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a b s t r a c t

Tree-width and clique-width are two important graph complexity measures that serve
as parameters in many fixed-parameter tractable algorithms. We give two algorithms
that transform tree-decompositions represented by normal trees into clique-width terms
(a rooted tree is normal for a graph if its nodes are the vertices of the graph and every two
adjacent vertices are on a path of the tree starting at the root). As a consequence, we obtain
that, for certain classes of sparse graphs, clique-width is polynomially bounded in terms
of tree-width. It is even linearly bounded for planar graphs and incidence graphs. These
results are useful in the construction ofmodel-checking algorithms for problems described
by monadic second-order formulae, including those allowing edge set quantifications.

© 2017 Elsevier B.V. All rights reserved.

Introduction

Tree-width and clique-width are important graph complexity measures that occur as parameters in many fixed-
parameter tractable (FPT) algorithms [16,18,20,21,22,25]. They are also important for the study of graph structure and, in
particular, for the description of certain graph classes by forbidden subgraphs, minors or vertex-minors. Both notions are
based on certain hierarchical graph decompositions, and the associated FPT algorithms use dynamic programming on these
decompositions. Many of these algorithms need input graphs of moderate tree-width or clique-width that are given with
the relevant decompositions. Constructing optimal decompositions is difficult [1,24], however, there exist polynomial time
approximation algorithms [3,4,31].

A related problem consists in comparing width measures in the following way. Given two width measures wd and wd′

and a graph class C, we wish to prove that wd′(G) ≤ f (wd(G)) for every graph G in C, where f is a fixed function. We say
that wd′ is linearly bounded (resp. polynomially bounded) in terms of wd on C, if f is linear (resp. polynomial). In view of
algorithmic applications, it is also useful to have efficient algorithms to convert a decomposition witnessing wd(G) ≤ k into
one witnessing wd′(G) ≤ f (k).

For the class of all graphs, clique-width1 is not polynomially bounded in terms of tree-width [9], and tree-width is not
bounded in terms of clique-width by any function. For several classes of sparse graphs (such graphs have O(n) edges for n
vertices, see Section 1), clique-width is polynomially bounded in terms of tree-width, and even linearly bounded for planar
graphs, graphs of bounded degree and incidence graphs.2 Wewill improve some known bounds, we will obtain bounds for

✩ This work has been supported by the French National Research Agency (ANR) within the IdEx Bordeaux program ‘‘Investments for the future’’, CPU,
ANR-10-IDEX-03-02, and also within the project GraphEn started in October 2015. It will be presented, as part of an invited lecture, at the Workshop on
graph classes, optimization, and width parameters (GROW 2017) organized by the Fields Institute in Toronto, Canada. I acknowledge support from this
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1 Clique-width is defined algebraically from terms that define graphs. Such terms are called clique-width terms, see Definition 3. An alternative definition

is in [17]. We denote the clique-width of a graph G by cwd(G) and its tree-width by twd(G).
2 The incidence graph Inc(G) of a graph G is obtained from it by adding a new vertex on each edge.
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directed graphs and we will give an algorithm that transforms tree-decompositions into clique-width terms. Together with
combinatorial lemmas relative to each considered class, this algorithm yields the claimed linear or polynomial bounds. In
the same framework, we will present the algorithm from [9] that gives a better exponential bounding for graphs of large
clique-width.

Our algorithms will take as input tree-decompositions represented in a compact way by normal trees. A rooted tree is
normal for a graph if its nodes are the vertices of the graph and adjacent vertices of the graph are comparable with respect
to the ancestor relation of the tree. This representation is easier to implement (and perhaps also to visualize, but this is
a subjective matter) than the pair (T , f ) of the usual definition [2,16,19–21] recalled in Section 2. It works well for our
algorithms and offers also an easy logical representation (as observed in [16], Example 5.2(4)). Normal trees fit with the
contractions and deletions from which the quasi-order of minor inclusion is defined.

The inputs of our first algorithm will be, more generally, quasi-normal trees, defined similarly except that some nodes
may not be vertices of the graph. The associated tree-decompositions will be obtained from the trees as by-products. We
will give a definition of clique-width that relaxes constraints on the use of vertex labels and facilitates the construction of
clique-width terms. These constructions have been implemented (see Section 6).

Many model-checking algorithms for tree-structured graphs (graphs of bounded tree-width, path-with, clique-width,
etc.) use dynamic programming on terms or labelled trees that encode the relevant decompositions. In several articles
[13,15], we have constructed FPT algorithms parameterized by clique-width for problems expressed inmonadic second-order
logic (MSO logic in short); these algorithms are based on fly-automata3 taking clique-width terms as inputs. MSO formulae
using edge set quantifications (calledMSO2 formulae) aremore expressive thanMSO formulae. However, theMSO2 properties
of a graph G are nothing but MSO properties of its incidence graph Inc(G). As the clique-width of Inc(G) is linearly bounded
in terms of the tree-width of G, the algorithms for the MSO model-checking of graphs of bounded clique-width can be used
(in practice) for the MSO2 model-checking of graphs of bounded tree-width. This extension is developed in [11,12].

Summary and main results.
Section 1 reviews notation about trees and graphs. Section 2 defines our novel presentations of tree-decompositions

and clique-width terms. Section 3 presents in a unified way three algorithms that convert tree-decompositions into clique-
width terms. In Section 4, we obtain that cwd(G) = O(twd(G)) for planar graphs (we improve the linear bound given in [26])
and that cwd(G) = O(twd(G)q) for uniformly q-sparse graphs (the graphs whose subgraphs have at most q · n edges for
n vertices). In Section 5, we consider q-hypergraphs (their hyperedges have at most q vertices). A q-hypergraph H can
be viewed as a bipartite graph Bip(H) and we prove that cwd(Bip(H)) = O(twd(H)q−1). For incidence graphs, we deduce
that cwd(Inc(G)) = O(twd(G)). In Section 6, we review the algorithmic applications to model-checking. In Appendix we
consider the effect of minor-reducing operations on tree-decompositions defined by quasi-normal trees. We also compare
our definitions with boolean-width [8].

1. Definitions and basic facts

Most definitions are well-known, we mainly review notation. We state a few facts that are either well-known or easy to
prove.

The union of two disjoint sets is denoted by ⊎. The cardinality of a set X is denoted by |X | and its powerset by P(X).
If 0 ≤ m ≤ k, we define γ (k,m) as the number of subsets of [k] := {1, . . . , k} of cardinality at most m. This number is

1 + k + · · · +
( k
m

)
= O(km) for fixed m. If 1 < m < k/2, then γ (k,m) < m

( k
m

)
< km/(m − 1)!. We will actually use γ (k,m)

for ‘‘small’’, fixed valuesm and ‘‘large’’, variable ones k.
All trees, graphs and hypergraphs are nonempty and finite.

Trees
Trees are always rooted; NT denotes the set of nodes of a tree T and <T its ancestor relation, a strict partial order on NT

(a node is not an ancestor of itself). The root, denoted by rootT , is the uniquemaximal element and the leaves are theminimal
ones; pT (u) is the father (the closest ancestor) of a node u. We denote by T≤(u) the set {w ∈ NT | w≤Tu}, by T<(u) the
set {w ∈ NT | w<Tu} and similarly for T>(u) and T≥(u). In particular, T>(u) is the set of ancestors of u. A tree is binary if every
node has at most two sons.

If e is an edge of T between a node u and its father w, then the tree T ′ resulting from the contraction of e is constructed as
follows: we remove u and e and we make each son of u into a son of w. The root of T ′ is that of T .

Graphs
Unless otherwise specified (e.g., in Section 5.2), we consider simple graphs, i.e., that are loop-free and without parallel

edges. Graphs are directed or not. Undefined notions are as in [19]. A graph G has vertex set VG and edge set EG. If G is
directed, EG can be identified with the binary, irreflexive edge relation edgG ⊆ VG × VG; while being simple, G can have pairs
of opposite edges. If G is undirected, then edgG is symmetric and |edgG| = 2 |EG|. The undirected graph underlying G is Und(G)
such that VUnd(G) := VG and edgUnd(G) := edgG ∪ edg−1

G .

3 The finite automata arising fromMSO formulae aremuch too large to be implemented in the usualway by lists of transitions. In fly-automata, states and
transitions are not tabulated but described by means of an appropriate syntax. Each time a transition is necessary, it is (re)computed. Only the transitions
necessary for a given term are computed.
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We denote by G[X] the induced subgraph of Gwith vertex set X ∩VG, where X need not be a subset of VG: this convention
allows to deal easily with cases where X is a set of vertices of a graph H of which G is a subgraph.

If G is undirected and x ∈ VG, then NG(x) denotes the set of neighbours of x; if G is directed, then N+

G (x) denotes
the set of vertices y such that x→Gy (i.e., there is an edge from x to y), N−

G (x), the set of those such that y→Gx, and so,
NG(x) := N+

G (x)∪N−

G (x) is the set of neighbours of x.We extend these definitions to the casewhere x ̸∈ VG: thenNG(x) := ∅. For
a set4 X , N+

G (X) is the union of the sets N+

G (x), x ∈ X , and similarly for N−

G and NG.
If G is an undirected graph, and X, Y are disjoint sets, we define Ω(X, Y ) := {NG(x) ∩ Y | x ∈ X ∩ VG}. It is thus a set of

subsets of Y ∩ VG. If G is directed, we define Ω(X, Y ) := {(N+

G (x)∩ Y ,N−

G (x)∩ Y ) | x ∈ X ∩ VG}. It is a set of pairs of subsets of
Y ∩ VG. If G is undirected and Y has cardinality k, then |Ω(X, Y )| ≤ 2k. If furthermore 1 ≤ m ≤ k and |NG(x)| ≤ m for each
x ∈ X , then |Ω(X, Y )| ≤ γ (k,m) = O(km) for fixedm. IfG is directed, then each edge ofUnd(G) between x and y can come from
three possible configurations of directed edges between these vertices. Hence, if |Y | = k, we have |Ω(X, Y )| ≤ (1+3)k = 22k,
and if

⏐⏐NUnd(G)(x)
⏐⏐ ≤ m ≤ k for each x ∈ X , then |Ω(X, Y )| < 3mγ (k,m).

Sparse graphs
A graph G is uniformly q-sparse if |EH | ≤ q |VH | for every (undirected) subgraph H of Und(G). An undirected graph G is

uniformly q-sparse if and only if it has an orientation of indegree at most q ([27] or Proposition 9.40 of [16]). Every planar
graph G is uniformly 3-sparse (because |EG| ≤ 3 |VG| − 6 if G is simple and planar). An undirected graph is uniformly
⌈d/2⌉-sparse if its maximum degree is d.

We denote by Sr the class of graphs G such that Und(G) does not contain a subgraph isomorphic to the complete bipartite
graph Kr,r . These graphs are Kr,r -free with respect to subgraph inclusion and removal of orientation. Every uniformly
q-sparse graph belongs to S2q+1, but for every r and q, there are graphs in Sr that are not uniformly q-sparse (because there
is a constant c such that, if r ≥ 3, there is a graph having n vertices and at least c · n2−2/(r+1) edges, see [19], Section 7.1).

2. Tree-width and clique-width

2.1. Tree-decompositions of various kinds

Tree-decompositions are well-known [2,19–21], but we review notation and we present new definitions concerning
them. A tree-decomposition of a graph G is a pair (T , f ) such that T is a rooted tree, f maps NT to P(VG), every vertex is in
some bag f (u), every edge has its two ends in some bag, and the connectivity condition holds: for every vertex x, the nodes u
such that x ∈ f (u) induce a connected subgraph of T . Its width wd(T , f ) is the maximum cardinality of a bag minus 1.

