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Abstract

This article is part of a project consisting in expressing, whenever possible, graph
properties and graph transformations in monadic second-order logic or in its exten-
sions using modulo p cardinality set predicates or auxiliary linear orders. A circle
graph is the intersection graph of a set of chords of a circle. Such a set is called
a chord diagram. It can also be described by a word with two occurrences of each
letter, called a double occurrence word. If a circle graph is prime for the split (or
join) decomposition defined by Cunnigham, it has a unique representation by a
chord diagram, and this diagram can be defined by monadic second-order formulas
with the even cardinality set predicate. By using the (canonical) split decomposition
of a circle graph, we define in monadic second-order logic with auxiliary linear or-
ders all its chord diagrams. This construction uses the fact that the canonical split
decomposition of a graph can be constructed in monadic second-order logic with
help of an arbitrary linear order. We prove that the order of first occurrences of
the letters in a double occurrence word w that represents a connected circle graph
determines this word in a unique way. The word w can be defined by a monadic
second-order formula from the word of first occurrences of letters. We also prove
that a set of circle graphs has bounded clique-width if and only if all the associated
chord diagrams have bounded tree-width.
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1 Introduction

The present article is part of a global project consisting in trying to formalize
as much as possible graph properties and graph transformations in monadic
second-order logic, or in its extensions by cardinality predicates and linear
orders as explained below. Such formalizations frequently require reformula-
tions of properties and of transformations, and some additional constructions.
Characterizations of graph classes by forbidden configurations are generally
useful. Monadic second-order logic (MS logic in short) applied to graphs is
interesting for several reasons. First because the graph properties expressed in
this language have polynomial algorithms for graphs of bounded tree-width or
bounded clique-width ([16, 15]), informally, that have a certain tree structure.
The deep reasons behind this result and its applications are surveyed in [15,
30]. Second, because the logical expression of graph transformations yields
results on graph structure, for example that a class of graphs has bounded
tree-width. The main result of Section 5 is of this type. Third, because this
logical expression is an essential component of the extension of the theory of
formal languages to the description of sets of finite or countable graphs. This
latter aspect is developped in the book chapter [10].

In this article we consider circle graphs. A circle graph is the intersection
graph of a set of chords of a circle. Such a set is called a chord diagram. An
equivalent characterization can be given in terms of words where each letter
has two occurrences. If a letter represents a chord, a set of chords of a circle is
a word corresponding to the sequence of extremities of chords read around the
circle, and the chords represented by a and b intersect if and only if the word
can be written aubvawbx for some words u, v, w, x. Other characterizations
are reviewed in the survey article by Kozyrev and Yushmanov [28] and in the
book by Spinrad [36].

Circle graphs have been introduced by Even and Itai in [21] in connection with
algorithms that sort permutations by using stacks. This aspect is detailed in
the book by Golumbic [24]. Applications of circle graphs are diverse, and
without trying to be exhaustive, we can cite container ship stowage [3] and
reconstruction of long DNA strings from short subsequences [1]. In graph
theory they are also intensively studied because of their links with the double
cover conjecture [23] and the structure of Eulerian trails in 4-regular graphs
[2]. Last but not least, they play a role relatively to vertex-minor inclusion and
rank-width that seems similar to that of planar graphs with respect to minor
inclusion and tree-width : it is conjectured that for every bipartite circle graph,
every graph with large enough rank-width (or large enough clique-width) has
a vertex-minor isomorphic to H. (For rank-width and vertex-minors, see Oum
[33].) This conjecture is proved for line graphs by Oum [34].
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The construction of a circle graph from a chord diagram is immediate. The
opposite construction is more difficult. The best algorithms for recognizing
circle graphs and constructing chord diagrams are by Gabor et al. [22] taking
time O(mn) where n is the number of vertices and m the number of edges,
and by Spinrad [35] taking time O(n2).

Our concern is to express the construction of one, and even of all chord dia-
grams defining a given circle graph by monadic second-order formulas (MS
formulas). The first step is to recognize whether a graph is a circle graph. The
characterization of circle graphs by three forbidden vertex-minors (Bouchet
[5]) can be expressed by a C2MS formula, i.e., an MS formula using the even
cardinality set predicate (Courcelle and Oum [17]). However, this expression
is not constructive : it verifies the absence of obstructions, but this absence
gives no clue on how to construct a chord diagram for the considered circle
graph. Our results (Theorems 5 and 11) yield on the contrary constructive
characterizations, by MS formulas of the form ∃X1, ..., Xk.ϕ such that a k-
tuple X1, ..., Xk satisfying ϕ can be used by another MS formula to build the
desired chord diagram. This type of construction of logical structures is called
a monadic second-order transduction, by reference to the theory of formal
languages.

The formulas we construct use in most cases auxiliary linear orders. Such a
use in the expression of graph properties is related with the still open prob-
lem of finding a logical characterization of polynomial time graph properties.
First-order logic with least fixed point operators, called fixed point logic (FPL)
characterizes polynomial time graph properties for linearly ordered graphs by
a classical result by Immermann and Vardi (see the book by Libkin [29]).
Concerning monadic second-order logic, there are many situations where an
auxiliary linear order is useful or even, perhaps, necessary. This is the case of
the even cardinality set predicate yielding the extension of monadic second-
order logic denoted by C2MS. Even cardinality is a typical example of an
order-invariant monadic second-order property, that is, of a property of un-
ordered structures that is expressible by an MS formula using an arbitrary
linear order. Its truth value, i.e., the parity of the cardinality, does not depend
on the chosen linear order. By extending the Immermann-Vardi Theorem from
Boolean queries to polynomial time transformations of structures (Dawar [19],
Makowsky and Pnueli [31], Ebbinghaus and Flum [20]), one gets that the
transformation of an ordered circle graph into a chord diagram representing
it can be expressed in FPL.

We are interested by expressing in monadic second-order logic the mapping
from a circle graph to all its chord diagrams, with or without auxiliary or-
ders, with or without the even cardinality set predicate. Before presenting our
results, we present our main graph theoretical tools.
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We will use the split decomposition (also called join decomposition) of undir-
ected graphs defined by Cunningham [18], which decomposes in a unique way
a connected graph into a tree of basic graphs called its components : cliques,
stars and prime graphs, which are not decomposable. This decomposition is
constructible by an order-invariant MS transduction (Courcelle [14]). It fits
very well with circle graphs because the components of the decomposition of a
circle graph are circle graphs. It is uses as a preliminary step in the algorithm
of [22] : deciding if a graph is a circle graph reduces to deciding if its prime
components are circle graphs (stars and cliques are circle graphs), and chord
diagrams for the components can be combined to form a chord diagram of the
considered circle graph.

A prime circle graph has a unique chord diagram representation. We prove
that this unique diagram can be constructed by a C2MS formula (Theorem
5, Section 3).

For constructing a chord diagram of a non-prime graph, we need a linear order:
this order is used to construct the split decomposition (Proposition 3, Section
2), to define chord diagrams for stars and cliques, and since even cardinality
is an order-invariant MS property, MS formulas can be used instead of C2MS
formulas for constructing the chord diagrams of the prime components. For
constructing all chord diagrams, we need to use all (or at least several) linear
orders : this is necessary for constructing the chord diagrams of cliques and
stars. This result is Theorem 11 of Section 4.

Formulating these results in terms of double occurrence words is also interest-
ing. If two words define the same connected circle graph and have the same
subword of first occurrences of letters, then they are equal (Theorem 10, a new
result). The (full) double occurrence word w can be reconstructed from the
given circle graph and the linear order on its vertices defined by its word of
first occurrences by an MS formula. This proof uses the canonical split decom-
position of the considered graph and its definability by monadic second-order
formulas using the linear order arising from the word of first occurrences of
w. (Theorem 11, Section 4.)

Our constructions of monadic second-order transductions yield the fact that a
set of circle graphs has bounded clique-width if and only if the set of its chord
diagrams (which are 3-regular Hamiltonian graphs) has bounded tree-width.
(Circle graphs have unbounded clique-width, since permutation graphs that
are of unbounded clique-width [25] are particular circle graphs [24]).

This article is organized as follows. Split decomposition and the basic con-
structions in monadic second-order logic concerning it are reviewed in Section
2. Section 3 deals with circle graphs having a unique chord representation. We
prove our first monadic second-order definability result. In Section 4 we obtain
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the MS definition of all chord diagrams of circle graphs. In Section 5 we relate
the clique-width of a circle graph and the tree-widths of its chord diagrams.
A first appendix reviews definitions, basic properties and technical lemmas on
MS logic and graph transformations expressed in MS logic. A second appendix
contains the proofs of two technical results: that uniquely representable con-
nected circle graphs are prime for the split decomposition, and that if two
words define the same connected circle graph and have the same subword of
first occurrences of letters, then they are equal.

2 The split decomposition

In this section we review the split decomposition of undirected graphs defined
in [18] also called sometimes the join decomposition. It is used as a preliminary
step in the polynomial time recognition algorithms of circle graphs of [4] and
[22]. It is presented in a more detailed way in [14], and also for directed graphs.
In the present article, we will use it only for undirected graphs. All words,
graphs and relational structures will be finite.

Splitting a graph ; split (or join) decomposition.

Graphs are undirected and simple (without loops and multiple edges) unless
we specify otherwise. A split of a connected graph G is a bipartition {A,B}
of VG such that EG = EG[A] ∪ EG[B] ∪ (A1 ×B1) for some nonempty A1 ⊆ A,
B1 ⊆ B, and each of A and B has at least 2 elements. If {A,B} is a split,
then G can be expressed as the union of G[A] and G[B] linked by a complete
bipartite graph. The inverse of splitting is the join operation, defined as follows.
Let H and K be two disjoint graphs with distinguished vertices h in H and k
in K. We define H £(h,k)K as the graph with set of vertices VH ∪VK − {h, k}
and edges x − y such that, either x − y is an edge of H or of K, or we have
an edge x− h in H and an edge k− y in K. The subscript (h, k) in £(h,k)
will be omitted whenever possible.

If {A,B} is a split, then G = H £(h,k) K where H is G[A] augmented with
a new vertex h and edges x − h whenever there are in G edges between x
and some u in B. The graph K is defined similarly from G[B], with a new
vertex k. These new vertices are called markers. We say that h and k are
neighbour markers if they are created for a same split. The graphs H and

5



K are connected, have at least 3 vertices and strictly less vertices than G.
A technical variant (used in [18]) consists in letting h = k. In this case
the graphs H and K have in common the marker vertex h and nothing else
and we will write G = H £(h,h) K. The advantage is that H ∪K is a single
connected graph. However, the marker must be identified in some way. When
one iterates the decomposition process, it is easier to think of the components
of the decomposition as disjoint graphs.

A connected graph without split is said to be prime. Connected graphs with
at most 3 vertices are thus prime. We will only decompose graphs with at least
4 vertices.

A decomposition of a connected graph G is defined inductively as follows : {G}
is the only decomposition of size 1 ; if {G1, ..., Gn} is a decomposition of size
n, and Gn = H £(h,k)K, then {G1, ..., Gn−1, H,K} is a decomposition of G of
size n + 1. The graphs Gi are called the components of the decomposition.
They are connected and have at least 3 vertices, unless G has at most 2
vertices. The graph G can be reconstructed without ambiguity provided the
marker vertices and their matchings are specified. We say that two components
are neighbours if they have neighbour marker vertices. From the inductive
definition of decompositions, it is clear that the components of a decomposition
form an unrooted tree for the neighbourhood relation.

