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Abstract.We give a completion theorem for ordered magmas (i.e. ordered algebras with monotone operations) in a general form.
Particular instances of this theorem are already known, and new results follow. The semantics of programming languages is the motivation
of such investigations.
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Introduction. When defining recursive functions by systems of equations (Kleene [5]), one introduces an
order relation which means that a partial result approximates another one. This partial @alaplste(i.e.
every ascending chain admits a least upper bound), thus allowing a minimal solution to be defined for the system.

This matter has been rebuilt by Scott, and many authors after him, within the framewamkpfete lattices
that last theory has been developed for its own sake by several authors , among which Birkhoff [1].

Frequently, the lattice structure does not seem necessary and creates instead additional troubles (Plotkin [9],
Milner [8] for instance). The notion of complete partial order is good enough, and fits better to the most common
instances.

This algebraic framework is suitable for studying program schemes([2], [3]). We then need distinguish
between thebase functionand theprogram-defined functionsyith the help of base functions and various
control structures (recursive call, iteration, etc...).

Thus, our domains will beordered magmasi.e. partial orders equipped witthonotoneoperators (no
information is lost during a computation). And we shall be concerned edthpletenes@he operators being
supposedontinuous.

More precisely, we shall study the possible embeddings of an ordered magma into a complete ordered magma.
Some of the ascending chains may keep their l.u.b., or may be added a new one ; this gives cliffepégtions,
each characterized by a universal property. We shall thus definE-toenpletionas the completion which
preserves the l.u.b. which already exist in alsef subsetes of the magma. From this general theorem is defived
the “ideal completion” of [9], [1], [2], [4], the “chain-completion” of [8], and the existence of factor objects
in the category of ordered magmas. The above mentionned authors woule use neither operators not magmas,
but only partial orders (except [4]). But eht “chain-completion” in the category of partial orders need not be a
complete ordered magma (cf. Corollary 2).

Definitions and the main theorem.Let F be a set of operators with arity. AnrfragmaM is a domain Iy
together with a functiorfy : D, — Dy for eachf O F with arity k. The homomorphisms of F-magmas, or
F-morphismsshall be compatible with the operatog : M - M’ is a F-morphism when

d(fm(as, ..., a) = fw(d(ar), ..., d(a))

forall f O F with arityk, and alla, ... ,ax [0 Dy.

In this paper, we shall only considerderedmagmas (therefore “magma” will mean “ordered magma”), with
a partial order denoted hsy, a least elemerm®y (associated with the symb&l of arity O whichi is always
supposed to be an element of F), and monotone opergtofmn F-morphism between ordered magmas must
be monotone.
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Finally, if M is a magma, aubf-magmaN of M is a F-magma such that\o] Dy, and that the inclusion
i: n - Misa(monotone) F-morphism. It fsill whend <y d' impliesd <y d' for everyd,d' 0 Dy.
Let denote a set of non-empty subsets gf.0'he F-magma M is said to becompletewhen
—every AO " admits a l.u.b. in [}, denoted by sup A oY/, X;
— (A, . A) = {f(a1, ..., &); aa O A;,...a O A} OT and supgm(Ag, ... ,Ax) = fu(Sup A, ..., sup A)
forall f with aritykand all A, ... ,AxOT.
A monotone functiop : M¥ — N where M isl-complete and N is an arbitrary magma isontinuousf
forall Aq,...,Ac 0T, d(Aq, ... ,A) admits a l.u.b. in N and

Supd(Aq, ..., Ax) = O(SUpPA4, ..., SUPAY).
N M M

With each F-magma M is naturally associated
=(M) =the set of non-empty subsets of,D
d(M) =the set of non-empty finite subsets gf;D
A(M) =the set of non-empty directed subsets @f D
(AOAM) 00 Od,d OA, ™" 0Ad<d andd <d",
A (M) =the set of non-empty directed subsets of cardinality at mpst
A(M) =the set of non-empty directed subsets gf @Which admit a l.u.b. in [y,
O4(M) =the set of monotone morphisms of an ordiaahto M (thea-chains), etc.
Hence-AOA O =.
Thus, a partial order is a complete lattice (cf. Birkhoff [1]) if and only if iEscomplete, a join-semi-lattice
if and only if it is ®-complete, a lattice if and only if it i®'-complete with

P'M)={{d ODy; d <ch & ... &d' <d}; KON, dy, ..., d O Dy}

A F-magma igpre-completef and only if it is A-complete. Notice that this condition only affects thgs. If
F only contains symbols of arity 0, then every F-magma is precomplete (cf. corollaries 1 and 2, and theorem 3).
To each of these familiels is attached a category the objects of which areltteomplete F-magmas, and
the arrows of which are the monotone F-morphismsM - N that send a subset & I'(M) on a subset(A)
in ' (N) and furthermore such théfsup A = supf(A) : thel-continuous morphismd hese restrictions can be
automatically satisfied by the monotone morphisms for some families, but it is not always the case, as noticed
for A. In the sequel, we shall restrict ourselves to those “functorial” families and related morphisms.
The main theorem of this paper reads as follows.