Our definitions aremotivated by the following fact ([16], Proposition 2.67): every tree-decomposition can be transformed
into one of same width such that the sets f (rootT ) and f (u) − f (pT (u)) for all u ∈ NT − {rootT } are singleton. In such a case,
one can identify NT and VG in such a way that f (rootT ) = {rootT }, f (u)− f (pT (u)) = {u} and u≤Tw ifw ∈ f (u). We call normal
such a tree-decomposition. The following definitions generalize this observation.

Definitions 1. Normal and quasi-normal, trees and tree-decompositions.

(a) A tree T is quasi-normal for a graph G if VG ⊆ NT and the two ends of each edge of G are comparable under <T . It is
normal if, in addition, we have VG = NT . A depth-first spanning tree of a graph is thus normal.5

(b) A tree-decomposition (T , f ) of a graph G is quasi-normal if VG ⊆ NT , f (u) ⊆ T≥(u) for every u ∈ NT , and furthermore,
u ∈ f (u) if u ∈ NT ∩ VG. It is normal if, in addition, we have VG = NT . It is clear that T is quasi-normal (respectively normal)
if (T , f ) is so. We now prove a kind of converse.

(c) Let T be quasi-normal for a graph G. For each u ∈ NT , we define the following sets:
upG,T (u) := NG(u) ∩ T>(u) (this set is empty if u ∈ NT − VG),
up+

G,T (u) := N+

G (u) ∩ T>(u) and up−

G,T (u) := N−

G (u) ∩ T>(u) if G is directed,
f ∗

T (u) := NG(T≤(u)) ∩ T>(u) =
⋃

{upG,T (w) ∩ T>(u) | w≤Tu},
fT (u) := {u} ∪ f ∗

T (u) if u ∈ VG, and
fT (u) := f ∗

T (u) if u ∈ NT − VG.
If u ∈ VG, then fT (u) consists of u and its ancestors that are adjacent to some vertex w≤Tu and fT (u) = ∅ if u is the root or

a leaf, and is not in VG.
We define the width of the pair (G, T ) as the maximal cardinality of a set f ∗

T (u) for u ∈ VG.

Claim 1. If T is quasi-normal (resp. normal) for a graph G, then (T , fT ) is a quasi-normal (resp. normal) tree-decomposition of
this graph. The width of the tree-decomposition (T , fT ) is that of (G, T ).

Proof. Every vertex u is in the bag fT (u). Each edge links some u to one of its ancestors, hence its two ends are in fT (u). The
connectivity condition holds because, if y ∈ fT (u) ∩ fT (v), then u, v≤Ty and, by the definitions, y belongs to each set fT (w)
such that u≤Tw≤Ty or v≤Tw≤Ty, hence, it belongs to each set fT (w) for w on the undirected path between u and v.

4 As for G[X], the set X need not be a subset of VG . The same holds for X, Y in Ω(X, Y ) below.
5 In [19], a normal tree for a graph must be a subgraph of this graph. We do not require this condition.
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Fig. 1. A graph G and a normal tree T .

Let u ∈ NT − VG. If it is the root, then fT (u) = ∅ and otherwise, fT (u) ⊆ fT (pT (u)). It follows that the width of the
tree-decomposition (T , fT ) is the maximal cardinality minus 1 of a set fT (u) for u ∈ VG, hence is the width of (G, T ). □

Claim 2. If (T , f ) is a quasi-normal tree decomposition, then fT (u) ⊆ f (u) for each u in NT .

Proof. Consider y ∈ fT (u). If y = u, then y ∈ f (u) . Otherwise, x≤Tu<Ty for some x adjacent to y, and x, y ∈ f (w) for some
node w. We have w≤T x<Ty, hence, y ∈ f (u) by the connectivity condition since w≤Tu<Ty and y ∈ f (y) ∩ f (w). □

Informally, if T is quasi-normal, then fT is the ‘‘minimal’’ mapping f such that (T , f ) is a quasi-normal tree decomposition.
In our constructions, we will mainly consider tree-decompositions (T , fT ) given by a normal or quasi-normal tree T .

Example 2. Fig. 1 shows a graph G and the tree T of a normal tree-decomposition (T , f ). The function f is defined in the
following table. The function fT is equal to f except that fT (g) = {c, e, g} ⊂ f (g) and fT (h) = {e, h} ⊂ f (h). The set f ∗

T (c)
contains vertex a because of the edge a − e. Clearly, (T , f ) is not optimal, as (T , fT ) has smaller width (cf. Definitions 1(c)).

In further examples,wewill use a linear notation for trees. The tree T of this example can be denoted by a(b, c(e(g, h), i), d)
and, equivalently, by a(b, d, c(i, e(h, g))) as, in our trees, the sons of a node are not ordered. □

Lemma 3. Every tree-decomposition can be transformed into a tree-decomposition of the same graph and of same width that is
normal, and into one, similarly, that is quasi-normal and whose tree is binary.

Proof sketch (cf. [16], Proposition 2.67). If (T , f ) is not normal, we first contract all edges u − pT (u) of T such that
f (u) ⊆ f (pT (u)) (cf. Section 1). Then, if f (rootT ) = ∅, we contract the edge between rootT and one of its sons, say w (we
must have f (w) ̸= ∅). We obtain a tree T1 (its root is that of T ) and we define f1 as the restriction of f to NT1 , except for the
root if f (rootT ) = ∅: in this case f1(rootT ) := f (w) (where w is as above).

Then, for each node u such that
⏐⏐f1(u) − f1(pT1 (u))

⏐⏐ = m > 1, we insert m − 1 nodes forming a path with m edges
between u and pT1 (u); similarly, if |f1(rootT )| = m > 1, we insert m − 1 nodes below the root. We obtain a normal tree T2
and tree-decomposition (T2, f2) of G of same width as (T1, f1) and (T , f ). The function f2 is easy to define and we identify a
node uwith the vertex x such that f2(u) − f2(pT2 (u)) = {x} or f2(u) = {x} if u is the root.

If T2 is not binary, we transform it recursively into T̃2 as follows. If a node u of T2 has sons u1, . . . , up where p ≥ 3,
thenwe replace the subtree u(U1, . . . ,Up) of T2 by u(Ũ1, w1(Ũ2, w2(..., wp−2(Ũp−1, Ũp)...))), wherew1, w2, . . . , wp−2 are new
nodes. We obtain a binary tree T3 := T̃2. We have fT3 (u) = fT2 (u) and fT3 (wi) ⊆ fT2 (u) for u, w1, w2, . . . , wp−2 as above (u is
a vertex of G). Hence (T3, fT3 ) is quasi-normal with a binary tree, as wanted. Its width is that (T2, f2) and (T , f ). □

If in this proof (T , fT ) is quasi-normal but not normal, then the transformation contracts all edges u − pT (u) of T such
that u ∈ NT − VG and possibly one edge incident to the root. The obtained tree T1 is normal for G and (T1, f1) is a normal
tree-decomposition.

For using optimal tree-decompositions, there is no loss of generality in considering only normal ones with ‘‘minimal’’
bags, hence tree-decompositions of the form (T , fT ) where T is normal for G. Such a tree-decomposition can be encoded
in a very compact way: the tree T is represented by the partial function pT : VG → VG (defined by pointers or any other
appropriate data structure), the edges of G by the function upG,T (or by up+

G,T and up−

G,T ) and the sets fT (u) for u ∈ NT = VG can
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be computed from edgG, from upG,T or from up+

G,T and up−

G,T , in time O(m) wherem is the size of (T , fT ) defined as the sum of
cardinalities of the sets fT (u) for u ∈ NT . Clearly, m ≤ (k + 1) |VG| where k is the width of (T , fT ).

Definition 4. Clean tree-decompositions.

A normal tree-decomposition (T , f ) of a graph G is clean if f = fT and pT (u) ∈ f (u) for every node u of T that is not the
root.

This is the case if T is a depth-first spanning tree and f = fT . In Example 2, the decomposition (T , fT ) is clean but T is not
spanning (the edge a− c is not in Gwhereas a ∈ fT (c). For another example, consider K1,2 with vertex 1 adjacent to vertices
2 and 3 and normal tree U = 1 → 2 → 3 with root 1. The tree-decomposition (U, fU ) is normal (and optimal) but not clean
because the father of 3 is 2 and fU (3) = {1, 3}.

Claim. A graph is connected if it has a clean tree-decomposition.

Proof sketch. By using bottom-up induction on u in NT , one proves that each graph G[T≤(u)] is connected. This fact holds
because pT (w) ∈ f ∗

T (w) for each w ∈ NT = VG, hence u is linked to G[T≤(w)] if u = pT (w), so that G[T≤(u)] is connected. □

Lemma 5. From every normal tree-decomposition (T , f ) of a connected graph G, one can construct in time O(|EG| . |NT |) a clean
tree-decomposition of G of no larger width.

Proof. Let (T , f ) be a normal tree-decomposition of a connected graph G. We first compute fT in time O(|EG| . |NT |). Since G is
connected, no set f ∗

T (u) is empty, except if u is the root (because then fT (u) = {u} ). For each u ∈ NT such that pT (u) ̸∈ fT (u),we
let ũ be the least element of f ∗

T (u) with respect to ≤T . We modify T by making ũ the father of u, and we let T ′ be the new
tree. Then (T ′, fT ) is a clean tree-decomposition of G of same width as (T , fT ), which is no larger than that of (T , f ).

If each set f ∗

T (u) is implemented as a list in increasing order with respect to ≤T , then ũ is accessed in constant time, and
so, we can construct T ′ in time O(|NT |). □

Hence, every connected graph has an optimal tree-decomposition that is clean. Clean tree-decompositions (used in [9]
and below in Algorithm 12) arise in a natural way from the notion of partial k-tree that we now recall.

An undirected graphG is chordal if it is connected, its vertices can be denoted by 1, . . . , n in such away thatG[NG(i)∩[i−1]]
is a clique6 for each i = 2, . . . , n (this is one definition among others, cf. [16], Proposition 2.72). A normal tree-decomposition
(T , fT ) is obtained as follows: T has nodes 1, . . . , n, rootT := 1 and pT (i) := min(NG(i)∩[i−1]).We have f ∗

T (i) = NG(i)∩[i−1].
This tree-decomposition is optimal and clean.

A partial k-tree is a graph obtained by edge deletions from a chordal graph G of maximal clique size k + 1. A graph
H has tree-width at most k if and only if Und(H) is a partial k-tree. The tree-decomposition (T , fT ) of G is a normal tree-
decomposition of H . This tree-decomposition may not be clean, but we can clean it by Lemma 5.

Definition 6. Special tree-decompositions.

A tree-decomposition (T , f ) is special if any two nodes u, u′ of T such that f (u)∩ f (u′) ̸= ∅ are comparable with respect to
≤T , equivalently, if f (u)∩ f (u′) = ∅ for any two distinct nodes u, u′ with same father. Equivalently, the nodes u such that f (u)
contains a given vertex form a directed path in the rooted tree T . We get the notion of special tree-width, denoted by sptwd.
This notion has been introduced in [10]. It is clear that twd(G) ≤ sptwd(G) but graphs of tree-width 2 have unbounded
special tree-width. Graphs of special tree-width 2 have been studied in [5–7].

Every special tree-decomposition can be made normal and special without increasing its width by the algorithm of
Lemma 3. However, it cannot always be made clean and special: the star K1,3 has a special tree-decomposition (actually
a path-decomposition) of width 1 but no clean and special tree-decomposition of this width. We will give a simple proof
that cwd(G) ≤ sptwd(G) + 2 for every graph G, a result from [10].