It will be convenient to handle a decomposition D = {G1, ..., Gn} of a graph G
as a single graph Sdg(D) called a split decomposition graph. The components
of D being pairwise disjoint, we let Sdg(D) be their union together with par-
ticular edges labelled by ε and called the ε−edges between any two neighbour
marker vertices. The other edges are called the solid edges. Every vertex of
G is a vertex of Sdg(D). No two ε−edges share vertices. The graph G can be
reconstructed in a unique way from Sdg(D). Two decompositions D and D0
of a graph G are isomorphic if there exists an isomorphism of Sdg(D) onto
Sdg(D0) which is the identity on VG. The objective is to construct for every
connected graph a canonical decomposition by iterated splittings.

Figure 1 shows a graph G and Figure 2 shows the graph representing its
canonical split decomposition. The dotted lines are the ε−edges.

To illustrate these definitions, we observe that a prime graph with at least 4
vertices is 2-connected, that there is no prime undirected graph with 4 vertices,
that for each n ≥ 5, the graph Cn is prime, and the graphs Pn,Kn, Sn−1, all
with n vertices, are not. As usual, we denote by Kn the n-clique, i.e., the
complete graph with n vertices, by Sn the n-star consisting of one vertex,
the center, adjacent to n vertices (it is thus a tree), by Pn the undirected
path with n − 1 edges and n vertices, by Cn the undirected cycle with n
vertices. The graphs Kn, Sn−1 for n ≥ 4 are "highly decomposable", or brittle
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Figure 1. A graph G.

Figure 2. The split decomposition graph Sdg(Split(G))

in the terminology of [18]: every bipartition, each part of which has at least
2 vertices is a split. They are the only undirected graphs with this property.
The 2-connected undirected graphs having 4 vertices are K4, C4, and K−

4 (i.e.,
K4 minus one edge). None of them is prime.

Canonical decompositions

A decomposition of a connected graph G is canonical if and only if :

(1) each component is either prime or is isomorphic to Kn or to Sn−1 for
n at least 3,

(2) no two clique components are neighbour,

(3) the two marker vertices of neighbour star components are both centers
or both not centers.

Restrictions (2) and (3) can be justified as follows : if two clique components,
isomorphic to Kn and Km are neighbour they can be merged into a single one
isomorphic to Kn+m−2. Similarly, if two star components, isomorphic to Sn
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and Sm are neighbours, and the center of one is linked by an ε−edge to a non-
center vertex of the other, they can be merged into a single star isomorphic to
Sn+m−1. It is thus necessary to assume (2) and (3) in order to obtain a unique
decomposition, because stars and cliques are brittle.

A split {A,B} is good if it does not overlap any other split {C,D} (where we
say that {A,B} and {C,D} overlap if the intersections A∩C,A∩D,B∩C,B∩
D are all nonempty). Starting from a graph G and the decomposition {G},
one can refine it by iteratively splitting its components with respect to good
splits only. Since a graph breaks into two strictly smaller graphs, one reaches
a decomposition that cannot be refined by any split. Since one only applies
good splits, one cannot generate neighbour components that are cliques or
that are stars with a center marker neighbour to a non-center marker. It is
thus canonical.

Proposition 1 [18, Theorem 3] : A connected undirected graph has a canon-
ical decomposition, which can be obtained by iterated splittings relative to
good splits. It is unique up to isomorphism.

In the sequel, we call this decomposition the split decomposition. By a decom-
position, we will mean one which is not necessarily the canonical one. We
have defined a single graph Sdg(D) linking all components of a decomposi-
tion D. We obtain in this way a binary relational structure on a fixed finite
signature, actually an edge-labelled graph, from which the decomposed graph
can be reconstructed by monadic second-order (MS in short) formulas, as we
will see.

Evaluating split decomposition graphs.

For a split decomposition graphH, we let Eval(H) can be the graphG defined
as follows :

(a)VG is the set of vertices of H incident to no ε−edge,

(b) the edges of G are the solid edges of H not adjacent to any ε−edge
and the edges between x and y such that there is in H a path

x− u1 − v1 − u2 − v2 − ...− uk − vk − y

where the edges ui − vi are ε−edges and alternate with solid edges.
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Amonadic second-order transduction (anMS transduction in short) is a trans-
formation of graphs, more generally of relational structures, expressible by MS
formulas. Detailed definitions are given in the appendix.

Proposition 2 [14] : If D is a decomposition of a connected graph G, then
Eval(Sdg(D)) = G. The mapping Eval is an MS transduction.

Proposition 3 [14] : There exists an order-invariant MS transduction that
associates with a linearly ordered connected undirected graph the split decom-
position graph representing its split decomposition.

Order invariant means that for any two linear orders, isomorphic relational
structures are produced. See the appendix for more details.

3 Uniquely representable circle graphs

The logical expression of split decompositions of graphs stated in Proposition
3 is a basic tool for our study of circle graphs and the definition of their chord
diagrams by MS formulas. In this section we review definitions and results
from Bouchet [4, 5] and Gabor et al. [22], and we define by an C2MS formula
the (unique) representations of prime circle graphs by chord diagrams.

Circle graphs.

Let A be a countable set called the set of letters. We let W be the set of
(finite) nonempty words over A having two occurrences or no occurrence of
each letter. The elements of W are called double occurrence words. We let
V (w) be the set of letters occuring in w. The alternance graph G(w) of w in
W is the graph with set of vertices V (w) and an undirected edge between a
and b if and only if w = u1au2bu3au4bu5 or w = u1bu2au3bu4au5 for some
u1, ..., u5 in A∗. As in [2] we say in this case that letters a and b are interlaced
in the word w.

The graphs G(w) are also called circle graphs because they are the intersection
graphs of finite sets of chords of circles defined as follows from w : if w =
a1a2...a2n, (ai ∈ A), we let x1, x2, ..., x2n be consecutive points around a circle,
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Figure 3. A chord diagram

Figure 4. The associated circle graph

and we draw a chord named a between xi and xj if and only if ai = aj = a ;
the intersection graph of these chords is the graph with set of vertices V (w)
such that a− b (which expresses in a short way : there is an undirected edge
linking a and b) if and only if the chords a and b intersect. The graph is
the same for any choice of chords as above because the exact positions do
not affect crossings. The corresponding graph, equipped with a distinguished
Hamiltonian cycle, is called the chord diagram of the double occurrence word.
It is 3-regular. Figures 3 and 4 show the chord diagram and the circle graph
associated with the word : axbcuyvbycauxv .

Circle graphs can also be geometrically represented as overlap graphs of in-
tervals. See the survey by Kozyrev and Yushmanov [28] and the books by
Golumbic [24] and Spinrad [36]. The representation of a circle graph as a set
of chords is intuitively clear, but the one using a double occurrence word is
more convenient for formal proofs. Both yield an appropriate relational struc-
ture (see Definition 3.2 below).

It is clear that G(w) = G(w0) if w0 = ew (the mirror image of w) or if w and
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w0 are conjugate, denoted by w ∼ w0, which means w = uv and w0 = vu for
some u, v in A∗. Let us say that w and w0 are equivalent, denoted by w ≡ w0,
if and only if either w ∼ w0 or ew ∼ w0. This is an equivalence relation. Two
equivalent words represent the same circle graph. A circle graph G is uniquely
representable if G = G(w) = G(w0) implies w ≡ w0.

Every circle graph with at most 3 vertices is uniquely representable, as one
can check in each case. The graphs C4, P4, the graph K−

4 are uniquely
representable. The graphs K4, S3,I4 are not. To take an example the star
S3 with center a is represented by the two inequivalent words abcdadcb and
acbdadbc.

Proposition 4 : A circle graph with at least 5 vertices is uniquely represent-
able if and only if it is prime.

Proof : See [4, 22] for the "if" direction. The converse is claimed in [22] but
a key assertion is declared as "clear" whereas it is not and deserves a proof.
We give one in Appendix 2.¤

The split decomposition fits very well with circle graphs : a graph H £K is a
circle graph if and only if H and K are circle graphs. Hence, every component
of the canonical split decomposition of a circle graph is a circle graph. It follows
in particular that a graph is a circle graph if and only if all its prime induced
subgraphs are circle graphs.

The set of circle graphs has a characterization in terms of three forbidden
vertex-minors ([5]; the terminology "vertex-minor" is from [33]). A graph
H is a vertex-minor of a graph G if it is an induced subgraph of a graph G0

obtained from G by a sequence of local complementations (see the definition
in Appendix 2). The three forbidden vertex-minors are the cycles C5, C6, C7,
each with one additional vertex and some edges. Vertex-minor inclusion is
analogous to minor inclusion, however, its logical expression is more difficult.
It is possible by means of MS formula written with the set predicate Even
where Even(X) expresses that a set X has even cardinality ([17]). This
extension of MS logic is called counting modulo 2 monadic second-order logic
and is denoted by C 2MS. A C2MS-transduction is like an MS-transduction
but written with C2MS formulas. Our aim is to prove the following result
which is a constructive version of the C2MS definability of circle graphs :

Theorem 5 : There exists a C2MS transduction that associates with every
prime circle graph G a double occurrence word w such that G(w) = G.
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In order to make this statement precise, we need to specify the relational
structures which will represent double occurrence words.

Relational structures for double occurrence words and chord diagrams.

In order to handle finite words over an infinite alphabet we wish to use re-
lational structures with finitely many relations, we cannot use the standard
representations of words. With w = a1a2...a2n inW , we associate the relational
structure S(w) = h{1, ..., 2n}, suc, sleti where suc(i, j) holds if and only if j =
i+ 1, with also suc(2n, 1), and slet(i, j) holds if and only if i 6= j and ai = aj
(slet means "same letter"), and the structure S(w) = h{1, ..., 2n}, suc, sleti
where suc = suc ∪ suc−1.

It is clear that w ≡ h(w0) for some bijection h of the alphabet A extended
into a monoid homomorphism A∗ −→ A∗ if and only if S(w) is isomorphic
to S(w0), if and only if S(w) is isomorphic to S(w0) or to its reversal S(w0)−1

obtained by replacing suc by suc−1. Whether the letter at some position is a or
b does not really matter. What matters is the bijection between the vertex set
of G(w) and the pairs of occurrences of each letter in w. For proving Theorem
5, we will construct a C2MS transduction associating with every prime circle
graph G a structure S(w) for some w in W such that G(w) = G.

The structures S(w) and S(w) are graphs with 2n vertices and edges of two
types. Any of them, depending on the context, will be called the chord diagram
of w. The distinguished Hamiltonian cycle is represented by the relation suc
or suc. A connected circle graph is bipartite if and only if it has a planar
chord diagram, if and only if all its chord diagrams are planar. In Section 5
we will compare in a similar way the clique-width of a circle graph and the
tree-width of its chord diagrams.

The mapping that associates G(w) with S(w) is an MS transduction. Its easy
definition is presented as an illustration of the notion of MS transduction in
the appendix. The main results of this section and the next one consist in
defining MS transductions that define S(w) and S(w) from G(w), hence that
reconstruct some forgotten information. (The term "forgotten" is taken as in
the notion of a forgetful functor).

Eulerian trails of 4-regular graphs

Before starting the proof of the theorem, we establish a technical lemma con-
cerning the Eulerian trails of 4-regular simple graphs. Let H be a connected
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4-regular simple graph. It has an Eulerian trail, defined as a cyclic sequence
of vertices E = (v0, ..., vk−1) such that vi − vi+1 for each i = 0, ..., k − 1, vk
is defined as equal to v0, and each edge of H is vi − vi+1 for exactly one i.
This implies that each vertex occurs exactly twice in (v0, ..., vk−1). We con-
sider (v0, ..., vk−1) and (vi, ..., vk−1, v0, ..., vi−1) as the same cyclic sequences.
We get a circle graph G(E) with set of vertives VH where x− y if and only if
vi = vj = x, vi0 = vj0 = y and i < i0 < j < j0 or vice versa by exchanging x
and y.

