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Abstract.We give a completion theorem for ordered magmas (i.e. ordered algebras with monotone operations) in a general form.

Particular instances of this theorem are already known, and new results follow. The semantics of programming languages is the motivation

of such investigations.
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Introduction. When defining recursive functions by systems of equations (Kleene [5]), one introduces an
order relation which means that a partial result approximates another one. This partial order iscomplete(i.e.
every ascending chain admits a least upper bound), thus allowing a minimal solution to be defined for the system.

This matter has been rebuilt by Scott, and many authors after him, within the framework ofcomplete lattices;
that last theory has been developed for its own sake by several authors , among which Birkhoff [1].

Frequently, the lattice structure does not seem necessary and creates instead additional troubles (Plotkin [9],
Milner [8] for instance). The notion of complete partial order is good enough, and fits better to the most common
instances.

This algebraic framework is suitable for studying program schemes([2], [3]). We then need distinguish
between thebase functionsand theprogram-defined functions,with the help of base functions and various
control structures (recursive call, iteration, etc…).

Thus, our domains will beordered magmas,i.e. partial orders equipped withmonotoneoperators (no
information is lost during a computation). And we shall be concerned withcompleteness(the operators being
supposedcontinuous).

More precisely, we shall study the possible embeddings of an ordered magma into a complete ordered magma.
Some of the ascending chains may keep their l.u.b., or may be added a new one ; this gives differentcompletions,
each characterized by a universal property. We shall thus define theΓ-completionas the completion which
preserves the l.u.b. which already exist in a setΓ of subsetes of the magma. From this general theorem is defived
the “ideal completion” of [9], [1], [2], [4], the “chain-completion” of [8], and the existence of factor objects
in the category of ordered magmas. The above mentionned authors woule use neither operators not magmas,
but only partial orders (except [4]). But eht “chain-completion” in the category of partial orders need not be a
complete ordered magma (cf. Corollary 2).

Definitions and the main theorem.Let F be a set of operators with arity. An F-magmaM is a domain DM

together with a functionfM : Dk
M → DM for eachf ∈ F with arity k. The homomorphisms of F-magmas, or

F-morphisms, shall be compatible with the operators :ϕ : M → M′ is a F-morphism when

ϕ(fM(a1, … , ak)) = fM′(ϕ(a1), … , ϕ(ak))

for all f ∈ F with arityk, and alla1, … , ak ∈ DM .
In this paper, we shall only considerorderedmagmas (therefore “magma” will mean “ordered magma”), with

a partial order denoted by≤M , a least elementΩM (associated with the symbolΩ of arity 0 whichi is always
supposed to be an element of F), and monotone operatorsfM . An F-morphism between ordered magmas must
be monotone.
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Finally, if M is a magma, asub-F-magmaN of M is a F-magma such that DN ⊆ DM , and that the inclusion
i : n → M is a (monotone) F-morphism. It isfull whend ≤M d′ impliesd ≤N d′ for everyd, d′ ∈ DN.

Let Γ denote a set of non-empty subsets of DM . The F-magma M is said to beΓ-completewhen
— every A∈ Γ admits a l.u.b. in DM , denoted by sup A or

∨
x∈A x ;

— fm(A1, … , Ak) = {f (a1, … , ak); a1 ∈ A1, … ak ∈ Ak} ∈ Γ and supfM(A1, … , Ak) = fM(sup A1, … , sup Ak)
for all f with arity k and all A1, … , Ak ∈ Γ.
A monotone functionϕ : Mk → N where M isΓ-complete and N is an arbitrary magma isΓ-continuousif

for all A1, … , Ak ∈ Γ, ϕ(A1, … , Ak) admits a l.u.b. in N and

sup
N

ϕ(A1, … , Ak) = ϕ(sup
M

A1, … , sup
M

Ak).

With each F-magma M is naturally associated
Ξ(M) = the set of non-empty subsets of DM ,
Φ(M) = the set of non-empty finite subsets of DM ,
∆(M) = the set of non-empty directed subsets of DM

(A ∈ ∆(M) ⇐⇒ ∀d, d′ ∈ A, ∃d′′ ∈ A d ≤ d′′ andd′ ≤ d′′,
∆α(M) = the set of non-empty directed subsets of cardinality at mostα,
Λ(M) = the set of non-empty directed subsets of DM which admit a l.u.b. in DM ,
Θα(M) = the set of monotone morphisms of an ordinalα into M (theα-chains), etc.