In Appendix, we will examine how quasi-normal tree-decompositions behave with respect to the minor quasi-order.
We will not need the corresponding facts for our main results, but they prove that the notions of normal and quasi-normal
tree-decompositions fit well with the theory of tree-width.

2.2. Clique-width

Clique-width is a graph complexity measure defined from operations that construct graphs equipped with vertex labels.
We review definition and notation, and we establish a technical result.

Definition 7. Clique-width

6 We recall that [i − 1] denotes the set {1, . . . , i − 1} . Integers are here vertices.
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(a) Let C be a finite or infinite set of labels. A C-graph is a triple G = (VG, edgG, πG) where πG is a mapping: VG → C . Its
type is π (G) := πG(VG), i.e., the finite set of labels from C that label some vertex of G.

We denote by ≃ the isomorphism of C-graphs up to vertex labels, i.e., the isomorphism of the underlying unlabelled
graphs.

A mapping h : C → C is finite if h(a) ̸= a for finitely many labels a. It can be specified in a finitary way by listing the pairs
(a, h(a)) such that h(a) ̸= a. We denote by ∆(h) the set of these pairs.

We define FC as the following set of operations on C-graphs:
the union of two disjoint C-graphs, denoted by the binary function symbol ⊕,
the unary operation relabh that changes every vertex label a into h(a) where h is a finite mapping from C to C ,
the unary operation

−→
adda,b, for a, b ∈ C , a ̸= b that adds an edge from each a-labelled vertex x to each b-labelled vertex

y (unless there is already an edge x → y)
and, for each a ∈ C , the nullary symbol a(x) that denotes the isolated vertex x labelled by a.

For building undirected graphs, we use similarly adda,b to add undirected edges. In a well-formed term t , no two
occurrences of nullary symbols denote the same vertex.7

Every term t in T (FC ) is called a clique-width term. It denotes a C-graph G(t). We will denote π (G(t)) by π (t) and call it the
type of t . The equivalence on terms t ≃ t ′ is defined as G(t) ≃ G(t ′) and t ≡ t ′ as G(t) = G(t ′) (vertices are specified in the
terms t, t ′).

The clique-width of a graphG, denoted by cwd(G), is the least cardinality of a set C such thatG ≃ G(t) for some t ∈ T (FC ). It
is frequently convenient to take C = [k].

As⊕ is associative, wewill use it as an operation of variable arity. For readability, wewill write t = t1⊕t2⊕...⊕tn instead
of ⊕(t1, t2, . . . , tn), defined as a shorthand for t1 ⊕ (t2 ⊕ (...⊕ tn)...). We define the size |t| of t as |t1| + · · · + |tn| + n− 1. If h
only changes a into b, we denote relabh by relaba→b and call this operation an elementary relabelling. By using only elementary
relabellings, we obtain the same notion of clique-width ([16], Proposition 2.118). A relabelling relabh is bijective on a term t
if h is injective on π (t), hence is a bijection: π (t) → h(π (t)). (See Section 6 about the use of these notions.)

(b) Our proofswill use a characterization8 of clique-width allowing easy constructions of clique-width terms. If u∈ Pos(t),
i.e., is a position in a term t ∈ T (FC ), then the subterm of t issued from u, denoted by t/u, denotes a C-graph G(t/u) that is,
up to vertex labels, a subgraph of G(t) (because we use nullary symbols a(x) to designate vertices). Hence, G(t) = G(t/rootT ).
We define the width of t as wd(t) := max{|π (t/u)| | u ∈ Pos(t)} ≤ |C | .

If k labels occur in a term t , then G(t) has clique-width at most k. However, k can be an overestimation of cwd(G(t)). The
upper-bound to cwd(G(t)) that arises from t is actuallywd(t) defined as themaximumnumber of labels that occur in a graph
G(t/u) for any position u in t . This is proved in the next proposition.

Proposition 8. The clique-width of a graph is the minimal width of a term that defines it, up to vertex labels and isomorphism.
Every clique-width term t can be transformed into an ≃-equivalent term t ′ in T (F[wd(t)]).

Proof. Let t ∈ T (FC ), G = G(t) and k = wd(t).
First step. By replacing in t each subterm⊕(t1, t2, . . . , tn) by t1 ⊕ (t2 ⊕ (· · ·⊕ tn) · · · ), we get a≡-equivalent term of same

size as t where all occurrences of ⊕ are binary.
Second step. We fix t obtained by the first step and we denote π (t/u) by π (u). We now compute in a bottom-up way the

following items, for each u ∈ Pos(t):
the set π (u),
the number ku := max{|π (w)| | w ≤ u} ≤ k,
an injective mapping hu : π (u) → [ku] such that tu ≡ relabhu (t/u).

The desired term t ′ will be tr where r is the first position of t (the root of its syntactic tree). The bottom-up computation
uses the following clauses:

(1) If u is an occurrence of a(x), then π (u) = {a}, ku = 1 and hu maps a to 1.
(2) If t/u =

−→
adda,b(t/w), thenπ (u) = π (w), ku = kw andwe define hu := hw . If a or b is not inπ (w), then the operation

−→
adda,b has no effect and we define tu := tw . Otherwise, we define tu :=

−→
addhw (a),hw (b)(tw).

(3) If t/u = relabh(t/w), then π (u) = h(π (w)), ku ≤ kw; we take for hu any9 injective mapping: π (u) → [ku] and we
define tu := relabh′ (tw) where h′

:= hu ◦ h ◦ h−1
w .

(4) If t/u = t/w ⊕ t/w′, then π (u) = π (w) ∪ π (w′), ku = |π (u)| ≥ kw, kw′ and we take for hu any injective mapping:
π (u) → [ku] whose restriction to π (w) is hw and we define tu := tw ⊕ relabh(tw′ ) where h := hu ◦ h−1

w′ .
The verification that tu ≡ relabhu (t/u) is straightforward by the same induction. □

This proposition simplifies the construction of clique-width terms because, in a first step, we can use infinite sets C of
labels, and then, in a second step, we can use it to transform an obtained term in T (FC ), say t , into an ≃-equivalent term in

7 One can also use nullary symbols a that do not designate any particular vertex. In that case, the vertex defined by an occurrence u of a in the term is u
itself. See [16], Section 2.52.

8 It is used implicitly in [9], however, we think useful to detail it. See also Section 6 for its use in fly-automata.
9 The mapping hu can be chosen so that the corresponding mapping h′ changes as few labels as possible.
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T (F[wd(t)]). However, we will see in Section 6 that fly-automata, as defined in [13] can use terms of ‘‘small’’ width belonging
to T (FC ) where C is ‘‘large’’.

One can also construct the terms tu in such a way that π (tu) = [|π (tu)|]. To do that we choose bijections hu : π (u) →

[|π (tu)|] in Clauses (3) and (4) (we recall that [|π (tu)|] ⊆ [ku]). This strengthening is not crucial for using fly-automata.

2.3. Comparisons between tree-width and clique-width

For every directed graph G, we have twd(Und(G)) = twd(G) and cwd(Und(G)) ≤ cwd(G) ([16], Proposition 2.105(3)).

Theorem 9. For all graphs G, the following hold:
(1) twd(G) is unbounded in terms of cwd(G),
(2) cwd(G) ≤ 3 · 2twd(G)−1 if G is undirected,
(3) cwd(G) ≤ 22twd(G)+2

+ 1 if G is directed.
(4) There is no constant a such that cwd(G) = O(twd(G)a) for all graphs G.

Proof. Cliques have clique-width 2 and unbounded tree-width, which proves (1). Assertions (2) and (3) are proved
respectively in [9] and in Proposition 2.114 of [16]. For each k, there exists an undirected graph of tree-width 2k and
clique-width larger than 2k−1 (a result from [9]). This proves Assertion (4). □

We will give a construction that proves easily (2) and improves the bound of (3).

Theorem 10. (1) If G has maximal degree at most d (with d ≥ 1), we have:
(1.1) twd(G) ≤ 3d · cwd(G) − 1,
(1.2) cwd(G) ≤ 20d(twd(G) + 1) + 2.
(2) If r ≥ 2 and Und(G) has no subgraph isomorphic to Kr,r , then twd(G) ≤ 3(r − 1)cwd(G) − 1.

Proof. Assertion (2) is from [28] (also [16], Proposition 2.115) and it yields (1.1). Assertion (1.2) is proved in [10] by means
of a strong result of [32]. □

Unlike the bounds of Theorem 9(2,3), that of Theorem 10(1.2) is the same for directed and undirected graphs.
Theorem 10(2) shows that, for each q, twd(G) = O(cwd(G)) if G is uniformly q-sparse. An opposite (polynomial) bounding
will be established in Theorem 19.

3. From tree-decompositions to clique-width terms

Most FPT algorithms parameterized by tree-width or clique-width take as input a tree-decomposition of the considered
graph or a clique-width term defining it. Unfortunately, tree-width and clique-width (and the corresponding optimal
decompositions and terms) are difficult to compute10 [1,24], but there exist polynomial time approximation algorithms.

There is a rich literature on efficient algorithms that construct tree-decompositions [4], but not so for clique-width.11
For many graphs, e.g. rectangular grids, clique-width and tree-width are equal, up to a small fixed constant. It is thus
useful to transform tree-decompositions12 into clique-width terms. Theorem 9 is discouraging on first sight because of the
exponential boundings, but for a number of useful graph classes (not only for graphs of bounded degree, cf. Theorem 10),
we have cwd(G) = O(twd(G)q), with even q = 1 for planar graphs and incidence graphs. We will give two algorithms that
work for all types of graphs, and we will obtain such bounds from the first of them. The second one is more interesting for
certain graphs of large clique-width.

Theorem 11. Let (T , f ) be a quasi-normal tree-decomposition of a graph G. If |Ω(T<(u), f (u))| ≤ m for every node u of T , then
cwd(G) ≤ m + 1. A clique-width term witnessing this bound can be constructed from (T , f ) in linear time.

The value |Ω(T<(u), f (u))| is somewhat related with boolean-width [8]. We will discuss this point in Appendix.
Before starting the proof, we explain its idea. We proceed bottom-up in the tree T . For each node u, we define a graph

H(u) consisting of G[T≤(u)], each vertex w of which has label NG(w) ∩ T>(u). This label indicates to which ancestors of u the
vertex w will have to be linked in further stages of the construction. From the definitions, the vertices of H(u) are linked in
G, outside of H(u), to vertices in f ∗

T (u), a subset of T>(u). Labels are useful to construct H(u) from H(u1), . . . ,H(up) where
u1, . . . , up are the sons of u. Actually, we will construct for each u a clique-width term denoting H(u). Its labels are sets of
vertices, hence the set of labels has unbounded cardinality. But this is allowed by Proposition 8, and we avoid to obscure
the construction with relabellings. The maximum number of labels occurring in H(u) is the number of sets of the form
NG(w) ∩ T>(u) = NG(w) ∩ f ∗

T (u) for w≤Tu. We now detail the proof.

10 It is possible to decide in linear time if a graph G of tree-width k has clique-width at most m, for fixed k and m [23], but the complicated algorithm
does not highlight the structural properties of G ensuring that cwd(G) ≤ m.
11 A good linear-time approximation algorithm for tree-width is in [3]. The cubic-time approximation algorithm of [31] produces a clique-width term of

width at most 8k for given k and G of clique-width at most k.
12 By Definitions 1, a quasi-normal tree can be taken as input of an algorithm doing that.
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Proof. We are given a quasi-normal tree-decomposition (T , f ) of a graph G, hence T is quasi-normal and VG ⊆ NT . We define
f ∗(u) := f (u) − {u} for u ∈ NT .

