
Linear delay enumeration and monadic
second-order logic

Bruno Courcelle
Bordeaux University and CNRS, LaBRI

March 28, 2007

Abstract

The results of a query expressed by a monadic second-order formula
on a tree, on a graph or on a relational structure of tree-width at most
k can be enumerated with a delay between two outputs proportional to
the size of the next output. This is possible by using a preprocessing that
takes time O(n·log(n)) where n is the number of vertices or elements. One
can also output directly the i-th element with respect to a fixed ordering,
however in more than linear time in its size. These results extend to
graphs of bounded clique-width. We also consider the enumeration of
finite parts of recognizable sets of terms specified by parameters like size,
height or Strahler number.

Keywords : Monadic second-order logic, tree-width, enumeration, query,
DAG, monadic second-order transduction, recognizable set of terms, tree au-
tomaton, unfolding, random generation.

Support : This work has been supported by the GRAAL project of the
"Agence Nationale pour la Recherche".

Email: courcell@labri.fr

Postal address : LaBRI, Bordeaux University, 351 Cours de la Libération,
F-33405 Talence, France.

1 Introduction

We are interested in the problem of enumerating the results of a query in a
relational structure expressed in a logical language, actually monadic second-
order logic in this article.
For a fixed formula, and given a relational structure S that can represent

a word, a tree, a graph or a hypergraph subject to a condition like to have

1

tree-width bounded by a fixed integer k, we want an algorithm that builds a
data structure over S that makes it possible to enumerate without repetition
the set of results of the query, in such a way that the time taken to output the
next result is as small as possible. For a query expressed in monadic second-
order logic (MS logic in short), the results are p-tuples of subsets, where p is the
number of free variables (assumed to be set variables). Hence the results have
variable sizes. We aim at obtaining a delay between two outputs that is linear
in the size of the next output, and a known delay depending on S for reporting
the end of the enumeration.
The preprocessing should not consist of the construction of the set of results

followed by a straightforward listing. The following result (a simplified version
of Corollary 3 in Section 5) is representative of what we obtain. We denote by
Sat(G,ϕ(X1, ...,Xp)) the sets of p-tuples of sets that satisfy ϕ in G. This is
the set of results of the query defined by ϕ in G.

Theorem : Let C be a set of graphs of tree-width at most k. For every
monadic second-order formula ϕ(X1, ...,Xp), there exists an algorithm that
takes as input a graph G in C and, after a preprocessing using time O(n ·
log(n)) where n is the number of vertices of G, that enumerates the set
Sat(G,ϕ(X1, ...,Xp)) = {B1, ..., Bm} with linear delay. The preprocessing de-
fines a linear ordering of the set of results and the constructed data structure
makes it possible to compute directly the i-th element Bi in time O(| Bi |
· log(n)) where | Bi | is its size.

Our main tool is the well-known translation of monadic second-order formu-
las on binary trees into tree-automata. It is applicable to graphs and relational
structures of bounded tree-width via a translation of MS formulas on graphs or
structures into MS formulas on labelled trees encoding tree-decompositions, fol-
lowed by another translation into finite tree-automata. Another main tool is the
notion of an AND/OR directed graph without circuits (in short an AND/OR-
DAG). Such a graph embeds a set of trees (with sharings of isomorphic subtrees).
The set EMB(G,x) of trees embedded in G at vertex x is defined recursively
as follows : if x has outdegree 0, then EMB(G,x) = {x}, if x is an OR-vertex
then EMB(G,x) is the set of trees x(T) for T in EMB(G, y) where y is a son
of x, if x is an AND-vertex with sons y1, ..., yn, then EMB(G,x) is the set of
trees x(T1, ..., Tn) for Ti in EMB(G, yi). We first prove (Section 2) that we can
enumerate these trees with linear delay.
From a tree-automaton and a given binary tree t, we build an AND/OR-DAG

of size linear in the size of the given tree t. This DAG embeds all annotated trees
representing the desired results. The annotations are p-tuples of Boolean values
attached to nodes that indicate to which components of the considered p-tuple
of sets a node belongs. The trees embedded in this DAG can be enumerated
with linear delay. However, these trees contain a lot of useless information. In
order to achieve linear delay, where linearity is evaluated with respect to the
size of the output and not with respect to the size of the given tree, we perform
a transformation quite close to the ε-reduction of finite automata (Section 4). It

2

eliminates the nodes with associated label λ = (False, ..., False), because they
do not belong to the result represented by the considered annotation. This last
step requires time O(n ·h), where n is the size of the tree t and h is its height, all
other steps taking linear time in the size of the structures (with huge constants,
which is common and actually unavoidable as proved by Frick and Grohe [9] if
one wishes to get results for general MS formulas). However, we can improve
this result by replacing h by log(n). For doing this we use a result of Courcelle
and Vanicat [5] showing that a tree can be reorganized into a balanced one
having height O(log(n)) for n nodes. In the application to graphs of bounded
tree-width (in Section 5), we use tree-decompositions of height O(log(n)) for n
vertices, which are not optimal in terms of tree-width. Yet another improvement
is obtained if we input a tree t by means of a DAG which "unfolds" into t. Such
a DAG is obtained from t by fusing its identical subtrees.