Hence−Λ ⊆ ∆ ⊆ Ξ.
Thus, a partial order is a complete lattice (cf. Birkhoff [1]) if and only if it isΞ-complete, a join-semi-lattice

if and only if it is Φ-complete, a lattice if and only if it isΦ′-complete with

Φ′(M) = {{d′ ∈ DM ; d′ ≤ d1 & … & d′ ≤ dk}; k ∈ N, d1, … , dk ∈ DM}.

A F-magma ispre-completeif and only if it is Λ-complete. Notice that this condition only affects thefm′s. If
F only contains symbols of arity 0, then every F-magma is precomplete (cf. corollaries 1 and 2, and theorem 3).

To each of these familiesΓ is attached a category the objects of which are theΓ-complete F-magmas, and
the arrows of which are the monotone F-morphismsf : M → N that send a subset A∈ Γ(M) on a subsetf (A)
in Γ(N) and furthermore such thatf (sup A) = supf (A) : theΓ-continuous morphisms. These restrictions can be
automatically satisfied by the monotone morphisms for some families, but it is not always the case, as noticed
for Λ. In the sequel, we shall restrict ourselves to those “functorial” families and related morphisms.

The main theorem of this paper reads as follows.

THÉORÈME 1. — LetΓ ⊆ Γ′ two families of subsets, andM a Γ-completeF-magma. There exists aΓ′-complete
F-magmaMΓ′

Γ and aΓ-continuous injectiveF-morphism i: M → MΓ′
γ such that for allΓ-continuous morphisms

j : M → N where n isΓ′-complete, there exists a uniqueΓ′-continuous morphism h: MΓ′
Γ → N such that j= hi.

M
i

→ MΓ′
Γ

j ↘ ↓ h

N

Proof : The construction of MΓ′
Γ will be carried out in the particular case whenΓ′ = Ξ.

A non-empty subset A of D isΓ-closedwhen
(1) d ≤ d′ andd′ ∈ A ⇒ d ∈ A (henceΩM ∈ A),
(2) B ⊆ A and B∈ Γ ⇒ sup B∈ A.

The intersection of a family of closed subsets is closed ; therefore
— for all non-empty subset A of D, there exists a smallest closed subset containing A, itsclosure,denoted by

CΓ(A) or C(A) whenΓ is clear from the context ;
— the setD̂ of non-empty sebsets of D ordered by set inclusion is a complete lattice : for all family(A i)i∈I

(which containsΩD) ∧
i∈I

A i =
⋂
i∈I

A i∨
i∈I

A i = C
( ⋃

i∈I

A i
)
.
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The latticeD̂ is given a structure of an F-magma by setting for all closed subsets Ci ∈ D̂

fD̂(C1, … , Ck) = C
(
{fM(d1, … , dk; di ∈ Ci}

)
.

One checks that, for all subsets A1, … , Ak of D

(∗) C
(
fM(C(A1), … , C(Ak))

)
= C

(
fM(A1, … , Ak)

)
.

As a result,D̂ is a complete F-magma ; let us check it for the first argument :

fD̂(
∨

i

A i , B2, … , Bk) = fD̂
(
C(

⋃
i

A i), B2, … , Bk
)

= C
(
fM(

⋃
i

A i , B2, … , Bk)
)

from (∗)

= C
( ⋃

i

fM(A i , B2, … , Bk)
)

=
∨

i

fD̂(A i , B2, … , Bk)

because for all family of subsets Pi , C
(

∪ Pi
)

= C
(

∪ C(Pi)
)

holds since C is a closure operation (Birkhoff [1],
p. 111). The corresponding F-magma is denoted by MΞ

Γ.

DEFINITION OF i. Let i : D → D̂ be defined byi(d) = C({d}) = {x ∈ D; x ≤ d}.
Clearlyd ≤ d′ ⇐⇒ i(d) ≤ i(d′) ; furthermore,i is Γ-continuous : ifd = sup A with A ∈ Γ, one shoud have

i(d) = {x ∈ D; x ≤ d} =
∨
x∈A

i(x).