We first assume that G is undirected. We will construct a term t ∈ T (FC ) that defines G by using the set of labels
C := {∗} ⊎ P(VG). For each u ∈ NT , we define H(u) as the graph G[T≤(u)] where each vertex w has label NG(w) ∩ T>(u)
(in particular, u has label upG,T (u)). We have NG(w) ∩ T>(u) ⊆ f ∗

T (u) ⊆ f ∗(u) and π (H(u)) = Ω(T≤(u), f ∗(u)). In particular,
H(rootT ) is G with all vertices labelled by ∅.

The following inductive characterization of H(u) yields immediately a term tu in T (FC ) that denotes it.
If u is a leaf, then H(u) = c(u), where c := upG,T (u) = NG(u).
Otherwise, u has sons u1, . . . , up; then, if u ̸∈ VG we have:
H(u) = H(u1) ⊕ ... ⊕ H(up). (The label of a vertex w in H(ui) is NG(w) ∩ T>(ui) = NG(w) ∩ T>(u),
hence is the same in H(u).)
If u ∈ VG we have:
H(u) = relab∗→c(relabh(A(∗(u) ⊕ H(u1) ⊕ ... ⊕ H(up)))) where
c := upG,T (u), A is the composition of the operations add∗,d such that u ∈ d and d ∈ π (H(u1) ⊕ ... ⊕ H(up)), and
h(d) := d − {u} for all sets d as above (h(d) := d for all other d ∈ C).

The correctness is clear from the definition. We now bound the width of the terms tu. For doing that, we need to bound
the cardinalities of the types of their subterms.

If u is a leaf, then |π (H(u))| = |π (tu)| = 1 because tu = c(u).
Otherwise, by the definitions, π (H(u)) = π (tu) is the set of sets NG(w) ∩ T>(u) for w≤Tu. As already noted, π (H(u)) =

Ω(T≤(u), f ∗(u)).
We first consider the case where u ∈ VG. We have:

π (H(ui)) = Ω(T≤(ui), f ∗(ui)) = Ω(T≤(ui), f (u)) ⊆ Ω(T<(u), f (u)). (1)

Hence:

π (A(∗(u) ⊕ H(u1) ⊕ ... ⊕ H(up))) = π (∗(u) ⊕ H(u1) ⊕ ... ⊕ H(up)) ⊆ {∗} ∪ Ω(T<(u), f (u)), (2)

π (relabh(A(∗(u) ⊕ H(u1) ⊕ ... ⊕ H(up)))) ⊆ {∗} ∪ Ω(T<(u), f ∗(u)). (3)

We have also:13

π (H(u)) = {c} ∪ Ω(T<(u), f ∗(u)) = Ω(T≤(u), f ∗(u)). (4)

If u ̸∈ VG, the situation is simpler because π (H(u)) = π (H(u1) ⊕ ... ⊕ H(up)) and

π (H(u)) = Ω(T<(u), f (u)) = Ω(T≤(u), f (u)). (5)

We now bound the cardinalities of these sets of labels. We have:⏐⏐Ω(T<(u), f ∗(u))
⏐⏐ ≤ |Ω(T<(u), f (u))| ≤ m, hence |π (H(u))| ≤ m + 1

for each u, by (4) and (5). We also have:⏐⏐{∗} ∪ Ω(T<(u), f ∗(u))
⏐⏐ ≤ 1 + |Ω(T<(u), f (u))| ≤ m + 1. (6)

Since, by induction, wd(tui ) ≤ m + 1 for each i, we have wd(tu) ≤ m + 1.

We now consider the case where G is directed. The proof is similar with C := {∗} ⊎ (P(VG) × P(VG)). For each
u ∈ NT , we define H(u) as the graph G[T≤(u)] where each vertex w has label (N+

G (w) ∩ T>(u),N−

G (w) ∩ T>(u)). Note that
(N+

G (w) ∪ N−

G (w)) ∩ T>(u) ⊆ f ∗(u). The inductive characterization of H(u) is as follows:
If u is a leaf, then H(u) = c(u), where c := (up+

G,T (u), up
−

G,T (u)).
Otherwise, u has sons u1, . . . , up. Then, if u ̸∈ VG we have:
H(u) = H(u1) ⊕ ... ⊕ H(up) and, if u ∈ VG:
H(u) = relab∗→c(relabh(A(∗(u) ⊕ H(u1) ⊕ ... ⊕ H(up)))) where
c := (up+

G,T (u), up
−

G,T (u)), A is the composition of the operations
−→
add(d,d′),∗ such that (d, d′) ∈ π (H(u1) ⊕ ... ⊕ H(up))

and u ∈ d, and of the operations
−→
add∗,(d,d′) such that (d, d′) ∈ π (H(u1) ⊕ ... ⊕ H(up)) and u ∈ d′, and, finally,

h(d, d′) := (d − {u}, d′
− {u}) for all pairs (d, d′) as above.

The correctness is clear from the definition. We now bound the width of the terms tu. By the definitions, π (H(u)) = π (tu)
is the set of pairs (N+

G (w) ∩ T>(u),N−

G (w) ∩ T>(u)) for w≤Tu and we also have (N+

G (w) ∪ N−

G (w)) ∩ T>(u) ⊆ f (u) − {u} for
each such w. Hence π (H(u)) = Ω(T≤(u), f ∗(u)).

If u is a leaf, then |π (H(u))| = |π (tu)| = 1 as tu = c(u).

13 The set c is empty if all edges of G incident to u are in H(u). Actually, we know Equality (4) already from the definitions.
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Otherwise u has sons u1, . . . , up and we have, similarly as (1):

π (H(ui)) = Ω(T≤(ui), f ∗(ui)) = Ω(T≤(ui), f (u)) ⊆ Ω(T<(u), f (u)).

Inequalities and equalities (2)–(6) hold in the same way, and we have wd(tu) ≤ m + 1. □

Remarks. (1) We have Ω(T≤(u), f ∗

T (u)) = Ω(T≤(u), f ∗(u)) for all u. It follows that the construction is exactly the same if we
replace f by fT ; we still have |Ω(T<(u), fT (u))| ≤ m for every node u. By Lemma 3, we can also transform (T , f ) into a normal
tree-decomposition.

(2) Let us examine the description of H(u) for u ∈ VG. If c := upG,T (u) ̸∈ π (H(u1) ⊕ ... ⊕ H(up)), we have the simpler
expression:

H(u) = relabh(A(c(u) ⊕ H(u1) ⊕ ... ⊕ H(up))) where
A is the composition of the operations addc,d such that
d ∈ π (H(u1) ⊕ ... ⊕ H(up)) and u ∈ d,
h(d) := d − {u} for all sets d as above.

(3) Assume that |Ω(T<(u), f (u))| ≤ m for every node u of T that is not binary. Let (T ′, f ′) is a binary quasi-normal tree-
decomposition constructed by the method of Lemma 3. Then

⏐⏐Ω(T ′
<(u), f

′(u))
⏐⏐ ≤ m for every node u of T ′.

(4) The construction of Theorem 11 does not use the full power of adda,b and
−→
adda,b because these operations are applied

(in the terms tu) to graphs having only one vertex labelled by a or only one vertex labelled by b. Hence, we do not obtain
optimal clique-width terms. For the graphs Kn,n of clique-width 2, given by clean optimal tree-decompositions, we obtain
clique-width terms of width 3. (Remark 2 does not apply.) □

As an immediate consequence, we get that if G is undirected of tree-width k, then cwd(G) ≤ 2k+1
+ 1 because then

|f (u)| ≤ k + 1, so that |Ω(T<(u), f (u))| ≤ 2k+1 for each u; if G is directed, then cwd(G) ≤ 22k+2
+ 1. (If G is undirected,

we have actually cwd(G) ≤ 2k+1 because, if |f (u)| = k + 1, then f (u) ̸∈ Ω(T<(u), f (u)). The second example below shows
that the upper-bound 2k+1 on the width of the constructed term can be reached.) However, we will obtain better bounds by
means of Algorithm 12.

Examples: (1) If we apply this construction to the clique Kn of tree-width n−1, by using Remark 2 above, we get an optimal
clique-width term of width 2.

(2) Let G be the undirected graph with vertex set [k + 1] ⊎ P where P := P([k + 1]) − [k + 1]. Its edges are i − j for
1 ≤ i < j ≤ k+ 1, d− i for all d ∈ P, i ∈ d, and ∅− {1}. Let T be the normal tree14 1(2(...(k+ 1(d1(∅), d2, . . . , dp)...))) where
{d1, d2, . . . , dp} = P − {∅} and d1 = {1}. Then (T , fT ) is a normal tree-decomposition of width k. (It is optimal because the
set of vertices [k + 1] induces a clique.) For u := k + 1, we have Ω(T<(u), fT (u)) = P and the other sets Ω(T<(u), fT (u)) are
smaller. Hence, the constructed term has width |P| + 1 = 2k+1. However, it is not hard to construct a clique-width term for
G of width k + 3. Hence, an optimal tree-decomposition does not produce necessarily an optimal clique-width term.

(3) The following example shows that different optimal tree-decompositions can yield clique-width terms of different
width.

We letH be the undirected graphwith vertex set [k]⊎Q whereQ := {a1, . . . , ak}. Its edges are i− j for 1 ≤ i < j ≤ k, ai− j
for all 1 ≤ j < i. Let T be the normal tree 1(2(...(k(a1, a2, . . . , ak)...))). Then (T , fT ) is a normal tree-decomposition of width
k that is optimal (because of the (k + 1)-clique induced by 1, . . . , k, ak) but not clean. For u := k, we have Ω(T<(u), fT (u)) =

{[1], . . . , [k]} (note that [1], . . . , [k] are sets of vertices) and the other setsΩ(T<(u), fT (u)) are smaller. Hence, the constructed
term has width k + 1.

The corresponding clean decomposition has tree T ′
= 1(a1, 2(a2, . . . (k(ak)...))). We have Ω(T ′

<(i), fT ′ (i)) = {[i]} for each
i, hence, we obtain a clique-width term of width 2, which is optimal.

That the tree-decomposition is clean is not enough to ensure that the constructed term has small width. Consider the
tree T ′′

= k(...(2(1(a1, a2, . . . , ak)...))). The corresponding optimal tree-decomposition is clean but Ω(T
′′

<(k), fT ′′ (k)) =

{[1], . . . , [k]} and Ω(T
′′

<(i), fT ′′ (i)) = {∅, [1], . . . , [i]} for each i = 1, . . . , k − 1. We obtain a term of width k + 1. □

Algorithm 12. Another construction of clique-width terms from tree-decompositions.

The input is a normal tree-decomposition (T , f ) of a graph G such that |Ω(T<(u), f (u))| ≤ m and |Ω(T<(u), f ∗(u))| ≤ m′

for each u ∈ NT . The output is a clique-width term denoting G, whose width is at mostm + m′
+ 1.

14 The linear notation of trees is described in Example 2.
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Fig. 2. A graph of clique-width 2 and tree-width 3.

Method.
We first considerGundirected. As in Theorem11,we construct a term t ∈ T (FC ) that denotesGwhere C := {∗}⊎P(VG).We

use the same graphs H(u) but we construct them inductively in a different way.
If u is a leaf, then H(u) = c(u), where c := upG,T (u) = NG(u).
Otherwise, u (it is in VG) has sons u1, . . . , up. Then, we define:

L1 := relabh1 (A1(H(u1) ⊕ ∗(u))),
Li := relabhi (Ai(H(ui) ⊕ Li−1)), for i = 2, . . . , p,
H(u) = relab∗→c(Lp),

where:
Ai is the composition of the operations add∗,d such that u ∈ d and d ∈ π (H(ui)),
hi(d) := d − {u} for all d as in the definition of Ai.