THEOREME 1. — Letl" O I two families of subsets, amdl a ' -completeF-magma. There existda-complete
F-magmaM{ and ar-continuous injectivé-morphismi: M - M{’ such that for all"-continuous morphisms

j: M - Nwhere nid’-complete, there exists a unighecontinuous morphism hM[' - N such that j= hi.

M O- M
i ln
N

Proof : The construction of M will be carried out in the particular case when==.
A non-empty subset A of D iB-closedwhen
()d=sd andd O A O dOA (henceQy O A),
(2)BOAandBOT O supBOA.
The intersection of a family of closed subsets is closed ; therefore
— for all non-empty subset A of D, there exists a smallest closed subset containingcisitse,denoted by
Cr(A) or C(A) whenT is clear from the context;;
— the setD of non-empty sebsets of D ordered by set inclusion is a complete lattice : for all fén)ly;

(which contain€p)
/\ Ai = m Ai

igl igl

Vai=c(UA).

iol idl



The latticeD is given a structure of an F-magma by setting for all closed subsetsiC
f5(C1, ..., C) = C({fm(dy, ..., d; di O Ci}).

One checks that, for all subsetsg,A.. , A of D

(@) C(fw(C(A1), ... ,C(AW)) = C(fu (A1, ..., Ay)).

As aresultD is a complete F-magma; let us check it for the first argument :
f5(\/ Ai,Ba, .., B = f5 (C(J A, B, ... By)
i i
=C(fu(JAi,B2,...,BY) from(D
i
=C(|Jfm(Ai,Bz, ..., BY)
i

= \/fﬁ(Ai,Bz, 7Bk)

because for all family of subsets (O R,) = C( 0 C(P)) holds since C is a closure operation (Birkhoff [1],
p. 111). The corresponding F-magma is denoted by M

DEFINITION OFi. Leti : D — D be defined by(d) = C({d}) = {x 0 D; x < d}.

Clearlyd <d' OO i(d) <i(d"); furthermorej is '-continuous : ifd = sup A with A0 I, one shoud have

i(d)={x0D; x<d} = \/ i(»).

XOA

Now that last element is@) and since A0 ', sup A=d O C(A).
Finally, (O shows that is an F-morphism.

CoNsTRUCTION OFMF. Set B = {i(d); d [ D} and let E denote the smallest subsebafontaining i which
is "'-complete (i.e. such thag; A; O E for all family (A;)ioi in T''(E)). It can be described more explicitly by

E=|JEq (a is an ordinal),
a
Eq+1 = Eq O {supX; X OT"(Eqy)},
b
Eg=|JEa if Bis a limit ordinal.
a<B

In fact, E= E, for some ordinay becaus®® is a set. Notice that
E; O{C(A); AOT'(D)}.

Since the subsets df are sent byf onto subsets of’, E is invariant undefs. Hence(E, 0O, (fe)ior) is a
sub-F-magma of W (fg is the restriction ofy to E) which isT™’-complete for the induced order. We shall denote
it by M.

UNIVERSAL PROPERTY OK(i, MF). Letj : M — N be al -continuous morphism into@-complete F-magma.
We shal definéh : MF' - N by transfinite induction h is defined ovei(D) = Ep by the conditionhi = j :
h(C({d}) = j(d).

Suppose thatis defined over Efor alla < 3. Then, iff is a limit ordinal, therhis defined over = Uu<[3 Eq.
Elseh s defined by thé’-continuity : ife 0 Eg = E, then

e=supX where XOT'(Eq)
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and{h(x); x O X} O I'"(N) admits a l.u.bnin N. We set
h(e) = n,

so thath is now defined over = By induction, it is defined over E, and is cleafli+continuous by construction.
Finally, one can check thatis indeed a morphism, i.e. that it is compatible with the operators.