Now that last element is C(A) and since A∈ Γ, sup A= d ∈ C(A).
Finally, (∗) shows thati is an F-morphism.

CONSTRUCTION OFMΓ′
Γ . Set E0 = {i(d); d ∈ D} and let E denote the smallest subset ofD̂ containing E0 which

is Γ′-complete (i.e. such that
∨

i A i ∈ E for all family (A i)i∈I in Γ′(E)). It can be described more explicitly by

E =
⋃
α

Eα (α is an ordinal),

Eα+1 = Eα ∪ {sup
D̂

X; X ∈ Γ′(Eα)},

Eβ =
⋃
α<β

Eα if β is a limit ordinal.

In fact, E= Eγ for some ordinalγ becausêD is a set. Notice that

E1 ⊇ {C(A); A ∈ Γ′(D)}.

Since the subsets ofΓ′ are sent byf onto subsets ofΓ′, E is invariant underfD̂. Hence(E, ⊆, (fE)f ∈F) is a
sub-F-magma of MΞΓ (fE is the restriction offD̂ to E) which isΓ′-complete for the induced order. We shall denote
it by MΓ′

Γ .

UNIVERSAL PROPERTY OF(i, MΓ′
Γ ). Let j : M → N be aΓ-continuous morphism into aΓ′-complete F-magma.

We shal defineh : MΓ′
Γ → N by transfinite induction :h is defined overi(D) = E0 by the conditionhi = j :

h(C({d}) = j(d).
Suppose thath is defined over Eα for all α < β. Then, ifβ is a limit ordinal, thenh is defined over Eβ =

⋃
α<β Eα.

Elseh is defined by theΓ′-continuity : if e ∈ Eβ Eα then

e = sup X where X∈ Γ′(Eα)
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and{h(x); x ∈ X} ∈ Γ′(N) admits a l.u.b.n in N. We set

h(e) = n,

so thath is now defined over Eβ. By induction, it is defined over E, and is clearlyΓ′-continuous by construction.
Finally, one can check thath is indeed a morphism, i.e. that it is compatible with the operators.

This construction generalizes the completion of Markowski-Rosen [7] and Markowski [6] with the introduction
of operators (cf. theorem 3 and corollary 4) and that of Bleicher-Schneider [2] by using a parameterized notion
of limits and continuity. That last possibility is also considered in [10].

Since the magma MΓ′
Γ is completely specified, it is the object function of a functor from the category of

Γ-complete magmas to that ofΓ′-complete magmas, and is a left adjoint to the obvious “forgetful” functor. From
this fact, it can be deduced easily that ifΓ ⊆ Γ′ ⊆ Γ′′, then

(MΓ′
Γ )Γ′′

Γ′ = MΓ′′
Γ .

II. Consequences of theorem 1.An important point in the proof of the theorem is that all morphisms should
belong to the appropriate category, including the functionsfM . It goes without saying whenΓ is Ξ of Φ or even∆,
that any monotone function will send a subset ofΓ(M) onto another subset ofΓ(M) (or Γ(N) if it is a morphism
M → N). It is not so obvious whenΓ is Λ : this was the purpose of the remark following the definition of a
precomplete magma.

If M is a lattice, i.e. aΦ′-complete ordered set, MΞΦ′ is exactly the ideal completion as defined by Birkhoff ([1]
theorem 5 p. 113).

If M is also a F-magma, the corresponding object in the category of all∆-complete F-magmas is M∆∅. One
checks easily that its domain is the set of non-empty ideals. In particular, if M= M(F) is the free orderedF-
magma(identified with the set of finite terms over alphabet F), the corresponding objetct is thefree∆-complete
F-magma(from theorem 1), which can also be identified with the set ofinfinite termsor trees,as defined in [3],
[4] (and [6] with a somewhat different terminology).

Completion by cuts.Let M be aprecompleteF-magma,i.e. a Λ-complete, magma whereΛ is the set of
directed subsets of M which admit a l.u.b. In this case, M∆

Λ is a completion of M which preserves the already
existing l.u.b.’s of directed sets, and corresponds to the completion by cuts in lattices as defined by Birkhoff ([1],
theorem 22, p. 126). This construction can also be found in Markowski [6]. These results are regrouped in the
following corollary.