We will build directed graphs with vertex set VH×{1, 2}. Consider a circuit C
with vertex set VH ×{1, 2}, formally defined as a cyclic sequence (x0, ..., xk−1)
where xi −→ xi+1 for each i = 1, ..., k − 1 (which means : there exists a
directed edge from xi to xi+1) and xk is defined as equal to x0. We say it
represents the sequence (v0, ..., vk−1) if xi = (vi, ni) for each i = 0, ..., k − 1,
(where ni = 1 or 2). Several circuits may represent the same Eulerian trail,
because the numbers 1 and 2 can be exchanged.

Lemma 6 : There exist two MS transductions that associate with every con-
nected 4-regular simple graph H :

(1) a set of circuits with vertex set VH × {1, 2}, that represent all Eulerian
trails of H, and

(2) the structures hVH , edgH , edgG(E)i for all Eulerian trails E of H.

Proof : Let H be 4-regular. The graph H ∪ H2 has degree at most 16 (=
4 + 3.4), hence has a 17-vertex coloring γ : VH −→ {1, ..., 17}, such that
γ(x) 6= γ(y) if x and y are at distance 1 or 2 in H. Let us fix such a coloring γ.
It can be specified by a 17-tuple of sets of vertices Y1, ..., Y17 where Yi = γ−1(i).
An MS formula can check that such a tuple is indeed a 17-vertex coloring of
H ∪H2.

Consider now an Eulerian trail (v0, ..., vk−1) of H. For α, β ∈ {1, .., 17}, let
Xα,β be the set of vertices vi such that 0 ≤ i ≤ k−1, α = γ(vi−1), β = γ(vi+1),
where vk = v0, v−1 = vk−1.

The following properties hold :

(a) If α = β then Xα,β = ∅.

(b) IfXα,β∩Xα0,β0 6= ∅, then, either α = α0 and β = β0 or {α, β}∩{α0, β0} =
∅.

(c) Each vertex occurs in exactly two of the sets Xα,β.
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(d) For every edge u − v, if u ∈ Yα, v ∈ Yβ, then, for some γ and δ, either
u ∈ Xγ,β and v ∈ Xα,δ or u ∈ Xβ,γ and v ∈ Xδ,α.

Due to fact (a), we will only use sets Xα,β for α 6= β. These sets determine
the trail: if we know that a vertex v follows on the trail a vertex u with color
α and belongs to Xα,β, then the vertex following v must have color β, hence
is determined in a unique way, by the choice of the coloring. In total we need
289 (= 172 = 17+ 172− 17) sets Y1, ..., Y17 and Xα,β for α 6= β, to be used as
parameters of a C2MS transduction (see Appendix 1 for definitions).

Claim 1 : The trail (v0, ..., vk−1) can be reconstructed from the 289 sets
Y1, ..., Y17 and Xα,β, by means of MS formulas.

Proof : We let Y1, ..., Y17 and Xα,β,... be sets of vertices associated as ex-
plained above with a 17-vertex coloring γ and an Eulerian trail E of H. From
Property (c), we can define δ(u, 1) = (α, β), δ(u, 2) = (α0, β0) if u ∈ Xα,β,
u ∈ Xα0,β0 and (α, β) < (α0, β0) in the lexicographic order on pairs of integers.
We define a binary relation on VH × {1, 2} as follows :

(u, i) −→ (w, j) if and only if :

(i) u− w in H,

(ii) δ(u, i) = (α, β), δ(w, j) = (η, κ) for some α, β, η, κ in {1, .., 17},

(iii) γ(u) = η, γ(w) = β.

We get thus a directed graph H∗ with vertex set VH×{1, 2}. From properties
(a)-(b) and the constraints on the coloring γ, it follows that every vertex in
H∗ has outdegree 1 and indegree 1. We prove that H∗ is a circuit representing
E.

Let α = γ(v−1), β = γ(v1). Hence v0 ∈ Xα,β. For some i0, δ(v0, i0) = (α, β).

We let x0 = (v0, i0). We consider the unique directed path in H∗ : x0 −→
x1 −→ ... −→ xn, n < k.

The element x1 is the unique (w, j) such that (v0, i0) −→ (w, j). This pair is
equal to (v1, i1) and δ(v1, i1) = (η, κ), γ(v0) = η, γ(v2) = κ.

Similarly, x2 = (v2, i2) for some i2 = 1 or 2. Using induction, we can see that,
for all m < k, xm = (vm, im) for some im = 1 or 2. Hence the unique directed
path in H∗ starting from (v0, i0) is (v0, i0) −→ (v1, i1) −→ ... −→ (vn, in)
for some i1, ..., in, and n = k − 1. We also have (vn, in) −→ (v0, i0). Hence
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H∗ is a circuit representing the Eulerian trail (v0, ..., vk−1). The definition of
the edge relation of H∗ by (i)-(iii) is clearly expressible in MS logic in terms
of the sets Y1, ..., Y17, ...,Xα,β, ....¤

Assume now that Y1, ..., Y17, ...,Xα,β, ...(for α, β ∈ {1, .., 17}, α 6= β) are arbit-
rary subsets of VH , not necessarily arising from an Eulerian trail ofH. One can
construct an MS formula θ1(Y1, ..., Y17, ...,Xα,β, ...) expressing that Y1, ..., Y17
define a 17-coloring of H ∪H2, and properties (a)-(d) hold. An MS transduc-
tion µ using set parameters Y1, ..., Y17, ...,Xα,β, ... (that satisfy θ1) can build a
directed graph H∗ with vertex set VH × {1, 2} and edge relation defined by
conditions (i),(ii),(iii) of Claim 1. We denote it by H∗(Y1, ..., Y17, ...,Xα,β, ...) if
we need to specify the parameters. (Since properties (b) and (c) are assumed
to hold, the mapping δ is well-defined). By backwards translation relative to
µ applied to the MS formula expressing that H∗ is a circuit going through all
vertices in VH × {1, 2}, one obtains an MS formula θ2(Y1, ..., Y17, ...,Xα,β, ...).
It is clear that if H∗ is a Hamiltonian circuit it represents an Eulerian trail
of H, because by Property (d) each edge is traversed once and only once by
the trail that is represented by H∗. By the first part of the proof, all Eulerian
trails can be represented in this way. This gives the first assertion of Lemma
6.

Claim 2 : There exists an MS formula θ3(x, y, Y1, ..., Y17, ...,Xα,β, ...) express-
ing in a 4-regular graph H that a tuple (Y1, ..., Y17, ...,Xα,β, ...) of subsets of
VH defines an Eulerian trail E and that the binary relation :

{(x, y) | x, y ∈ VH ,H |= θ3(x, y, Y1, ..., Y17, ...,Xα,β, ...)}

is the adjacency relation edgG(E) of G(E).

Proof : The relation edgG(E) is characterized by (x, y) ∈ edgG(E) if and only
if :

For some i, j ∈ {1, 2}, we have in H∗ (for (Y1, ..., Y17, ..., Xα,β, ...) satis-
fying θ2) a path of the form :

(x, i) −→ ... −→ (y, j) −→ ... −→ (x, 3− i) −→ ... −→ (y, 3− j)

Since the edge relation of H∗ is MS definable in (H,Y1, ..., Y17, ..., Xα,β, ...), we
obtain that edgG(E) is also MS definable in (H,Y1, ..., Y17, ...,Xα,β, ...). This
gives the desired formula θ3.¤

This proves the second assertion of Lemma 6.¤
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We now prove the first main theorem of this subsection.

Proof of Theorem 5 : We only consider prime circle graphs with at least 5
vertices. The finitely many graphs with less vertices can be handled as partic-
ular cases.

Let w be a double occurrence word such that G = G(w) is prime with at
least 5 vertices, let a, b ∈ V (w), a 6= b. We say that a and b are neighbours in
w if w ≡ abw0 for some w0 in A∗. (This notion of neighbourhood is not related
with that of marker vertices used in Section 2.) This means that in the chord
representation of w, chords a and b have two ends that are consecutive on the
circle. If G(w) is prime with at least 5 vertices, and by the unicity property
of Proposition 4 ("if" direction), this notion depends only on the graph G(w),
and not on the word w representing it.

Claim 1 : If G(w) is prime with at least 5 vertices and w ≡ abw0, then
w0 = u1au2bu3 or w0 = u1bu2au3 for some nonempty words u1, u2, u3 in A∗.

Proof : Since w is a double occurrence word, w0 is either u1au2bu3 or u1bu2au3
for some u1, u2, u3 in A∗.

First case : w0 = u1au2bu3. If u1 or u2 or u3 is empty, then {{a, b}, V (w) −
{a, b}} is a split of G(w).

Second case : w0 = u1bu2au3. If u1 or u3 is empty, thenG(w) is not connected,
hence is not prime. If u2 is empty, then {{a, b}, V (w)− {a, b}} is a split.

These two cases are thus excluded by the hypothesis, which completes the
proof. ¤

It follows that each letter occurring in w has four different neighbours.

Let S(y) be a chord diagram. Its neighbourhood graph is the graph N(S(y))
with vertex set V (y) and an edge a− b if and only if a and b are consecutive
in the double occurrence word y.

If G = G(w) is prime with at least 5 vertices, N(S(w)) depends only on G
and can be denoted by N(G). This graph is 4-regular. We will prove that its
adjacency relation is definable by a C2MS formula over the given graph G,
and that w can be constructed from N(G).

Example : Figure 5 shows with solid lines the graph N(S(w)) for the chord

16



Figure 5. The neighbourhood graph N(G)

diagram S(w) shown on Figure 3. The dotted lines around the vertices show
the Eulerian trail which corresponds to the chord diagram of G = G(w).¤

For a, b ∈ VG(⊂ A), a 6= b, u, v ∈ A − VG, we let G(a, b;u, v) be the graph G
augmented with the path a− u− v − b.

Claim 2 : G(a, b;u, v) is a circle graph if and only if a, b are neighbours in G.

Proof : Let G = G(w) where w ≡ abw0, then G(a, b;u, v) = G(uavubvw0), as
one checks easily. Hence G(a, b;u, v) is a circle graph.

Let us conversely assume that G(a, b;u, v) is a circle graph G(z). Let z1 be
obtained from z by deleting all occurrences of u and v. Hence G(z1) = G, and
z1 ≡ abw0, since G is uniquely representable.

Let z2 be obtained from z by deleting all occurrences of letters inA−{a, b, u, v}.
Hence G(z2) is a−u− v− b (i.e., P4) or is the same graph with also an edge
between a and b (i.e., C4). Since the graphs P4 and C4 are uniquely represent-
able, z2 ≡ uavubvz3, where z3 is ba or ab respectively. We can thus transform
the word z into an equivalent word z0 in such a way that, by deleting from z0

the letters in A− {a, b, u, v} we get uavubvz3. Furthermore, we can take such
z0 of the form ux1ax2vx3ux4bx5vx6 for some x1, ..., x5 ∈ (A−{a, b, u, v})∗ and
some x6 ∈ (A− {u, v})∗.

Consider an occurrence of letter c in x3. Since c is not adjacent to u in
G(a, b;u, v) its other occurrence must be in x1, in x2 or in x3. Since c is not ad-
jacent to v, its other occurrence must be in x3, or in x4 or in x5. Hence it must
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be in x3. Hence x3 is a double occurrence word. It defines one or more con-
nected components, not containing a, contradicting the fact that G(a, b;u, v)
is connected. Hence x3 must be empty.

Consider now an occurrence of letter c in x1 or in x2. Since c is not adjacent
to u and x3 is empty, its other occurrence must be in x1 or in x2. Hence the
letters in x1 and x2 either form connected components not containing a, or if
this is not the case, then a is a separating vertex in G. But G is connected and
has no separating vertex since it is prime, hence x1 and x2 must be empty. By
considering similarly v and b, one gets that x4 and x5 are empty. Hence the
word obtained from z0 by removing letters u and v is of the form abx06. Hence
a and b are neighbours, as was to be proved. ¤

Claim 3 : That a and b are neighbours inG is expressible by a C2 MS formula.
Hence the mapping associating N(G) with a prime circle graph G is a C2MS
transduction.