This construction generalizes the completion of Markowski-Rosen [7] and Markowski [6] with the introduction
of operators (cf. theorem 3 and corollary 4) and that of Bleicher-Schneider [2] by using a parameterized notion
of limits and continuity. That last possibility is also considered in [10].

Since the magma M is completely specified, it is the object function of a functor from the category of
I"-complete magmas to that bf-complete magmas, and is a left adjoint to the obvious “forgetful” functor. From
this fact, it can be deduced easily thaFif1 " O ", then

N YT
(Mp)r =M.

II. Consequences of theorem 1An important point in the proof of the theorem is that all morphisms should
belong to the appropriate category, including the functfgn$t goes without saying whehis = of ® or evenA,
that any monotone function will send a subsel (¥1) onto another subset 6{M) (or (N) if it is @ morphism
M - N). It is not so obvious wheh is A : this was the purpose of the remark following the definition of a
precomplete magma.

If M is a lattice, i.e. ad'-complete ordered set,Nis exactly the ideal completion as defined by Birkhoff ([1]
theorem 5 p. 113).

If M is also a F-magma, the corresponding object in the category @&f-aimplete F-magmas is‘M One
checks easily that its domain is the set of non-empty ideals. In particular SfN{F) is thefree orderedr-
magma(identified with the set of finite terms over alphabet F), the corresponding objetctfirediZecomplete
F-magma(from theorem 1), which can also be identified with the sehbihite termsor trees,as defined in [3],

[4] (and [6] with a somewhat different terminology).

Completion by cutsLet M be aprecompleteF-magma,i.e. a/A-complete, magma wher# is the set of
directed subsets of M which admit a l.u.b. In this cas4, iMa completion of M which preserves the already
existing l.u.b.’s of directed sets, and corresponds to the completion by cuts in lattices as defined by Birkhoff ([1],
theorem 22, p. 126). This construction can also be found in Markowski [6]. These results are regrouped in the
following corollary.

COROLLAIRE 2. — LetM be an oredered (resp. precompleEejnagma. There existsxcomplete--magma
M4 (resp.M4) such thatM is a full sub-magma (and furthermore the inclusianM - M3 is A-continuous),
and for all A-completeF-magmaN, and all morphisms j M : - N (resp.A-continuous morphisms), there
exists a uniqué-continuous morphismk M4 — N (resp. ki M4 — N) extending j.

Remark : It is necessary for M to be precomplete if it is to be embedded in a complete ordered mdgma M
so that

CoROLLAIRE 3. — A magma is precomplete if and only if it is a fdlsub-magma of &-complete magma.

Notice thatif M is not precomplete, s an F-magma with domaik-complete but th§; are notA-continous.
This point will be dealt with in corollary 4. We shall us&as an other notation for {1

Remarks :McNeille’s construction given in Birkhoff [1] consists in taking the set of all subsets of the lattice
to be completed, then their upper bounds, and finally the sets of lower bounds of these upper bounds, as elements
of the completed domain. But it does not give the desired result when applied to a precomplete magma.

Anyway, McNeille's completion does not satisfy the expected universal property.

An example is shown on figure 1.

Let M* denote McNeille’s completion of lattice M. The inclusion M - N is a lattice-morphism which
preserves all l.u.b.s (and all g.l.b.'s) existing in M. It does not extend into a morphism of complete lattices
M* - N.

l1l. Quotients of complete F-magmas.Let M be a -complete F-magma, for sorie] A, andrtan F-preorder
over M, i.e. a preorder overypsuch that
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1)d < d' entailsd itd' for all d,d’ O Dy ,

2)d; td’ fori =1, ..., kentailsfy(dy, ..., d) Ttfm(dy', ..., dk'), and furthermore, which iB-continuous, i.e.

3) forall ADT and alld’ 00 Dy such thatd td' for all d O A, then(sup A) rtd'.

Let M/mtbe the ordered F-magma quotient of M by the equivalence associated with the pre@relat rtd’
andd' mtd), hy : M - M/mtthe natural epimorphisnf;-continuous from 3) an@f(M/m) = {h(A); A O T}.
Then we have the following theorem.

THEOREM2. — LetM be al'-completed=-magma fol™ [0 " andta I'-continuous preorder oM. Then there
exists al -continuous morphism with kerngal

it M o (MM
in al'-complete magma, such that for &iicontinuous morphism:j M — N whose kernel contairs, there

exists a uniqué’-continuous morphism k (M/mF - N such that j= ki.