Correctness is clear. This characterization yields a term tu that denotes H(u). We now bound the width of these terms tu,
and for that, we examine the types of their subterms.

We have π (H(u)) = Ω(T≤(u), f ∗(u)) for each u. In the above characterization:
π (Li) = Bi ∪ {∗} for all i = 1, . . . , p, where
Bi := Ω(T≤(u1), f ∗(u1) − {u}) ∪ ... ∪ Ω(T≤(ui), f ∗(ui) − {u}),
π (H(ui) ⊕ Li−1) = Ω(T≤(ui), f ∗(ui)) ∪ Bi−1 ∪ {∗}.

The largest of these sets are those of the form π (H(ui) ⊕ Li−1). We have Ω(T≤(ui), f ∗(ui)) ⊆ Ω(T<(u), f (u)) and
Bi−1 ⊆ Ω(T<(u), f ∗(u)), which gives |π (H(ui) ⊕ Li−1)| ≤ m + m′

+ 1.
Hence, the terms tu have width at mostm + m′

+ 1.
For directed graphs, the proof is the same by modifying the operations Ai, similarly as we did in the second part of the

proof of Theorem 11. □

Example. Let G be the graph of tree-width 3 of Fig. 2 and let T = a(b(c(d, e, g, h, i))). Then (T , fT ) is a clean and optimal
tree-decomposition of G. The construction of Theorem 11 yields a clique-width term of width 5 because Ω(T<(c), fT (c)) =

{{c}, {a, c}, {b, c}, {a, b, c}} and the other similar sets are strictly smaller.
Let us now use Algorithm 12. For u := c , we let (u1, . . . , u5) := (d, e, g, h, i). Then π (H(u5) ⊕ L4) = {{c}} ∪

{∅, {a}, {b}, {a, b}} ∪ {∗} of cardinality 6. The other similar sets are strictly smaller and the constructed term has width 6,
which is not optimal. □

Hence, the construction of Algorithm 12 looks less interesting than that of Theorem 11, but it gives better bounds on
clique-width in certain cases.

Proposition 13. From a clean tree-decomposition of width k, Algorithm 12 produces a clique-width term of width atmost 3·2k−1

if the graph is undirected and at most 7 · 22(k−1) if it is directed.

Proof. We examine carefully the types of the subterms of tu as in the proof of Theorem 11. The only case to consider is
that of u ∈ VG with sons u1, . . . , up. Since the given tree-decomposition (T , f ) is clean, u ∈ f (ui) for each i. Furthermore, if
|f (u)| = k+1, then f ∗(u) := f (u)−{u} contains, for each i, at least one vertex not in f (ui) (because otherwise, f (ui) = f (u)∪{ui}

and |f (ui)| = k + 2). We denote by ûi such a vertex.
Consider now: π (H(ui) ⊕ Li−1) = Ω(T≤(ui), f ∗(ui)) ∪ Bi−1 ∪ {∗}. We first assume that |f (u)| = k + 1. We have:

Bi−1 =

⋃
1≤j≤i−1

Ω(T≤(uj), f ∗(uj) − {u}) ⊆ Ω(T<(u), f ∗(u))

but f ∗(u) ̸∈ Ω(T<(u), f ∗(u)) because of the vertices û1, . . . , ûp. Hence:

π (H(ui) ⊕ Li−1) ⊆ Ω(T≤(ui), f ∗(ui)) ∪ {∗} ∪ P(f ∗(u)) − {f ∗(u)}.
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The sets in Ω(T≤(ui), f ∗(ui)) cannot contain ûi, hence f ∗(u) ̸∈ Ω(T≤(ui), f ∗(ui)). The sets in Ω(T≤(ui), f ∗(ui)) that are not
in P(f ∗(u))−{f ∗(u)} must contain u, hence, are of the form {u}∪ d for d ∈ P(f ∗(u)−{ûi}) and so, there are at most 2k−1 such
sets. As |P(f ∗(u)) − {f ∗(u)}| = 2k

− 1, we have:

|π (H(ui) ⊕ Li−1)| ≤ 2k−1
+ 2k

− 1 + 1.

If |f (u)| ≤ k, then Bi−1 ⊆ P(f ∗(u)) and so, |Bi−1| ≤ 2k−1. The sets in Ω(T≤(ui), f ∗(ui)) that are not in P(f ∗(u)) must contain
u, hence, there are at most 2k−1 such sets. We obtain |π (H(ui) ⊕ Li−1)| ≤ 2k−1

+ 2k−1
+ 1 < 2k−1

+ 2k. Hence, all terms tu
have width bounded by 2k−1

+ 2k
= 3 · 2k−1. (This bound is due to [9] where a similar construction is sketched.)

We now consider the case where G is directed. We have similar inclusions. If |f (u)| = k + 1, we have:

Bi−1 ⊆ Ω(T<(u), f ∗(u)) ⊆ P where P := P(f ∗(u))2 − {(f ∗(u), d), (d, f ∗(u)) | d ⊆ f ∗(u)}.

Hence, |Bi−1| ≤ (2k
− 1)2. The pairs (d, d′) in Ω(T≤(ui), f ∗(ui)) − P must contain u in d ∪ d′. The number of such pairs is

bounded by 3 · 22(k−1) (because there are 2k−1 sets included in f ∗(u) − {ui}). We obtain thus the bound

3 · 22(k−1)
+ (22k

− 2 · 2k
+ 1) + 1 = 7 · 22(k−1)

− 2k+1
+ 2 < 7 · 22(k−1).

If |f (u)| = k, we have |Bi−1| ≤ (2k−1)2 and the number of pairs in Ω(T≤(ui), f ∗(ui)) − (P(f ∗(u)) × P(f ∗(u))) is bounded
again by 3.22(k−1). We obtain thus the bound

3 · 22(k−1)
+ 22(k−1)

+ 1 < 7 · 22(k−1)

which completes the proof. □

For sake of completeness, we give a third construction from [10] that applies only to special tree-decompositions
(cf. Definition 6). Its description is easier than that of that article.

Proposition 14. If a graph G has special tree-width k, then cwd(G) ≤ k + 2. A clique-width term witnessing this bound can be
constructed in linear time from a special tree-decomposition of width k.

Proof. Let (T , f ) be a special tree-decomposition of a graph G. We can assume it is normal and VG = NT . The proof is
the same for directed and undirected graphs. We will use the set of labels C := {⊥} ⊎ VG. For each u ∈ NT , we define
K (u) := G[T≤(u) ∪ f (u)] and we label its vertices as follows:

π (w) := if NG(w) ⊆ T≤(u) then ⊥ else w.
If π (w) ̸= ⊥ then w ∈ f (u). These graphs satisfy the following inductive characterization:
(1) If u is a leaf, then K (u) = G[f (u)] with the labelling π . It can be defined by a term tu of width |f (u)| ≤ k + 1.
(2) Otherwise, u has sons u1, . . . , up, and the sets T≤(ui) ∪ f (ui) are pairwise disjoint because (T , f ) is special. We let

{v1, . . . , vq} := f (u) − (f (u1) ∪ ... ∪ f (up)), q ≥ 0; these vertices are not in K (u1) ⊕ ... ⊕ K (up). We have:

K (u) = relabh(A(K (u1) ⊕ ... ⊕ K (up) ⊕ v1(v1) ⊕ ... ⊕ vq(vq))),

where:
A is a composition of the edge additions that create the edges of K (u) not in K (u1) ⊕ ... ⊕ K (up), and
hmaps v to ⊥ for all v ̸= ⊥ such that π (v) = ⊥ (in K (u)).

We now bound the width of tu in these last two cases.

π (K (u)) ⊆ f (u) ∪ {⊥},

π (K (u1) ⊕ ... ⊕ K (up) ⊕ v1(v1) ⊕ ... ⊕ vq(vq)) ⊆ f (u) ∪ {⊥}.

Hence, cwd(G) ≤ k + 1 + 1 = k + 2. □

Remark 15. (1) As in Theorem 11 and Algorithm 12, we do not use the full power of the edge addition operations. The
operations in A create edges with both ends in the set f (u) that has cardinality at most k + 1.

(2) If the given decomposition (T , f ) is not special, we can denote G by a term built with the operation of parallel
composition: for edge disjoint graphs H and K (i.e., EH ∪ EK = ∅), H//K := (VH ∪ VK , EH ⊎ EK ).

The graphs G[f (u)] (without vertex labels) are defined inductively similarly as above. If u has sons u1, . . . , up, then:

G[f (u)] = G[f (u1)]//...//G[f (up)]//Au

where Au consists of the edges and vertices of G[f (u)] not in G[f (u1)]//...// G[f (up)]. In a subsequent step, similar to the
algorithm of Proposition 8, we can allocate ‘‘source’’ labels in [k + 1] to convert the term that defines G[f (u)] into a term of
the ‘‘HR graph algebra’’ of [16], Chapter 2.

4. Sparse graphs

We apply Theorem 11 to several classes of sparse graphs. We recall from Section 1 that all graphs are simple.
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4.1. Planar graphs

Smoothing a vertex of degree 2 that has neighbours y and z in an undirected graphmeans replacing it and its two incident
edges by a single edge between y and z, and then, fusing the parallel edges that may result. This transformation preserves
planarity. We recall that a simple planar graph is uniformly 3-sparse.

Lemma 16. Let k ≥ 3. Let G be planar and X, Y ⊆ VG be such that X ⊆ Y c and |Y | ≤ k.
(1) If G is undirected, then |Ω(X, Y )| ≤ 6k − 9.
(2) If G is directed, then |Ω(X, Y )| ≤ 32k − 57.
If k ≤ 2, the upper bounds are respectively 4 and 13.

Proof. (1) This assertion is Proposition 11 of [26]. We prove it for completeness and in order to prove the corresponding
assertion about directed graphs. We consider disjoint sets X and Y , with Y of cardinality k, and we bound the number
|Ω(X, Y )|, i.e. the number of sets of the form NG(x) ∩ Y for some x ∈ X .

We will bound |Ω(X, Y )| for graphs having edges between X and Y only. This suffices because removing the other edges
and the vertices in X c

− Y preserves planarity and does not modify Ω(X, Y ).
We denote by X1, X2 and X3 the sets of vertices of X having degree, respectively, at most 1, exactly 2 and at least 3. We

have |Ω(X1, Y )| ≤ k + 1.
Next we consider the vertices in X2. We remove from G the vertices in X − X2. We obtain a planar graph G′. By smoothing

its vertices from X2, we get a planar graph H with vertex set Y of cardinality k. Each edge of H corresponds to a set in
Ω(X2, Y ). Hence, |Ω(X2, Y )| = |EH | ≤ 3k − 6.

We now consider the vertices in X3. We remove fromG the vertices in X−X3. We get a bipartite planar graph K with edges
between VK = X3 and Y . As each vertex in X3 has degree at least 3 in K , we have 3 |X3| ≤ |EK | . As K is planar and bipartite,
|EK | ≤ 2 |VK | − 4. Hence, 3 |X3| ≤ |EK | ≤ 2(|X3| + k) − 4 which gives |X3| ≤ 2k − 4, and so, |Ω(X3, Y )| ≤ |X3| ≤ 2k − 4.
Hence, |Ω(X, Y )| = |Ω(X1, Y )| + |Ω(X2, Y )| + |Ω(X3, Y )| ≤ k + 1 + 3k − 6 + 2k − 4 = 6k − 9.