Proof : The mapping from (G, a, b) to a graph isomorphic to G(a, b;u, v) is an
FO transduction, say η. A C2MS formula γ can test whether G(a, b;u, v) is a
circle graph by [17]. By backwards translation of γ through η (see Appendix
1), we get a C2MS formula γ#(a, b) expressing that a and b are neighbours in
G. The second assertion holds because the relation edgN(G) of the structure
N(G) = hVG, edgN(G)i is defined by the C2MS formula γ#. ¤

End of the proof of Theorem 5 : That a given graph G is prime is straight-
forward to write in MS logic. Hence, that G is a prime circle graph with at
least 5 vertices is a C2MS property. Assuming it satisfied and with Claim 3,
one can build from G and by a C2MS transduction the 4-regular graph N(G).
This graph is connected and has an Eulerian trail E such that G(E) = G. The
Eulerian trails of N(G) are defined by the 289-tuples (Y1, ..., Y17, ...,Xα,β, ...)
of subsets of VG which satisfy formula θ2 of Claim 1 of Lemma 6.

Since the binary relation edgG(E) on VG can be defined from the tuple repres-
enting E (using formula θ3 of Claim 2 of Lemma 6), one can find the tuples
for which the corresponding trail E satisfies edgG(E) = edgG. The correspond-
ing circuit graphs N(G)∗(Y1, ..., Y17, ..., Xα,β, ...) (with vertex set VG×{1, 2} )
represent double occurrence words w such that G(w) = G. Since G is uniquely
representable, one obtains two structures S(w) and S(w)−1 up to isomorph-
ism, one being the reversal of the other, and a unique structure S(w) up to
isomorphism. ¤
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Corollary 7 : There exists an order invariant MS transduction that associates
with a prime circle graph G(w) the structure S(w) representing its unique
chord diagram.

Proof : Because if the given graph G is linearly ordered, the set predicate
Even(X) can be expressed by an MS formula using the linear ordering (see
[10]), and thus the C2MS formulas and C2MS transductions used in the pre-
vious results can be replaced by MS formulas and MS transductions. The
transduction uses parameters, but all choices of parameters yield the same
structure S(w) up to isomorphism (where G = G(w)). The linear order makes
possible to specify the unique lexicographically minimal set of parameters sat-
isfying the required condition, hence to eliminate parameters. From different
linear orders, one gets different lexicographically minimal sets of parameters
but the same output structure. Hence the MS transduction is order-invariant.
¤

Comparability graphs.

A similar proof is done in [13] for comparability graphs. If a comparability
graph is prime with respect to modular decomposition, it has a unique trans-
itive orientation ("unique" is meant up to reversal, which does not modify the
comparability graph; see Kelly [27] or [32]). Proposition 5.2 of [13] establishes
that this orientation is MS definable. The proof uses the characterization of
comparability graphs by forbidden induced subgraphs, so that to be a compar-
ability graph is an MS definable property. An MS formula can check whether
two edges x− y and w− z must be directed "in the same way" x −→ y and
w −→ z (or x ←− y and w ←− z) in any of the two transitive orientations.
This formula applies the MS definable test of comparability to a graph con-
sisting of G augmented with a path x − u − v − w for new vertices u and v
and a few other edges between u, v and the neighbours of x and w. Because
G has a unique transitive orientation, the answers given for all edges x − y
assuming chosen the orientation w −→ z are compatible, and one can thus,
edge by edge determine it. There is thus a striking similarity with the proof of
Theorem 5 which also rests on a membership test based on forbidden configur-
ations and on the unicity of a representation that insures that all elementary
tests do not arise from different incompatible representations.

A question

Can we use in Theorem 5 an MS transduction instead of a C2MS transduction,
that is, can we avoid using the Even(X) predicate ? This would be true by
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our proof if the set of circle graphs would be MS definable. But the logical
characterization we use is based on their characterization by three forbidden
vertex-minors, and we do not know how to express that a graph contains a
given vertex-minor by an MS formula without using the even cardinality set
predicate Even(X) ([17]).

Conversely, if Theorem 5 holds for some MS transduction, then the set of
prime circle graphs is MS definable. So is the set of circle graphs because, as
we noticed at the beginning, a graph is a circle graph if and only if all its
prime induced subgraphs are circle graphs.

We think unlikely that the set predicate Even(X) can be avoided because the
theory of circle graphs makes a crucial use of vector spaces over the 2 element
field GF(2), and Even(X) is thus necessary for computing the values of sums
over GF(2).

4 A logical definition of all chord diagrams of a circle graph

If a circle graph splits as H £K, then H and K are circle graphs. It follows
that the components of the split decomposition of a circle graph are circle
graphs. The prime ones have unique representations by Proposition 4. The
representations of a star Sn with center a are the words awa ew where w ranges
over the permutations of an alphabet with n letters not containing a (i.e., the
words with one and only one occurrence of each letter). The representations of
a cliqueKn are the words ww where w ranges over the permutations of a finite
alphabet with n letters. If we have a split decomposition of a circle graph G,
and a representation of each component, then we can combine the represent-
ations of the components to build a representation of G. These constructions
can be formalized in MS logic.

For prime graphs, the chord diagrams are obtained by Theorem 5. For a clique
Kn with vertex set V ordered by a1 < a2 < ... < an, anMS transduction taking
as input (V,<) can construct the chord diagram S(a1a2...ana1a2...an) repres-
enting Kn = G(a1a2...ana1a2...an). For a star Sn with center a and vertices
ordered by a < b1 < b2 < ... < bn, an MS transduction can construct the chord
diagram S(ab1b2...bnabnbn−1...b1) representing Sn = G(ab1b2...bnabnbn−1...b1).
In both cases, all representations (up to equivalence) of Kn and Sn can be
obtained by two fixed MS transductions taking as input all permutations of
the set of vertices. Our aim is to prove that there exists an MS transduction
that defines for every linearly ordered circle graph, a double occurrence word
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representing it. We will actually prove a stronger result but we need first some
definitions and lemmas on double occurrence words.

Consider two connected circle graphs H and K, represented by double occur-
rence words v and w, such that V (v) ∩ V (w) = {a}. The graphs H and K
have vertices labelled by the letters in V (v) and V (w), and a single vertex
in common. We are in the case described at the end of Definition 2.1. We
will say that the words v = v1av2a and w = w1aw2a are composable. By the
connectivity assumptions onH andK, the words v1, v2, w1, w2 are not empty.

Lemma 8 : The connected graph H £(a,a) K is the circle graph represented
by the four words v1w1v2w2, v1w2v2w1, v1fw1v2fw2 and v1fw2v2fw1 .
We let v£w denote this set of four words, up to equivalence. One may obtain
four pairwise inequivalent words. This the case for example if v = bcdabdca
and w = efgaegfa. In particular cases, the set v £ w may contain less than
four words up to equivalence. The following proposition is a converse.

Proposition 9 : Let w be a double occurrence word such that G(w) is con-
nected. Let {A,B} be a good split of G(w) with corresponding decompos-
ition H £(h,h) K. Then w ∼ w1Hw

1
Kw

2
Hw

2
K where G(w1Hhw

2
Hh) = H and

G(w1Khw
2
Kh) = K.

Proof : Let A0 ⊆ A and B0 ⊆ B be the sets of vertices of H (resp. K) linked
to some vertex of K (resp. H). We say that letter a crosses letter b if in the
chord representation of w, chords a and b intersect, i.e. if a− b in G(w).

Let wH and wK be the words obtained from w be removing the letters
from B and from A respectively. Without loss of generality, we can assume
that w = w1Hw

1
Kw

2
Hw

2
K ...w

n
Hw

n
K with all factors wi

H , w
j
K nonempty, wH =

w1Hw
2
H ...w

n
H and wK = w1Kw

2
K...w

n
K . Then our aim is to prove that n = 2,

w ∼ w1Hw
1
Kw

2
Hw

2
K , G(w

1
Hhw

2
Hh) = H and G(w1Khw

2
Kh) = K.

If n = 1 then G is not connected. This is excluded by the hypothesis.

If n = 2, we must check that G(w1Hhw
2
Hh) = H and G(w1Khw

2
Kh) = K. Since

every letter a of A0 crosses every letter b of B0, each of w1K and w2K contains
occurrences of all letters in B0. Select one say b, delete from w all letters from
B − {b}, then one obtains the word w1Hbw

2
Hb which defines H, with b instead

of h. Using similarly some a in A0, one obtains that w1Kaw
2
Ka defines K, with

a instead of h. This gives the desired result.
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It remains to prove that the case n ≥ 3 yields a contradiction with the as-
sumptions that G(w) is connected and {A,B} is a good split.

Without the hypothesis that {A,B} is good we may have n > 2. Take for
example w = abadcfefbdce, A = {a, b, c}, B = {d, e, f}. In this case, n = 4.

Claim 1 : If a belongs to A−A0 its two occurrences are in a same factor wi
H .

Proof : Assume the contrary. Wlog, a ∈ w1H ∩ wi
H for i > 1. (This a short

writing for "a has one occurrence in w1H and the other in wi
H"). No b in B

crosses a. Hence B is the union of two sets B1 and B2, such that all occurrences
of elements of B1 are in w1Kw

2
K ...w

i−1
K , and all occurrences of elements of B2 are

in wi
K...w

n
K . Informally, B1 and B2 are separated by a in a chord representation

and no chord of one set crosses a chord from the other.

If Bi ∩B0 is empty for some i, then G[Bi] is a connected component of G and
G is not connected, contradicting the assumption.

Hence every a0 ∈ A0 crosses some b in B1 and some b0 in B2.

There exist j, j0, k, k0 such that 1 ≤ j < j0 < i ≤ k < k0 ≤ n, b ∈ wj
K ∩ wj0

K

and b0 ∈ wk
K ∩ wk0

K .

We let A0 be the set of letters from A − A0 having their two occurrences in
w1Hw

2
H ...w

j
H wj0+1

H wj0+2
H ...wk

H wk0+1
H ...wn

H . Note that a is in this set.

We let A1 be the set of letters from A − A0 having their two occurrences in
wj+1
H wj+2

H ...wj0
H and A2 be the set of those having their two occurrences in

wk+1
H wj+2

H ...wk0
H .

Every a in A0 has one occurrence in wj+1
H wj+2

H ...wj0
H and one in wk+1

H wj+2
H ...wk0

H .

The sets A0, A1, A2 form a partition of A−A0 because no c in A−A0 crosses
b or b0. For the same reason, no c in A0 crosses any c0 in A1∪A2. Finally if c in
A0 crosses some a0 in A0, then it has one occurrence in w1Hw

2
H ...w

j
H wk0+1

H ...wn
H

and the other in wj0+1
H wj0+2

H ...wk
H , hence it crosses every a” in A0. It follows

that either A0 is singleton or {A0, A−A0} is a split of G[A]

It follows that {A0∪B1, (A−A0)∪B2} is a split which overlaps {A,B}. (Since
A0 and B1 are not empty A0∪B1 has at least two elements). This contradicts
the initial assumption.¤

Claim 2 : If a belongs to A0 its two occurrences are in two different factors,
say a ∈ wi

H ∩ wi+p
H for 1 ≤ i < i+ p ≤ n without loss of generality.
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Proof : Because if, on the contrary, a in A0 has its two occurrences in some
wi
H , then no b in B0 can cross it.¤

Claim 3 : If a, a0 ∈ A0, a ∈ wi
H ∩ wi+p

H and a0 ∈ wi
H ∩ wi+q

H then p = q.