Thekernelof a morphisni : M — M’ is the preordek such thad k d' iff i(d) <y i(d").

Proof : Clearly the magma”¥tis I'(M/m)-complete andh; : M - M/mtisM-continuous. We apply theorem 1
and getM/ml" which isI'-complete and &-continuous morphisrii : M/t » (M/mF the kernel of which is
the order on Mrt The morphisni =i'hy: M - (M/TF is thusl-continuous with kerneft

All morphismsj : M - N with kernel containingt can be factored into the composition

MO MmO - N,
andj’ is I'(M/¥pi)-continuous. From theorem 1, there exists a uniqueontinuousk : (M/MF — N such that
j' =ki', hencg =j'hy = ki'hy = ki.
This proof can be illustrated by the following commutative diagram which determines completetk :
M 0% MmO (MM
Nl Sk
N

COROLLARY 3. — Let M be aA-completeF-magma. TheA-continuousF-preorders onM are exactly the
kernels ofA-continuous morphisms int-complete=-magmas.

One derives also the following generalization of corollary 1 for magmas which are not precomplete.

THEOREM 3. — LetM be an ordered=-magma. There existsz&completeF-magmaﬁ and aA-continuous
morphism i M - M such that for allA-completeF-magmaN andA-continuous morphism:;j M - N, there
exists a uniqué-continuous morphismk M - N such that j= ki.
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Proof : Let (D, <) be a preorder. An elemedtof D is a l.u.b. of AO D when

l)d=sd foralld OA,

2) d is smaller than all upper bounds of A, igd.< d" for all d' O A implies thatd < d".

Notice that A may well have several l.u.b.’s. Let M be an ordered F-magma.

There exists a least F-preordef] M x M such that

(M if Aq, ... A aret-directed subsets of Jpwith l.u.b.'sdy, ... , & respectively, and if the-directed subset

fm(Aq, ..., Ax) admits an upper bounsifor 1, thenfy (84, ..., 6) TTO.

We claim that Mt is precomplete and satisfies the following universal property : foAatbntinuous
F-morphismj : M - N in a A-continuous F-magma N, there exists a unidqueontinuous F-morphism
k: M/t » N such thaj = khy (h; being the natural epimorphism M M/m). The theorem will be deduced
from corollary 1 withM = M/t

Let A 0 Dy, A" = h(A) 0 Dw/m, andhy(d) the L.u.b. of A. It is easy to see that A is directed farand D is
one of the LL.u.b.’s of A forrt. If Ay', ..., A" O Ay admit Lu.b.'shy(dy), ... , he(dy) andd = fy(dy, ..., dk), we
must show thak(d) is the l.u.b. offy(A1, ..., AK'). Now, sincertis an F-preorder,

fmm(hn(a1), ..., hn(a)) = hri(fm(ay, ..., &)) < hr(fw(da, ..., di)) = hr(d).
On the other hand, ig(d') = fym(A1', ..., AK'), thend’ is an upper bound df; (A1, ... , Ax) with respect tar;
hencefy(dy, ... ,dy) td', i.e.hg(d) < hy(d"), QED.

Therefore the following diagram in whidt exists even if M is not precomplete is commutative :

M
i/
M lhn
i2 N\,
M
COROLLARYN 4. — The morphism h is onto. It is one-to-one if and only if for/&]l ... , Ax O Ay such that
f(A]_, ,Ak) 0 Ay then
f(SUp A, ..., sup A) = supfm(Ag, ..., Ak).

Proof : On one hand, if the condition holds, theg itself satisfieq[T), hencern=<y.

ThereforeM = M/Tt= M.

On the other hand, suppose thes one-to-one, and thatiA..., Ak, fu(A1, ..., Ax) O Ay with respective
l.u.b’sdy, ..., 0,0, andd = fy(dy, ..., ). Obviouslyd < &'. But &' 11d entails that»(8) = i»(d"). Sinceh is
one-to-one, and the diagram commuig&)) = i1(8). Sincei; is th inclusion MO M, the same holds in M :
0=0, QED.

ExamPLE. Let M denote the F-magma N {a, 3} ordered byi <y j <y a <y Bfori <jin N. The only
element of N is of arity one defined by

{f(i):i if i ON,
f(o) =£(B) =B,
which is notA-continuous. Since the domain of MaAscomplete, as an ordered skt,= M. But in order to have
a continuoug, one must identifyo andp, thus obtainingl with domain NO y andh: M - M, as shown by
figure 2.

B
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