A vertex is 
isolated if it belongs to no edge. An internal vertex of G is a vertex that is not a 
source. The sources are called external vertices. We denote by IVc the set of 
internal vertices of G. A graph with no edge and no internal vertex is 
degenerated. 

For every n in N, we denote by n the unique degenerated n-graph with n 
pairwise distinct sources. For every a in A of type n, we denote by a the n-graph 
with a single edge e labeled by a, no internal vertex, and a sequence of n pairwise 
distinct sources equal to the sequence of vertices of e. 

1.2. Definition (Subgraphs). Let G be a concrete graph. A subgruph of G is a 
concrete graph H such that Vn sV,, EH SE,, lab, =labc r EH, vertH = 
vert, 1 EH and srcH is the sequence obtained from srco by the deletion of the 
vertices of VG - VH. (Hence r(H) s r(G).) This is denoted by H c G. 

If V E VG and E E EG, we denote by G r (V U E) the subgraph H of G such 
thatE,=EandVH=VU{uEVo( 21 is a vertex belonging to an edge e of E}. 

Two concrete graphs G and H are disjoint if VG n VH = 0 and EG rl EH = 0. 
The union of two disjoint concrete O-graphs G and H is the O-graph K such that 
VK = Vo U VH, EK = EG U EH, G c_ K, and H E K. This notion extends to finite 
or countable sets of pairwise distinct O-graphs in an obvious way. 

1.3. Definition (Quotient graphs). Let G be a concrete graph, let = be an 
equivalence relation on VG. We denote by [v] the equivalence class of v w.r.t. =. 

We denote by Gl- the concrete graph H such that VH = Vc/=, EH = EG, 
lab, = labc , vertH(e, i) = [verto(e, i)] f or all e E EH (= EG), all i E [t(e)], and 
srcH(i) = [m&i)] for all i E [t(G)]. 

We call G/- the quotient graph of G by =. There is a canonical surjective 
homomorphism : G ---, G / = . 

If G is an abstract graph, then G/- is the isomorphism class of G/- where G 
is any concrete graph representing G. 

We recall from Bauderon and Courcelle [4] the definition of graph substitu- 
tions. This notion is fundamental in the theory of systems of equations. 

1.4. Definition (Graph substitutions). We first give a basic definition, and then 
we proceed by successive extensions. 
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Basic definition. Let H, Cl, . . . , G,, be pair-wise disjoint concrete graphs. Let 

el, . . . , e, be n distinct edges of H, such that r(ei) = Z(Gi) for all i = 1, . . . , n. 
We denote by G = HIGIIel, . . . , G,/e,] the result of the simultaneous substitu- 
tion in H, of G1 for e,, . . . , and of G,, for e,. This graph will also be denoted by 

H[Gl, . . . , G,], when the sequence e,, . . . , e, is known from the context. 
Formally, G is the r(H)-graph defined as follows. 

G = K/- where: 

VK=V~UVo,U*~*UV~“, 

EK = EH U E,, U - * - U EG. - {el, . . . , e,}, 

lab, = (lab, U lab,, U . - * U lab,& r EK, 

vert, = (vertH U vert,, U . . . U vert,) 1 EK, 

src&i) =f”(sr+(i)), for all i in [z(H)], where 
fv is the canonical surjection : VK+= VG, and 
= is the equivalence relation on VK generated 
by the set of pairs of vertices: 

{(VWf(ei, i), Sr%,(i)) I i E [nl, i E [t(ei)l>- 

We let fE be the identity : EK+ EG, hence, f = (fV,fE) is the canonical 
surjective graph homomorphism : K 4 K/Z = G. 

We also let: 

& = the inclusion homomorphism : Gp-, K, 

(the notation Go is introduced in Definition 1.5 below) and we let: 

gi = the homomorphismf ogi : Gy+ G for i = 1, . . . , n. 

We call (gr, . . . , g,,) the tuple of homomorphisms associated with the substitu- 
tion in H, of G, for e,, . . . , and of G,, for e,, (or more shortly ussociuted with 

HIGIIel, . . . , G/e,,]). 
We also say that a vertex x of H, is mapped into the vertex fv(x) of 

H[GI, . . . , Gl. 
Let (G;, . . . , GL) be another n-tuple of graphs, of the respective types of 

G,,..., G,. Let We : Gi+ GI be a homomorphism for each i. We shall denote by 

H[w,, . . . > w,] the homomorphism h : G = HIG1, . . . , G,]+ G’ = H[G;, . . . , GL] 
defined as follows. (This notation assumes that the sequence of edges to 
which substitutions are made, is known from the context.) In order to define it, 
we let K’ and f’ be as K and f above, defined w.r.t. H and G;, . . . , GA. We let: 

w”:VK+VK’ be idv, U wIv U * * - U w,v. 

and wE:EK+ EKp be defined similarly. Hence w is a homomorphism:K-* K’. 
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There exists a unique homomorphism, denoted 
following diagram commutative: 

K k K’ 

by H[w, . . . , w,], making the 

f I I f' 
H[G, . . . , ‘Xl = G “[,,,, ,..., ,vy G’ = H[GI, . . . > Cl 

If (a, . . . , g,J and (gi, . . . , g;) are the tuples of homomorphisms associated 
with H[G,, . . . , G,] and H[G;, . . . , GA], then one has the following commuta- 
tive diagram* 

G; ‘% l G;O 

8, 
I I 

sl 

MG,, . . . , Cl ~lwl,..., HP;, . . ., Cl 

We now consider several extensions. 
First extension. The definition of HIGl/el, . . . , GJe,] extends as follows to 

the case where the graphs ZZ, Gr, . . . , G,, are not pairwise disjoint. One 
constructs n concrete graphs GI, . . . , c’,, respectively isomorphic to 

GI, . . . , G,, and such that ZZ, GI, . . . , f$, are pairwise disjoint, and one lets 

HIGIIeI, . . . , G,,/e,]:= H[@el, . . . , GJe,]. 

Again we omit the mention of e,, . . . , e, if they are known from the context. 

The definitions of the tuple of homomorphisms, and of H[w,, . . . , w,] extend 
immediately. (The graphs GI, . . . , Gn are constructed in some canonical way that 
we need not specify. Hence the result of the substitution is uniquely defined.) 

Second extension. Let {ei 1 i E I} be a possibly infinite indexed set of pairwise 
distinct edges of a graph H. Let Gi be a concrete graph of the type of ei for each i 
in 1. Then, one can define H[Gi/ei; i E I] by substituting simultaneously Gi for ei, 
for all i in 1. The definitions given above for the case of finitely many edges 
extend immediately. 

Third extension. Let U be a finite or infinite ranked alphabet, let H belong to 
CG(A U U) and G,, be a graph of the type of u for each u in U. Then, we denote 
by H[G,/u; u E U] the result of the simultaneous substitution of G, for all edges 
of H labelled by U, and for all symbols U. We shall mainly do this in cases where 
U is a finite set enumerated as {ul, . . . , u,}, and the graph to be substituted for 

ui is Gi. We shall use in this case the notation HIGIIul, . . . , G,/u,] or the 
notation HIG1, . . . , G,,] if U is known from the context. 

This definition also extends to the case of abstract graphs. 

1.5. Definition (Graph operations). A graph operation is a mapping 
f : CG(A),, x . . . x CG(A),, + CG(A), of the form: 

f(G, . . ., Gk):= HIGIIel, . . . , Gklek] 
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for some fixed finite graph H of type n and some fixed edges el, . . . , ek of H, of 
respective types nl, . . . , nk. We say that f is defined by the tuple (H, el, . . . , ek). 

It operates on abstract graphs in an obvious way. 
We now recall the definitions of the basic graph operations introduced in [4]. 

The first operation is the disjoint sum, @,,, of profile n x m - n + m, defined by 
(H, e, e’), where H is the graph with two edges e and e’, with set of vertices 
[n + m], and such that: 

vert,(e) := (1, . . . , n) with n = t(e), 

vertH(e’):=(n+l,...,n+m) withm=r(e’), 

srcn = (1, . . . , II + m). 

The second operation is the source redefinition, associated with a mapping LY 
from [p] to [n]. It is denoted by a,, has the profile n+p, and is defined by the 
pair (H, e) where H consists of a single edge e of type n, has the set of vertices 
[n], and is such that vert,(e) := (1, . . . , n) and srcH := ( CY( l), . . . , a(p)). (If G is 
as in Definition 1.1, then a,(G) = (V,, EG, labc, vertc, srcG’(Y)). If p = 0, then 
(Y is necessarily the empty map (always denoted by O), and a,(G) is the O-graph 
obtained from G by “forgetting” its sources. We also denote it by Go. 

When p is small it is convenient to write oi,,i,,,,.,i,(G) instead of u,(G), with 
ii = a(j) for j = 1, . . . , p. 

The third operation is the Source fusion. For every equivalence relation 6 on 
[n], the mapping 0, : CG(A), +CG(A), is associated with the pair (H, e) where 
H consists of a single edge e of type n, with vertices such that vert,(e, i) = 
w?rtH(e, j) iff i and j are equivalent w.r.t. 6. Its sequence of sources is equal to 
v&,(e). Intuitively, the graph 8,(G) is obtained from G by fusing the ith and jth 
sources, whenever i and j are equivalent w.r.t. 6. If 6 is the equivalence relation 
on [n] generated by a single pair (i, j), then we denote f36 by f3,,? It is clear that if 
6 is the equivalence relation generated by a set of pairs {(iI, jl), . . . , (ik, jk)}, 

then: 

1.6. Definition (Paths). With a graph G we associate the set 

P(G):= {(v, e, i, j, v’) ( v, v’ E VG, e E EC, i, j E [r(e)], i f j, 

v = v&&e, i), v’ = vertG(e, j)}. 

A path from v to v’ in G, (or linking v to v’), is a nonempty sequence n in 
P(G)+ of the form: 

x= (u, el? il, jlp %) (VI, e2, i2, j2, 212) . . . (vk--lj ekp ik, jk9 v’h 

Its length is k, and its sequence of vertices is defined as: 

vert(x):=(v, VI, 9, . . . , v&_l, v’). 
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If VI, . . . , vk_* are internal vertices, then rc is an internal path. Note that v and 
u’ may be either external or internal. 

1.7. Definition (Internally connected components). Let G be a concrete graph. A 
subgraph H of G is a concrete internally connected component of G, a cicc for 
short, if it is: 

(1) either an edge, all vertices of which are external, 
(2) or is G r ({v} U E(v)) where v E IVG and E(u) is defined below. 
For every vertex v in IVG, we denote by E(v) the set of all edges of G to which 

belongs a vertex V’ in IVG, that is either equal to u, or linked to u by an internal 
path. It is clear that any two distinct vertices of a cicc are linked by an internal 
path. 

A graph is internally connected if it is not degenerated and has a unique cicc. 
We now give another characterization of the notion of a cicc. By an item of a 

graph (resp. an internal item), we mean an edge or a vertex (resp. an edge or an 
internal vertex). Two internal items i and i’ of a graph G are internally linked, if 
there exist two internal vertices u and V’ linked by an internal path, and such 
that, either i = v, or u belongs to i, and either i’ = v’, or u’ belongs to i’. This is 
denoted by i = i’. The relation = is an equivalence relation on the set of internal 
items of G. It is clear that a cicc of G is a subgraph of G of the form G r C, 
where C is a subset of VG U EG, that is is the equivalence class modulo = of an 
internal item of G. 

Every path of Go is internal. A subgraph H of G such that H” is a cicc of Go is 
called a concrete connected component of G (a ccc for short). This notion is 
equivalent to the classical notion of a connected component, in the case of graphs 
with edges of type at most 2. See Example 1.11 below. A graph is connected if it 
has a unique ccc. 

For every concrete graph G, we denote by CICC(G) and by CCC(G) its sets of 
concrete internally connected components, and of concrete connected com- 
ponents respectively. 

An internally connected component (an ice) of G (resp. a connected component 
(a cc)) is the isomorphism class of a cicc (resp. of a ccc) of G. We denote by 
ICC(G) and CC(G) the sets of ice’s, and of cc’s of G respectively. 

The notions of ice and of cc can be defined for abstract graphs in an obvious 
way. 

In order to express formally a graph as a combination of its cicc’s, we introduce 
new graph operations. 

1.8. Definition (Parallel composition). For every n 3 0 we define a graph 
operation //, of profile n x n + n. It is associated with the tuple (H, e, e’), where 
H is the graph with set of vertices [n], with two edges e and e’, and such that: 

v‘%&(e) = veti, = sEH = (1, . . . , n). 
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Intuitively, G //,, G’ is the result of gluing G and G’ by their sources, in their 
order. Note that G //0 G’ = G @ G’ if G and G’ are O-graphs, We shall omit the 
subscript n, i.e., we shall overload the symbol //, and we shall do the same for @. 

We now extend it to indexed sets of graphs. Let (Gi)i.r be an indexed set of 
concrete n-graphs. The graph G = //{Gi 1 i E Z} is defined as K[Gi/ei; i E Z], 
where K is as H above with set of edges {ei 1 i E Z}, all of them with (1, . . . , n) as 
sequence of vertices. Intuitively, G is the result of gluing the graphs Gj by their 
sources, in their order. 

If Z is a countable set, and Gi = G for all i E Z, then the graph //{Gi 1 i E Z} is 
denoted by I/” G. 

If A is a set of n-graphs, we denote by //A the graph //{G, 1 i E Z}, where 
{Gi I i E Z} is an enumeration of A. (We mean by this that A = {Gi I i E Z}, and 
that every graph of A is equal to Gi for one and only one i E I). Any two 
enumerations of A define isomorphic graphs. 

These definitions apply to indexed families of abstract graphs as well. 

1.9. Definition (Source-preserving compositions of graphs). We say that a graph 
is source-separated if any two of its sources are distinct. 

A graph operation defined by a tuple (ZZ, e,, . . . , ek) is source-preserving if H 
is source-separated, if it has no internal vertex and no other edges than 

el, . . . , ek, and if each of these edges has pairwise distinct vertices ordered in the 
way these are in the sequence of sources of H. If f is a source-preserving graph 
operation, and G = f (G,, . . . , Gk) we also say that G is a source preserving 
composition of Gi, . . . , Gk. 

Let Gr , . . . , Gk be source-separated concrete graphs, and let G be a concrete 
graph, that is a source-preserving composition of them as above. Because of the 
ordering of the vertices of the edges of H, each of the graphs Gi is a subgraph of 
G. 

The sources of any of these graphs Gi remain sources of G (after possible 
fusion with other sources of G,, . . . , G,J, and each internal vertex of G 
corresponds to one and only one internal vertex of one of the graphs G,, . . . , Gk. 
Every edge of G also corresponds to one and only one edge of one of the graphs 

Gr, . . . , Gk. Furthermore two internal items of G are internally linked (in G) iff 
they belong to the same graph Gi, and are internally linked in this graph. Hence, 
roughly speaking, CICC(G) = CICC(GJ U * * - U CICC(G,). (One has actually a 
canonical isomorphism rather than an equality.) 

Note that the parallel composition of two graphs is a source preserving graph 
operation. 

1.10. Lemma. (1) Let G be a concrete source-separated graph. There exists a 
partition {A,, . . . , A,‘} of CICC(G) such that G is isomorphic to a source- 
preserving composition of the graphs /IAl, llA2, . . . , lfAk. 
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(2) Zf, furthermore, ICC(G) is finite, then there exist G1, . . . , G,,, 
G n+l, * . * , G n+p in CICC(G) such that G is isomorphic to a source preserving 
composition of the graphs G1, . . . , G,,, II” G,,,, , . . . , II” G,,,, . 

Proof. (1) Let us form a partition of CICC(G) by putting in the same component 
the cicc’s that have the same set of sources. This defines a partition with finitely 
many components AI, . . . , Ak. Note that since the elements of CICC(G) are 
subgraphs of G, any two elements of some Ai have the same sequence of sources. 
(All the cicc’s of type 0 (they are also ccc’s) are in a same component of the 
partition, say Ak.) 

It is then clear that G is a source-preserving composition of //Al, . . . , and //Ak. 
We omit the details. 

(2) If ICC(G) is finite, then each component Ai can be partitioned into 

{Ai,i, . * . , Abni}, such that the graphs of A,,j are all isomorphic to one another. 
Let then {G,, . . . , G,} be an enumeration of lJ {A,j ( i E [k], j E [nil, Ai,j 

is finite}, and {G,,,, . . . , G,,,} be an enumeration of the set {B,j ( i E k, 
j E [nil, Ai,j is infinite}, where each Bi,j is an element of Ai,j. The result follows 
then from (l), and from the facts that //Ai is isomorphic to 

U/Q&IIA,~)II~ * . ll(llA,n), and that //Ai,j is isomorphic to //” Bi,jt where Ai,j is 
. 0 

Let us finally observe that a nonempty graph is internally connected iff it has no 
isolated source, and is not of the form G //G’, for any two nondegenerated 
graphs G and G’. 

1.11. Example. A graph G is shown in Fig. 1. (The vertices marked 1, 2, 3 are 
its first, second and third sources respectively.) It has countably many “parallel 
edges” labelled by a. It is connected but not internally connected. The set 
CICC(G) consists of countably many copies of the graph a (i.e., 1 l % l 2) and of 

the graph H also shown in Fig. 1. 
The graph G can be written f (//” a, H), where f is the graph operation 

associated with the tuple (K, e, e’), where K is the graph: 

1 2.3 .&.A. 