Proof : Assume on the contrary that p < q. Some b ∈ B0 belongs to
wi+p
K ...wi+q−1

K otherwise, G is not connected. If b crosses a, it cannot cross
a0 and vice-versa.¤

Claim 4 : If a ∈ wi
H ∩ wj

H and a0 ∈ wi0
H ∩ wj0

H , and i, j, i0, j0 are pairwise
distinct, then a and a0 cross.

Proof : Otherwise, as in the proof of Claim 3, assuming without loss of
generality 1 ≤ i < i0 < j0 < j ≤ n, any b ∈ B0 with an occurrence in
wi0
K...w

j0−1
K cannot cross a and a0.¤

By Claims 2-4, we obtain that n is even and in Claim 2, p = n/2 for all i.

We let Ai be the nonempty set of letters occurring in wi
H , and A0i = Ai ∩ A0.

We define Bi and B0
i similarly. Every letter of A

0
i crosses every letter of A

0
j,

for j /∈ {i, i+ p}, and crosses also every letter of B0.

It follows that {A1∪Ap+1∪B1∪Bp+1, (A−(A1∪Ap+1))∪(B−(B1∪Bp+1)} is
a split of G that overlaps {A,B} (because if n ≥ 3, we have p ≥ 2, hence the
second set of this pair is not empty and has at least 2 elements) contradicting
the initial assumption. This completes the proof. ¤

It follows that if this decomposition corresponds to a good split each word
representing H £(h,h) K can be obtained by the operations of Lemma 8 from
all those representing H and K.

First occurrence words.

For every word w in A∗ we denote by F (w) the subword of w consisting of the
first occurrence of each letter. For an example, F (abbdacdcefef) = abdcef .

Theorem 10 : If w,w0 are double occurrence words such that G(w) = G(w0)
is connected and F (w) = F (w0), then w = w0.
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The proof is given in Appendix 2. Hence for every circle graph G defined by
a double occurrence word w, this word is completely determined by G and
F (w). We will prove that w can be determined from G and F (w) by an MS
transduction. (Note that F (w) is a particular linear order on VG). Our next
objective is to prove the following result :

Theorem 11 : 1) There exists an MS transduction that associates with every
connected circle graph G and every linear order on VG, a double occurrence
word on VG representing G.

2) There exists an MS transduction that associates with (G,4) where G
is a connected circle graph and 4 a linear order on VG, the unique double
occurrence word w representing it such that F (w) = (VG,≺), provided such a
word does exist.

Relational structures that represent double occurrence words over alphabets
of unbounded size are defined in Section 3. We will combine the structures rep-
resenting two composable words, whence, ultimately, the structures associated
with the components of the split decomposition of a circle graph.

Composition of relational structures representing double occurrence words

Let S and T be disjoint relational structures representing composable words
v and w with common letter a. We build as follows a structure repres-
enting a word in v £ w. We let s ∈ DS, t ∈ DT correspond to an oc-
currence in each word of letter a. We define L(S, T, s, t) as the structure
U = hDU , sucU , sletU ,markUi such that :

DU = DS ∪DT ,

sucU = (sucS ∪ sucT ) ◦ links,t

where ◦ denotes the composition of binary relations (i.e., for A,B ⊆ D2,
A ◦B = {(x, y) ∈ D2 | (x, z) ∈ A, (z, y) ∈ B for some z ∈ D}),

links,t = {(s, t), (t, s), (s, t), (t, s)} ∪ {(x, x) | x ∈ DS ∪DT − {s, t, s, t}},

and s and t are the unique elements such that sletS(s, s), and sletT (t, t).

Furthermore, we let markU(x) hold if and only if x ∈ {s, t, s, t} (the nota-
tion mark recalls that s, t, s, t correspond to the marker vertices in the graph
composition G(v) £(a,a) G(w)). Notice that L(S, T, s, t) = L(T, S, t, s). The
structure L(S, T, s, t) defines a double ocurrence word :
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Figure 6. Linked structures ready for composition

u = av1a
0w2av2a0w1,

associated with v ≡ av1av2, w ≡ aw1aw2 (note the use in u of a0 in place of the
letter a of w; note also that the words v1, v2, w1, w2 are nonempty.) In order
to obtain a double occurrence word in v £w, it suffices to remove from u the
letters a and a0. The elements of the domain of L(S, T, s, t) corresponding to
the occurrences of a and a0 are those which satisfy the unary predicate mark.

Figure 6 shows the structure L(S, T, s, t) representing the word av1a0w2av2a0w1
where S and T represent respectively the composable words av1av2 and aw1aw2.

We let Deletemark be the transformation of structures such that Z =

hDZ , sucZ , sletZi = Deletemark(U) if :

U = hDU , sucU , sletU ,markUi

DZ = DU −markU ,

sletZ is the restriction of sletU to DZ,

sucZ(x, y) holds if and only if y is the first iterated successor of x not inmarkU
(hence in DZ).

The verification of the following lemma is straighforward.

Lemma 12 : If S and T represent the composable double occurrence words
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v and w, if s and t correspond to the letter a common to v and w, then the
structure Deletemark(L(S, T, s, t)) represents a word in v£w. The other words
in v £ w are obtained by the following structures :

Deletemark(L(S, T, s, t)),

Deletemark(L(S, T
−1, s, t)),

and Deletemark(L(S, T
−1, s, t)).

Let us now assume that a circle graph G has a decomposition D = {G1, ...,
Gk} and that for each component Gi, we have a structure Si representing a
double occurrence word wi such that G(wi) = Gi. Our objective is to build
a structure Link(D) from which one can obtain a double occurrence word for
G. For k = 2, the structure L(S1, S2, s, t) serves this purpose. We will actually
generalize its construction by linking the structures S1, ..., Sk according to
the neighbourhood relation of D. Assuming the structures S1, ..., Sk pairwise
disjoint, we let S(D) be their union together with ε−edges : for each edge
e : Gi−Gj, we choose s in Si and t in Sj, such that the corresponding vertices
in Gi and Gj are neighbour marker vertices in D and we set an ε−edge s− t.

We make the tree T (D) of components of D into a rooted tree by choosing a
root, say G1, and we orient its edges accordingly. Hence for e : Gi −→ Gj in
T (D), the corresponding ε−edge is directed s −→ t.

We define Link(D) as follows, like L(S, T, s, t) is defined from S ⊕ T :

(i) DLink(D) = DS(D),

(ii) markLink(D) is the set of all s, s, t, t, for s ∈ Si, t ∈ Sj associated with an
edge e : Gi −→ Gj as described above,

(iii) sucLink(D) = sucS(D) ◦ link, where link is the relation :

{(s, t), (t, s), (s, t), (t, s) | for some edge Gi −→ Gj, s ∈ Si, t ∈ Sj

and there is an ε−edge s −→ t }

∪{(x, x) | markLink(D)(x) does not hold}.

We also delete the ε−edges. They have been useful to specify the relation link,
but are no longer. It is clear that the transformation of S(D) into Link(D) is
an MS transduction. A root for the tree T (D) can be choosen by means of a
parameter, and from it, the directions of the edges of the tree can be defined
by MS formulas.
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Lemma 13 : If D is a decomposition of a circle graph G with S1, ..., Sk as
described above. Then Deletemark(Link(D)) represents a double occurrence
word defining G.

Proof : The proof is by induction. The result is trivial if k = 1, i.e., if the
decomposition has a single component.

Otherwise let us select a component, say Gk (without loss of generality) which
is a leaf in the directed tree T (D), having Gk−1 (again without loss of gen-
erality) as father. Hence D0={G1, ..., Gk−1} is the decomposition of a circle
graph G0 isomorphic to an induced subgraph of G. By using induction, we
may assume that Deletemark(Link(D0)) is a double occurrence word S0 for
G0.

We have Link(D) = L(Link(D0), Sk, s, t) where s, t correspond to the edge
Gk−1 −→ Gk in the tree T (D).

Hence Deletemark(Link(D)) = Deletemark(L(Link(D0), Sk, s, t))

= Deletemark(L(Deletemark(Link(D0)), Sk, s, t))

= Deletemark(L(S
0, Sk, s, t))

which is, using Lemma 8 a double occurrence word for G.¤

Proof of Theorem 11 :

1) We show that some representation can be constructed for a connected circle
graph G given with a linear ordering 4 of its vertices.

On a structure given with a linear order, the set predicate Even(X) can be
expressed by an MS formula (see [10]). Hence on these structures, every C2MS
formula can be translated into an equivalent MS formula. In particular, an MS
formula can check that the given graph is a circle graph.

By Proposition 3, one can construct from (G,4) the graph Sdg(Split(G)) by
an MS transduction which, by Lemma 16, can also build a linear order 40 on
the vertices of Sdg(Split(G)). By Corollary 7 there exists a C2MS transduction
that defines for each prime component of Split(G) a double occurrence word
representing it. However, since the components are linearly ordered by 40, MS
formulas are sufficient and this can be done by an MS transduction. For the
other components, which are isomorphic to stars and to cliques, the linear
order 40 makes possible to define an ordering as explained at the beginning of
this section. (Let us recall from [9, 10] that in MS logic, one cannot specify a
linear order on an arbitrary set. For example, one cannot define a linear order
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on the leaves of stars of unbounded cardinality. It is thus important to have a
linear order available).

Then one can obtain the structure S(D) where the structures S1, ..., Sk cor-
responding to the k components of D are linked by ε−edges.

The transformations Link (applied to S(D)) and Deletemark are MS trans-
ductions. Hence, by using Proposition 18, one can combine these various MS
transductions into a single one denoted by τ that associates with (G,4) where
G is a circle graph with vertices linearly ordered by 4, a structure S(w) for a
double occurrence word w such that G(w) = G.

2) We now modify this construction so as to obtain, if possible, a double
occurrence word w such that F (w) is the given linear order on VG.

First observation :

As a consequence of Lemma 12, one can obtain from D several structures
Link(D) giving different double occurrence words for the same circle graph.

For each edge e : Gi −→ Gj of T (D), there are four possibilities. The transduc-
tion τ defined in the first part of the proof can be equipped with parameters so
as to output all possible results. We give some details. Let us assume a single
structure S(D) is fixed. Its transformation into Link(D) can be parametrized
by two sets X and Y :

(i) a subset X of VS(D) used as follows : for every ε−edge Si −→ Sj, if X
contains at least one element of Sj, then Sj is replaced by its reversal S−1j (the
successor relation of Sj is reversed),

(ii) a subset Y of VS(D) used as follows : for every ε−edge Si −→ Sj, if Y
contains at least one element of Sj, then in the definition of link, t in Sj is
replaced by t and t by t.

Recall that the ε−edges define a directed tree of components. Hence, for every
ε−edge a single component Sj is used to indicate, via the sets X and Y, the
transformations to be done to the links between the structures linked by this
edge.

Second observation :

For each component of Split(G) which is a clique or a star, the linear order
given on VG implies a unique representation that one can MS define.

28



Third observation. :

Assume a structure S(w0) has been constructed, from the graph G, its linear
order 4 and two sets X and Y . An MS formula can check that the successor
function of 4 coincides with the one of S(w0) for one of the two possible
starting points, which are the two occurrences of the 4-smallest letter of w0
(i.e., vertex of G). One can thus select, by an MS formula, the "good choices"
of the sets X and Y . If no such sets do exist, then this means that the given
linear ordering is not the first occurrence word of any representation of the
given graph.

Hence to summarize, the construction is as follows : Given G and a linear
order 4 on VG intended to represent F (w) for some w to be constructed
such that G(w) = G, one can first test by an MS formula whether G is a
circle graph. (C2MS is replaced by MS on ordered structures). If the answer is
positive, one uses the linear order 4 to build Split(G) by an MS transduction.
Then one uses 4 again to fix the necessary orderings for the components that
are cliques and stars. One uses 4 also to define representations of the prime
components by MS formulas as opposed to by C2MS ones. Then, one "tries
to find" the sets X and Y intended to "twist the links" and to "inverse"
certain of these structures in order to find a double occurrence word w such
that F (w) = (VG,4). If they are found, then the MS transduction doing all
this (poor fellow !) can produce the desired structure S(w) .