COROLLAIRE 2. — Let M be an oredered (resp. precomplete)F-magma. There exists a∆-completeF-magma
M∆

∅ (resp.M∆
Λ) such thatM is a full sub-magma (and furthermore the inclusion i: M → M∆

Λ is Λ-continuous),
and for all ∆-completeF-magmaN, and all morphisms j: M : → N (resp.Λ-continuous morphisms), there
exists a unique∆-continuous morphism k: M∆

∅ → N (resp. k: M∆
Λ → N) extending j.

Remark : It is necessary for M to be precomplete if it is to be embedded in a complete ordered magma M∆
Λ,

so that

COROLLAIRE 3. — A magma is precomplete if and only if it is a full∆-sub-magma of a∆-complete magma.

Notice that if M is not precomplete, M∆Λ is an F-magma with domain∆-complete but thefM are not∆-continous.
This point will be dealt with in corollary 4. We shall useM as an other notation for M∆Λ.

Remarks :McNeille’s construction given in Birkhoff [1] consists in taking the set of all subsets of the lattice
to be completed, then their upper bounds, and finally the sets of lower bounds of these upper bounds, as elements
of the completed domain. But it does not give the desired result when applied to a precomplete magma.

Anyway, McNeille’s completion does not satisfy the expected universal property.
An example is shown on figure 1.
Let M+ denote McNeille’s completion of lattice M. The inclusioni : M → N is a lattice-morphism which

preserves all l.u.b.’s (and all g.l.b.’s) existing in M. It does not extend into a morphism of complete lattices
M+ → N.

III. Quotients of completeF-magmas.Let M be aΓ-complete F-magma, for someΓ ∈ ∆, andπ an F-preorder
over M, i.e. a preorder over DM such that
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ω β
α

...
...

...
...

...

bn bn bn

an an an

...
...

...

...
...

...

b1 b1 b1

a1 a1 a1

b0 b0 b0

a0 a0 a0

LatticeM LatticeM+ LatticeN

Fig. 1

1) d ≤ d′ entailsd π d′ for all d, d′ ∈ DM ,
2) di π di ′ for i = 1, … , k entailsfM(d1, … , dk) π fm(d1′, … , dk′), and furthermore, which isΓ-continuous, i.e.
3) for all A ∈ Γ and alld′ ∈ DM such thatd π d′ for all d ∈ A, then(sup A) π d′.
Let M/π be the ordered F-magma quotient of M by the equivalence associated with the preorderπ (i.e.d π d′

andd′ π d), hπ : M → M/π the natural epimorphism,Γ-continuous from 3) andΓ(M/π) = {hπ(A); A ∈ Γ}.
Then we have the following theorem.

THEOREM2. — LetM be aΓ-completeF-magma forΓ ⊂ Γ′ andπ a Γ-continuous preorder onM. Then there
exists aΓ-continuous morphism with kernelπ

i : M → (M/π)Γ′
Γ

in a Γ′-complete magma, such that for allΓ-continuous morphism j: M → N whose kernel containsπ, there
exists a uniqueΓ′-continuous morphism k: (M/π)Γ′

Γ → N such that j= ki.

Thekernelof a morphismi : M → M′ is the preorderκ such thatd κ d′ iff i(d) ≤M′ i(d′).
Proof : Clearly the magmaˆM/π is Γ(M/π)-complete andhπ : M → M/π is Γ-continuous. We apply theorem 1

and get(M/π)Γ′
Γ which isΓ′-complete and aΓ-continuous morphismi′ : M/π → (M/π)Γ′

Γ the kernel of which is
the order on M/π. The morphismi = i′hπ : M → (M/π)Γ′

Γ is thusΓ-continuous with kernelπ.
All morphismsj : M → N with kernel containingπ can be factored into the composition

M
hπ→ M/π

j′
→ N,

andj′ is Γ(M/¥pi)-continuous. From theorem 1, there exists a uniqueΓ′-continuousk : (M/π)Γ′
Γ → N such that

j′ = ki′, hencej = j′hπ = ki′hπ = ki.
This proof can be illustrated by the following commutative diagram which determines completelyj′ andk :

M
hπ→ M/π

i′
→ (M/π)Γ′

Γ
j ↘ ↓ j′ ↙ k

N

COROLLARY 3. — Let M be a ∆-completeF-magma. The∆-continuousF-preorders onM are exactly the
kernels of∆-continuous morphisms into∆-completeF-magmas.