2. Systems of equations and equational graphs 

2.1. Definitions. Let A be a finite ranked alphabet called the set of terminal 
labels. A system of graph equations over A, of simply a system, is a sequence of 
equations of the form S = (ui = Hi, . . . , u, = H,), where U = {u,, . . . , u,} is a 
ranked alphabet called the set of unknowns of S, and Hi E FCG(A U Cl),,,, for all 
i=l * - , It. An edge of Hi, i E [n] is terminal if its label is in A, and nonterminal 
othekise, i.e., if its label is in U. 
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. 
\I b 

c. 
Graph G 

b \I c 

. 

Graph H 

Fig. 1. 

A solution of S is an n-tuple (G,, . . . , G,) of graphs in G(A), such that 
t(Gi) = t(ui), and Gi = Hi[G*/U,, . . . , Gn/u,] for all i = 1, . . . , n. 

A few examples are given below. They show that a system S has in general 
several solutions. The set of solutions of S contains an initial solution. The term 
initial is used w.r.t. an appropriate category of solutions. The introduction of 
category theory makes possible to apply the notion of least fixed point of a functor 
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[l]. This notion and its application to the construction of solutions of systems of 
graph equations are briefly surveyed in the appendix. A complete treatment can 
be found in Bauderon [2, 31. An alternative construction of the initial solution is 
given in Courcelle [ll], in terms of infinite graph expressions. The solution 
constructed in this way, independently of category-theoretical notions, is called 
the canonical solution of S. We shall use here a variant of the construction of [ll] 
that is more appropriate to the purposes of this paper. 

A graph is equational if it is dejined by a system, i.e., if it is a component of the 
canonical (equivalently initial) solution of this system. A finite graph is trivially 
equational. 

2.2. Example. A system S is shown in Fig. 2. The terminal alphabet is 
A = {a, b, c}, its unknowns are ul, u2, and u3. All symbols are of type 2. By Si, 
i = 1,2,3, we denote the system reduced to the equation with left-hand side ui. 

The graph G, of Fig. 3 is a solution of S,. For every solution G of S,, for every 
graph G’ of type 0, the graph G @ G’ is also a solution of S,. But G1 is the 
(canonical) solution of S,. The graphs G2, Gi and G;:= B,,,(G,) are three 

u, = b I I “I 
2 0 -). 

c 

1 b 

04 

u3 = “3 li “3 

. 
2 

Fig. 2. 



The monadic second-order logic of graphs IV 20.5 

solutions of $. (The graph G!j is not shown in Fig. 3.) The graphs G2 and G3 are 
the solutions of S, and S, respectively. Note that G, is not connected, although 
the right-hand side of S, is connected. Observe that G2 = //“a and that G3 = /l”H 
(where H is the graph: 1 l 4 l l 2). 

2.3. Definition (Syntactic trees). Let S = ( ui = Hi; i E [n]) be a system over A, 

with ni = r(Ui) = z(HJ for all i = 1, . . . , n. 

We shall describe its (canonical) solution (G,, . . . , G,) by means of an n-tuple 

(T,, . . . , T,) of infinite trees, where T will be called the syntactic tree of Gi. 
For each i in [n], we let (ei,r, . . . , ei,,,) be a fixed enumeration of the set of 

graph G, 

1 

. 

a a 

W 

a . . . . 

. 

2 

graph ‘2, graph G; 

b 

I 
. 

b 

2. . 

graph G, 

Fig. 3. 
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nonterminal edges of Hi. We let (Wi,i, . . . , Wi,q) be the corresponding sequence 
of labels (hence Wi,j E U). We let r = mm{mi 1 i E [n]}. 

An (n, r)-tree is a 4-tuple T = (ZV, 14, lab, (SUCj)j~~rl) where: 
l N is a finite or countable set, the set of nodes, 
l rt is a node, the root of the tree, 
l lab: N+ [n] is a total mapping defining the label of a node; one lets 

Ni = lab-‘(i), for i E [n], 
l SOCj E N X N is a binary relation: (,u, p’) E SUCj means that the node p’ is a 

j-successor of the node ,u; the integer j plays the role of a label attached to the 
edge from p to ~1’; hence one assumes that sucj n sucj. = 0 for j’ #j; one lets 
suc=U{SUCi~jE[r]}, and one assumes that (N, 19, sue) is an unordered tree 
in the classical sense with {y’ 1 (p, p’) E sue} as set of successors (i.e. of sons) 
of node CL. 
We say that (N, rt, sue) is a tree to mean that for every node p there is one 

and only one path from rt to ~1. A path is here a sequence of nodes 

(Pi, P2,. . . > pk) such that (pi, pi+i) E suc for all i = 1, . . . , k - 1. 
We say that T is a syntactic tree of S, if T is an (n, r)-tree, and if the following 

condition holds: 

(ST): for every node ,U E Nip for every j E [r], if Wi,j = uk then ~1 has one and 
only one j-successor p’, and p’ is labeled by k, and if j > mi then p has 
no j-successor. 

It is clear that, for every i E [n], there is one and only one syntactic tree T, the 
root of which is labeled by i. This tree is denoted by &, and is called the syntatic 
tree of Gio 

We denote by T< the initial part of Ir;: consisting of its first j levels, with Tf 
reduced to the root, labeled by i. 

A tree is a graph, and its nodes could be called vertices. But we keep the term 
“node” for trees. In complicated proofs involving simultaneously a graph and a 
tree describing it, having two distinct words makes statements more clear. 

A syntactic tree T is regular in the following sense. For any two nodes Jo and P’ 
with the same label, the two subtrees Tp and T,., issued from p and p’, are 
isomorphic. (An isomorphism must preserve the labels of nodes and of edges.) 

2.4. Definition (The value of a syntactic tree). We now show that Gi can be 
considered as the result of gluing infinitely many copies of finitely many graphs, in 
a way defined by T. We assume that HI, . . . , H,, are pairwise disjoint concrete 
graphs. 

For every i E [n], we let del(H,) be the graph 

Hi 1 (V, U E, - {ei,,, - - . 7 emi>). 

Hence del(Hi) is a subgraph of Hi (obtained from Hi by the deletion of some 
edges, whence the notation). 
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Let T be a syntactic tree (N, rt, lab, (SUCj)jsrml), and let i0 = lab(rt). 
Hence T = To. Let ko = t(UiJ = t(GiJ. We now construct a graph G that we 

shall denote by eval(T). 
For each ~1 EN, and HE CG(A), we denote by p - H the concrete graph 

isomorphic to H, such that V,.H = {p} X V,, E,., = {p} x En, (p, v) co- 
rresponds to v for v E VH, and (,u, e) corresponds to e for e E EH, in the 
isomorphism : p * H + H. 

The graphs y - del(HJ”, for all y E Ni, i E [n], are pairwise disjoint concrete 
O-graphs. Let K be their union, equipped with the sequence of sources of the 
graph rt - del(Hi,,). We call it the intermediate graph associated with T. 

We let 2: be the equivalence relation on VK, generated by the set of pairs of 
vertices of the form: 

((P, ve&fi(ei,jp k)), (cl’, sWfii.(k))) 

where (p, ,M’) E SuCj, j E [r], i = lab(p), i’ = lab@‘), k E [r(ei,j)]. 
The graph associated with T is defined as Kl-, and is denoted by eval(T), or 

evaI, if, for some reason, we wish to specify the relevant system. This graph is 
infinite in general. 

This construction also applies to the partial syntactic trees Tj, and yields finite 
graphs, denoted by eval(Tj). 

2.5. Proposition. The n-tuple (evaIS( . . . , evaI,( is the canonical solution 
of s. 

The proof is in the Appendix. 

2.6. Example. The syntactic trees of the system S of Example 2.2 are shown in 
Fig. 4. Fig. 5 shows simultaneously the syntactic tree T of G1, the graph del(H& 
the intermediate graph K and its quotient G, = Kl- = eval(T). The dotted lines 
on the drawing of K are not edges. They show pairs of vertices generating =. 0 

Y 1 1 T 2 1 

9 1 1 
T 

2 1 

9 1 1 
9 

2 1 

Fig. 4. 
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Graph K, 
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Graph G, 

Graph del (H,) 

Fig. 5. 

2.7. Deihition. A system S = (Ui = Hi; i E [n]) is separated, if the graphs Hi are 
source-separated and U-separated, for all i. (We say that a graph is V-separated if 
the sequence of vertices of an edge having its label in V has no repetition. It is 
source-separated if its sources are pairwise distinct; see Definition (1.9).) 

2.8. Lemma. The graphs defined by a separated system are source-separated. 
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Proof. Let S be separated, let Gi = eval(Q where T is the syntactic tree of Gi. 
By Definition 2.4, Gi = Ki/E where Ki is the intermediate graph associated with 
z. It is easy to check that no two sources of Ki are equivalent by =. We omit the 

details. Cl 

2.9. Proposition. Let S be a separated system, let G1, . . . , G,, be its solution. Let 
us assume that none of the graphs Gi, i = 1, . . . , n, is degenerated. Any 
solution of S consisting of source-separated and internally connected graphs is 
isomorphic to the canonical one. 

The proof is given in the Appendix. 

Remarks. (1) In this proposition, the condition that the graphs of the solution of 
S have internal items eliminates systems of the forms (u = r~, v = u > or 
(w = o,(w)). Note that Proposition 2.5 is valid for them. 

(2) The system S, of Example 2.2 is separated. The graph Gi is its unique 
source-separated and internally connected solution. The system S, has no 
internally connected solution. Two connected source-separated solutions of &, 
namely Gz and G& are shown in Fig. 3. (The graph Gb has infinitely many 
a%.) 0 

For every graph G, we denote by sep(G) the unique source-separated graph H 
that is like G except that the ordering of its sources is the ordering of their first 
occurrences in srcG, i.e., such that: 
l srcG = (v,, v2, . . . , v,) for some ul, . . . , v,, 

’ srcH = (vil7 vi,, * * . 7 vim)7 

l ik+l is the least integer i such that Vi $ {Vi,, . . . , Vik}, k 2 0. (Hence iI = 1.) 
There is a unique mapping CY, and a (nonunique) mapping /3 such that 

G = a,(sep(G)) and sep(G) = as(G). 
The next proposition shows that every equational graph is of the form o,(G), 

where G is defined by a separated system. 

2.10. Proposition. For every system S, one can construct a separated system 
defining the graphs sep(GI), . . . , sep(G,J where (G,, . . . , GJ is the solution of S. 

The proof is given in the Appendix. 

2.11. Example. Let S be the system shown in Fig. 6, with u of type 2. Let G be 
its solution. The system S’, also shown in Fig. 6, is separated. Its unknown v is of 
type 1 and its solution is the pair of graphs (G, a1(&2(G))), where u defines G, 
and v defines ~ri(&~(G)). 

2.12. Detinition (Extended systems). Let A and U = {ur, . . . , u,} be as in 
Definition 2.1. Let u” be the new ranked alphabet {ur ( i E [n]}, disjoint from 
A U U, with rank mapping t such that r(uy) = t(ui). 
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” 

system s 

system S’ 

Fig. 6. 

An extended system with set of unknowns U, is a sequence of equations S of 
the form (ul = H,, . . . , u,, = 23,) where Hi E FCG(A U U U u”),,, for all i = 

1 It. ,a**, 
A solution of S is an n-tuple (G,, . . . , G,) E G(A)” such that: 

and: 
r(Gi) = r(Ui), 

for all i = 1, . . . , n. 
Let S” be the (ordinary) system consisting of the equations of S, augmented 

with the equations: 

for i = 1, . . . , n. Its set of unknowns is lJ U U”. Remark that the right-hand sides 
of these equations are not graphs, but graph expressions. 

It is clear that the canonical solution of S” is a 2n-tuple of graphs of the form 

(G,, . . . , G,, G;, . . . , Gi), where Gf = //-Gi for all i = 1, . . . , n, and that 

(G,, . . . , G,) is a solution of S. This n-tuple (G,, . . . , G,) is called the solution 
of S, and one says that the graphs G1, . . . , G,, are defined by S. Hence, extended 
systems define equational graphs. (Since an equation of the form u = u //G has 
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many solutions, a system of the form S” has solutions that are not of the form 

(G,, G2,. . . , G,, //“Cl,. . . , ll”G,,) for any G,, . . . , G,.) 
An extended system S as above is separated, if the graphs Hi are source- 

separated and (U U U-)-separated. It follows that S is separated iff S” is 
separated. Hence, by Lemma 2.8, the graphs defined by a separated extended 
system are source-separated. 

We now define syntactic trees for the graphs defined by extended systems. In 
Definition 2.3, it suffices to do the following modifications: 

- (ei,,, . . . , e,,,,) is an enumeration of the set of nonterminal edges of Hi, i.e., 
of the set of those having a label in U U U”, 

- (wi,l, . * . 7 wi,,,) is the corresponding sequence of labels, (hence wi,j E U U 

0, 
- in Condition (ST), one adds the following clause: if p E Ni, j E [m,], and 

Wi,j = u:, then p has w j-successors, and all of them have the label k. 
The definition of evaI, is as in Definition 2.4. 

2.13. Proposition. Let S be an extended system with n unknowns, and let 

(Tl, . . * , T,) be the associated sequence of syntactic trees. The n-tuple 
(evaI( . . . , evaI( is the solution of S. 

Proof. Let (T;, . . . , TL, TA+l,. . . , T&J be the sequence of syntactic trees 
of the (ordinary) system S”, with set of unknowns {ul, . . . , u,, UT, . . . , ut}. 

It is not hard to prove that evaI& TI) = evaI,( and that evaI,-(TA,,) = 
//” (evals( T)) for all i = 1, . . . , It, by going back to the definitions of S”. Cl 

2.14. Proposition. Proposition 2.9 holds for separated extended systems. 

Proof. See the Appendix. q 

3. Monadic second-order logic and definable graphs 

We review or introduce the following notions: relational structures, monadic 
second-order logic, definability and relative definability of graphs. 

3.1. Definitions. Let R be a finite ranked set of symbols such that each element r 
in R has a rank p(r) in N,. A symbol r in R is considered as a p(r)-ary relation 
symbol. 

An R-(relational) structure is a tuple S = (Ds, (rS)rER) where Ds is a possibly 
empty set, called the domain of S, and r, is a subset of D,P”) for each r in R. We 
denote by Y(R) the class of R-structures. 

We denote by .Z’(R, W) the set of formulas of monadic second-order logic 
written with the symbols of R, and with free variables in W, where W is a set of 
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variables X, Y, X1, X2, 2, Z’, . . . . These variables will denote subsets of Ds, 
where S belongs to 9(R). 

The atomic formulas are: 

X E Y, 

r(X1, . . . , X,), where it = p(r), 

fin(X), 

If x, Y,X,,. .., X,, denote subsets X, Y, X1, . . . , _&, of Ds, S E Y(R), then 
there formulas are true iff, respectively: 

X E E3, 

r&i, . . . ,x,) holds, for some Xi in Xi:., i = 1, . . . , It, 

X is finite. 

The formulas of Z’(R, W) are formed with the Boolean connectives 1 and v, 
and existential quantifications. 

Let S be an R-structure, let cp E %‘(R, W), and y be a W-assignment in S, i.e., 
y(X) is a subset of Ds for every variable X in W (we write this y : W + S to be 
short). We write (S, y) l= Q, iff Q, holds in S for y. We write S l= rp in the case where 
Q, has no free variable. 

A set of R-structures L is definable if it is the set of R-structures where some 
(closed) formula Q, in Z(R) holds. 

In order to make formulas more readable, and also to define conveniently some 
sublanguages of 2?(R, W), we extend the syntax with the connectives A, j and 
VX. We shall also use the following new atomic formulas: 

X = Y equivalent to X c Y h Y E X, 

X = 0 equivalent to VY [Y c X 3 X c Y], 

s@(X) equivalent to vY[Y~X$Y=OvY=X] 

(to mean that X is singleton). 
We shall use the quantifications on finite sets: 

3,X Q, equivalent to 3X [fin(X) h cp], 

VfX Q, equivalent to VX [fin(X) * q]. 

We shall also use lowercase variables x, y, x1, . . . , x, to denote singletons, i.e., 

elements of Ds, S E Y(R). 
This means that: 

3x cp is equivalent to 3x [sgl(x) h q], 

Vx ~1 is equivalent to Vx [s@(x) * q], 

x E Y is equivalent to x c Y. 

For every assignment y : W + S, we shall assume that y(x) is singleton for 
every lowercase variable x in W. We shall write y(x) = d instead of y(x) = {d}. 
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3.2. Definition (Relative definability of structures). Let R and R’ be two ranked 
sets of relation symbols. Let W be a finite set of uppercase variables, called here 
the set of parameters. (It is not a loss of generality to assume that the parameters 
are set variables; this is just convenient for some proofs.) 

An (R, R’)-definition scheme is a tuple of formulas of the form A = 

(4 VI, . . . , % (er,j)rsR,je[/c]dr)) where: 

6 E Z(R’, W) (we call 6 the domain formula of A), 

q$ E 2’(R’, {x1} U W), i = 1, , . . , k, 

e,,j E LE’(R’, {x1, . . . , Q)} U W), r E R, i E [kY’(‘)- 

Let S’ E Y(R’), let y be a W-assignment in S’. A structure S with domain c 
Dss x [k] is defined by A in (S’, y), (this is denoted by S = defA(S’, y)) if: 

(S’,Y)~C$ Ds:={(d,i)IdED~,iE[kl,(S’,~,d)~~i} 

(this set may be empty, and S is still well-defined), 

rs = (((4, G), . . . , (6 4)) ( (S’, Y, 4, . . . 9 4) k e,J 

where j = (iI, . . . , is) and s=p(r). 