If there exists such a w, it is necessarily produced in this way because there
is no choice for constructing the representations of the components, and all
possible linkings are captured by the two sets X and Y . ¤

Remarks 14 : (1) One might hope to be able to specify all double occurrence
words representing G from a single linear order on VG by varying some para-
meters. But a simple cardinality argument shows this is not possible : take for
G the graph Sn−1 with n vertices. It is represented by (n− 1)!/2 = O(2nlog(n))
pairwise inequivalent words. An MS transduction using k set parameters can
only produce 2kn different outputs.

(2) One can extend these results to nonconnected circle graphs by combining
the results of the constructions performed on each connected component.
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5 The clique-width of a circle graphs and the tree-width of its
chord diagram.

The notions of tree-width and clique-width of graphs are well-known. The main
facts are recalled in Appendix 1. Circle graphs have unbounded clique-width
by the results of [25] since they include permutation graphs [24]. The structure
S(w) associated with a double occurrence word w is a graph with directed and
undirected edges, called the chord diagram of w. It is a chord diagram of the
circle graph G(w) (and the chord diagram if G has a unique representation).
Tree-width does not depend on edge directions, hence S(w) has a tree-width
twd(S(w)) (equal to that of the associated undirected graph und(S(w))). We
will relate it with the clique-width cwd(G(w)) of G(w).

Theorem 15 : A set of connected circle graphs has bounded clique-width
if and only if the set of its chord diagrams has bounded tree-width. More
precisely, there exist functions f and g such that for every double occurrence
word w, twd(S(w)) ≤ f(cwd(G(w))) and cwd(G(w)) ≤ g(twd(S(w))).

Proof: In Appendix 1 we describe an MS transduction τ that transforms the
structure S(w) into G(w) for every double occurrence word w. The graphs
S(w) have degree 3. The techniques of [12] show that there exists an MS
transduction ω that inverses und, i.e., that associates with every undirected
graph H of degree at most 3 the set of all graphsK with directed and undirec-
ted edges such that und(K) = H. It follows that for every double occurrence
word w, G(w) ∈ τ(ω(und(S(w))).

It follows from Propositions 19 and 20 that if the graph und(S(w)) has tree-
width at most k, then it has clique-width at most 3.2k−1 and G(w) has clique-
width bounded by hτ◦ω(3.2k−1). This gives the desired function g.(By Propos-
ition 18, τ ◦ ω is an MS transduction).

Conversely, we wish to bound twd(S(w)) in terms of cwd(G(w)). By direct
constructions, one can check that the chord diagrams of stars and cliques
have tree-widths at most 3 and 4 respectively. By Corollary 7 there exists an
order-invariant MS transduction that reconstructs S(w) from G(w) assumed
to be prime. Hence, there exists by Proposition 19 a function f 0 such that
cwd(und(S(w))) ≤ f 0(cwd(G(w))) if G(w) is prime. By the second assertion of
Proposition 20, we obtain that twd(S(w)) ≤ f(cwd(G(w))) if G(w) is prime,
for some fixed function f .

If we could prove that for composable words v and w,
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twd(S(v £ w)) ≤Max{twd(S(v)), twd(S(w))} (1)

the proof would be complete, because if a circle graph has clique-width at
most k, then so have its prime factors in the split decomposition, and all its
chord diagrams are built from those corresponding to stars, cliques and its
prime factors. However, (1) does not hold. The chord diagrams of K2,3 have
tree-width 4 whereas this graph splits into S2 and S3, with associated chord
diagrams of tree-width 3. Hence, we must use an additional construction.

Let w be a double occurrence word of length 2n ; we modify its representing
structure S(w) andmake it into a graph bS(w) called an extended chord diagram
as follows :

1) We replace each directed edge i −→ j by two edges i − i+ and j− − j
where i+ is a new vertex also denoted by j−, and we add the edges i−− i+ for
all i.

2) The vertex set of bS(w) is the set bV (w) = {i, i+ | i = 1, ..., 2n}, it has 4n
elements.

3) For each undirected edge i − j of S(w) (corresponding to a pair of occur-
rences of a letter a in w), we add the edges i+ − j+, i− − j−, i+ − j− and
i− − j+.We fuse parallel edges, so that bS(w) is a simple graph, of degree at
most 7.

We denote by M(w, a) the set of vertices {i+, j+, i−, j−} for i, j as in 3). By
the assumption that G(w) is connected, we never have j+ = i−, hence the set
M(w, a) has 4 elements. It induces a clique.

It is clear that und(S(w)) is a minor of bS(w), hence it is enough to bound
twd( bS(w)) in terms of cwd(G(w)) to get the result, because twd(S(w)) ≤
twd( bS(w)).
The transformation of S(w) into bS(w) is an MS transduction. Hence, since
the composition of two MS transductions is an MS transduction (Proposition
18), we have twd( bS(w)) ≤ bf(cwd(G(w))) if G(w) is prime for some fixed
function bf . For the extended chord diagrams of Sn and Kn one can construct
tree-decompositions of width at most 5. The proof will be complete with the
following claim.

Claim : For composable words v and w

twd( bS(v £ w)) ≤Max{twd( bS(v)), twd( bS(w))}.
Proof : Let v = v1av2av3 and w = aw1aw2 be composable words with
common letter a. Let y = v1w1v2w2v3 be one of their compositions.

31



We make disjoint the graphs bS(v) and bS(w). We let i and j be the first and
second occurrence of a in v, and k and l be the first and second occurrence of
a in w. We denote by bS(v)−i−j the graph obtained from bS(v) by deleting the
vertices i, j and their incident edges. We let bS(w)− k− l be defined similarily
from by bS(w).
The extended chord diagram bS(v £ w) can be constructed as follows :

1) one takes the (disjoint) union of bS(v)− i− j and bS(w)− k − l,

2) one "glues them" at M(v, a) and M(w, a) by fusing i− and k+, i+ and l−

, j− and l+, and j+ and k−,

3) one deletes some edges between these vertices.

For the three other compositions of v and w, one glues the graphs with fusions
based on different matchings, for an example, one fuses i− and l−, i+ and k+

, j+ and l+, and j− and k−, in order to get the graph bS(v1fw1v2fw2v3).
Now sinceM(v, a) induces a clique in bS(v) this graph has a tree-decomposition
one box of which consists exactly of M(v, a). The same holds for bS(v)− i− j.
Similarly, bS(w) − k − l has a tree-decomposition one box of which consists
exactly of M(w, a). By combining these tree-decompositions, one obtains one
of bS(v £ w) of width :

Max{twd( bS(v)− i− j), twd( bS(w)− k − l)} =Max{twd( bS(v)), twd( bS(w))}.
This completes the proofs of the claim and of the theorem.¤

Theorem 15 remains valid if instead of S(w) we consider the neighborhood
graph graph N(S(w)), because N(S(w)) is obtained from und(S(w)) by edge
contractions, so that twd(N(S(w))) ≤ twd(und(S(w))), and twd(und(S(w))) ≤
2.twd(N(S(w))) + 1, as one checks easily.

Question : Can one relate precisely the clique-width or the rank-width of a
prime circle graph and the tree-width of its chord diagram?

6 Conclusion

As said in the introduction, the present article is part of a global project con-
sisting in trying to formalize as much as possible graph properties and graph
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constructions like hierchical decompositions in monadic second-order logic and
some of its extensions which enjoy the same good algorithmic properties. We
have studied circle graphs by using the split decomposition of [18, 14] and
other logical tools from [17]. We have shown how to define by MS formulas all
chord diagrams representing a given circle graph.

Two ideas have other application instances : the reconstruction by an MS
transduction of some "forgotten information" and the use of a canonical de-
composition for this reconstruction.

The "forgotten information" may be simply the directions of edges: an MS
transduction using edge set quantifications can define for every undirected
graph all its possible orientations [8]. In this simple case, no sophisticated
decomposition is needed, just a depth-first spanning forest.

More involved are the following descriptions. All planar embeddings of a planar
graph can be defined from its canonical decomposition in 3-connected com-
ponents [11]; all graphs having the same cycle matroid as a given graph G can
be obtained by Whitney’s 2-isomorphism theorem from the decomposition of
G in 3-connected components ([14], see also [37] ) ; all transitive orientations of
a comparability graph can be determined from its modular decomposition ([9,
13], see also [27,32]). All these characterizations use canonical decompositions
of the considered graphs that can be constructed by MS transductions (in
some cases with the help of an auxiliary linear order), and, a unicity property
of the objects to be constructed for the components of these decompositions.
We think that this approach can be applied to other types of geometric graph
representations like those by intervals, by circular arcs or by intersecting rect-
angles.

Acknowledgement : I thank J. Makowsky for his numerous helpful com-
ments and suggestions of references.
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8 Appendix 1 : Monadic second-order logic

We review Monadic Second-Order (MS) logic and transformations of struc-
tures expressed in this language, called MS transductions. The reader is ref-
ered to the book chapter [10], or to the preliminary sections the articles [7,
9, 11, 13, 14] for more detailed expositions. However all necessary definitions
are given in the present section.

Relational structures and monadic second-order logic

Let R = {A,B,C, ...} be a finite set of relation symbols each of them given
with a nonnegative integer ρ(A) called its arity. We denote by ST R(R) the
set of finite R-structures S = hDS, (AS)A∈Ri where AS ⊆ D

ρ(A)
S if A ∈ R. If

R consist of relation symbols of arity one or two, we say that the structures
in ST R(R) are binary.

A simple graph G can be defined as the {edg}-structure G = hVG, edgGi where
VG is the vertex set and edgG ⊆ VG × VG is a binary relation representing the
edges. For undirected graphs, the relation edgG is symmetric. If in addition we
need vertex labels, we will represent them by unary relations. Binary structures
can be seen as vertex- and edge- labelled graphs. If we have several binary
relations say A,B,C, the corresponding graphs have edges of types A,B,C.

Monadic second-order logic (MS logic for short) is the extension of First-order
logic (FO logic) by variables denoting subsets of the domains of the considered
structures, and new atomic formulas of the form x ∈ X expressing the mem-
bership of x in a set X. (Uppercase letters denote set variables, lowercase
letters denote ordinary first-order variables). We denote byMS(R,W ) the set
of monadic second-order formulas written with the set R of relation symbols
and having their free variables in a set W consisting of individual and set
variables. As a typical and useful example of MS formula, we give a formula
with free variables x and y expressing that (x, y) belongs to the reflexive and
transitive closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X)

If the relation A is not given in the structure but defined by an MS formula
α(u, v), then one replaces A(u, v) by this formula with appropriate substitu-
tions of variables. We denote by TC[α(u, v);x, y] the resulting formula.

Order-invariant MS properties
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A property P of the structures S of a class C ⊆ ST R(R) is monadic second-
order (MS) if for some fixed formula ϕ in MS(R,∅), P (S) holds if and only
if S ² ϕ. We now extend this definition by allowing the use of auxiliary
linear orders. Let ≤ be a binary relation symbol not in R. A formula ϕ in
MS(R∪{≤},∅) is order-invariant on a class C ⊆ ST R(R), if for every S ∈ C,
for every two linear orders 4 and 40 on the domain DS, we have (S,4) ² ϕ
if and only if (S,40) ² ϕ, where 4 and 40 interpret ≤. We say that P is an
order-invariant MS property of the structures of C if P (S) holds if and only
if (S,4) ² ϕ for some linear order 4 on DS, where ϕ is an MS formula that
is order-invariant on C.