One derives also the following generalization of corollary 1 for magmas which are not precomplete.

THEOREM 3. — Let M be an orderedF-magma. There exists a∆-completeF-magmaM and a∆-continuous

morphism i: M → M such that for all∆-completeF-magmaN and∆-continuous morphism j: M → N, there

exists a unique∆-continuous morphism k: M → N such that j= ki.
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Proof : Let (D, ≤) be a preorder. An elementd of D is a l.u.b. of A⊆ D when
1) d ≤ d′ for all d′ ∈ A,
2) d is smaller than all upper bounds of A, i.e.d′ ≤ d′′ for all d′ ∈ A implies thatd ≤ d′′.

Notice that A may well have several l.u.b.’s. Let M be an ordered F-magma.
There exists a least F-preorderπ ⊂ M × M such that
(∗∗) if A 1, … Ak areπ-directed subsets of DM with l.u.b.’sδ1, … , δk respectively, and if theπ-directed subset

fM(A1, … , Ak) admits an upper boundδ for π, thenfM(δ1, … , δk) π δ.
We claim that M/π is precomplete and satisfies the following universal property : for all∆-continuous

F-morphismj : M → N in a ∆-continuous F-magma N, there exists a unique∆-continuous F-morphism
k : M/π → N such thatj = khπ (hπ being the natural epimorphism M→ M/π). The theorem will be deduced
from corollary 1 withM = M/π.

Let A ⊆ DM , A′ = hπ(A) ∈ DM/π, andhπ(d) the l.u.b. of A′. It is easy to see that A is directed forπ and D is
one of the l.u.b.’s of A forπ. If A 1′, … , Ak′ ∈ ∆M/π admit l.u.b.’shπ(d1), … , hπ(dk) andd = fM(d1, … , dk), we
must show thathπ(d) is the l.u.b. offM/π(A1′, … , Ak′). Now, sinceπ is an F-preorder,

fM/π(hπ(a1), … , hπ(ak)) = hπ(fm(a1, … , ak)) ≤ hπ(fM(d1, … , dk)) = hπ(d).
On the other hand, ifhπ(d′) ≥ fM/π(A1′, … , Ak′), thend′ is an upper bound offM(A1, … , Ak) with respect toπ ;
hencefM(d1, … , dk) π d′, i.e.hπ(d) ≤ hπ(d′), QED.

Therefore the following diagram in whichM exists even if M is not precomplete is commutative :
M

i1 ↗
M ↓ h

i2 ↘
M

COROLLARYN 4. — The morphism h is onto. It is one-to-one if and only if for allA1, … , Ak ∈ ∆M such that
f (A1, … , Ak) ∈ ∆M then

f( sup A1, … , sup Ak) = supfM(A1, … , Ak).
Proof : On one hand, if the condition holds, then≤M itself satisfies(∗∗), henceπ =≤M .
ThereforeM = M/π = M.
On the other hand, suppose thath is one-to-one, and that A1, … , Ak, fM(A1, … , Ak) ∈ ∆M with respective

l.u.b.’s δ1, … , δk, δ, andδ′ = fM(δ1, … , δk). Obviouslyδ ≤ δ′. But δ′ π δ entails thati2(δ) = i2(δ′). Sinceh is
one-to-one, and the diagram commutes,i1(δ) = i1(δ′). Sincei1 is th inclusion M⊂ M, the same holds in M :
δ = δ′, QED.

EXAMPLE. Let M denote the F-magma N∪ {α, β} ordered byi ≤M j ≤M α ≤M β for i ≤ j in N. The only
element of N is of arity one defined by{

f (i) = i if i ∈ N,
f (α) = f (β) = β,

which is not∆-continuous. Since the domain of M is∆-complete, as an ordered set,M = M. But in order to have
a continuousf , one must identifyα andβ, thus obtainingM with domain N∪ γ andh : M → M, as shown by
figure 2.

β
↘

α → γ

...
...

i → i

...
...

0 → 0
M=M M
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Fig. 2
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