(By (S’, Y, 4, . . . > d,) b O,,, we mean (S’, y’) k 87,j where y’ is the assignment 
extending y, such that y’(Xi) = di for all i = 1, . . . , s; analogous notations will be 
used in the sequel). 

In such a case, we say also that S is defined in S’ by A in terms of y. 
In the special case where k = 1, we can replace Ds, x {l} by D,. so that 

Ds E Ds,, and the tuple A can be written more simply (q, I/J, (&),,,). 
We denote by def,(S’) the set of structures of the form def,(S’, y) for some 

assignment y. If W = $3, then def,(S’) is either empty or singleton. We write 
S = def,(S’) iff it is the singleton reduced to S. It may also happen that W is not 
empty, but that all the structures in def,(S’) are isomorphic. Since we are 
actually interested by structures up to isomorphism, we write in this case 
S = def,(S’) where S is any of these isomorphic structures. 

We say that S is definable in S’ if S = def,(S’) for some definition scheme A. 
This notion is trivial for finite structures (because any two nonempty finite 
structures are definable in each other), but it is not for infinite ones. 

The following proposition says that if S = def,(S’, y) then the monadic 
second-order properties of S can be expressed as monadic second-order prop- 
erties of (S’, 7). 

Let A = (6, 1/)1, . . . , I&, (@r,i)reR,je(/cl ,o) be written with a set of parameters W. 
Let V be a set of uppercase variables disjoint from W. 

For every variable X in V, for every i = 1, . . . , k, we let Xi be a new variable. 
We let V = {Xi ( X E V, i = 1, . . . , k}. For every r:V+ 9(D), we let y:V-, 
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9(D x [k]) be defined by 

y(X) = 7(X1) x {l} u * - * u Y(Xk) x (k}. 

With these notations we have: 

3.3. Proposition. For every formula /3 in 2(R, V), one can construct a formula p 
in 2?(R’, v U W) such that, for every S’ in Y(R’), for every p : W-, S’, for every 
p:v-+S’, we have: 

def,(S’, p) i.s defined (Zet us denote it by S), 

y is a V-assignment in S, and (S, y) k B 

iff (S’, tUp)kp. 

Proof. We take fi equal to 

BAsA~~vx~xEX,~Wi(X))l 

where fi is constructed by induction on the structure of p as follows: 

l If /3 is X EX’, then~isX1~XIr\...AXk~X;. 

l If B is r(X’, . . . , X”), then fi is 3~1, . . . , y,, [Wjs[/c]* { B,,j(y,, . . . , yn) A yl E 

x;cl, A * * * A y, E Xzn,}] (where we denote by j(i) the ith element of the 
sequence j). 

l If /? is fin(X), then fi is fin(X,) A - - - A Gn(X,). 
l If/?is-$ll, thenfiislfl,. 
l If /3 is /3i v /&, then fi is fil v /%. 
l If/3is3X/3,,thenfiis3X1,.. . , X, pi. (We assume that all variables of p are 

in V.) 
The verification that /? satisfies the desired properties is easy by induction on 

the structure of /3. Cl 

The following proposition is an easy consequence of the previous one. 

3.4. Corollary. Let S E Y(R), S’ E Y(R’), and S” E Y(R”). Zf S is definable in S’, 
and S’ is definable in s”, then S is definable in S”. 

The definition scheme defining S in S” is obtained by the construction of 
Proposition 3.3 from the definition schemes defining S in S’, and S’ in S”. 

3.5. Definition (Relational structures representing graphs). Let A be a finite set 
of edge labels as in Definition 1.1; let n E N. Let R(A, n) be the following set of 
relation symbols: 

edg, of rank t(a) + 1, for each a in A, 

psipofrankl, foreachi=l,..., n. 
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For every n-graph G over A, let [Gl be the R(A, n)-structure such that: 

DIG, : = VG U EG (we assume that VG fl EG = 0), 

edg, ,&x, ylY . . . , y,J = true iff x E EG, lab&) = a, and 

ver%(x) = (yl, . . . , yk), 

psi ,&) = true iff x = src,(i). 

A first-order formula, saying that some atomic formula edg,(x, y,, . . . , yk) 

holds for some yl, . . . , yk, characterizes the edges among Dlc,. 
It is clear that the structure ICI represents the graph G, i.e., that for any two 

graphs G and G’, ICI is isomorphic to lG’1 iff G is isomorphic to G’. 
A subset L of G(A),, is definable iff there exists a formula Q, in Z(R(A, n)) such 

that G E L iff (Cl k cp, i.e., iff the set of structures representing it is definable. 
A graph G is definable if the set consisting of G is definable, i.e., if this graph 
is characterized up to isomorphism by the validity in ICI of a closed monadic 
second-order formula. The notion of a graph being definable in another one 
follows immediately from the corresponding notion concerning structures. 

In Courcelle [lo-121, a slightly different version of monadic second-order logic 
is used: the structures representing graphs have two domains, the set of edges, 
and the set of vertices, and the formulas are written with variables of two possible 
sorts: the variables of sort “vertex” denote vertices or sets of vertices, and those 
of sort “edge” denote edges or sets of edges. It is not hard to prove that the two 
logical languages yield the same definable sets of graphs. The proof is similar to 
that of Proposition 3.3. 

We now recall a basic theorem from Courcelle [ll]. 

3.6. Theorem. The monadic second-order theory of an equational graph is 
decidable. 

More precisely, given a system of graph equations and a closed monadic 
second-order formula of appropriate type, one can decide whether the formula 
holds in the graph that is the first component of the canonical solution of the 

system. 
Hence, in particular, one can decide whether an equational graph G is 

connected, or internally connected, or source-separated. One can decide whether 
G has k, or infinitely many concrete internally connected components, the set of 
sources of which is a given set of sources of G. This is just to cite a few facts that 
will be useful in the sequel. 

There are two main techniques for proving the decidability of the monadic 
(second-order) theory of a structure (or of a set of structures). The first one uses 
automata. It has been introduced by Biichi [5], and culminates with the results of 
Rabin [18-201. Some difficult aspects of this approach are better understood in 
the framework of infinite games, as shown by Gurevich and Harrington [17]. The 
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second technique uses “generalized sums” that construct structures more or less 
as we construct graphs by means of graph operations. It has been used extensively 
by Shelah [22] for several types of ordered sets. Both techniques are surveyed in 
Gurevich [ 161. 

Our proof of Theorem 3.6 (given in [ll]) uses the first of these techniques, by 
means of a reduction to Rabin’s theorem (i.e., the decidability of the monadic 
theory of the infinite complete binary tree). Our theorem is also an extension of 
Rabin’s since the infinite complete binary tree is an equational graph. (But we do 
not give another proof of Rabins’s theorem.) 

We now define a few sublanguages of the language L$? of monadic second-order 
logic. 

3.7. Definition (Weak monadic second-order logic). We shall denote by 
%C?(R, W) the subset of Z(R, W) consisting of formulas written with quantifica- 
tions of the restricted forms 3x, Vx, $X, and VfX, i.e., written with 
quantifications restricted to singletons and to finite sets. In Rabin [19], these 
formulas are called weak monadic second-order formulas. We shall also denote by 
33%‘(R, W) the set of formulas of the form 3X1, . . . , X, q, where cp is in 
=FCZ(R, WU {X,, . . . , X,}). Hence one has a hierarchy of languages: 

and each of them is strictly more expressive than the preceding one by the results 
of Rabin [19]. We say that a graph or a set of graphs is %fL!?- (or 3Y4’-55’-) definable 
if there is a formula in “llr6p (or in 3 “wL#? respectively) that defines it in the sense 
of Definition 3.5. 

It is known from Rabin [18] that a subset of $(A) (we denote in this way the 
set of infinite complete binary trees, the nodes of which have labels in A) is 
definable iff it is definable by a finite-state tree automaton (we need not recall its 
definition here; see Section 6 below, where we shall use these automata). Such a 
set L is 3K%‘-definable iff it is defined by a “special” automaton in the sense of 
Rabin [19], i.e., an automaton with Biichi’s accepting condition. It is %‘Z- 
definable iff L and $({A}) - L are both 3 YFL?-definable [ 191. The emptiness of 
the set of trees defined by a “special” automaton can be decided in polynomial 
time (in the size of the automaton) whereas an exponential time is required in 
general. It follows that the satisfiability in 9( {A}) of a formula in 3 ‘K% can be 
decided more efficiently than that of a general monadic second-order formula. 
We shall try to characterize graphs and sets of graphs by formulas in WLZ or in 
3E&? rather than in 55’. 

As a useful example, let us consider the class of (n, r)-trees, defined in 
Definition 2.3. An (n, r)-tree T = (V, rt, lab, (SUCj)j,I,l) is represented by the 
K(n, r)-structure, (V, prt, (plabi)i,[,], (SUCi)j.lrl) (also denoted by T), where 
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K(n, r) := {prt, plab,, suq 1 i = 1, . . . , n, j = 1, . . . , I} and: 

prt(x) holds iff x = 14, and 

plab,(x) holds iff lab(x) = i. 

The set of K(n, r)-structures S representing (n, r-)-trees is JV_V?-definable. (The 
key observation is that the existence of a path in S linking x to y is expressible by 
a weak formula with free variables x and y. The notion of a path is as in 
Definition 2.3.) Condition (ST) of Definition 2.3 is clearly first-order. It follows 
that the syntactic trees of a system are 7VT-definable. The syntactic trees of an 
extended system are also VZ-definable because the property: 

“there exist infinitely many x such that T(X)” 

can be expressed with quantifications on singletons and finite sets as follows: 

3x O(X) A VfX [3X (1x E X) A T(X)]. 

3.8. Proposition. Let G be a graph of the form f (G,, . . . , Gk, /lm(Gk+,), 
. . . ) II”( where f is a source-preserving graph operation, and the graphs 

Gl,..., G, are internally connected, and source-separated. 
Ifthegraphs Cl,..., G, are definable, or 3 WT-dejinable, or W2?-definable, 

then the graph G is definable, 3 W%deJnable or WZ-definable respectively. 

Proof. We begin with a few preliminary notations and constructions. 
Let H be a graph in G(A),. For every internal item x of H, we denote by C,(X) 

the set of items of H that are linked to x by an internal path. It follows that 
H 1 C,(X) is the cicc of H containing X. We also let 

S,(X) = {i E [m] 1 srcH(i) E C,(x)}. 

For every subset S of [ml, one can construct weak formulas A(x, y) and A,(x) 
such that, for every H in G(A),, for all internal items x, y of H: 

H kn(x, y) iff y E C,(x), and 

HL&(x) iff S=&(x). 

Let S = {il, . . . , i,} E [ml, with i,<i,< - - *<i,. Every formula ~1 in 

z(R(4 n), {Y,, . . . , Y,)) can be converted into a formula ~~(x, Yi, . . . , Y,) 
such that for every graph H in G(A),,,, for every internal item x such that 
SH(x) = S, for every Y,, . . . , Y, c D,: 

H~qs(x, YI, . . . , Y,) iff H 1 C,(x) F cp(Y;, . . . , YL) 

where Yi : = Y fl C,(x) for each i = 1, . . . , k. The formula qs is obtained from Q, 
by the following transformations, 

(i) One replaces the relation symbol psi by psi, everywhere in q~, for all 
j=l,...,n. 
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(ii) One replaces atomic formulas like X c yi, yi c X, Y s q by weak 
formulas expressing respectively that X E Y,‘, Y: E X, Yi s Y;. (In the first case, 
the corresponding formula is: Vy (y E X + y E Y A 3L(x, y)).) 

(iii) One restricts quantifications to subsets of C,(x): each subformula of ‘p of 
the form 3X 8 is replaced by 3X [Vy (y E X 3 n(x, y)) A f3]. A similar transfor- 
mation is done for quantifications over singletons and finite sets. 

It follows that qs is a weak formula if ~1 is a weak formula. If q belongs to 
3”U’6P(R(A, n)), then one can manage to construct qs in 3wZ(R(A, m)) as 
shown in the following typical case: 

If Q, is 3X 3Y 8 where 8 is a weak formula, then we let qs be the formula: 

where es is the formula in %K%‘(R(A, m), {x, X, Y}) obtained by the initial 
construction. 

Let us now consider a source-separated graph G in G(A), written as 

f(G, . . . , G, (0” &+I), . . . , (//” G)) w ere f is a source-preserving graph h 
operation, and where Gr , . . . , G, are internally connected source-separated 
graphs respectively defined by formulas rp,, . . . , cpr. We assume that f is defined 
by a tuple (K, e,, . . . , el) as in Definition 1.5. Our purpose is to build a formula 
defining G. We let S,: = {j E [m] 1 WC&) is isolated}, and for each i = 1, . . . , 1, 
we let Si := {j E [m] ) s&j) E ver&(e,)}. 

Let H be an arbitrary graph in G(A),,,. It is isomorphic to G iff the following 
conditions hold: 

(1) For all i = 1, . . . , m, the ith source of H is isolated iff i E So. 

(2) There exists a set X of pairwise independent internal items satisfying the 
following conditions (we say that two items are independent if they are not 
internally linked): 

(2.1) every internal item of H is internally linked to some item x in X, 
(2.2) there exist x1, . . . , it& in X such that SH(Xi) = Si and H r C,(Xi) = Gi for 

i= 1,. . . , k, 
(2.3) for every y in X - {xi, . . . , xk} (where xi, . . . , & are chosen satisfying 

(2.2)), S,(y) = Si and H 1 C,(y) = Gi for some i = k + 1, . . . , I, 
(2.4) for every i = k + 1, . . , , I, there are infinitely many elements y of X such 

that S&) = Si and H r C,(y) = Gi. 
These conditions are immediately expressible by a formula in T(R(A, m)), 

with the help of the auxiliary formulas n,(x) and Al&). Hence G is definable if 

Gi, . . . , GI are so. 
Let us now assume that Eli, . . . , ~1~ are weak formulas. We shall express these 

conditions by a weak formula. We reformulate condition (2) as follows: 
(2’) There exist pairwise independent internal items x1, . . . , xk as in (2.2), 

such that: 
for every finite set X of pairwise independent items containing {xi, . . . , &}, 

for every internal item y, there exist pair-wise independent internal items 
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zk+l, . . . J z/ such that they are independent with the ones in X, Sn(zj) = & and 
H r C,(z,) = Gi for all i = k + 1, . . . , I, and y is internally linked to an item in 

X u {zk+l, . * * , z,}* 

From this new formulation, it is clear that condition (2) is expressible by a 
weak formula. Hence G is I/Z-definable. 

Let us finally consider the case where each formula vi is in 3?VJZ’(R(A, m,)), 
and m, is the type of Gi. We shall construct Q.J in 3wZ(R(A, m)) that defines G. 

We can rewite the formulas vi, . . . , q, in such a way that they are of the form 

3Y,, . . . , x q$, i = 1, . . . ,I, where r+!+ E wZ(R(A, m,), {Y, . . . , Y,}), and for 
every graph H in G(A),,, for every s-tuple (Y,, . . . , Ys) of sets of items of H, if 

Hb qi(x, . . . , Y,), then Yi, . . . , x do not contain any source of H (and, of 

course, H is equal to Gi). 
Condition (2) can be rewritten as follows: 
(2”) There exist sets X, x1, . . . , xk, Xk+l, . . . , X,, Y,, . . . , Y, satisfying the 

following conditions: 
- X is a set of pair-wise independent internal items satisfying (2.1), 

- xi, . . . ) xk are singletons, Xk+i, . . . , X, are infinite and X is the disjoint 

Union of x1, . . . , xk9 &+l, . . . , and X1, 
- for every y in X, if y = xi, and i E [k], or if y E Xi, and i E {k + 1, . . . , I}, 

then: 

S,(Y) =$ and H r WY> b 1Lis,(y, K f~ G(Y), . . . , Y, f-l WY>>. 

Condition (2”) can be expressed by a weak formula with free variables 

X,x1,. . . , xk xk+l, . . . , XI, &, . * . > Y,. It is quite clear that Condition (2”) 
implies Condition (2). 

Let us conversely assume that (2) holds. Let X, x1, . . . , xk satisfy (2.1)-(2.4). 
By (2.4), one can partition X - {x1, . . . , xk} in infinite sets Xk+i, . . . , X, such 
that S,(y) = Si and H 1 C,(y) = Gi for each i = k + 1, . . . ,I, and each y E Xi. 

For each y in X, there exists an s-tuple K”;, . . . , Y: of sets of internal items 
s C,(y) such that H 1 C,(y) b I+!+(Y);, . . . , Yz), and either y = xi, with 1 s i s k, 
oryEXj, andk+lsi<l. 

Wethenlet Y=l_,{Y{(y~x}. 
Since the sets Y are sets of internal items of H, Yj’ = 7 fl C,(y) for each j. It 

follows that: 

H r C,(Y) i= ‘4’isi(Y, YI n C,(Y), * * .y Y, n C,(Y)). 