The property that a set has even cardinality is order-invariant on the class of
all (finite) ∅−structures. Hence, every C2MS property is an order invariant
MS property. It is usually not decidable whether an MS formula is order-
invariant on a class C. However, we use formulas that are order-invariant by
construction.

Monadic second-order transductions

We use MS formulas to define transformations of graphs and relational struc-
tures. As in language theory, a binary relation R ⊆ A×B where A and B are
sets of words, graphs or relational structures is called a transduction: A→ B.
AnMS transduction is a transduction specified by MS formulas. It transforms
a structure S, given with an n-tuple of subsets of its domain called the para-
meters, into a structure T , the domain of which is a subset of DS ×{1, ..., k}.
Furthermore, each such transduction, has an associated backwards translation,
a mapping that transforms effectively every MS formula ϕ relative to T , pos-
sibly with free variables, into one, say ϕ#, relative to S having free variables
corresponding to those of ϕ (k times as many actually) together with those
denoting the parameters. This new formula expresses in S the property of T
defined by ϕ. We now give some details. More can be found in [7, 10].

We let R and Q be two finite sets of relation symbols. Let W be a finite set
of set variables, called parameters. A (Q,R)-definition scheme is a tuple of
formulas of the form :

∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k)

where k > 0, Q ∗ k := {(q,�j) | q ∈ Q,�j ∈ [k]ρ(q)},

ϕ ∈MS(R,W ), ψi ∈MS(R,W ∪ {x1}) for i = 1, · · · , k,

and θw ∈MS(R,W ∪ {x1, · · · , xρ(q)}), for w = (q,�j) ∈ Q ∗ k.

38



These formulas are intended to define a structure T in ST R(Q) from a struc-
ture S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S. A
Q-structure T with domain DT ⊆ DS × [k] is defined in (S, γ) by ∆ if :

(i) (S, γ) |= ϕ

(ii) DT = {(d, i) | d ∈ DS, i ∈ [k], (S, γ, d) |= ψi}

(iii) for each q in Q : qT = {((d1, i1), · · · , (dt, it)) ∈ Dt
T | (S, γ, d1, · · · , dt) |=

θ(q,�j)}, where �j = (i1, · · · , it) and t = ρ(q).

Since T is associated in a unique way with S, γ and ∆ whenever it is defined,
i.e., whenever (S, γ) |= ϕ, we can use the functional notation def∆(S, γ) for
T . The transduction defined by ∆ is the binary relation :

def∆ := {(S, T ) | T = def∆(S, γ) for some W -assignment γ in S}.

Hence def∆ ⊆ ST R(R)×ST R(Q). A transduction f ⊆ ST R(R)×ST R(Q)
is an MS transduction if it is equal, up to isomorphism, to def∆ for some
(Q,R)-definition scheme ∆. We will also write functionally : def∆(S) :=
{def∆(S, γ) | γ is a W -assignment in S}.

An MS-transduction can be seen as a "nondeterministic" partial function asso-
ciating with an R-structure one or more Q-structures. However, it is not really
nondeterministic because the different outputs come from different choices of
parameters. We will refer to the integer k by saying that ∆ and def∆ are
k-copying ; if k = 1 we will say that they are noncopying. A noncopying defin-
ition scheme can be written more simply : ∆ = (ϕ, ψ, (θq)q∈Q). A definition
scheme without parameters defines a parameterless MS transduction, which is
actually a partial function : ST R(R) −→ ST R(Q).

The MS transduction transforming S(w) into G(w).

A double occurrence word w = a1a2...a2n is represented by the relational
structure S(w) = h{1, ..., 2n}, suc, sleti where suc(i, j) holds if and only if
j = i + 1, with also suc(2n, 1), and slet(i, j) holds if and only if i 6= j and
ai = aj.

Let S = hD, suc, sleti be given, assumed to be isomorphic to S(w) for some
w. We must select from D a subset that will be the vertex set of the circle
graph to be constructed.

1) We use for this a parameter X subject to the following condition :
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∀x, y[x ∈ X ∧ y ∈ X =⇒ ¬slet(x, y)] ∧ ∀x[x ∈ X ∨ ∃y(y ∈ X ∧ slet(x, y)).

This formula will be ψ of the definition scheme : ∆ = (ϕ,ψ, θedg) to be con-
structed. It expresses that X contains one and only one element of each pair
defined by slet.

2) We need an auxiliary formula β(x, y, z) expressing the following :

x, y, z are pairwise distinct and when one follows the Hamiltonian circuit of
S, then, after x one sees y before z. We let α be the formula :

suc(u, v) ∧ u 6= z ∧ v 6= z.

Then β(x, y, z) is the formula x 6= z ∧ x 6= y ∧ y 6= z ∧ TC[α(u, v);x, y].

3) Using β(x, y, z) we can write ι(u, v, w, z) expressing that two pairs {u, v}
and {w, z} are "interlaced" (cf. [2]) :

(β(u,w, v) ∧ β(v, z, u)) ∨ (β(u, z, v) ∧ β(v, w, u)).

4) We can deduce a definition of the edge relation of G ; θedg(x, y) is the
formula :

x ∈ X ∧ y ∈ X ∧ ∃u, v[slet(x, u) ∧ slet(y, v) ∧ ι(x, u, y, v)].

In order to complete the definition of ∆ = (ϕ, ψ, θedg), it remains to construct
a formula ϕ expressing that the given structure S is isomorphic to S(w) for
some w. This is actually a routine construction, using the fact that transitive
closures are expressible in MS logic.¤

Lemma 16 : Let τ : ST R(R) −→ ST R(Q) be an MS transduction. Let us
add to R and to Q a binary relation symbol ≤ intended to represent orders
on the domains of structures. One can transform τ into an MS transduction
τ 0 : ST R(R ∪ {≤}) −→ ST R(Q ∪ {≤}) such that, for every S in ST R(R)
and every linear order ¹ on its domain, τ 0(S,¹) = (τ(S),¹0) where ¹0 is a
linear order on the domain of τ(S).

Proof : Let τ be k-copying. It is easy to define formulas θw belonging to
MS(R ∪ {≤},W ∪ {x1, x2}), for w = (≤,�j) ∈ {≤} ∗ k such that, in τ 0(S,¹) :

(d1, i) ¹0 (d2, j) if and only if either d1 ≺ d2 or (d1 = d2 and i ≤ j).

It is clear that ¹0 is a linear order on the domain of τ(S) if ¹ is one on S.¤
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A partial function τ : ST R(R) −→ ST R(Q) is an order-invariant MS trans-
duction if there exists a (Q,R∪{≤})-definition scheme ∆ (possibly with para-
meters) such that :

1) the property def∆(S) 6= ∅ is an order-invariant MS property of structures
S in ST R(R), equivalent to the fact that τ(S) is defined,

2) for any two linear orders 4 and 40 on DS, any two structures in def∆(S,4)
and in def∆(S,40) are isomorphic to τ(S).

It follows that an output structure in def∆(S,4, γ) depends, up to isomorph-
ism, neither on the linear order 4 nor on the assignment γ of values to para-
meters.

The transduction of Corollary 7 is order-invariant whereas that of Theorem
11 is not.

The fundamental property of MS transductions

The following proposition says that if T = def∆(S, γ), then the monadic
second-order properties of T can be expressed as monadic second-order prop-
erties of (S, γ). The usefulness of definable transductions is based on this
proposition.

Let∆ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written with
a set of parameters W . Let V be a set of set variables disjoint from W . For
every variable X in V , for every i = 1, · · · , k, we let Xi be a new variable. We
let V 0 = {Xi | X ∈ V, i = 1, · · · , k}. Let S be a structure in ST R(R) with
domain D. For every mapping η : V 0 −→ P(D), we let ηk : V−→ P(D × [k])
be defined by ηk(X) = η(X1) × {1} ∪ · · · ∪ η(Xk) × {k}. With this notation
we can state :

Proposition 17: For every formula β in MS(R,V ) one can construct a for-
mula β# in MS(Q,V 0 ∪ W ) such that, for every S in ST R(R), for every
assignment γ :W −→ S for every assignment η : V 0 −→ S we have:

(S, η ∪ γ) |= β# if and only if :

def∆(S, γ) is defined, ηk is a V —assignment in def∆(S, γ),

and (def∆(S, γ), ηk) |= β.
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If the definition scheme and the formula β are FO, then the formula β# is also
FO. Note that, even if T = def∆(S, γ) is well-defined, the mapping ηk is not
necessarily a V -assignment in T , because ηk(X) may not be a subset of the
domain of T which is a possibly proper subset of DS × {1, ..., k}. We call β#
the backwards translation of β relative to the transduction def∆.

The composition of two transductions is defined as their composition as binary
relations. If they are both partial functions, then one obtains the composition
of these functions.

Proposition 18 : 1) The composition of two MS transductions is an MS
transduction.

2) The inverse image of an MS-definable class of structures under an MS
transduction is MS-definable.

Tree-width, clique-width and MS transductions

The notions of tree-width and clique-width are well-known. Definitions and
basic results can be found in [10, 15, 16, 17, 30]. We only review some facts
used in Section 5.

Proposition 19 : For every order-invariant MS transduction τ from undirec-
ted graphs to directed or undirected graphs, there exists a function hτ such
that, for every simple undirected graphH, we have cwd(τ(H)) ≤ hτ (cwd(H)).

Proof : We will use the result that a set of simple undirected graphs has
bounded clique-width if and only if it is the image of a set of binary trees
under an MS transduction (by Theorem 5.6.8 of [10]).

The set C(k) of graphs of clique-width at most k is the image of a set of
binary trees under an MS transduction γk. A linear order on binary trees is
MS definable ([9]), hence (with Proposition 18), γk can be modified into γ0k
producing from binary trees the graphs of C(k), each with a linear order. (We
do not claim that all linearorders on all graphs of C(k) can be produced.) It
follows that the graphs τ(H) for H in C(k) are images of binary trees under
τ ◦ γ0k. Hence, they have a clique-width bounded in term of k.¤

Proposition 20 : For a simple undirected graph H we have cwd(H) ≤ 3 ·
2twd(H)−1 and twd(H) ≤ (3 · deg(H) + 2) · cwd(H)− 1.
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Proof : The first result is by Corneil and Rotics [6]. The second one follows
from the result of Gurski and Wanke [26] saying that twd(H) ≤ (3p − 1) ·
cwd(H)− 1 if H has no subgraph isomorphic to Kp,p.¤

9 Appendix 2: Two technical proofs

We first prove the "only if" direction of Proposition 4 which is asserted but
not proved in [22].

Proposition 4 ("Only if"): A connected uniquely representable circle graph
with at least 5 vertices is prime.

We first explain why a proof is needed. AssumeG = H£(h,h)K = G(w1v1w2v2),
where H = G(w1hw2h), K = G(hv1hv2). Clearly G = G(w1fv1w2fv2). But it
may happen that w1v1w2v2 ≡ w1fv1w2fv2, and G may be nevertheless uniquely
representable. This is the case of the graph G = G(abcdbacd) defined by the
two words w1v1w2v2 = abcdbacd and w1fv1w2fv2 = abdcbadc. That this situation
does not happen if G has at least 5 vertices deserves a proof.

The "proof" sketched in [22] is not correct for the following reasons. First it
does not use the hypothesis that the considered graph has at least 5 vertices.
However, this hypothesis is necessary as observed above. Second the argument
goes as follows : if G = H £(h,h) K = G(w1v1w2v2), where H = G(w1hw2h),
K = G(hv1hv2) thenG = G(w1fv1w2fv2) and it is left to the reader to check that
w1v1w2v2 and w1fv1w2fv2 are not equivalent. However, even with the hypothesis
that G has at least 5 vertices, this may be false. Consider for an example the
graph with 6 vertices defined by the word :

babcdceaefdf =w1v1w2v2 with w1 = bab, v1 = cdc, w2 = eae, v2 = fdf.