(2) Assume now that G is directed. The undirected graph Und(G) is obtained from G by forgetting edge directions and
fusing any two parallel edges. We define X1, X2 and X3 as above with degrees evaluated in Und(G). Each edge between
u and v in Und(G) can come from three types of edges in G: u → v, v → u and two opposite edges between u and
v. Hence, |Ω(X1, Y )| ≤ 3k + 1. By this observation, |Ω(X2, Y )| is at most 9 times the corresponding value in Und(G), hence
|Ω(X2, Y )| ≤ 9(3k − 6). The above proof for an undirected graph shows that 2k − 4 bounds |X3| hence Ω(X3, Y ). Hence, we
get |Ω(X, Y )| ≤ 3k + 1 + 9(3k − 6) + 2k − 4 = 32k − 57.

The bounds 3k − 6 (resp. 2k − 4) on numbers of edges of simple planar graphs (resp. simple planar bipartite graphs) are
valid if k ≥ 3. Otherwise, inspecting the proofs yields the bounds 1 + 2 + 1 = 4 for undirected graphs and 1 + 3 + 9 = 13
for directed graphs. □

Theorem 17. The clique-width of a simple planar graph of tree-width k ≥ 2 is at most 32k − 24 if it is directed, and at most
6k − 2 if it is undirected.

Proof. We apply Lemma 16 and Theorem 11, by noting that each set f (u) has at most k + 1 elements. We get the bounds
32(k + 1) − 57 + 1 = 32k − 24 on the clique-width of a directed graph and 6(k + 1) − 9 + 1 = 6k − 2 for an undirected
one. □

It follows from this result and Theorem 10(2) (a result from [28]) that clique-width and tree-width are linearly related.

Related work. By using the fact that the rank-width of an undirected graph is at most its tree-width plus 1 (proved in [30]),
the article [26] establishes that the clique-width of a planar undirected graph is bounded by 12 · twd(G) + 11.

It proves also that, if G, undirected, is embeddable in a surface of Euler genus r (i.e., a sphere with h handles and r − 2h
crosscaps) the bounds 3k−6 and2k−4 in the proof of Lemma16(1) are replaced by 3k−6+3r and2k−4+2r respectively. The
corresponding modifications of Lemma 16(2) and Theorem 17 give the bounds cwd(G) ≤ 32 · twd(G) + O(r) for G directed
and cwd(G) ≤ 6 · twd(G) + O(r) for G undirected, where in both cases, G is embedded on some surface of genus r .

4.2. Uniformly q-sparse graphs

We recall from Section 1 that γ (k, q) denotes the number of subsets of [k] of cardinality at most q. It is O(kq) for fixed q
and bounded by kq/(q − 1)! if 1 < q < k/2. We will use γ (k, q) for ‘‘small’’, fixed values of q.

Lemma 18. Let k ≥ q > 1 and G be uniformly q-sparse. Let X, Y ⊆ VG be such that X ⊆ Y c and |Y | ≤ k.
(1) If G is undirected, then |Ω(X, Y )| ≤ q · k + γ (k, q).
(2) If G is directed, then |Ω(X, Y )| ≤ q · k + 3qγ (k, q).
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Proof. Let k ≥ q > 1 and G be uniformly q-sparse. We let X and Y be as in the proof of Lemma 16 and we bound |Ω(X, Y )| .
(1) Let G be undirected and H be an orientation of G of indegree at most q (cf. Section 1). As in the proof of Lemma 16, we

can assume that G and H are bipartite with edges between X and Y .
LetX1 be the set of vertices x ∈ X such thatN+

H (x) is not empty. Since the orientation has indegree atmost q andN+

H (x) ⊆ Y ,
|X1| ≤ q · k and hence, |Ω(X1, Y )| ≤ |X1| ≤ q · k. (Ω is relative to G). For each vertex x of X2 := X − X1, we have N+

H (x) = ∅

and N−

H (x) is a subset of Y of cardinality at most q. There are at most γ (k, q) such sets, hence, |Ω(X2, Y )| ≤ γ (k, q). We get
the claimed upper-bound since |Ω(X, Y )| ≤ |Ω(X1, Y )| + |Ω(X2, Y )| .

(2)We apply this argument toUnd(G) that is uniformly q-sparse.We still have |Ω(X1, Y )| ≤ q·k but |Ω(X2, Y )| ≤ 3qγ (k, q)
as each edge of H can arise from three configurations of edges in G. □

Theorem 19. For each q ≥ 1, if G is uniformly q-sparse, then cwd(G) = O(twd(G)q).

Proof. Immediate consequence of Lemma 18 and Theorem 11. □

We get cwd(G) = O(twd(G)⌈d/2⌉) for graphs of degree at most d (where the constant depends on d), but a proof
similar to that of Theorem 19 gives cwd(G) < d(twd(G) + 1) + 2. Since planar graphs are uniformly 3-sparse, we get
cwd(G) = O(twd(G)3) for them, but Theorem 17 also gives linear upper-bounds.

Related work. Theorem 21 of [26] proves that for every (fixed) r , we have cwd(G) = O(γ (twd(G), r)) = O(twd(G)r ) for
every undirected graph G in Sr (the class of graphs G having no subgraph isomorphic to Kr,r ). As every uniformly q-sparse
undirected graph G belongs to S2q+1, we deduce that, if G is uniformly q-sparse, then cwd(G) = O(twd(G)2q+1) (for fixed q).
However, the bound of Theorem 19 is better.

5. Bipartite graphs and hypergraphs

Bipartite graphs are interesting for many reasons. In particular, they can encode incidence graphs and hypergraphs as we
will see, and also satisfiability problems for propositional formulae [25].

A bipartite graph G is d-bounded if all vertices of one of the two parts of VG have degree at most d. For such a graph,Und(G)
has an orientation of indegree at most d, hence Theorem 19 gives cwd(G) = O(twd(G)d). We will improve this bound.

5.1. Hypergraphs as bipartite graphs

Definition 20. Hypergraphs and their tree-decompositions.

(a) A hypergraph is a triple H = (VH , EH , incH ) such that VH and EH are disjoint nonempty sets and incH ⊆ VH × EH ; VH is
the set of vertices, EH is the set of hyperedges and (v, e) ∈ incH means that v is a vertex of e (we also say that e is incident to
v). In order to avoid uninteresting technical details, we assume that each hyperedge has at least one vertex and that each
vertex belongs to some hyperedge. A hypergraph is a q-hypergraph if its hyperedges have at most q vertices. The directed
bipartite graph associated with H is Bip(H) := (VH ∪ EH , incH ) and H can be reconstructed from Bip(H). If H is a q-hypergraph,
then Bip(H) is q-bounded. We also define the undirected graph K (H) with set of vertices VH and edges between any two
vertices belonging to some hyperedge.

(b) A tree-decomposition of a hypergraphH is a pair (T , f ) as for graphs with the condition that each hyperedgemust have
all its vertices in some set f (u). Equivalently, (T , f ) is a tree-decomposition of K (H) because, for any tree-decomposition
(T ′, g) of a graph, each clique of this graph is contained in some set g(u). The width of (T , f ) and the tree-width twd(H) of H
together with the notions of normal, clean and quasi-normal tree-decompositions are as for K (H).

Fig. 3 shows the graph G = Bip(H) associated with a 3-hypergraphH with hyperedges t, u, v, w, x, y, z and the tree T of a
tree-decomposition (T , f ) of H of width 2; the function f is defined in the following table (s ∈ NT ). In the figure, hyperedges
are circled, and the edges of Bip(H) are undirected.

Lemma 21. (1) For every hypergraph H, twd(Bip(H)) ≤ twd(H) + 1 but twd(H) is not bounded in twd(Bip(H)).
(2) If H is a q-hypergraph, then twd(H) ≤ q(twd(Bip(H)) + 1) − 1.

Proof sketch. (1) Let (T , f ) be a tree-decomposition of H . For each hyperedge e, there is a node u of T such that all vertices
of e are in f (u) and we add to T a new son u′ of u with associated set {e} ∪ f (u). We get a tree-decomposition of Bip(H) of
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Fig. 3. Bip(H) and the tree T of a tree-decomposition of H .

width twd(Bip(H))+1. One cannot bound twd(H) in terms of twd(Bip(H)) alone: if H has one hyperedge with n+1 vertices,
we have twd(Bip(H)) = 1 and twd(H) = n.

(2) Let (T , f ) be a tree-decomposition of Bip(H) of width k such that H is a q-hypergraph. We define
f ′(u) := f (u) ∪ {x ∈ VH | incH (x, e) for some e ∈ f (u) ∩ EH} − (f (u) ∩ EH ).

Then (T , f ′) is a tree-decomposition of H and
⏐⏐f ′(u)

⏐⏐ ≤ q |f (u)| ≤ q(k+ 1) which yields the result. (This result is a remark
after Theorem 5.4 in [29].) □

We do not have twd(Bip(H)) ≤ twd(H) in general: let H be the hypergraph with 3 vertices and 3 hyperedges containing
all these vertices. Then, twd(H) = 2 but twd(Bip(H)) = 3 (because Bip(H) contains K4 as a minor).

This lemma shows that for fixed q, the tree-width of a q-hypergraph and that of its associated bipartite graph are linearly
related. Theorem 19 shows that cwd(Bip(H)) = O(twd(Bip(H))q) for a q-hypergraph. We have cwd(Bip(H)) = O(twd(H)q) by
this fact and Lemma 21, but we can do better.

Theorem 22. Let q ≥ 2. For every q-hypergraph H, we have:

cwd(Bip(H)) ≤ γ (twd(H) + 1, q − 1) + 1 = O(twd(H)q−1).

Proof. Let (T , fT ) be a normal tree-decomposition15 of H , i.e. of K (H), of width k = twd(H). The vertices of a hyperedge e
are in fT (u) for some node u of T , hence are linearly ordered by ≤T because (T , fT ) is normal; we let ê be the smallest one.

We extend T into a tree U with set of nodes NT ∪ EH as follows. For each u ∈ VH , we let e1, . . . , em be the hyperedges e
such that ê = u; we replace the edge u− pT (u) of T by the path u− e1 − · · · − em − pT (u); ifm = 0 we do nothing; if u is the
root, we put the path e1 − · · · − em above uwith em as new root (these hyperedges have u as unique vertex). The vertices of
a hyperedge e are ê that is below it (in U), and, at most q − 1 vertices that are above.

Fig. 4 shows Bip(H) and the tree U for H and T of Fig. 3. The edges of U not in Bip(H) are shown with dotted lines. The
nodes for hyperedges w and x are inserted between e and c. We could have inserted x below w.

It is clear that U is a normal tree for Bip(H). We obtain a normal tree-decomposition (U, fU ) of Bip(H). (It is not the
tree-decomposition constructed in the proof of Lemma 21(1); its width is not bounded in terms of k: just consider several
parallel edges between two vertices.) In order to use Theorem 11, we bound the cardinalities of the sets Ω(U<(w), fU (w)).

If w ∈ VH , then Ω(U<(w), fU (w)) consists of the following sets:
first, the sets NBip(H)(u) ∩ fU (w) for u ∈ VH , u<Uw; these sets are empty, because the neighbours in Bip(H) of such u
are hyperedges e such that e<Tu or ê = u but, in both cases, e<Tw, hence e ̸∈ fU (w);
second, the sets NBip(H)(e)∩ fU (w) for e ∈ EH , e<Uw; these sets are subsets of fT (w) of cardinality at most q−1, because
they are the sets of ends v≥Tw of the edges of K (H) whose other end is ê<Ue; (in the example of Fig. 4, for w := c , the
sets in Ω(U<(w), fU (w)) are ∅, {c} and {a, c}).