Hence Condition (2”) holds. This concludes the proof. 0 

3.9. Remark. From the result of Proposition 3.4, stating that the relative 
definability of graphs is a transitive relation, one might think that if a graph is 
definable in a definable graph, then it is definable. This is not true as shown by 
the following example. 

It is not hard to prove that the infinite graph H of type 1 shown in Fig. 7 is 
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Fig. 7. 

definable. The graph G := H[2/c] (obtained from H by deleting all the edges 
labelled by c, and keeping their vertices) is definable in H. This graph is a 
(1,2)-tree. (Its vertices all have the same label, i.e., have no label, and its edges 
are labelled by a or b, instead of 1 or 2.) This tree is not regular, because it has 
infinitely many distinct subtrees. Hence it is not definable, because every 
definable tree is regular. (This follows from the thesrem of Rabin [20] saying that 
a nonempty definable set of trees contains a regular tree.) 

4. A special case of the main theorem 

In this section, we establish that the equational graphs defined by extended 
systems of a special form are 3WL!?-definable. 

4.1. Definition (Special systems). A special system is an extended system S = 
(ul=H1,...,u, = H,,) such that the following conditions are satisfied (we let 
u= {Ui, . . . ) u,}, and we recall that HI, . . . , H,, belong to FCG(A U U U Urn)): 

(Sl) S is separated (i.e., every graph Hi is source-separated and (U U Urn)- 
separated). 

(S2) Every graph Hi is internally connected, and, if it has no internal vertex, 
then its unique edge is terminal (i.e., its label is in A). 

(S3) The graphs defined by S are connected and nondegenerated. 

4.2. Remarks. Conditions (Sl) and (S2) are easily verifiable. Condition (S3) can 
be decided by the result of Courcelle [ll] recalled in Theorem 3.6. 

It follows from Conditions (Sl) and (S2) that, for every n-tuple (K,, . . . , K,) 

of connected source-separated graphs of respective types r(ui), . . . , t(u,), the 
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graph Hi[Kt/Ui, . . . , KJu,, (//“K,)lu,, . . . , (//“K,Jlu,] is internally con- 
nected. Hence, by (S2) and (S3), the graphs defined by a special system are 
internally connected. It follows then from Proposition 2.15 that the canonical 
solution of a special system is the unique one consisting of connected source- 
separated graphs. 

Conditions (S2) and (S3) imply that, if t(uJ = 0, then neither Ui nor uy occurs 

in any of the graphs HI, . . . , H,,. 
The system of Example 2.2 is not special. 

The graph H of Fig. 1, Example 1.11, is defined by the special system reduced 
to the equation u = K where K is the following graph: 

F 

1. P. -02 I ” 

4.3. Proposition. The graphs forming the solution of a special system are 
3 WZ’-definable. 

Here is the idea of the proof. If (G,, . . . , G,) is the solution of a special system 
S, then one can “represent” in each graph Gi its syntactic tree T: the nodes of K 
are “represented” by certain well-chosen vertices of Gi, and the sue relation of T 
is represented by the existence of certain paths between these vertices. The 
formula, intended to “say” that a given graph G is isomorphic to Gi, will have to 
do two things: 

(i) to “guess” that G “contains” a representation of the tree I;- in the above 
sense, and 

(ii) to “verify” that G is isomorphic to e&(T). 
Let us put this more formally. Given S and i, we shall construct a definition 

scheme A with parameters Xi, . . . , X,, such that the following holds: 
(1) r = defA(Gi, X1, . . . , X,) for some sets Xi, . . . , X,,, of items of Gi, 
(2) for every graph G, for all sets Xi, . . . , X, of items of G, if 

def,(G, X1,. . . , X,) is defined, then: 
(2.1) def,(G, X1, . . . , X,) is an (n, r)-tree T, 
(2.2) T = T, 
(2.3) evaIS = G (i.e., is isomorphic to G). 

It will follow that Gi is defined by the formula 3X,, . . . , X, 6, where 6 is the 
domain formula of A. Before starting the proof, we introduce a few definitions 
and notations, and we establish a few lemmas. 

4.4. Definitions and Notations. In what follows, we let S be a special system 
(ul = HI, . . . , u, = H,). We assume that HI, . . . , H, are pairwise disjoint 
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concrete graphs. As in Definition 2.12 we let ei,l, . . . , ei,m, be an enumeration of 
the set of nonterminal edges of Hi, i.e., that have a label in U U U”, and we let 
del(Hi) be obtained from Hi by deleting its nonterminal edges (but VaelcHili) = V,). 

Weletr=Max{miIi=l,...,n}. 
We fix some i0 in [n], and we let G = Gi,. We shall prove that G is definable. 

Our proof will use T = TOI,, the syntactic tree of Gi,. 
The notations N, Ni, lab, sucj, rt will refer to T, as in Definitions 2.3 and 2.12. 

Let us recall that N is the set of nodes of T, that Ni is the set of its nodes labeled 
by i, that lab : N- [n] is the labelling function, that sucj = {(cl, II’) E N x N 1 ~1’ is 
a j-successor of p}, and that rt is the root of T. Hence the label of rt is iO. 

Two nodes are analogow if they have the same label. 
If rl is a sequence of integers (jl, j2, . . . , js), then sue(q) denotes the set of 

pairs (cl, 11’) such that there exists a sequence cl,,, pi, . . . , ps with IL,-, = ~1, 

P’ = Ps, and (pi-17 pi) E sucji for all i = 1, . . . , s. If rl = ( ), then sue(q) := 

{(P> P) 1~1 E W. 
We write p’ < ~1 if (p, cl’) E sue(q) for some nonempty sequence 7. We say 

then that ~1’ is a descendent of p. We write p’ c ,u if CL’ c p or ~1’ = p. 
If p’s p, there is a unique sequence rl such that (p, cl’) E sue(q). But there 

may exist several, and even infinitely many, nodes p’ such that (p, p’) E sue(q) 
for some p and 7. This is due to the possible presence, in the right-hand sides of 
the equations of S, of the symbols uy, which cause the existence in T of infinitely 
many j-successors for some nodes. 

We now introduce some notations concerning the way G is constructed from T. 
We denote by K the graph U {cl - del(H,)” 1 p E N, i = lab(p)} equipped with the 
sequence of sources of rt - Hi, as in Definition 2.4. Then G = Kl-, where = is 
the equivalence relation defined in Definition 2.4. We let f be the canonical 
surjective homomorphism : K+ Kl- = G. 

For every ,u, we let K/p be the graph such that (K/p)‘= 

U {p’ * del(@)O I P’ c P, i = lab@‘)}. This graph is a subgraph of K”. We also 
equip K/p with the sequence of sources of ~1 . HhbCpj, as sequence of sources. We 
let G/,u =f(K/p). Hence (G/p)’ is a subgraph of Go. 

It is clear that, if ~1 and p’ have the same label i in T, then the subtrees Tp and 
T,,, of T, respectively issued from p and CL’, are isomorphic. It follows that G/p 
and G/p’ are isomorphic: they are both isomorphic to Gi, the ith component of 
the solution of S. 

For every edge e of G, there is a unique pair (,u, e’) with p E Ni for some i, and 

e’ E &(H,), such that f((p, e’)) = e. We denote it by (p(e), rep(e)). We say that 
rep(e) represents e. Since f : K + K/= = G is not injective on VK, a vertex w may 
be equal to f((p, v)) for several pairs (y, v), equivalent to one another w.r.t. =. 

Claim. There is a unique <-muximul node p of T such that f((p, v)) = w for some 
v. 

This node is denoted by p(w), and the associated vertex v by rep(w). 
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Proof. If f((p, v)) =f((p”, v)) = W, and neither y c p’ nor p’s p, then there 
exist ul, V; such that w =f((pl, vi)) =f((p ;, vi)) where pi is the father node of 
p, and ,u; is the father node of p’ in T. By repeating the argument if necessary, 
one obtains the existence of a unique <-maximal node p such that w =f((p, TJ)) 
for some V. Hence p is the desired p(w). (Since the root is at a finite distance, 
this argument yields the result after finitely many iterations. This proof works for 
an arbitrary extended system, even if it is not special.) 

Since S is separated, and since the graphs Gi, . . . , G, it defines are 
source-separated, the homomorphism f is injective on each graph p - del(k#, 
where p E Nip i E [n]. The unicity of ZJ such that w =f((p(w), v)) follows. 0 

In addition, let us observe that if w is internal in G, then rep(w) is internal in 
Hi, where i = lab(rep(w)). Hence if w is internal in G, then (p(w), rep(w)) is the 
unique pair (p, V) such that w =f((p, v)) and v is an internal vertex of Hi, 
i = lab(p). If w is a source of G, then p(w) is the root of T, and rep(w) is a 
source Of Hi,. 

4.5. Lemma. Let e E EG, i E [t(e)] and w =ve&(e, i). Then p(e) <p(w). Let 
furthermore w be internal, let q be such that (p(w), p(e)) E sue(q), let p, p’ 
be two nodes of T such that (p, p’) E sue(q), and p is analogous fo p(w). 
Zf e’=f((p’, rep(e))) and w’ =ve&(e’, i), then ,u(w’) = p. Hence w’ = 

f((~ rep(w))). 

Proof. The first assertion is clear. 
There is a unique (possibly empty) sequence n = (j,, . . . , j,,J such that 

(P(w), P(e)) E suc(rl). 
There is also a sequence j&,, j&, . . . , pm of nodes of T, of respective labels 

&I, 11, . . . , L, such that PO = /A(W), pm ccl(e), and (i&-i, i’&) E SUCj~ for all 
k=l,. . . ,m. 

There is a sequence of integers iO, . . . , i,_l such that the following conditions 
hold: 

(Al) In H,, the ith vertex of rep(e) is equal to the i,,_,th source. 
(A2) In H,, the i,th vertex of eL,jx+, is equal to the ik_,th source, for 

Isk<m, 
(A3) In H,,, the ioth vertex of e,O,j, is the internal vertex rep(w). 
(Let us recall from Definitions 2.3, 2.12, and 4.4 that (e,,,, . . . , ei,,,) denotes 

an enumeration of the set of edges of Hi that have a label in U U Urn.) 
Let us now assume that (p, cl’) E sue(q), and that ~1 is analogous to p(w). Let 

PO, PI> . * . 7 pm be the sequence such that ~1’=~~<~~-,<...<~~<~1,<~“= 
p. Hence lab(,uJ = li for all i and p’ is analogous to p(e). 

Let e’ =f((p”, rep(e))), and w’ = vert,(e’, i). 
By (Al), w’ is the i,,_,th source of G/p’ = G/p,,,. 
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By (A2), w’ is the ik_-lth source of GIpFLk for k = m - 1, m - 2, . . . , 1 (this can 
be proved by reverse induction from m - 1 to 1). 

By (A3), w’ isf(&, rep(w))), and rep(w) is internal in H,,. 
This proves that p( w ‘) = p. = p. Cl 

4.6. Definitions (Paths and their traces). By Definition 1.6, a path y in G can be 
written: 

y = (wo, el, ii, ii, wl)(wl, e2, i2, j2, w2) . . * (wm-1, e,, L jm, WA 

We define its trace as the sequence; 

(1) 

MY) = (rep(wo), rep(er), il, ii, rep(wl)) 

(rep(wi), w(e2), i2, j2, rep(w2)) . . . 

. * +ep(wm-dj We,), L imy w(w,)>. 

This sequence is a word in B+, where B is the finite set: V x E x [rA] x [rA] x 

V, and V = VH1 U - . - U V,, E = Ea,lcH,j U - - - U EaelcH,), r, = Max{ z(a) 1 a E A}. 
We also denote by edg(y, i) the ith edge of y, i.e., the edge ei of y written as 

above. 
We say that y is strongZy infernal in G, if it is internal in G/p where p = p(wo). 

In this case, we let qo, . . . , qm, fjl, . . . , fi,,, be the sequences in f+J* such that 
(p, I) E SUC(~~), and (cl, p(ei)) E SUc(Qi). Note that Q= ( ), and that vi is a 
prefix of vi and of iii+l for all i = 0, . . . , m (this is a consequence of Lemma 4.5). 

Two strongly internal paths are analogous if they have the same trace, whence 
the same length m, and the same associated sequences (ni)Ogi<m and (qi)isism. 
Hence, if two analogous paths link respectively w to w’, and wl to w;, then 

r=p(wi) = rep(w), rep(wl) = rep(w’), (P(W), P(w’)) E sue(q) and (I, P(w;)) 
E suc(rj) for some rl E bJ*. Conversely: 

4.7. Lemma. Let y be a strongly internal path linking w to w’. For every .node p’ 
anaZogous to p(w), for every p” such that (p’, y”) E sue(q), where r] is such that 
(p(w), I) E sue(q), there is a path y’ anaZogous to y, linking f ((p’, rep(w))) 

to f ((K rep(w’))). 

Proof. The construction of y’ from y is straightforward. Cl 

Note that since the relations SUCj are not functional in general (as we have 
already noted), there may exist several paths y’ satisfying this lemma. We assume 
that a canonical way to select one of them has been defined. The corresponding 
path is denoted by ~1’ . y (with p’ . y = y if ,u’ = p(w), and w is the origin of y). 

In the following lemma, we let y be a strongly internal path of the above form 
(l), and we let E,i = {edg(p’ . y, i) 1 p’ is analogous to CL} for 1 =S i d m. When a 
single path y is considered, the notation Ei is used instead of E,+. Here is a 
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reconstruction lemma, saying that a path of the form y’ * y is defined in a unique 
way by its origin and the sets &. 

4.8. Lemma. Let n be an internal path of G with trace h(y), and such that 
edg(n, i) E E,i for all i = 1, . . . , m. Then n = p’ - y for some node p’ of T that is 
analogous to p. 

Proof. Since tr(n) = k(y), the path JC is of the form: 

JG = (~6, el, i,, jI, w’;) * . * (wL_,, ek, i,, jm, w;). 

Let ~1’ = I. We have wG = f ((p’, rep(wO))), and p’ is analogous to p, since, 
from the equality tr(n) = tr(y), we have rep(wI;) = rep(w,,). 

Let then y’ : = p’ - y be written as: 

y’ = (~6, e;, iI, jI, w;) * * * (wk-r, e6, i,, j,,,, ~6) with wh = w& 

We shall prove, by induction on k, that, for all k = 0, . . . , m - 1: 

w;:=w; and e;, = e;, forallk’, lsk’<k. 

Basis (k = 0). The equality WE = wh follows from the definition of y’. 
Inductive step. We assume that w; = w; and e;, = e;, for all k’ < k. 
The sequences (~i)OGi~m and (?ji)l<irm are as in Definition 4.6, and they are the 

same for y, and for y’. 
By the definition of y’, we have: 

e ;+r =f ((P(e;+A rep(ek+A)) with (P’, Ae;+A) E =(%+I) (1) 

We also have: 

w; = ve&(e;+r, &+I), (2) 
and 

(P’9 P(G) e sue(%). (3) 

By Lemma 4.5 we have p(e;+J 6 I G ~1’ and: 

(cl(&), P(e;+l)) e snc(rl), (4) 

where T,I is such that jjk+l = Q - 7. 

Let us now consider it. Since e;+I E Ey,k+l, we have e;+I = edg(v . y, k + l), 
and: 

e;+r =f ((R r&e,+,))) and (y, 0) E suc(%+J, (5) 

for some Y analogous to P (and to p’), and some 9, analogous to p(e;+J. 
We also have: 

wg = vertG(e;+l, ik+l). (6) 

By (5), and since Q is a suffix of +j k+l, there exists v’ such that 9 < v’ G Y, and: 

(V’, 3) E sue(q). (7) 
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It follows that: 

(y, y’) E suc(%c). (8) 

Hence Y’ is similar to a. 
Let us consider conditions (2) and (4) (6) and (7), and (5). Since w; is internal 

(because y’ is similar to y), we can apply Lemma 4.5, and we obtain: 

Y’ = p(wi). 

Since we assume that w; = w;, we have; 

Y’ = p(wL). 

Hence, by (3) and (8) we have: 

Y = p’. 

Hence: 

ei,, = edg(v * y, k + 1) (by the definition of J-C) 

= edg(y’ - y, k + 1) (since Y = p’) 

= e;+i. 

It follows immediately that wz+i = w;+~. 0 

Let us recall that Hi, . . . , I-I, are pair-wise disjoint concrete graphs. Let 

{ 211, 212, . * . 7 uN} be an enumeration of the set IVH, U IV, U - e - U IV,. Let also 

{e,, . . . , eNS} be an enumeration of the set of edges EdelCH,) U - - . U Ea,,cHnj. Let 
Xi be the set of internal vertices w of G, such that rep(w) = vi. Let 5 be the set 
of edges e of G, such that rep(e) = ej. Let also Ey,i, . . . , E,,+ be associated with 
a path y as in Lemma 4.8. 

With these notations, we can state the following corollary of Lemma 4.8, where 

Xl,. . . f&v, K, . . . , YN’, &,I, . . . , Ey,m, are simultaneously the above defined 
sets of vertices and of edges, and set variables denoting them. This ambiguity 
simplifies the statement and is harmless. 