The two words w1v1w2v2, w1fv1w2fv2 are equivalent, they are even equivalent
to the two other words w1v2w2v1, w1fv2w2fv1 resulting from the composition
of w1hw2h and hv1hv2 (cf. Lemma 8). The graph G is not UR (uniquely
representable in short), because it is also defined by the word beaebcdcafdf
not equivalent to the initial one, but the argument sketched in [22] does not
prove that.

Our proof will use the notion of local complementation, that we recall from
[4, 17, 23, 33]. If w = xayaz is a double occurrence word where a is a letter
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and x, y, z are words, we denote by w ∗ a the word xaeyaz. The corresponding
graph G(w ∗ a) is obtained from G(w) by edge-complementing the subgraph
of G(w) induced by the vertices which are adjacent to a. It is denoted by
G(w)∗a. This is well-defined because if w0 is equivalent to w, then G(w0 ∗a) =
G(w ∗ a). By Lemmas 2.1 and 2.2 of [4], G(w ∗ a) and G(w) have the same
splits and one is prime if and only if the other is. It is easy to prove that if w0

≡ w then w0 ∗ a ≡ w ∗ a. It follows that G(w) ∗ a is UR if and only if G(w)
is UR.

Proof : A star and a clique with at least 5 vertices are not UR. Just consider
the inequivalent words abcdewabcdew and acbdewacbdew for a clique (where
a, b, c, d, e are letters and w is any word) and similarly abcdewa ewedcb and
acbdewa ewedbc for a star. (Since the local complementation of a clique is a
star, the case of stars could be derived from that of cliques and the remarks
that local complementation preserve the properties of being prime and UR.).
Assume by way of contradiction that a circle graph G is connected, UR, has
at least 5 vertices and is not prime. By the initial observation and the results
of [18], it has a good split {A,B} from which we get G = H £K. We first
consider two special cases.

First special case : A = {a, b} and only a is linked to K.

Then G is represented by a word w = babuav. The hypothesis that G is UR
implies that

babuav ≡ babeuaev. This gives two possibilities : u = eu and v = ev or u = v.

Subcase 1 : u = eu and v = ev . Then u = ycey, v = zcez for some letter c and
some words y, z having no letter in common. If y and z are both nonempty, the
word babyzcezeyac represents G and is not equivalent to babuav = babyceyazcez.
If u = dxcexd, v = c, then we use babxcexadcd to obtain a contradiction.
Subcase 2 : u = v. This word has at least 3 letters, say c, d, ..., f , hence
{{a, b, c}, {d, ..., f}} is a split which overlaps {A,B} hence {A,B} is not
good. Contradiction.

Second special case : A = {a, b} and a, b are both linked to K (they cross
B).

Then G is represented by a word w = abuabv or w = abubav.

Subcase 1 : w = abuabv.
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By using local complementation with respect to a we obtain the word w ∗ a =
aeubabv. The graph G(w ∗a) is also UR and satisfies the first special case. This
is impossible.

Subcase 2 : w = abubav.

By using local complementation with respect to a vertex c in B adjacent to a
and b, we obtain a graph G(w ∗ c) that is also UR and satisfies Subcase 1 just
above. So this is impossible.

General case : We consider G with a good split {A,B} from which we get
G = H £K.

Each of A and B has at least 3 letters, otherwise we can conclude using the
two special cases. By Proposition 9, G is represented by a word w1Aw

1
Bw

2
Aw

2
B

with w1A, w
2
A ∈ A∗ and w1B, w

2
B ∈ B∗.

Subcase 1 : There is a unique letter a in A that crosses B. (We mean by "cross"
that, in any chord representation, the chord a intersects some chord in B).
Let b another letter in A. Let G0 = G[B ∪ {a, b}].Without loss of generality, b
is in w1A. The graph G0 is connected and has a representation by babw1Baw

2
B.

Claim 1 : The graph G0 is UR : Assume it is not. It has another representation
by a word babv1Bav

2
B which is inequivalent to the first.

Consider now the word w1Av
1
Bw

2
Av

2
B. It defines G. Hence it is equivalent to

w1Aw
1
Bw

2
Aw

2
B. By deleting the letters from A−{a, b} one should get equivalent

words from these two equivalent words. But we get babv1Bav
2
B and babw1Baw

2
B

assumed not to be equivalent. Contradiction. Hence, G0 is UR.¤

If {{a, b}, B} is a good split of G0 which is connected with at least 5 vertices
but is UR, we get a contradiction with the second special case. If {{a, b}, B}
is not a good split, then {{a}∪C, {b}∪D} is also a split for some bipartition
{C,D} of B. If there are edges between a andD inG there is no edge between
C and D (otherwise there would be edges between b and a, a and D, C and D
but no edge between b and C, hence {{a}∪C, {b}∪D} would not be a split).
Then {{a} ∪ C, (A− {a}) ∪D} is a split, so {A,B} is not good. If there is
no edge between a and D, there must be edges between C and D otherwise
G is not connected, but {{a} ∪ C, {b} ∪D} is not a split because there is no
edge between b and C. This is thus excluded which completes the proof for
this subcase.

Subcase 2 : There are two letters a, b in A that cross B. Let G0 = G[B∪{a, b}].
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The graph G0 has a representation by a word abw1Babw
2
B or abw

1
Bbaw

2
B. The

proof is the same in the two cases. We only consider the first one.

Claim 2 : The graph G0 is UR : Assume it is not. It has another representation
by a word abv1Babv

2
B which is inequivalent to the first.

Consider now the word w1Av
1
Bw

2
Av

2
B. It defines G. Hence it is equivalent to

w1Aw
1
Bw

2
Aw

2
B. By deleting letters one should get from these two equivalent

words two other equivalent words. But we get abv1Babv
2
B and abw1Babw

2
B as-

sumed not to be equivalent. Hence, G0 is UR.¤

If {{a, b}, B} is a good split of G0 which is connected with more than 5 vertices
but is UR, we get a contradiction with the second special case. If {{a, b}, B}
is not a good split, then {{a}∪C, {b}∪D} is also a split for some bipartition
{C,D} of B. Here we again distinguish subcases.

Subsubcase 1 : The vertices a and b are neighbours.

If there are edges between a and D, there are also between b and D, because
there are edges between b and B = C ∪D and {{a, b}, B} is a split. Since
G is connected there are edges between C and either a, b, or D. In all cases,
using the fact that {{a, b}, B} and {{a} ∪ C, {b} ∪D} are splits, we obtain
that there are edges between C and a, b, and D. Moreover, there are subsets
C1 of C and D1 of D connected uniformly by these edges. There is a subset
A1 of A − {a, b} connected uniformly with C1 and D1 because {A,B} is a
split. It follows that {{a}∪C, (A−{a})∪D} is a split, so {A,B} is not good.
Contradiction.

If there is no edge between a and D, there are between a and C, whence
between b and C (because there are edges between b and B = C ∪ D and
there cannot be between b and D because {{a, b}, B} is a split and there is
no edge between a and D). Thus there are edges between C and D but there
should be also between a and D because {{a} ∪ C, {b} ∪ D} is a split. This
gives a contradiction. Hence, this subcase cannot happen.

Subsubcase 2 : The vertices a and b are not neighbours.

We complement G locally at a vertex c of B linked to a and to b. Then a and
b are no longer neighbours in G ∗ c. Lemmas 2.1 of [4], saying that two graphs
transformed by local complementation have the same splits and the fact that
if X is a set of vertices containing c, then G[X] ∗ c = (G ∗ c)[X] , reduce this
subcase to the previous one.

This complete the proof of the proposition. ¤
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We now prove the following proposition stated in Section 4. (See this section
for notation).

Theorem 10 : If w,w0 are double occurrence words such that G(w) = G(w0)
is connected and F (w) = F (w0), then w = w0.

Proof : The proof is by induction on the length of w. The cases of words w of
length 2 or 4 are trivial. Hence we consider w with at least 3 different letters,
assuming the result for all shorter words.

Case 1 : G(w) has a good split.

We let G(w) = H £(h,h) K and w0 be another word such that G(w) = G(w0)
and F (w) = F (w0). It follows from Proposition 9 that w ∼ w1Hw

1
Kw

2
Hw

2
K

where G(w1Hhw
2
Hh) = H and G(w1Khw

2
Kh) = K.

Without loss of generality, the first letter of w is inH. It is not h. We can write
w = u1v1u2v2u3 where G(u1hu2hu3) = H, G(hv1hv2) = K, for some words
u1, v1, u2, v2, u3 where only u3 can be empty. Since F (w) = F (w0), the word
w0 begins as w, and thus, also using Proposition 9, w0 = u01v

0
1u
0
2v
0
2u
0
3 where

G(u01hu
0
2hu

0
3) = H, G(hv01hv

0
2) = K, and only u03 can be empty. We also have

F (u1v1u2v2u3) = F (u01v
0
1u
0
2v
0
2u
0
3).

We claim that : F (u1hu2hu3) = F (u01hu
0
2hu

0
3) and F (hv1hv2) = F (hv01hv

0
2).

Let a be a letter in v1 ∩ v2. Let x be obtained from w by deleting all letters
corresponding to vertices of K except a. Let x0 be obtained similarly from
w0. We have F (x) = F (x0). But x = u1au2au3 and x0 = u01au

0
2au

0
3, hence

F (u1hu2hu3) = F (u01hu
0
2hu

0
3), hence using the induction hypothesis, we have

u1hu2hu3 = u01hu
0
2hu

0
3. By a similar argument we have hv1hv2 = hv01hv

0
2. Hence

w = w0.

Case 2 : G(w) has no good split.

There are several subcases.

Subcase 1 : G(w) is a clique, then w = F (w)F (w).

Subcase 2 : G(w) is a star (with center a), then w is equivalent to auaeu for
some u, and the result follows easily.

Subcase 3 : G(w) has 3 or 4 vertices. The connected graphs with 3 vertices
are K3 and S2. Thus they are treated in Subcases 1 and 2.
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The connected graphs with 4 vertices are K4,S3, C4,K4 − e, P4 and K3 with
a pending edge. The first two are treated by Subcases 1 and 2. The last four
have good splits, hence they do not have to be considered here.

Theorems 1 and 10 of [18] establish that a connected graph either is a clique,
or a star, or is prime, or has a good split. Hence, the only remaining case is
here the following :

Subcase 4 : G(w) is prime with at least 5 vertices.

Then w = auav for some u and v, both non empty. By Proposition 4, the
word w0 if different of w is of the possible forms : avau , aeuaev or aevaeu.
We will prove that w = w0.

Subsubcase 1 : w0 = avau.

The hypothesis F (w) = F (w0) implies that u = bu0, v = bv0. Hence w =
abu0abv0, w = abv0abu0. But G(w) is not prime since {{a, b}, V (w)− {a, b}} is
a split. This is excluded.

Subsubcase 2 : w0 = aeuaev. Using the hypothesis F (auav) = F (aeuaev) we
examine several possibilities:

(i) Either u has length at least 2 and then u = bu0b, F (abu0bav) = F (ab eu0baev);
but G(w) is not prime since {{a, b}, V (w)−{a, b}} is a split. This is excluded.

(ii) Or u = b and then v = v1bv2, F (abav1bv2) = F (abafv2bfv1), and as above,
G(w) is not prime.

(iii) u is empty, but G(w) is not connected, this is excluded.

Subsubcase 3 : w0 = aevaeu.
We have u = bu0 and v = v0b. Hence w = abu0av0b and w0 = abev0a eu0b. By
deleting b in w and w0, we obtain x = au0av0 and x0 = aev0a eu0 for which
G(x) = G(x0) and F (x) = F (x0). We can apply the induction, thus x = x0

hence w = w0. The proof is complete.¤
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