Hence, |Ω(U<(w), fU (w))| ≤ γ (k + 1, q − 1).
If w = e ∈ EH , then Ω(U<(w), fU (w)) consists of the following sets:

first, the sets NBip(H)(u) ∩ fU (e) for u ∈ VH , u<Ue: if u = ê, then NBip(H)(u) ∩ fU (e) = N(e) := {e1 ∈ EH | e≤Ue1, ê1 = ê},
otherwise, u<T ê, and the neighbours of u are hyperedges e1<U ê<Ue, hence, NBip(H)(u) ∩ fU (e) = ∅; (in the example of
Fig. 4, we have N(wO) = {wO, xO} where wO denotes the ‘‘circled w’’ and similarly for xO; we have N(xO) = {xO});
second, the setsNBip(H)(e1)∩ fU (e) for e1 ∈ EH , e1<Ue: these sets are subsets of f ∗

T (̂e) of cardinality atmost q−1, because
they are the sets of ends v ≥ e > ê of the edges of K (H) whose other end is below e, hence below ê or equal to it;
(in the example of Fig. 4, we have NBip(H)(wO) ∩ fU (xO) = {a, c}).

15 The mapping fT is ‘‘minimal’’, cf. Definitions 1(c).
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Fig. 4. Tree U for Bip(H) of Fig. 3.

Hence, |Ω(U<(w), fU (w))| ≤ 1 + γ (k, q − 1) ≤ γ (k + 1, q − 1). The claimed result16 follows then from Theorem 11. □

5.2. Incidence graphs

Incidence graphs are useful for the logical expression of graph properties in MSO logic, as we will recall from [10–12,16]
in the next section.

Let G be undirected, possibly with loops and parallel edges. Its edge set is EG. Its incidence graph Inc(G) is the directed
bipartite graph (VG ∪ EG, incG) such that incG := {(v, e) ∈ VG × EG | v is a vertex of e}. A loop has degree one in Inc(G). If G
has no loop, then Und(Inc(G)), the undirected graph underlying Inc(G) is obtained from G by adding a new (degree 2) vertex
on each edge. If G is considered as a 2-hypergraph, then Inc(G) = Bip(G).

If G is directed, then Inc(G) is defined as (VG ∪ EG, incG) with incG := {(v, e) ∈ VG × EG | e : v→Gw for some vertex w} ∪

{(e, v) ∈ EG × VG | e : w→Gv for some vertex w}.
Tree-width and clique-width for G and Inc(G) are related as follows. We have twd(Inc(G)) = twd(G) except if G is a forest

where at least one edge is replaced by several parallel edges: in that case, twd(G) = 1, twd(Inc(G)) = 2, cwd(Inc(G)) ≤ 3 if
G is undirected and cwd(Inc(G)) ≤ 4 if G is directed.

By Theorem 10(2), we have twd(Inc(G)) ≤ 6 · cwd(Inc(G)) − 1. The following corollary of Theorem 22 is proved in [7] in
a different way.

Corollary 23. We have cwd(Inc(G)) ≤ twd(G) + 3 if G is undirected and cwd(Inc(G)) ≤ 2 · twd(G) + 4 if it is directed.

Proof. If G is undirected, Theorem 22 yields that the clique-width of Inc(G) = Bip(G) is bounded by γ (twd(G)+ 1, 1)+ 1 =

twd(G) + 3.
If G is directed, we construct U as in the proof of Theorem 22. In that case, every edge e of G that is not a loop links a vertex

ê below it in U and one above it. If it is a loop, then ê → e and e → ê. We use the notation of the proof of Theorem 11 for
directed graphs. The sets Ω(U<(w), fU (w)) consist of the pairs (N+

Inc(G)(u) ∩ fU (w),N−

Inc(G)(u) ∩ fU (w)) for u<Uw.

16 A similar result in [7] states that cwd(S(H)) = O(twd(H)q−1) if H is a q-hypergraph and S(H) is Bip(H) augmented with undirected edges between any
two vertices of H .
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If w ∈ VG, Ω(U<(w), fU (w)) consists of (∅, ∅) and pairs (v, ∅) or (∅, v) for some v ∈ fU (w). Hence, |Ω(U<(w), fU (w))| ≤

1 + 2(k + 1).
Ifw = e ∈ EG, thenΩ(U<(w), fU (w)) consists of (∅, ∅), the pair (N+

Inc(G) (̂e)∩ fU (e),N−

Inc(G) (̂e)∩ fU (e)) and pairs (v, ∅) or (∅, v)
for some v ∈ fT (̂e)− {̂e}. Hence, |Ω(U<(w), fU (w))| ≤ 1+ 1+ 2k < 2k+ 3. We obtain the bound 2k+ 4 by Theorem 11. □

Hence, tree-width and cwd(Inc(·)) are linearly equivalent measures.

Remark 24. The empty set (or the pair (∅, ∅)) is used in the construction of a term that denotes Inc(G) as a label for its
vertices in VG as well as in EG. In view of application to the model-checking of MSO2 properties (see Section 6 and [11,12]), it
is useful to distinguish, in the term that defines Inc(G), the labels for the vertices of G from those that define its edges (that
are also vertices of Inc(G)). For this purpose, we duplicate these ‘‘empty’’ labels (and no others). So, we can construct Inc(G)
with two labels for the vertices of G and twd(G) + 2 labels for its edges, i.e., the vertices in EG ⊆ VInc(G). If G is directed these
figures are respectively 2 and 2 · twd(G) + 3.

6. Algorithmic applications

Wediscuss some applications of our constructions to the verification ofmonadic second-order expressible graph properties
(MSO properties in short) by means of automata that process clique-width terms denoting the input graphs. This method is
implemented in the running system AUTOGRAPH.17 This section being informal, we will use examples and we refer the
reader to [13,16] for definitions.

6.1. Model-checking with fly-automata

We give the example of a monadic second-order (MSO) sentence18 expressing that a graph G, defined as the relational
structure ⟨VG, edgG⟩, is 3-colourable. This sentence is ∃X, Y .Col(X, Y ) where Col(X, Y ) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) H⇒ [¬(u ∈ X ∧ v ∈ X) ∧ ¬(u ∈ Y ∧ v ∈ Y ) ∧ ¬(u ̸∈ X ∪ Y ∧ v ̸∈ X ∪ Y )]},

expressing that X, Y and VG − (X ∪ Y ) are the three colour classes of a proper 3-colouring of the considered graph G.
AnMSO sentence intended to express a graphproperty can only use quantifications over vertices and sets of vertices.More

powerful are the MSO2 sentences, that can also use quantifications over edges and sets of edges. We recall the following
‘‘algorithmic meta-theorem’’ [16,18,20,21].

Theorem 25. (a) For every integer k and every MSO sentence ϕ, there exists a linear-time algorithm that checks the validity of
ϕ in any graph given by a term in T (F[k]), whence of clique-width at most k. The computation time is linear in the size of the term.

(b) For every integer k and every MSO2 sentence ϕ, there exists a linear-time algorithm that checks the validity of ϕ in any
graph given by a tree-decomposition of width at most k. The computation time is linear in the size of the tree-decomposition.

Assertion (b)19 is actually a consequence of (a) because:
(1) an MSO2 property of a graph G is nothing but an MSO property of its incidence graph Inc(G),
(2) if G has tree-width k, then Inc(G) has clique-width at most f (k) for some fixed linear function f (cf. Corollary 23),

and
(3) a tree-decomposition of G of width k can be converted in linear time (for fixed k) into a clique-width term of width

at most f (k) that defines Inc(G).
Point (1) is just a matter of definitions. Point (2) and the linear-time transformation of (3) make practically useable this

reduction of (b) to (a). This observation is developed in [11,12]. MSO2 sentences are more expressive than MSO ones, but
bounded tree-width is necessary for having FPT algorithms to check the corresponding properties in this way, via incidence
graphs.

Some linear-time algorithms intending to implement (a) use finite automata that take as input terms t in T (F[k])
and answer whether the graph G(t) satisfies the considered property. However, these automata are much too large to
implementable in the classical way by means of transition tables. To the opposite, fly-automata (FA in short) compute the
transitions that are needed during the run on a given term and thus overcome the size obstacle.

We review FA informally. Let C be a countably infinite set of labels. A deterministic fly-automatonA over FC has a possibly
infinite set of states QA ⊆ (C ⊎ B)∗ where B is a finite set of auxiliary symbols, typically True, 0, 1, (, ), {, } ,‘‘,’’, etc. Its
transitions are of the forms a→Ap, f [q]→Ap and ⊕[q, q′

]→Ap, where a ∈ C , f ∈ FC is unary, q, q′, p ∈ QA and p is defined

17 AUTOGRAPH can even compute values associated with graphs [15], for an example, the number of 3-colourings. It is written in Common Lisp by
I. Durand. See http://dept-info.labri.u-bordeaux.fr/~idurand/autograph.
18 A sentence is a logical formula without free variables.
19 By a result of Bodlaender (see [5,20,21]), a tree-decomposition of G of width k can be computed in linear time if there exists one. Hence the variant

of (b) where a tree-decomposition is not given but must be computed also holds, but this variant is not a consequence of (a). Furthermore, the linear time
decomposition algorithm is not practically implementable. See [4] for useable algorithms.

http://dept-info.labri.u-bordeaux.fr/~idurand/autograph
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in a unique way by an algorithm (that is part of the definition of A) from a, or from f and q, or from q and q′. The (possibly
infinite) set AccA ⊆ QA of accepting states is decided by an algorithm. It follows that, on each term t , the automaton A has
a unique (bottom-up) run. This run is computable and so is qA(t), the (unique) state reached at position ε (the root of the
syntactic tree of t). Hence, the membership of t in L(A), the language accepted by A, is decidable.

The time computation of a deterministic FA A on a term t is Σ{τA(u) | u ∈ Pos(t)} where τA(u) is the time taken to
compute the state p reached at position u by the run of A, plus the time taken to check whether qA(t) ∈ AccA.

For model-checking, we are interested in cases where t ∈ L(A) if and only if G(t) satisfies the property to check. Note that
the same automaton, hence, the same algorithm, works for graphs of any clique-width as C is infinite.

Example 26. A deterministic fly-automaton A that checks 3-colourability.

Let Γ := {1, 2, 3} be the set of colours. Let G be a C-labelled graph. For each mapping γ : VG → Γ , we define
γ̃ := {(a, i) ∈ C × Γ | γ (x) = i for some a-labelled vertex x}.

We define ξ (G) as the finite set of finite sets γ̃ such that γ is a proper 3-colouring of G (no two adjacent vertices have the
same colour). For t ∈ T (FC ), we define ξ (t) := ξ (G(t)). Clearly, ξ (t) can be written as a word over C ⊎ Γ ⊎ A where A is the
alphabet consisting of (,),{,} and ‘‘,’’. The function ξ satisfies the following inductive property:

ξ (a) = {{(a, 1)}, {(a, 2)}, {(a, 3)}} for a ∈ C,

ξ (adda,b(t)) = {α ∈ ξ (t) | there is no i = 1, 2, 3 such that (a, i) and (b, i) belong to α},

ξ (relabh(t)) = h(ξ (t)) where h replaces in the word ξ (t) each label a ∈ C by h(a),
ξ (t1 ⊕ t2) = {α ∪ β | α ∈ ξ (t1), β ∈ ξ (t2)}.

These properties give the transitions of the desired FAAwhose set of states is P(P(C ×Γ )), identified to a language over
C ⊎ Γ ⊎ A, and such that qA = ξ . The transitions are:

a→A{{(a, 1)}, {(a, 2)}, {(a, 3)}},
adda,b[q]→A{α ∈ q | there is no i = 1, 2, 3 such that (a, i) and (b, i) belong to α},

relabh[q]→Ah(q),
⊕[q, q′

]→A{α ∪ β | α ∈ q, β ∈ q′
}.