4.9. Corollary. Let i E [n], let c be an internal vertex of Hi, let v be another 

vertex of Hi. Let y be an internal path in G/p linking f((p, c)) to f ((p, v)) 

f or some /A in Ni. One can construct a first-order formula 

(p(w, w’, Ey,l, . . . , E,,,,,,,, X1,. . . , X,, YI, . . . , Y,,) such that, if w and w’ are 
vertices of G then: 

iff 
G b cp(w, w’, E,,,, . . . , &my, X,, . . . , Xi,+ Yl, . . . , Y,,) 

w = f ((p’, c)) and W’ = f ((p’, v)), for some p’ in Ni. 
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Proof. Let y be as in Definition 4.6. One can construct a first-order formula cp 
that says the following: 

there exist wl, IV,, . . . , w,,_, in VG, there exist fi, . . . , fm 

in EG such that: 

(w, fi, &, ir, %)(wr, f2, izt j2, w2) . . . (w,-~, fm, L, L, w’) 

is an internal path of G with trace h(y), such that 

f; E E,i for all i = 1, . . . , m. 

If w =f((p’, c)), and w’ =f((p’, v)) then ,u’ . y is such a path, hence 
q(w, w’, Ey,1, . . . , X,, . . . , Y,, . . .) holds. 

Conversely, if q(w, w ‘, E,,,, . . . , X1, . . . , YI, . . .) holds, there is an internal 
path 3d linking w to w’, such that h(n) = h(y) and edg(z, i) E I!Z,,~, for all 
i=l,...,my. 

By Lemma 4.8, n = p’ * y for some p’ EN. Hence, by Lemma 4.7, JC links 
f((p’, c)) tof((p’, v)). Hence w and w’ are as wanted. Cl 

We can now prove Proposition 4.3. 

Proof of Proposition 4.3. We first assume that each of the graphs Hi has at least 
one internal vertex. This restriction will be lifted in the third part of the proof. 

We also assume that each i E [n] labels at least one node of T. The integers i 
labelling no node correspond to unknowns of S that are useless for the definition 
of G = Gi,. They can be easily detected and eliminated. 

First part: Representation of T in G 
The (n, r)-tree T will be defined as a relational structure 

(V, PrC (plabi)i+l, (sucj)j,rrl> ( see Definition 3.8). Our aim is to construct a 
definition scheme A defining T in G in terms of the sets 
x1, . . . ) Yl, . . . ) q/J, . . . introduced above and a few others. 

For every i E [n], let us select an internal vertex Cj of Hi. Let g : N+ VG be the 
mapping such that g(v) = f ((v, ci)) w h ere i = lab(v). Let v =g(Ni). Note that 
p(g(v)) = Y, and that rep(g(v)) = Ci if i = lab(v). The mapping g defines a 
bijection :A$+= K for all i. We have g(rt) E c0 (the label of T is i,,). We let 
V:=V*U**~lJV,. 

We shall establish that the binary relation on V: 

SUCj I= {(g(Y), g(Y’)) 1 (Yy Y’) E SUCj} 

is definable in G in terms of the sets of vertices VI, . . . , V,, X1, . . . , X,, of the 
sets of edges Y,, . . . , YN, (the sets Xi, 5 are as in Corollary 4.9), and of sets of 

edges E,,, . . . , E,.,,,,,, associated as in Lemma 4.8 with finitely many paths y of a 
certain finite set r. 

We first define r. For every i E [n], for every vertex v of Hi, such that ZJ # ci, 
we let yi,v be an internal path in G/p that links f ((p, Ci) to f ((p, v)), where p is a 
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node of Ni. (We have assumed that Ni #0 for all i at the beginning of the proof.) 
Let r be the set of all these paths, 

For each path y in r, let m, be its length, and let E.,i = {edg(p’ - y, j) 1 p’ E 

Ni}, for 16 j G m,,, as in Lemma 4.8. 
We shall denote {X1, . . . , X,} by %, {Yr, . . . , YNr} by 3, {VI, . . . , V,} by 

V, and a fixed enumeration of {Ey,l, . . . 1 y E r} by 8. We shall denote by 
Q)i,v(W, w’, Sr, %‘, 9, S) the first-order formula associated with yi,” by Corollary 
4.9. If v = ci, we let qi,v be the formula w = w’. 

Claim 1. SUCj is definable in terms of 7, 2, 9 and 8 

Let us recall that r = Mm{mi 1 i E [n]}. Let L be the set of triples (i, j, i’) in 
[n] X [r] X [n], such that the j-successors of a node p of Ni are in Nir. Let 
(i, j, i’) E L. Let also 

V& = veti&ei,j, k), and V; = SW,,.(~), for all 1 G k G m = Z(ei,j). 

For every 14 E Ni, p’ E Niq such that (p, p’) E SUCj, we have 

f ((p, Q)) = f ((p’, v;)), for all k = 1, . . . , m. 

Hence p * yi,vr links g(p) =f ((p, ci)) to f ((p, Q)), and CL’ - yi,,v; links g(p’) = 

f((P’8 ci)) to f ((cl’, vL)) =f ((P7 vk))* 

It follows that (g(p), g(y’)) satisfies the first-order formula ly,,&w, w’, 
Sr, 3!?, ‘3, 55) defined as: 

Let us conversely assume that (w, w’) satisfies this formula for some 
WI,. . . , Wm. Corollary 4.9 says that: 

w =f (6% ci)) = g(P), 

w” = f ((p, vk)) = f ((p’, I!;)), for all 1 G k S m, and 

w’ =f ((CL’, Ci)) =&cc’) 

for some p E Nip and some p’ E Nir. Since S is special, this implies that 

(CL, P’) E sucj* 

Hence, SUCj is defined by the (finite) disjunction of the formulas vi,j,i’, for all 
i, i’ such that (i, j, i’) E L. 0 

Let Xi, . . . , VI, . . . , YI, . . . , Ey,,, . . . be as above. Let in addition X, = 
{g(rt)}. (We recall that rt is the root of T.) We now define a definition scheme A, 
using these sets as parameters, intended to define T in G. We let: 

A = (6, V, opti, (~+bJiolnl, (e~u,)~+l> 
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where 
t&(x) says that x belongs to VI U - - - U V,, 

f&(x) says that x belongs to X,, 

f-I,,,(x) says that x belongs to &, 

6&(x, y) is the formula of Claim 1, that defines SUC,. 

Finally, we let 6 express that the K(n, r-)-structure defined by these formulas is 
the syntactic tree T. (The existence of such a formula follows from Proposition 
3.3.) This achieves goals (l), (2.1), and (2.2) presented after the statement of 
Proposition 4.3. 

Second part: Verification that a graph G’ in which the tree T is represented is 
isomorphic to eval( T) 

All notations are as in the first part. 
We shall construct a formula 6’(“v; 2, 9, 8, X,) such that: 

(VI) (G, v, % 9’, $3 X,) k a’, 

(V2) for every graph G’, if (Y’, ZiJ”‘, 9’, 8’, XA) represents Tin G’, 

and if (G’, Y’, %‘, 9’, %“, Xi) k a’, then G’ is isomorphic to G. 

The construction of 6’ satisfying (VI) and (V2) completes the proof, because G 
is then defined by the formula: 

35r, 2, 9, 8, X”[6 A 6’1. 

where 6 is as in the first part. 
Let us recall that = denotes an equivalence relation on the intermediate graph 

K, defined as the union of the graphs p - del(H,)” for all i E [n], p E Nip and that 
the vertices of K are pairs of the form (p, v) for p E Ni, v E V,, i E [n]. 

Claim 2. For every i, i’ E [n], v E V,,, v’ E V,, the binary relation =v,v. on N 
such that p =“,“, ~1’ iff (,u, v) = (p’, v’) is WZ-definable in the relational structure 
representing T. 

Proof. If a binary relation is YES’-definable, then so is its transitive closure, 
hence, so is the equivalence relation it generates. By Definitions 2.3 and 2.13, = 
is the equivalence relation generated by a binary relation on VK, that is 
first-order definable in terms of prt, (plabi)i,[,], (SUCj)j,r,l. The result follows, but 
we omit the technical details. 0 

Claim 3. For every i, i’, v, v’ as in Claim 2, one can construct a weak formula 

Tl”.“‘(w~ w’, Y, 3?, 9, 8, X,) such that, for every w, w’ E VG 

(G, w, w’, Y; 29 39 $7 &) k rl”,“, 

iff 
w E vi, w’ E vi*, and g-‘(w) =“,“. g-‘(w’). 
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Proof. If in Proposition 3.3, the formulas forming A, and the formula /3 are weak 
formulas, then the formula /3 can be constructed to be weak. This claim is then an 
immediate consequence of Claim 2 since the relational structure representing T is 
defined in G’ by a definition scheme made of weak formulas. Cl 

It follows that f((p, v)) =f((p’, v’)) iff the pair (g(p), g(y’)) satisfies the 
formula q,,,,, where /A E Nip /A’ E Ni.9 v E V,, V' E V,.. 

Let us now consider a graph G’, and arbitrary sets of vertices and edges “Ir’, 
8?“, ??J’, 8’, XA satisfying 6, i.e., representing Tin G’. 

Let i E [n], v E V,. We say that a vertex w of G’ is (i, v)-defined from S, where 
s is also a vertex of G’ if: 

Let us consider the following conditions on G’, v’, S? etc. 
(Dl) For every i E [n], for every v E V,, for every s E &, there exists one and 

only one vertex of G’, that is (i, v)-defined from s. 
(D2) Every vertex w of G’ is (i, v)-defined from S, for some i in [n], some v in 

V,, some s in l$. 
(D3) For every i, i’ E [n], every v E V,, every v ’ E V+ every s E &, every 

s’ E Vi,, if a vertex w of G’ is (i, v)-defined from S, then it is also (i’, v’)-defined 
from s’ iff Q,@, s’) holds in G’. 

(D4) For every i E [n], e E EdelcHi) and vl, . . . , vk E V, such that vert,,(e) = 

(211, * - *, vk), then, for every s E Vi::, there is in G’ a unique edge e, such that 
lab&es) = lab&e), vert,,(e,) = (wl, . . . , wk) where wi is (i, vi)-defined from s 
for every j = 1, . . . , k, and e, belongs to the component Y; of 3’ corresponding 
to e (see the notations of Corollary 4.9; we have 1 s I s N’). 

(D5) Every edge of G’ is e, for one and only one pair (e, s) as in (D4). 
(D6) For all k E [z(G)], src&k) is (io, v)-defined from the unique vertex in 

X,, where v is the kth source of Hi,. 
It is clear that each of these conditions is expressible by a weak formula. Hence 

their conjunction can be expressed by a weak formula 6’(“y; 2, 9, 8, X,) so that 
(G’, 7r’, %‘, ?J’, $‘, X2) satisfies (Dl)-(D6) iff: 

G’ I= S’(Sr’, Z’, 3’, 8’, Xi). 

Let us verify that (G, W; 2, 9, 8, {g(rt)}) satisfies (Dl)-(D6), whence 6’. 
The validity of (Dl), (D2), and (D4)-(D6) follows from Corollary 4.9. That of 
(D3) follows from Claim 3. 

Hence, the formula 6’ satisfies condition (Vl). We shall now verify condition 
(V2). Let (G’, 7f’, aP’, ?!/‘, 87, XL) satisfy 6 and 6’. We shall construct an 
isomorphism between G’ and G. 

Since 6 holds, T’:=def,(G’, M’, Zt?‘, . . .) is isomorphic to T by some function 
g’ : T+ T’. Hence g’ defines a bijection Ni-t Vi. Let K be the intermediate 
graph, andf’:K + G’ be such that: 
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(1) f’((p, v)) is the unique vertex of G’ that is (i, v)-defined from g’(p), where 
i = lab(p); it is well-defined by (Dl). 

(2) f’((p, e)) is the edge e, defined by (D4) with s =g’(p). 
Conditions (D4) and (D6) entail that f’ is a homomorphism. Conditions (D2) 

and (D5) entail that it is surjective. Condition (D5) entails that f’ is injective on 
EK. Finally, it follows from condition (D3), and Claims 2 and 3, that the kernel of 
f’ is =. Hence f’ factorizes as h of where h is an isomorphism: K/= = G+ G’ 
and f is the canonical surjection : K + G. 

Third part: Lifting a restriction 

At the beginning, we have assumed that each graph Hi has at least one internal 
vertex, and this allowed us to choose an internal vertex ci in Hi for each i = 1, 
. . . ) n. 

If Hi has no internal vertex, then it is reduced to an edge labeled in A, all 
vertices of which are sources. 

We take this edge as item ci. The construction done in the first two parts must 
be adapted accordingly. We omit the lengthy technical details that do not need 
any new idea. 0 

5. Proof of the main theorem 

Here is the main result of this paper. 

5.1. Theorem. Every equational graph is 3 WZ’-definable. 

Proof. Let G be an equational graph. It follows from Lemma 2.10 that the 
source-separated graph sep(G) is equational. From a formula in 3 WZ defining 
sep(G), it is easy to construct a formula of the same type defining G. Hence, we 
shall do the proof for a source-separated graph G. 

Our purpose is to construct a formula defining G from a system of equations 
defining it, not only to prove the existence of a formula. 

We know by Lemma 1.10 that G can be expressed as a source-preserving 
composition: 

G=f(G,, . . . , Gp, lfmGp+,, . . . , //“G,,) 

of its internally connected components. We shall construct f and a special system 
defining (G, , . . . , G,). The result will follow then from Theorem 4.4, saying that 
these graphs are 3 WJZ-definable, and from Proposition 3.8, saying that source- 
preserving compositions of 3 W5?-definable internally connected graphs are 
3WZ-definable. Since these results are effective, a formula defining G can be 
effectively obtained. 

The proof consists of three parts. 
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First part: Definition of a recursive set DEF’, and of a bijection of DEF’ onto 
CICC(G) 

We let G be a concrete equational graph, defined as a component of the 
solution of a separated system S = ( u1 = Hi, . . . , u, = H,). We let U = 

{Ui, * * * f u,}, and (G,, . . . , G,) be its solution. 
We let T be the syntatic tree of G, we let K be the intermediate graph used to 

define eval(T), and we let f be the surjective canonical graph homomorphism: 
K+ G := K/E. We shall use the notations of the proof of Proposition 4.3. 

We denote by SG the set of sources of G. 
We denote by CICC,(G) the set of cicc’s of G that have no internal vertex 

(they are reduced to single edges, all vertices of which are sources), and by 
CR&(G) the set of the others. 

Let C belong to CICC,(G). There is a unique pair (p, e) such that p is a node 
of T, i is its label, e is an edge of Hi, and C = G r {f ((y, e))}. We let DEF,, be 
the set of such pairs, and C(p, e) be the cicc associated as above with (p, e). It 
can be characterized as follows: 

(K e) E DEF, iff ~1 E Nip i = lab(p), e E E,, and for every vertex s of 
e, f ((p, s)) E SG (this is possible only if s is a source 
Of Hi). . 

Let us make this characterization effective. For every i = 1, . . . , n, for every 
source vertex v of Hi, for every source vertex w of G, one can construct a regular 
language L(i, v, w), such that, for every node ~1 of T with label i: 

f ((y, v)) = w iff (rt, p) l sue(q) for some 17 in L(i, v, w). 

If A and B are sets of vertices, we let L(i, v, B) denote the union of the sets 
L(i, v, w) for w in B, and we let L(i, A, B) denote the intersection of the sets 
L(i, v, B) for v in A. Hence: 

(p, e) E DEE”, iff every vertex of e is a source of Hi, and (rt, p) E 
sue(q) for some r,i in L(i, V, S,), where i is the label 
of p, and V is the set of vertices of e. 

Hence CICC,(G) = {C(X) 1 x E DEF,}, and it is clear that C(X) = C(x’) iff 

X=X’. 
We shall obtain a similar, but more complicated indexing of CICCi(G). Let 

C E CICCi(G). There exists a unique <-maximal node p of T such that f ((p, v)) 
is an internal vertex of C (hence of G), for some vertex v. We denote this node 
by p(C), and we denote by REP(C) the set of vertices v such that f ((p, v)) E 
lVc. Note that REP(C) s IV, where i = lab@(C)). For every v E REP(C), the 
subgraph C is the unique cicc of G containing f ((p(C), v)). We let DEFi := 
{(p(C), v) ( v E REP(C), C E CICC,(G)}. We say that C is defined by (~1, v) if 
p = p(C) and v E REP(C), and we write in this case C = C(p, v). 

In order to characterize DEFi, we give another definition. If H is a graph in 
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FCG(A U V), if v, v’ are two vertices of H, a strong internal path in H, linking v 
to v’, is an internal path of the form: 

(u, el, ii, ii, Mui, 6, i2, j2, 4 . - - (Q+~, ek, L jk, v’) 

where, for every m E [k], either e, is a terminal edge, or e,,, is labeled by up for 
somep E [n], and srccP(i,,J is linked to srccP(j,,,) by a path in G,. In this situation, 
we say that v and v’ are strongly linked in H. We denote by SL(i, v) the set of 
source vertices of Hi, i E [n] that are strongly linked to some vertex v of Hi. 

5.2. Lemma. Let p E N, v E IV, for Some i E [n]. Then (p, v) E DEF, ifl for 
every v’ in SL(i, v), the vertex f((p, v’)) is a source of G. 

Proof. Let v’ E SL(i, v). If w’ =f((p, v’)) belongs to IVG, then the cicc C of G 
containing w =f((p, v)) is not defined by (p, v), because it contains also w’. 
Hence p(C) 2 p(w’) > p(w), and (p, v) does not belong to DEFl. 

The proof of the other direction is similar. Cl 

Note that, if (p, v) E DEFl, the set of sources of C(p, v) is the set 
{f((p, v’)) ( v’ E SL(i, v)} where i = lab(p). Hence, the set DEFl can be effectively 
characterized as follows: 

(P, u) E DEFr iff if i = lab(p), then v is an internal vertex of Hi, and 
(rt, p) e sue(n) for some rl in L(i, SL(i, v), S,). 

Hence, we have CICC1(G) = {C(p, v) ( (p, v) E DEF1}, but this is not the 
desired indexing, since some cicc’s may occur several times. The following lemma 
will allow us to restrict the set DEF, appropriately. 

5.3. Lemma. Zf (p, v) and (,u’, v’) E DEFl, i = lab(p), then C(p, v) = C(p’, v’) 
iff p = p’, and v and v’ are strongly linked in Hi. 

Proof. “Zf”. By the definitions, a strong internal path in Hi, where i = lab(p), 

linking v to v’ yields an internal path in G/p (since this graph is isomorphic to 

Hi[Gr, . . . , G,]), that links f((p, v)) to f((p, v’)). Hence C(p, v) = C(p, v’). 
The other direction is similar. 0 

Being strongly linked is an equivalence relation on the set of internal vertices. 
Let us select a vertex in each class. The selected vertices will be called the 
canonical internal vertices. 

We define DEF; as the set of pairs (p, v) in DEFi such that v is canonical, and 
we let DEF’ : = DEF, U DEF;. Hence, every cicc of G is C(p, X) for one and only 
one pair (p, X) in DEF’. 

The following lemma is an easy consequence of the above definitions and 
lemmas. 
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5.4. Lemma. For every item (u, x) of K, one can effectively decide whether: 
(1) f ((u, x)) is a source of G, (and one can determine its rank if this is the 

case), or: 
(2) f ((u, x)) is an internal item of G, and in this case, one can determine the 

pair w in DEF’ such that C(w) is the cicc of G containing it. 

Second part: Constructing a source-preserving decomposition of G over its cicc’s 
Let us say that two cicc’s of G are equivalent, written C = C’, if they are 

isomorphic and have the same set of sources (if this is the case, they have the 
same sequence of sources). 

We define the type of a pair (,u, e) in DEF, as (i, R), where i = lab(p) and R 
is the set of pairs (v, w) such that v is a vertex of e (v is also a source of Hi), 
w = f ((u, v)) and belongs to SG. 

We define the type of a pair (p, v) in DEFl, as the pair (i, R) where i = lab(p), 
and R is the set of pairs (v’, w) such that v’ E SL(i, v), f((u, v’)) = w, and 
WE&. 

For every item x, and every (possible) type (i, R), one can construct a regular 
language L’(x, i, R), such that, for every node ~1 of T, (p, x) is of type (i, R) iff 
i = lab(p) and (r-t, p) E SIX(~) for some r~ in L’(x, i, R). To be precise, one takes 
for L’(x, i, R) the intersection of the languages L(i, VI, wj), j = 1, . . . , k, where 
SL(i, v) = {vi, . . . , v;} and R = {(v,!, Wj), j = 1, . . . , k} in the case where x is an 
internal vertex of Hi. If x is an edge e, then vi, . . . , v; are its vertices. If R is not 
of the appropriate form, then L’(x, i, R) is empty. 

If w = (p, x) and w’ = (p’, x’) belong to DEF, we let w = w’ iff x =x’, and w 
and w ’ are of the same type. 

5.5. Lemma. Zf w and w’ belong to DEF’, and w = w’, then C(w) = C(w’). 

Proof. The case of w and w ’ in DEF,, is clear. 
Let w = (p, v) and w’ = (p:, v) belong to DEF;, and be of the same type. We 

first make a few observations concerning C(p, v). 
(1) Every item x of C(,u, v) is f ((PI, y)) for some ~1~ s ~1, and some item y. 

(2) If x, as in (I), is f ((PI, y)), and if p1 is not less than ~1, then p = pr, and x 
is a source, both of G and of C(p, v). 

(3) If f((cll, x)) E C(P, v), (P, PI) E sue(q), and 4 is such that (u, 14) E 
Wrl), then f ((A x)) E C(P, v). (Easy P roof by induction on the length of 7.) 

Remark that the subtrees of T issued from p and y’, that we denote 
respectively by TP and T,,, are isomorphic (since p and p’ have the same label, 
and T is a syntactic tree). Let h : TP + TPS be an isomorphism (it preserves the 
labels of nodes and edges in an obvious way). Let fi be the binary relation 
s (V, X V,) U (EG X EG) defined by: 

h = {(f ((PI, x)), f ((h(uA x))) ) PI c P, 
x is an item of the appropriate graph}. 
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It is not hard to prove that it is bijective. It is an isomorphism &: G/p + G/p’. 
If y is an internal path in G linking a vertex w to f((p, v)), then y is in C(p, v). 
Hence w =f((pl, 21’)). Its image under 6 is a path y’, linking w’:=f((h(pi), v’)) 
to f((p’, v)). The path y’ is internal, because (p, V) and (p’, v) are of the same 
type. Hence it belongs to C(,U’, v). 

Hence h is a bijection: C(p, V) +C(p’, v). Since p and ~1’ are of the same 
type, C(,U, V) and C(p’, V) have the same set of sources, namely, the set of 
vertices W, such that (6, @) E R for some ~7, where (i, R) is the common type of 

(P, u) and (cl’, u). 0 

We can construct a finite subset DEF”’ of DEF’ that has one and only one 
element in each class of =. It is finite because there are finitely many types, 
whence finitely many equivalence classes. Its construction can be done effectively 
by means of the languages L’(x, i, R). Furthermore, one can also determine, for 
every w in DEF”, the cardinality c(w) of its equivalence class in DEF’ w.r.t. =. 

Let us define A(w) = {C(w’) ( w’ E DEF’, w’ = w}. The family (A(w)), for w in 
DEF’, is a partition of CICC(G), every set of which consists of isomorphic 
graphs, having the same sequence of sources. The cardinality of A(w) is c(w). 
From these data, and by Lemma 1.10, one can achieve the goal of this second 
part: 

5.6. Lemma. One can construct a source-preserving decomposition of G over 
{C(w) ( w E DEE*‘}. 

The graph G of Fig. 1, Example 1.11, is defined by the system reduced to the 
equation w = K, where K is the following graph: 

1 a 2 b c 3 

. ,.-------------$.-. 

I 
w J 

This system is not special. The source-preserving decomposition of the graph G 
over its internally connected components is f (//” a, H), where f and H are defined 
in Example 1.11. The graph H is defined by a special system defined in Remarks 
4.2. 

For (p, x) in DEF, we denote by C(p, X) the abstract graph, (i.e., the ice of 
G), isomorphic to C(,U, x). 

At this point of our proof, we do not know how to decide whether C(p, v) is 
isomorphic to C(p’, v’) for (p, v), (p’, v’) E DEF’,. This is actually decidable, but 
only by Corollary 5.9 of the theorem we are now proving. Hence we do not have 
an enumeration of ICC(G). A same ice may appear several times in the indexed 

set (C(K x))(~,+~E~. 
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Third part: Construction of a special system defining ICC(G) 

5.7. Proposition. One can construct a special system defining the graphs c(p, x) 
for all (p, x) E DEP. 

Proof. All what we did up to now, was relative to a fixed component G = Gi of 
the solution of a given system S. In this proof, we shall consider all components 
simultaneously, hence we shall make this dependence explicit. The above 
introduced objects will be denoted by DEF(i), DEF’(i), C(i, p, x), etc. 

For each i, each @, x) in DEP(i), let us define a new symbol [i, p, x] of type 
z(C(i, p, x)). Let U” be this new set of symbols. 

From Lemma 5.6, one can construct, for each i in [n], a finite graph Ki over 
u” U U”, such that: 

Gi = &[C(i, p, x)l[i, ~1, xl, (//“C(i, K x))l[i, K xl”] 

(The substitution is done simultaneously for all [i, p, x] in u” and all [i, p, x]” in 
17”. This is omitted in order to obtain a simpler formula. The same will be done 
below in similar cases.) 

It is easy to observe that C(i, p, x) is isomorphic to C(j, E, x), if (p, x) belongs 
to DEF(i) and j is the label of the node p of z. Hence, it is isomorphic to 
C(j, E, x’) for a unique x’ such that (E, x’) belongs to DEF”(j). We let 
rep([i, /.J, x]) be the new symbol [j, x’], and rep([i, ,n, xlm) be similarly [j, ~‘1~. 
We let U’ be the set of new symbols [j, x], for (E, x) in DEF(j), with 
t([j, x]) := t(C(j, s, x)). We let: 

K: := Ki[rep([i’, j-4, xl)@‘, l.4, xl, rep([i’, PL, xl”)l[i’, P, xl”]. 

Hence, Ki is a finite graph over U’ U U’“, and we have: 

Gi = KI[C(j, s, x)l[j, xl, (//“C(j, c, x))l[j, ~1’7. 

Our purpose is to construct a special system 

(1) 

S’ = ([j, X] = Hj,x; [j, X] E U’) 

defining @(j, E, X))[j.x]eU*- 
If (E, x) E DEF,( j), then we let simply Hi,, : = C( j, E, x). (This graph is reduced 

to a single edge, all vertices of which are sources.) 
Let us now consider (E, x) in DEF”‘( j), where x is an internal vertex of Hi. Let 

then Lj := Hj[K;/Ul, . . . , KAlu,]. This graph belongs to FCG(A U U’ U U’“),(,,. 
Let x’ be the internal vertex of Li to which the internal vertex x of Hj is 

mapped, in the substitution defining Lj (see Definition 1.4). We let Hi,, be the 
cicc of Lj containing x’. This completes the definition of S’. 

Claim 1. C(j, E, x) is isomorphic to the graph: 

Hj,,[C(i’, E, x’)l[i’, x’], (//“C(i’, E, x’))l[i’, x’]=]. 
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Proof. We have 

Gj = Hj[Gr, . . . 7 Gn] 

=Hj[K;[C(i’, E, ~‘)/[i’, x’], . . -17 . . .] (by (1)) 

= Lj[C(i’, E, x’)/[i’, X’], (//“C(i’, E, x’))/[i’, X’lm] 

by the definition of Lj and the associativity of graph substitutions. 
Let us observe that, for all graphs G, L, Cl, . . . , Cm: 

if G = LICl/ul, . . . , Cm/u,], 
ifci,..., C,,, are source-separated and connected, 
if v is an internal vertex of L, mapped onto V’ in the 
substitution defining G, then 
V’ is internal in G, and the cicc of G containing u’ is isomorphic 
to L’[CJUr, . . . , CJu,], where L’ is the cicc of L containing V. 
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(2) 

In order to complete the proof, one applies this remark with G = Gj, L = Lj, 
21 =x’, and the sequence Ci, . . . , C,,, equal to an enumeration of the set of 
graphs C(i’, E, x’), for [i’, x’] in U’. It follows that Hj,,[- * -1 is the cicc of Gj 
containing the vertex corresponding to x’ in the substitution of equation (2). This 
vertex isf((e, x)), and the cicc containing it is C(j, E, x). 0 

Hence @:(i, E, X))[j,x]eUr> is a solution of the extended system S’. The following 
claim completes the proof. 

Claim 2. S’ i.9 a special system, and (C(j, E, X))[j,X]E(I’ is its solution. 

Proof. Since the graphs Gj are source-separated, and by (l), the graphs K,! are 
also source-separated. Since S is separated, the graphs Li are also source- 
separated. The cicc’s of the graphs Gi, . . . , G,, are source-separated too. Hence 
S’ is separated. This establishes condition (Sl) of Definition 4.1. 

Since the extended system S’ is separated, since (c(j, E, X))[j,x]sLI’ is a solution 
of S’ consisting of source-separated and internally connected graphs, it is actually 
the solution of S, by Proposition 2.14. 

Hence condition (S3) of Definition 4.1 holds. Condition (S2) also holds since 
the right-hand sides of S’ are internally connected (by construction). If they have 
no internal vertex, then they are of the form c(j, E, e), for (E, e) in DEF,(j), 
hence, they are reduced to single terminal edges. Hence, S’ is a special system, as 
was to be proved. 0 

This completes the proof of Theorem 5.1. 0 

The following corollary collects a few results, established in the course of the 
above proof, or easily derivable from it. 
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5.8. CoroUary. (1) An equational graph has finitely many internally connected 
components, and finitely many connected components. 

(2) The internally connected components of a source-separated equational graph 
are equational. They are defined by a special system. 

Here is another corollary of Theorem 5.1. 

5.9. CoroUary. The equality (i.e., the isomorphism) of two equational graphs is 
decidable. 

Proof. Let G be an equational graph. Let 9~ be the formula defining it. This 
formula can be constructed since the proof of Theorem 5.1 is effective. Let G’ be 
another equational graph. We know from Courcelle [ll, Corollary (9.3)], that it 
can be decided whether G’ k q, i.e., whether G’ is isomorphic to G. 0 

The algorithm derived from this proof is actually intractable: the formula 
derived from Proposition 4.3, that characterizes an equational graph defined by a 
special system S, is of length 0(&e(s)“). (The size of a system is the sum of the 
sizes of the graphs forming its equations; the size of a graph H of type n is 

n + Card(Vn) + C {r(e) ) e E EH}.) But the transformation of an arbitrary system 
into a source-separated one is exponential (see the proof of Proposition 2.10 
given in the Appendix). Hence the formula constructed in the proof of Theorem 
5.1 to define an equational graph G is of exponential length in the size of the 
system S. It can be transformed (by the results of [ll]) into a formula 0 in 3 WJZ 
that defines the set of infinite graph expressions (that are infinite trees), the value 
of which is G. This formula can be converted into a “special” automaton d 
(Rabin [19]). Th e size of this automaton can be expressed with a level of 
exponentiation proportional to the maximum number of nested quantifications in 
0. The second graph G’ (that we test for isomorphism with G) can be 
represented by an infinite graph expression that is a regular tree. One can decide 
whether this tree is accepted by the automaton SB, in polynomial time in the sizes 
of d and of the system of equations defining G’. However, the automaton &4 is 
of super-exponential size in that of the system defining G. (This intractability is 
mainly due to the construction of d.) An efficient algorithm can perhaps be 
found by other techniques, like the ones presented in Courcelle [6]. 

5.10. Conjecture: Every equational graph is W.Z-definable. 

This conjecture holds for regular trees in the, sense of Courcelle [7] (because, in 
a regular tree, the set of paths from the root to the nodes labelled by any given 
symbol form a regular language, and regular languages can be defined in WY by 
the fundamental result of Biichi [5]). It holds also for the syntactic trees of 
equational graphs, as we have seen in Section 3. 
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It suffices to establish it for the equational graphs defined by special systems. 
The proof of Theorem 5.1 works then with K!Z instead of 3 YVCLP, since, by 
Proposition 3.8, the YV_Y?-definability of graphs is preserved by source-preserving 
compositions. 

6. ‘The relative definability of equational graphs 

The connected component H of the first source of a graph G is definable in this 
graph. If furthermore G is equational, then H is also equational. This fact is a 
by-product of the proof of Theorem 5.1, (see Corollary 5.8). It suggests the 
following generalization: 

6.1. Theorem. Every graph definable in an equational graph ti equational. 

The proof of this proposition will use a few lemmas. 
We let T denote the unique infinite complete binary tree, all nodes of which are 

labeled by 0 (equivalently, have no label). As in Section 3, we denote by $(A) 
the set of infinite complete binary trees, the nodes of which are labeled in A. 

6.2. Lemma. Let = be an equivalence relation on T defined by a monadic 
second-order formula &x, y). There exists an integer k such that = is generated by 
its restriction the pairs of vertices at distance at most k. 

Proof. A tree t in J((0, 1)) is completely defined by the total mapping 
(It(l : {I, r}*+ (0, l} that defines the label of any node. (The nodes are words on 
the two letters 1 and r; the left successor of u is ul, its right successor is ur.) 

We let the distance of two words w and w’ in {I, r}* be their distance in T, 
considered as a graph. In other words, d(w, w’) = 1111 + Iv’1 where w = uv, 
w’ = uv’ and u is the longest common prefix of w and w’. 

For every tree tin 9({0, 1)) we let: 

s(t) = Min({lxl 1 x E (6 r>+, lltll (x) = 1)). 
If x, y are two nodes of t with label 1, we let p(t, x, y) be the least integer k 

such that there is a sequence of nodes x0=x, x1, . . . , x, = y, all of them with 
label 1, and such that d(xi, x~+~) s k for all i = 0, . . . , M - 1. (We have 
p(t, x, y) = 0 if x = y.) We also let: 

p(t) = Max{&, x9 Y) 1 x7 Y E VT, lltll (XI= Iltll (Y) = 11 

(We may have s(t) = CQ and p(t) = a).) 

We let L be the set of trees tin .9({0, 1)) such that Iltll-’ (1) is an equivalence 
class of the relation =. In order to prove the lemma, we need only prove that 
Max{,u(t) ( t E L} is finite. 

Claim 1. If t is regular, then p(t) is finite. 
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Proof. Let t be a regular tree in 9${0, 1)) and let {to, . . . , t,,,} be the set of its 
subtrees. Let k = Max{@&) ( i = 0, . . . , m, S(ti) < 03) (and k = 0 if S(ti) = ~0 for 
all i). 