All states are accepting except the empty set. The set of all states that can occur in a run over a term in T (F[k]) (assuming
[k] ⊆ C) is finite but of cardinality 223k . Hence, it cannot be listed in a table for useful values of k. □

We go back to the general case. We fix C . If ϕ is an MSO sentence, we denote by L(ϕ) the set of terms t ∈ T (FC ) such that
G(t) |= ϕ. The proof of Theorem 25 (a) is based on an algorithmMC that constructs, from any ϕ, a deterministic FAA(ϕ) over
FC that recognizes the language L(ϕ). However, in Example 26, we have constructed an FA ‘‘directly’’ from our understanding
of 3-colourability, without using its expression by an MSO sentence.

Let h : C → C ′ be a bijection. It extends into a bijection FC → FC ′ (each label a ∈ C occurring in a symbol of FC is replaced
by h(a)) and into a bijection T (FC ) → T (FC ′ ); both are denoted by h. The deterministic FA h(A(ϕ)) over FC ′ , obtained from
A(ϕ) by replacing f by h(f ) and each state q by h(q) in each transition, is the one constructed by MC where we replace C by
C ′. We have L(h(A(ϕ))) = h(L(A(ϕ))).

Theorem 27. Let C be a countable set of vertex labels. There is an algorithm that constructs, for each MSO sentence ϕ, a
deterministic FAA(ϕ) over FC that recognizes the language L(ϕ) ⊆ T (FC ) and satisfies the following properties, for all t, t ′ ∈ T (FC ):

(i) qA(ϕ)(t) ∈ (B ⊎ π (t))∗ where B is a finite set disjoint from C,
(ii) if G(t) is isomorphic to G(t ′), then qA(ϕ)(t) = qA(ϕ)(t ′),
(iii) if h : C → C ′ is a bijection and B ∩ C ′

= ∅, then qh(A(ϕ))(h(t)) = h(qA(ϕ)(t)).

The proof is by induction on the structure of ϕ (an adequate inductive assertion is used for formulae with free variables;
see [13,14]). It follows from (iii) that a set of labels C can be replaced by C ′ in bijectionwith C by h: the computation of h(A(ϕ))
over h(t) is the same as that of A(ϕ) over t , up to the replacement in the run of each label a by h(a). However, a difference
in the computation times of h(A(ϕ)) and A(ϕ) may arise from the codings of labels. The computation time τA(ϕ)(u) of a
transition is bounded by aϕ · θ · τ ′

A(ϕ)(u) where τ ′

A(ϕ)(u) is the number of comparisons of two labels during the computation
of the state at a position u in terms of the states at its sons θ bounds the time taken for one comparison and aϕ depends only
on ϕ. If t ∈ T (F[k]) where k is ‘‘small’’, then, one can take θ = 1. This may not be the same if C is ‘‘large’’, as in Theorem 11 and
Algorithm 12. Hence, although FA can take as inputs terms in T (FC ) for large sets C , this observation motivates the use of
Proposition 8.

However, the algorithmof Proposition 8does not build a bijectionh fromC toN+ making t ∈ T (FC ) into an equivalent term
h(t) in T (F[cwd(t)]). For each t ∈ T (FC ) and each position u of t , it defines a term tu, and a bijection hu : π (t/u) → π (tu) ⊆ N+

such that tu ≡ relabhu (t/u). It follows from Assertions (ii) and (iii) of Theorem 27 that qA′(ϕ)(tu) = hu(qA(ϕ)(t/u)) for each
u ∈ Pos(t), whereA′(ϕ) is the FA over T (FN+

) constructed from ϕ by algorithmMC. The term tu is, in most cases, larger than
t/u because it is built from it by insertions of relabellings. However, these relabellings are bijective (see the next section)
and the corresponding transitions are nothing but substitutions of symbols in the words that represent the states.
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Hence, to conclude, a sentence of ϕ can be checked by running A(ϕ) either on a term t over FC where C may be much
larger than the width of t , or on an equivalent term over F[wd(t)]. Our first experiments with AUTOGRAPH seem to favour the
second method.

6.2. Constructions of clique-width terms

The definition of clique-width terms given in Section 2.2 is appropriate for bounding clique-width. However, in concrete
applications, some constraints on these terms are necessary or useful for limiting computation times of automata. Here
below, we list them, and we explain how arbitrary terms can be transformed into equivalent ones that satisfy these
constraints.

Constraints on clique-width terms as inputs of FA.
(1) The disjoint union operation ⊕ must take exactly two arguments. To ensure this, we replace any term of the form

t1 ⊕ ... ⊕ tn by t1 ⊕ (t2 ⊕ (... ⊕ tn)..) (cf. the proof of Proposition 8).
(2) All edge addition operations should be useful. There are two cases where an occurrence of such an operation can be

removed. First, if in a term
−→
adda,b(t), a or b is not in π (t): the topmost occurrence of

−→
adda,b has no effect and can be removed

(the proof of Proposition 8 does that actually). The second case is when G(t) contains an edge from an a-labelled vertex
to a b-labelled one; then, we say that the term

−→
adda,b(t) has a redundancy, and at least one edge addition operation can be

removed from t . See [13] for details. These simplifications of terms apply to adda,b in similar ways.
(3) The transitions of an FA relative to a relabelling relabh may be uneasy to program if h is neither bijective nor

elementary. We recall that a relabelling relabh is bijective on a term t , if h is injective on π (t), hence is a bijection: π (t) →

h(π (t)). In this case, we have qA(ϕ)(relabh(t)) = h(qA(ϕ)(t)). Hence, relabh[q]→A(ϕ)h(q) if h is injective on the set of labels
from C that occur in q and h(q) is obtained by substituting everywhere in q each label a by h(a), hence in a straightforward
manner.

In the currently running version of AUTOGRAPH, transitions are defined for elementary relabellings, i.e., for those of the
form relaba→b. Every term relabh(t) can be replaced by relabh′ (R(t)) where R is the composition of r elementary relabellings,
h′ is injective on π (R(t)) and r is the number of labels a ∈ π (t) such that h(a) = h(b) for some b ∈ π (t) where b is before a
in some fixed enumeration of C . Every relabelling can also be expressed as a composition of elementary ones at the cost of
using at most one extra label.

6.3. Experiments

The constructions of Proposition 8, Theorems 11 and 25(a) have been implemented in AUTOGRAPH and give satisfactory
results. The next step is the implementation of Theorem 25(b) via incidence graphs.

7. Conclusion

For uniformly q-sparse graphs, clique-width is polynomially bounded in terms of tree-width andwe have algorithmically
efficient transformations of quasi-normal tree-decompositions into clique-width terms witnessing the claimed upper-
bounds. We also have linear bounds for planar graphs and incidence graphs. Applications to FPT graph algorithms for
checking monadic second-order properties expressed with edge set quantifications are developed in [11,12].

In all our proofs that yield bounds on clique-width in terms of tree-width, the tree T of a given tree-decomposition (see
Theorem 11, Algorithm 12 and Proposition 14) is also, up to a minor transformation in Algorithm 12, the syntactic tree of
the constructed clique-width term. However, this is not the case for the bound of Assertion (1.2) in Theorem 10, because its
proof is based on a difficult result of [32] that restructures the tree T in a complicated way.

We propose three open questions.
1. Let G be a graph given with an optimal tree-decomposition of width k and t be a clique-width term produced by one

of the first two algorithms of Section 3. How large is wd(t) − cwd(G)? Is it polynomial in k? In words, how far from being
optimal is the term t . We recall that our algorithms do not use the full power of the edge addition operations. In Example
(3) after Theorem 11, we have wd(t) − cwd(G) = twd(G) − 1 for the tree-decomposition (T ′′, fT ′′ ).

2. For fixed q, does there exist p < q such that cwd(G) = O(twd(G)p) for every uniformly q-sparse graph G?
3. For which classes of graphs other than those of Theorems 10(1), 17 and 22, is clique-width linearly bounded in terms

of tree-width?
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Appendix

The following observations are intended to clarify some aspects of quasi-normal tree-decompositions.

Quasi-normal tree-decompositions and minors
We examine how quasi-normal tree-decompositions behave through the graph reductions that yield the minor

quasi-order.
Let (T , f ) be a quasi-normal tree-decomposition of a graph G. If H is a subgraph of G, then (T , f ′) where f ′(u) := f (u)∩ VH

is a quasi-normal tree-decomposition of H of no larger width than (T , f ).
We now consider H obtained from G by the contraction of an edge between u and v. We assume that v<Tu and we build

concretely H as follows: we delete v and the edge (or edges) between u and v, and for every w ̸= u, we make each edge
between w and v into an edge between w and u (we preserve its direction if G is directed).

We first replace (T , f ) by (T , fT ) that is quasi-normal and of no larger width. The tree T is quasi-normal for H . Let f ′

T be
the corresponding ‘‘minimal’’ mapping (cf. Definitions 1(c)), so that (T , f ′

T ) is a quasi-normal tree-decomposition of H . We
examine its width.

The only vertices w for which the set f ′

T (w) might differ from fT (w) are those that are comparable with v with respect to
≤T . We consider the different cases:

Case 1: w<Tv. If v ∈ fT (w), then f ′

T (w) = (fT (w) − {v}) ∪ {u}, otherwise f ′

T (w) = fT (w).
Case 2: w = v. Then f ′

T (w) = f ′

T (v) ⊆ f ∗

T (v).
Case 3: v<Tw<Tu. We have u ∈ fT (w) (because of the contracted edge); it follows that f ′

T (w) = fT (w) because the only
redirected edges that now ‘‘jump’’ over w reach u.

Case 4: u≤Tw. The redirected edges that ‘‘jump’’ over w reaching s>Tw arise from edges between v and s. It follows that
s ∈ fT (w). Hence f ′

T (w) = fT (w).
Only Case 1 yields a modification of fT (that replaces v by u in each fT (w) for w<Tv) so that

⏐⏐f ′

T (w)
⏐⏐ ≤ |fT (w)|; we have⏐⏐f ′

T (w)
⏐⏐ = |fT (w)| − 1 if and only if u ∈ fT (w). The width of (T , f ′

T ) is no larger than that of (T , fT ) and differs by at most one.

Boolean-width.
We review boolean-width [8] because it is based on a function similar to our Ω . Let G be an undirected graph and X a

set of vertices. As in this article, we define UN(X) := {NG(Z) − X | Z ⊆ X}. Clearly, Ω(X, VG − X) ⊆ UN(X). We also have
|UN(X)| = |UN(VG − X)| and we define bdim(X) as log2(|UN(X)|).

Let T be a binary (rooted) tree whose leaves are the vertices of G. We define bwd(T ) as the maximum value of
bdim(T≤(u) ∩ VG) for a node u of T , and the boolean-width of G, denoted by bwd(G), as the minimum of bwd(T ) over all
such trees. The purpose of taking a logarithm is to have 0 ≤ bwd(G) ≤ |VG| .

The following facts are proved in [8] (Theorem 3):
(1) log2(cwd(G)) − 1 ≤ bwd(G) ≤ cwd(G),
(2) there exist an infinite family of graphs G for which bwd(G) = O(log2(cwd(G))),
(3) there exist an infinite family of graphs G for which cwd(G) = O(bwd(G)).
In particular, the same families of undirected graphs have bounded clique-width and bounded boolean-width, and the

comparisons of Fact 1 are essentially optimal.
From Fact 1 and Theorem 9(2), we get bwd(G) = O(2twd(G)). However, we have better:
(4) bwd(G) ≤ twd(G)2/4 + O(twd(G))
by Corollary 1 of [8] and the bound twd(G) + 1 of the rank-width of G established in [30]. We leave open the problem of

designing a construction that witnesses Fact 4.
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