We shall establish that p(t) 6 2k + 1. 
Let x, y be two nodes of t with label 1. Let y. = x, yl, y*, . . . , yn = y be the 

sequence of nodes of the unique loop-free path in t from x to y. The nodes 

Yl, . * * 7 y,_, are ancestors of either x or y or both. Hence, the subtrees 

t/y19 * . . , tlyn_l have at least one vertex labeled by 1. Let Xi be one such vertex 
of t/y, of minimal depth (i.e., of minimal length as a word in {I, r}*); this depth is 
at most k). Let us now consider the sequence of vertices of t: 

yo =x, YlXl, Y2X2, * * . 9 Yn-l&l-l, Yn =y. 

We have: 

d(x, y,xJ s 1 + 1x11 Sk + 1, 

d(J’&i, yi+lXi+l) s I + JxiI + Ixi+lI s2k + 1, 
d(yn_l~,_l, y) c 1 + lx,,_11 Sk + 1. 

Hence p(t, x, y) c 2k + 1. This completes the proof of the claim. q 

We now continue the proof of the lemma. Since the equivalence relation = is 
definable, the set L is definable. Hence, by the main theorem of Rabin [US], it is 
also definable by a finite-state automaton ~4 = ((0, l}, Q, M, Q,, Q,) with set of 
states Q, with set of initial states Q, (cQ), transition table M, and set of 
sets of accepting states QF. For every q in Q, we denote by L(q) the set of trees 
accepted by Se with initial (root) state q. It follows that L = IJ {L(q) 1 q E Q,}. 

We let Q’ E Q be the set of states q such that L(q) is reduced to a single regular 
tree, denoted by t(q). 

We let 6 = M={W(q)) ( q E Q’, a(t(q)) <ml and P = M={&(q)) 1 q E Q’). 

Claim 2. For every t in L, p(t) c Max{p, 2 6 + 2). 

Proof. Let t E L, let x and y be two vertices of t labeled by 1. 
First case: x is an ancestor ofy. Without loss of generality, we can assume that 

y = XIX’, with x’ E {I, r}*. Let us consider an accepted run f of JB on t. (A rurz is 
defined as a mapping f : (1, r} * --, Q such that f(~) E Q and f satisfies the local 
conditions specified by the transition relation M. It is accepted if on every infinite 
branch of t, the set of states occurring infinitely many times is in QF.) 

Let q =f(xr). Then t/xr E L(q). Any other tree in L(q) can be substituted for 
t/xr in t (as subtree issued from xr), thus giving a tree t’ in L. By the definition of 
L, if two trees t and t’ in L are such that lltll (x) = IIt’ll (x) = 1 for some x in 
{I, r}*, then t = t’. It follows that L(q) is reduced to a single tree. Since every 
nonempty set of the form L(q) contains a regular tree by a result of Rabin [20], 
t/xr is regular and q E Q’. 
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Let x” be a node in t/m with label 1 that is as close as possible to the root. We 

get: 

,+, x, Y) c M&d( x, xrx”), ,u(t, xrx”, y)} 6 Max{ 1 + S, p}. 

since Ix”] < 6 and p(t, xrx”, y) s p(t/xr, x”, y) =S p. 

Second case: x = ulx’, y = ury’ for some u, x’, y’ in {I, r}*. If u has label 1, 

then we get 

p(t, x, y) 6 Max{&& x, u), ~0, u, Y)) s Mm{1 + 6, ~1 

by the first case. 
Let us now assume that u has label 0. Let f be a run of I on t. Let 4 =f(u/) 

and q’ =f(ur). As in the first case we obtain that q and q’ belong to Q’. Letting 
X” and y” be two shortest words such that ulx” and ury” have both the label 1, it 

follows that: 

p(t, x, y) s M&p(t(q), x’, x”), cl(t(q’), Y ‘7 Y”), d(uh”, ury”)) 

c Max{p, 2 6 + 2). 

since X” and y” are of length at most 6. This completes the proof of Claim 2 and 

of Lemma 6.2. Cl 

In the following lemma, we shall use the notion of tree-width of a graph, 
borrowed from Robertson and Seymour [21]. 

6.3. Definition (Tree-width). Let G be a graph. A tree-decomposition of G is a 
pair (U, f) consisting of an undirected tree U, and a mapping f : Vu-, 9(V,) 

such that: 

(1) VG = U {f(i) I i E VCJ), 
(2) every edge of G has all its vertices in f(i) for some i, 
(3) if i, j, k E Vu, and if j is on the unique loop-free path in U from i to k, then 

f(i) M(k) EN), 
(4) all sources of G are in f(i) for some i in Vu. 

The width of such a decomposition is defined as 

Max{Card(f(i)) ( i E V,} - 1, 

and the tree-width of G is the minimum width of a tree-decomposition of G. It is 
denoted by twd(G). (F or a O-graph, Condition (4) is satisfied in a trivial way.) 

6.4. Lemma. Let G be a graph in CG(A), such that VG c (1, r}*, and such that 
any two sources and any two vertices belonging to a same edge are at distance at 
most k. The tree-width of G is at most 2k+1 - 2. 

Proof. We let (T, f) be the tree decomposition of G such that T is the unique 
tree in 4((O)), ( as in Lemma 6.2), and f(w) = VG fl {wu 1 u E {I, r}*, IuI Sk}, 
for every node w of T. 
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We first verify that (T, f) is actually a tree-decomposition. Each vertex of G 
belongs to some set f(w). This ensures that Condition (1) of Definition 6.3 holds. 
Consider any two vertices x and y of G such that d(x, y) s k. We have x = wx’, 
and y = WY’, with IX’], (y’l s k. It follows that x, y belong both to f(w). This 
remark establishes Conditions (2) and (4). Condition (3) is easy to verify. 

The cardinality of f(w) is at most 1 + 2 + . - .2k = 2k+1 - 1. Hence, twd(G) s 
2 k+1-2. 0 

Proof of Theorem 6.1. We first prove that if a graph G is definable in the infinite 
binary complete tree T, then it is equational. 

Let G = def,(T) for some definition scheme A with parameters Xi, . . . , X,,, 
and domain formula 97. This means that: 

TE3X,,...,X,,cp 

and that, for every n-tuple (Xi, . . . , X,) of subsets of VT satisfying cp, the 
defined graph def,(T, X1, . . . , X,,) is isomorphic to G. 

We shall transform A by several steps. We first eliminate parameters. By the 
result of Rabin [20] establishing that every nonempty definable set of infinite 
complete binary trees contains a regular tree, it follows that, if there exists a 
n-tuple (Xi, . . . , X,) satisfying q, there exists one, (Xy, . . . , X”,), 
corresponding to a regular tree in the construction of [US]. This n-tuple is 
definable. It follows that A can be transformed into a parameterless definition 
scheme A’ such that: 

def,,(T) = def,(T, XT, . . . , X”,) = G. 

For simplicity, we shall denote A’ by A. This definition scheme is of the form 
(pl, ?+!Q, . . . , ?@k, 8, . . .), SO that: 

Vo U EG s (1, r}* x [k]. 

Our next aim is to reduce k to 1. The integers in [k] can be encoded as words in 
{I, r}” where k G 2”. Via this encoding, we get: 

VG U EG E {I, r}* . {I, r}” E (1, r}*. 

It follows that A can be modified into a definition scheme without parameters, 
also denoted by A, and such that G = def,( T), and VG U EG E VT = {I, r}*. 

We make a last technical assumption concerning A. We let r, be the maximum 
type of a label in A and M be such that r, - < 2”. We assume that, if e is a word in 
{I, r}* representing an edge of G, then no word of the form ew with w E {I, r}*, 
1 c Iwl s M is in VG U EG. Some extra transformation of A may be necessary to 
ensure this last condition. 

Our objective is to construct an equational graph G’ over A U {$, t}, where $ 
and 4 are two new edge labels of type 2 such that: 

G = G’[2/& a&)/+]. (1) 
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The effect of this substitution is to delete the edges labeled by $ (while keeping 
their vertices), and to contract the edges labeled by I#. (In a contraction, an edge 
disappears and its two vertices are fused into a single one.) 

The construction of G’ will achieve the proof because, from a system of 
equations S’ defining G’, one obtains a system defining G by doing the 
substitutions of 2 for $ and a,,r(l) for 4 on the righthand side of all the equations 
of S’. 

The following technical fact is easy to establish. 

Claim. For every nonempty subset V of VT, defined as V = {x 1 T L u(x)}, where 
u is a given monadic second-order formula, one can construct two monadic 
second-order formulas, defining two sets E and E’ forming a partition of the set of 
edges of T, such that in the simultaneous substitution in T of 2 for all edges e in E, 
and of q1 (1) for all edges e’ in E’, every node of T gets identified with one and 
only one node in V, and no two nodes of V get identified. 

We now start the proof itself. We first assume that no symbol in A is of type 0. 

We let wl, . . . , wrA be a fixed sequence of pairwise distinct words in (1, r}*, with 
(wi( = M. We let = be the equivalence relation on VT generated by the set of pairs 
of the form (ewi, v) such that e E EG, v E VG, and ve&(e, i) = v for i E [t(e)]. 
(Recall that e, w,, v are words in (1, r}*.) Since G is defd(T), it follows that the 
equivalence relation = is definable in T. Let k be the integer associated with it by 
Lemma 6.2. 

We let G’ be the graph such that VGr = VT = (1, r}*, srcG, = srcG (recall that 
VG c V,), and having the following edges: 

- an edge with label labc(e) and sequence of vertices (ew,, . . . , ew,) where 
m = t(e), for every edge e of G, 

- an edge from v to v’ with label 4, for every two vertices v and u’ of T such 
that v # v’, v = v’ and d(v, v’) s k, 

- the edges of T labeled by $ or I$ according to whether they belong to E or E’, 
where (E, E’) is the partition associated with VG by the above claim. 

This graph G’ satisfies equation (1). (This follows in particular from Lemma 
6.2, ensuring that all vertices of an equivalence class of = get identified into a 
single vertex of G.) 

Since T is definable, since VG is a definable subset of VT, and since the edges 
of G’ are established in a definable way, it follows that G’ is definable. 

By Lemma 6.3, the graph G’ is of finite tree-width. Hence G’ is of width at 
most k’, for some k’, by Proposition 2.6 of [12]. It is proved in Courcelle [ll, 
Proposition 9.51 that if a graph is definable and of finite width, then it is 
equational. Hence G’ is equational and this concludes the proof that G is 
equational, if it is definable in the tree T, in the case where A has no symbol of 
type 0. If it has, then one can determine the labels of G of type 0 (that is the 
cardinality of the set of edges with label a for each a in A of type 0). One obtains 
that G[Ola; a E A, z(a) = 0] is equational. It follows easily that G is equational. 
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Let us now assume that G is definable in an equational graph H. The 
construction of Theorem 8.1 of Courcelle [ll] shows actually that H is definable 
in the infinite complete k-ary tree for some suitable k. Since this tree is itself 
definable in T, and since relative definability is a transitive relation (by 
Proposition 3.4, it follows that G is definable in T. Hence, G is equational by the 
first part of the proof. Cl 

As a conclusion, we collect the equivalent characterizations of equation graphs 
we have obtained in the following theorem. 

6.5. Theorem. The following properties of a graph are equivalent: 
(1) G is equational, 
(2) G is definable and has a finite width (or tree-width), 
(3) G is 3 WY-definable and has a finite width (or tree-width), 
(4) G is definable in an equational graph, 
(5) G b definable in the infinite complete binary tree T. 

Proof. That G has a finite width iff it has a finite tree-width follows from 
Courcelle [ 12, Proposition 2.61. 

(3) j (2) is trivial. 
(2) j (1) is proved in Courcelle [ 11, Proposition 9.51. 
(1) j (3). The 3 WZ’-definability is proved in Theorem 5.1; the finiteness of the 

width is proved in Courcelle [ll, Section (5.8)]. 
The equivalences (1) e (5) e (4) are proved in the proof of Theorem 6.1. Cl 

Appendix 

This appendix contains the proofs of a few technical propositions, that have been 
stated without proofs in Section 2. 

We first review a few definitions from Adamek and Koubek [l] and Bauderon 

12, 31. 

A.l. Definition (The least fixed-point of a functor). Let K be a category, let 
F : K-* K be a functor. A fixed point of F is a pair (X, h) where X is an object of 
K, and h is an isomorphism : FX + X. 

A least jixed point of F is a fixed point (X0, h,) of F such that, for every fixed 
point (X, h) of F, there is a unique morphism f :X0-, X making the following 
diagram commutative: 

FX,, h, X0 

Ef 
1 1 

f 

FX A-X 
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If F has a least fixed point, then it is unique, up to isomorphism. We shall also 
call it the initial solution of the equation X = FX. 

The following lemma is a special case of Proposition 5 of Ademek and Koubek 

PI- 

A.2. Lemma. Let K be a category having an initial object Il. Let F : K --, K be a 
functor. Let w be the unique morphism : II -+ FQ. If the diagram. 

~“-F~%F*1]FZW,...- 
n F”Qs... 

has a colimit X, and if the canonical morphism h :X+ FX is an isomorphism, 
then (X, h-‘) is the least fixed point of F. 

The canonical morphism h is defined as follows. Since X is the colimit, one has 
morphisms w, : F”ll *X, such that w, = F”w - w,,+~. Hence, one has a family of 
morphisms Fw, : F"+'ll + FX, such that Fw, = F”+*w - Fw,+~, and a unique 
morphism h : X * FX by the universal property of the colimit. 

We now recall from Bauderon [2, 31, how these definitions can be applied to 
systems of graph equations. 

A.3. Definition (The initial solution of a system of graph equations). Let 
S=(zQ=&,..., u, = H,, ) be a system of graph equations of the general form 
of Definition 2.1. Here we assume that HI, . . . , H,, are pairwise disjoint concrete 
graphs. We let pi = t(Ui) = t(Hi) for all i. 

We associate with S, a category Ks, and a functor Fs: Ks+ KS. 
The objects of Ks are n-tuples of concrete graphs (K,, . . . , K,) in CG(A),, x 

. . . x CG(A),“. 
A morphism h:(K1, . . . , K,J+ (K;, . . . , KA) is an n-tuple h = (h,, . . . , h,) 

of graph homomorphisms where hi: Kj + Ki for all i, and each mapping 
hiE: E,-, E, is injective. We shall say that the homomorphisms hI, . . . , h, are 
edge-injective. This category has an initial object, denoted by II, equal to the 
n-tuple of graphs (pr, p2, . . . , p,). 

We now define a functor Fs : KS+ Ks as follows: 
l Fs(K,, . . . , K,) = (K;, . . . , KA), where KI = Hi[K,/ul, . . . , K,/u,] for all i, 
l if h = (h,, . . . , h,): (K,, . . . , K,)-, (K;, . . . , KL) then F,(h) is the morphism 

(h;, . . . , h;) where h,! = Hj[hI, . . . , h,] for all i. (See Definition 1.4.) 
It is proved in Bauderon [2, 31 that Ks and Fs satisfy the conditions of Lemma 

A.2. Hence Fs has a least fixed point, that is the initial solution of S. 
Letting T,, . . . , T, be the syntactic trees associated with S by Definition 2.4, 

we have the following lemma, that is nothing but Proposition 2.5. 

A.4. Lemma. The least fixed point of Fs is isomorphic to (evaI( 
. . . , evWiJ). 
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Proof. Let T< be the initial part of z, obtained by restricting T to its first j levels. 
Let K< be the intermediate graph associated with Tj, as defined in Definition 2.4. 
Clearly T{ s Ti” and Kj c Kj+‘. 

From this inclusion, ok obtains a homomorphism 

hi : evaI( T{) + eval( Tj+‘). 

Let us now consider the diagram 

~*@@!Z+...~~~~~... 

For each m 2 0, let (Gy, . . . , Gr) = F,“ll and (G,, . . . , G,) be the colimit of 
this diagram. Let us denote F,“w by (WY, . . . , w:). Here, wj is a 
homomorphism : G+ c;i”. It is easy to verify that there are isomorphisms 
g{: evaI( Gj such that the diagrams 

all commute. 
Hence, to establish the lemma, it suffices to establish that eval(ZJ is the colimit 

of the diagram: 

h,2 
eval( Tf) h: eval( Tf) - - . ..-evpI(Tj)-?+. . . 

But eval(T{) is a quotient of the intermediate graph Kj, and h< is the canonical 
homomorphism derived from the inclusion K{ E Kj+‘. The situation is fully 
described by the following lemma: 

AS. Lemma. Let K be a concrete graph, let (K’), i 3 0, be an increasing 
sequence of concrete subgraphs of K. Let = be an equivalence relation on VK, and 
let =i be an equivalence relation on V,p for all i. Let us assume that 
==IJ{=i)i~O}andthat=i~=i+I for all i. Let G’ = Ki/zi, let f’ and hi be the 
canonical morphisms making 

Ki s K’+1 

f 
I 1 

f”’ 

G’ - 
h’ 

Gi+l 

commutative all diagrams of the form: 

Then, Kl== is the colimit of the diagram: 

Go-% G’haG 2 
- * * .-G’h”. . . 

The proof of this lemma is a routine verification that we omit. 
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The desired result follows from the lemma, if we take K = Ki, Kj = Ki, 
ci = evaI and hj = hi. Cl 

A.6. Proof of Proposition 2.10. Given a system S = ( u1 = Hi, . . . , u, = H,, ), 

with solution (G,, . . . , G,), we shall construct a separated system defining the 

graphs sep(G,), . . . , sep(G,). 
We need a few definitions. 
For every n-graph G, we let 

A(G) := {(i, j) E [n]’ 1 src&) = sue,(j)}. 

We also let, for every e E EG, 

A(G, e) = {(i, j) E [t(e)]’ 1 vert&e, i) = vert&e, j)}. 

If G is equational, then A(G) can be computed by the decidability result recalled 

in Theorem 3.6. 

A special case. We first assume that S and its solution satisfy the following 
conditions: 

(Cl) A(Hi, e) = A(Hj) for every nonterminal edge e of Hi with label Uj> for 
every i in [n], 

(C2) A(Gi) = A(Hi) for all i E [n]. 
One can establish that (C2) is a consequence of (Cl) (this is a generalization of 

Lemma 2.8), but this fact is not needed in this proof. Condition (Cl) is decidable 
because it concerns finitely many finite graphs, and condition (C2) is decidable, 
since A(G) is computable for an equational graph G. 

For each ui, let us define a new unknown Wi, of type t(sep(Gj)). Let U’ be this 
set of unknowns. Let ai and pi be such that Gi = a,(sep(G;)) and sep(Gi) = 
o,(Gi). These two mappings can be constructed from A(Gi). Let S’ = (wi = 
H;, . . . , w, = HL) where, for every i: 

W = ~&W,,(~I)/~I, . . . , ~,(wdlw3 

(Let us recall that wi denotes the graph reduced to one edge labeled by wi. See 
Definition 1.1.) 

Claim 1. The system S’ is separated, and its solution is the n-tuple 

(sep(GJ, . . . , WG)). 

Proof. It follows from the construction that each graph Hf is source-separated 
and U-separated. Let (G;, . . . , GL) be the solution of S’. The syntactic trees 
associated with S and S’ are the same. Let us denote them by T;:, i = 1, . . . , n. 

Since, for each i, del(H# = del(H~)“, the intermediate graphs K,, . . . , K,, 
associated with T,, . . . , T, are the same for the two systems. So are the 
associated equivalence relations on the sets VK,, . . . , V,. 
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Hence, Gf” = Gy for all i E [n]. From the definition of S’, and Definition 2.4, 

we have Gf = asi = sep(GJ. 0 

The general case. Let S = ( u1 = H,, . . . , U, = H,) be a system with solution 

(G,, . . . , G,) as in the first case. 
For every i E [n], let 6, = A(Gi) E Eq([p,]) where pi = r(Ui)* 
For every 6 E Eq([pi]) such that Si c 6, let [Ui, 61 be a new unknown, of type 

t(ui). Let U’ be the set of these unknowns. 
We shall construct a system S’ = ([Ui, 6]= Hi,a; [Ui, 61 E U’) with solution 

(~s(Gi))lui,6lE~,* 
In order to construct H,!s, we let - be the equivalence relation on V,, 

generated by the following sets of pairs of vertices: 

(s&j), src& j’)) for all (j, j’) E 6, 

(vert&e, j), vert&e, j’)) for all (j, j’) E A(Gk), 

all k E [n], all edges e of Hi, the label of which is uk. 

For every nonterminal edge e of Hi, let s(e) be the equivalence relation on 

[r(e)] such that: 

(j, j’) E 6(e) e ve&,(e, j) - vert,(e, j’). 

Hence, 6(e) r> A(Hi, e) U d(G,) if lab(e) = uk. We now define 

H& = %[e,&.Iah(c), 4e)l)le; e E El) 

where E is the set of nonterminal edges of Hi* 

Claim 2. The system S’ satisfies conditions (Cl) and (C2) of the first case, and its 
solution is (e,(Gi))[q,~]rz~,* 

Proof. Each graph del(H;g) is a quotient of del(H,). Hence, the intermediate 
graph Z& associated with [Ui, 61 and S’, is a quotient of the intermediate graph 

Ki associated with Ui and S. 
Hence we have a commutative diagram, with canonical surjective 

homomorphisms: 

Ki 2 K! 6 = Kil - 

f 
1 1 

f’ 

Gi = Ki/ z 7 G;,6= K&i= 

We wish to establish that G;6 = f3,(Gj). 
The homomorphism g is surjective since f’ and k are surjective. 
For every (j, j’) in 6, g(src,( j)) = g( srcc,( j’))’ since, by the definition of -, we 

have k(src&j)) = k(src&j’)). 
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Hence, there exist surjective homomorphisms g’ and h making the following 
diagram commutative: 

Let V, U’ be vertices of Ki such that f’(k(v)) =f’(k(v’)). We shall prove that 
g’(f(v)) =g’(f(v’)), and it will follow that h is an isomorphism. Since f’ and k 
are canonical homomorphisms associated with quotients, it suffices to consider 
pairs of vertices belonging to the sets that generate the corresponding 

equivalences. 
Hence, we only consider the following cases: 
First case: (v, v’) belongs to the set generating - on Ki. The various 

possibilities are as follows. 

(I) ?J = (r-t, src&))7 u’ = (rt, src,(j’)) where rt denotes, as in Proposition 4.3, 
the root of T, and (i, i’) E 6. 

(2) v = (p’, vert&e, i)), V’ = (p’, vert,.(e, i’)) where ~1’ is a node of T, e is 
an edge of H,,, i’ is the label of p’, and (i, i’) E c?(e). 

(3) u = (p, src&)), u’ = (p, src&‘)) and, for some p’, i’, e as in case (2), 
the node ~1 of ?; is the successor of p’ corresponding to e, the label of e in Hi, is 
ui” (hence the label of p in z is i”), and (i, i’) E 6(e). 

In case (l), one has g’(f(v)) =g’(f(v’)) by the definition of g’. In cases (2) 
and (3), one has f(v) =f(v’) by the definition of 6(e). 

Second case: (k(v), k(v’)) belongs to the set generating the equivalence relation 
=’ on K;,+ (See Definition 2.4.) 

These exists V” in Ki such that (v, 21”) is as in the first case, and (v”, v’) belongs 
to the set generating the equivalence relation = on Ki. 

Hence f(n”) =f(v’). By the first case, g(f(v)) =g(f(v”)). It follows that 

U(u)) = g(f(v’)). 
Hence, the solution of S’ is (O~(Gi))l,,,g]E~‘. Since 6 1 A(Gj), we have 

A(Oa(Gi)) = 6, for all [Ui, 61 E U’, and that S’ satisfies (Cl) and (C2), follows 
from its construction. q 

The construction of Proposition 2.10 consists in the following steps. Given a 
system S, with solution (G,, . . . , G,), one uses Claim 2 to construct a system S’, 
defining the graphs O,(Gi) for all [Ui, 61 in U’. This system satisfies conditions 
(Cl) and (C2). The construction of Claim 1 allows to transform it into a system S” 
defining the graphs seP(6,(Gi)) for all [ui, 61 in 17’. 

Since for each i, sep(GJ = sep( Oh(Gi)) w h ere 6 = A(Gi), the system S” defines 
the graphs sep(Gl), . . . , sep(G,), together with some other graphs. Cl 
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Proof of Proposition 2.9. We shall prove that, if S is a separated system with 
initial solution (G,, . . . , G,), if (K,, . . . , K,) is a solution of S, if each graph Gi 
has at least one internal item, and if each graph Ki is internally connected and 
source-separated, then Gi is isomorphic to Ki for all i. 

The proof will be done formally in a simplified case. In the general case, it is no 
more difficult, except for the notations. 

Let S be the system reduced to the single equation (U = H) where r(u) = n and 
H is in FCG(A U {u}),. We let {el, . . . , e,} be an enumeration of the set of 
nonterminal edges of H. 

Let K E CG(A), be a solution of S, that is source-separated and internally 
connected. We have an isomorphism kO:HIK/el, . . . , K/e,]+ K. Let 

(k,, . . . , k,) be the r-tuple of homomorphisms, ki : K”-, H[K/e,, . . . , K/e,], 
associated with H[K/e,, . . . , K/e,] by Definition 1.4. 

Fig. 8 illustrates the situation. 
Since S is separated, the homomorphisms kl, . . . , k, are injective. 
Let G be the canonical solution of S. It is characterized as the colimit of the 

diagram: 

where Gi = HIGi_l/e,, . . . , Gi-l/e,], Wi = H[Wi-1, . . . , Wi-11, and ~0 exists 
(uniquely) by initiality. Hence we have the following commutative diagram (we 
shall call it r): 

K 

__, . . . 

ko 
< H 

e, . . . er 
k, 

b 

kr 

K K 
. . . 

0 

Fig. 8. 

- J 
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All morphisms of this diagram are injective. This follows from the following 
facts: 

(1) w, is injective since S is separated, 
(2) 6, is injective since K is source-separated, 

(3) if gl, . . . , g, are injective morphisms, then H[gr, . . . , gr] is injective: this 
follows from the hypothesis that S is separated. 

Hence (1) and (3) give that the homomorphisms wi are injective for all i 2 1. So 
are the morphisms hi. By (1) and (3), we obtain that the morphisms hi are 
injective. It follows that h is injective too. 

Letting (gi,,, . . . , gi,,) be the r-tuple of homomorphisms associated with 

H[Gi, . * -9 Gil, (gi,j: Gi* H[G,, . . . , Gi] = Gi+l), we have the following com- 
mutative diagram (we shall call it &,j:,i): 

Gi %H[Gi, . . . G;] = Gi+r 

&I k;,....l;,, \ 

K 7 H[K, . . . > Kl Ir, K I 

A.7. Lemma. Let v E h(V,). Let vo, vl, vz, . . . be an infinite sequence such that 
for every j, there exists i such that ko(ki(Vj+,)) = Vjo There exists m such that V, is a 
source of K. 

Proof. As in Theorem 5.1, we let SK be the set of sources of K. 

uo, Vl, vz, * . . be as in the statement. 
Since G is the colimit of the diagram r, there is an integer m such 

i;m(v) = v. for some vertex v of G,,,. Let m be the smallest such integer. 
If m = 0, then v. E SK and we are done. 
Otherwise, let us consider v1 such that ko(ki(v,)) = vo. We claim 

&-r(v’) = v1 for some v’ in G,,,_,. 
Let us consider the diagram &_,,ti 

Let 

that 

that 

The vertex v belongs to H[G,_r, . . . , G,_,]. Let v” be its image in 
H[K, . . . ) K] under the homomorphism H[&_,, . . . , ii,-l]. Since k;‘(v”) is 
defined (and equal to vr), g,‘r,i(V) is defined and equal to a vertex v’ in G,_,. 

By the commutativity of rm--l,i, we have 

v"= ki(hm_,(V’)) and ko(v”) = ~0. 

We have assumed that ko(ki(v,)) = vo. 
Since the morphisms ko, k,, . . . , k, are injective, we have vr = h,_,(v’) E 

h(V,). By repeating the argument, one has v, = ho(v’) for some v’ E Go = n. 
Hence v,,, E SK, as was to be proved. q 

A few more technical definitions are needed. A path 36 in K is a K\G-path if 
the following conditions hold: 

(1) if vert(n) = (v, vl, v2, . . . , v,, v’), then vl, . . . , v,,, are in VK - h(V,), 
and 

(2) the edges of n are all in EK - h(E,). 
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For every e E EK - h(E,), we let D(e) be the set of edges e’ of E, - h(E,) 
such that there is a K\G-path linking v to Y’, where v and v’ belong to 
VK - h(V,), u belongs to e, u’ belongs to e’. We let C(e) be the O-graph 
K” 1 D(e). We let c(e) be the number of vertices of C(e) that are sources of K. 

For every subgraph C of K”, we denote by Fr(C) the set Vc n h(V,). 
Note that h is a bijection SG + SK. 

A.8. Lemma. Let e E EK - h(E,). There exist i E [r] and e’ E EK - h(E,) such 
that e = ko(ki(e’)). Then, C(e) is isomorphic to C(e’) by kooki, and c(e) s c(e’). 

Proof. We first make an observation. If w is an item of K, that does not belong 
to h(G), then there exists a unique i such that w is an item of ko(ki(K)), and a 
unique w ’ in K such that w = ko(ki(W’)). This item w’ is not in h(G), otherwise, 
w would be also in h(G). 

Since graph homomorphisms preserve the incidences (i.e., technically, the 
mapping vert), if e, and e2 are two edges in EK - h(Ec) having a common vertex 
v in VK - h(V,), then the three integers i, j, m such that 

are equal. 
It follows that every item of C(e) belongs to ko(k,(C(e’))), where (i, e’) is the 

unique pair such that e = ko(ki(e’)). 
It is not hard to see that, for every item w of C(e’), its image under koo ki is 

also an item of C(e). 
Hence C(e) and C(e’) are isomorphic by kooki. Let TV be a source of K, 

belonging to C(e). We have u = vert,(e, Z) for some integer i, and some edge ? of 
C(e). Let 2’ = k;‘(k<‘(Z)). Then v = ko(ki(vert&i?‘, j))). Hence ki(veffK(2’, j)) is 

a source of H[KIei, . . . , K/e,] and vert,(e’, Z) must be a source of K, otherwise 
its image under ki would be internal vertex. Hence 

u’ = k;‘(k;i(v)) E Fr(C(e’)) rl SK. 

It follows that Fr(C(e)) f~ SK is in bijection by kooki with a subset of 
Fr(C(e’)) II SK. Hence c(e) s c(e’). 0 

A.9. Lemma. Z_f the set EK - h(E,) is not empty, it contains an element e such 
that Fr(C(e)) E SK. 

Proof. Let us assume that EK - h(E,) is not empty. Let e in this set be such that 
c(e) is maximal. We claim that Fr(C(e)) E SK. 

If this is not the case, let TV E SK - Fr(C(e)). 
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Let ir, i2, . . . be the sequence in [r], and e(O), e(l), e@), . . . be the sequence of 
edges of EK - h(E,) such that: 

e(O) = e 7 

fP_l) = ko(ki for all m 2 1. nt (dm’)) 

There exist such sequences by Lemma A.8. Let vo, ui, . . . , be such that 

uo=u, %a-1 = ~o&m(%n)). 

Each vertex V, belongs to C(e@)), and also to h(G). Hence V, E SK for some 
m. Let m. be the least such integer. 

The sequence (c(e(m))),ao is nondecreasing by Lemma A.8: 

c(e(O)) < c(e(l)) 6 . - . < c(ecm)) < . - - 

but we have c(e (mo-0) < c(e(mo)) since U, is an element of Fr(C(e(““))) n SK that is 
nof in correspondence by koo ki (where i = i,,J with any element of 
Fr(C(ecmo-I))) n SK. This contradicts the maximality assumption on c(e) = c(e(“)). 

Hence Fr(C(e)) G SK. 0 

A.lO. Proof of Proposition 2.9. Let K be a source-separated solution of S, that 
is internally connected. Let G be the initial solution of S, we assume that it has 
internal items. Let h : G-* K be the morphism that exists by initiality. 

We have observed above that h is injective. If hE: EG * EK is not surjective, 
then there is, by Lemma A.9, an edge e in EK - hE(EG), such that Fr(C(e)) c SK. 

The vertices of C(e) belonging to h(G) are sources of K. Hence K r C(e) is a 
cicc of K, having no edge in common with h(G). Hence, if G has internal items, 
K has at least two cicc’s. Hence it is not internally connected. 

Hence hE is surjective. Since K is connected, it has no isolated vertex, and 
hV: VG+ VK is surjective. Hence h is an isomorphism, as was to be proved. 

The proof is essentially the same if S has several equations. 
Let us only observe that, in the corresponding extension of Lemma A.7 the 

vertices ul, v2, U3, . . . do not belong necessarily to the same graph as vo. 
Similarly, in the lemma corresponding to Lemma A.8, the two isomorphic graphs 
C(e), and C(e’), are not necessarily subgraphs of the same component of the 
considered solution of S. Cl 

A.ll. Remarks. (The hypotheses of Proposition 2.9 are not superflous.) 
(1) The hypothesis that G contains internal items cannot be omitted. If u is an 

unknown of type 1, then, the initial solution of the equation u = u is the graph 1. 
This equation is separated. But a and b are two nonisomorphic source-separated 
internally connected solutions, if a and b are of type 1. 

(2) The special system consisting of the equation w = K where K is shown in 
Fig. 9 (the unknown w is of type 3) has an internally connected solution that is 
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not source-separated, and not isomorphic to the initial one: namely 8,,,(G) 
where G is the initial solution. 0 

Graph K 

Fig. 9. 

AX. Proof of Proposition 2.15. An extended system can be considered as a 
system with right-hand sides of equations, having possibly infinitely many 
nonterminal edges. The definitions and results of A.1 to A.5 can be adapted to 
this case. The proof of Proposition 2.9 can be adapted too (the reader can note 
that a countable set can be used instead of the set [r]). We omit the formal 
details. Cl 
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Note added in proof 

G. Senizergues (Bordeaux-l University) has established Conjecture 5.10 for 
the context-free graphs of Muller and Schupp (“The theory of ends, pushdown 
automata, and second-order logic”, Theoret. Comput. Sci. 37 (1985) 51-75) that 
form a proper subclass of the class of equational graphs. 
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