In Section 6, we also discuss the problem of enumerating finite parts of
T (F,A), the set of terms written with a set F of function symbols and a set
A of constants. We denote by | t | the size of a term and by ht(t) its height.
A term in T (F,A) of height at most h can be seen as a labelling with symbols
from F ∪ A of the nodes of a single ordered tree of height h, namely the tree
T(h, k) of words over {1, ..., k} of length at most h−1, where k is the maximum
arity of a symbol in F . For every recognizable subset L of T (F,A), there is a
single MS formula that defines the labellings corresponding to the terms in L
for any height h. It follows that the improvement of the above theorem based
on representing terms by DAGs can also be used for enumerating with linear
delay, for any h the terms of height at most h belonging to a recognizable set,
because T(h, k) can be represented by a DAG with h vertices and hk edges.
We also give a more direct proof using the result of Section 2 and based on

the enumeration of the set of trees embedded in an AND/OR-graph that is a
kind of unfolding of a deterministic tree-automaton recognizing L, where each
state is splitted into several states incorporating information like the size of the
trees recognized by taking them as accepting states.
In all cases the data structures make it possible to generate directly the i-th

element (a result of a query, a term or a graph). However the time complexity
is (slightly) larger than in the case of enumeration because the data structure
cannot be updated as it can be during the enumeration. We call this the direct
generation problem. From a direct generation algorithm and the knowledge of
the number of elements, one can define random generation algorithms with equal
probabilities for all elements in the sets.

The article is organized as follows. Definitions are given in Section 2 to-
gether with the basic enumeration algorithm for the set of trees embedded in an
AND/OR-DAG. The enumeration algorithm for monadic second-order queries
on words is given in Section 3. The central results about binary trees and terms
are in Section 4. Applications to graphs of bounded tree-width and bounded
clique-width are given in Section 5. The enumeration of sets of words and terms
is considered in Section 6. A table comparing the various results is given with

3

a conclusion in Section 7. An appendix reviews monadic second-order logic,
monadic second-order transductions and clique-width.

2 Linear delay enumeration of trees embedded
in a graph

In this section we define linear delay enumeration, AND/OR-DAGs and we es-
tablish the basic linear delay enumeration algorithm of the set of trees embedded
in an AND/OR-DAG.

Let A be a set linearly ordered as {a1, ..., ap}. We assume that each element
a of A has a size | a | which is a positive integer, say the length of a word or more
generally, the number of bits used to encode a. An algorithm enumerates A with
linear delay if after a preprocessing phase, it outputs a1, ..., ap in this order, and
for each i > 0 it outputs ai within time O(| ai |) (after the preceding output)
and reports the end of the enumeration, i.e., discovers that the last element has
been output, within bounded time. The value p is not necessarily known from
the preprocessing. If h : A −→ B is a bijection such that | h(a) |= Θ(| a |) for
every a ∈ A and h(a) is computable in time O(| a |), and if A is enumerable
with linear delay, then so is B.

Notation : In complexity evaluations, we will write O(n · log(n)) instead
of O(n · (log(n) + 1)), neglecting the fact that log(1) = 0. All logarithms are in
base 2. All graphs, words, trees and relational structures will be finite. We will
denote by Card(X) the cardinality of a set X and by | u | the length of a word
or the size of a term u. On sequences of different lengths, the elements of which
are linearly ordered, we let the lexicographic order include the prefix order.

We prove in this section that the set of trees embedded in AND/OR-DAGs
can be enumerated with linear delay, and with a preprocessing time that is linear
in the size of the dag.

Definition 1 : Depth First Traversal of a DAG.

Let G be a DAG, i.e., a directed graph without circuits. Its vertex set is
denoted by VG. We say that a vertex x is a son of u if there is an edge from u
to x, which we denote by u −→ x. A vertex is a leaf if it has no son. A DAG
G may have multiple edges. It is locally ordered if it is equipped with a partial
order on its edge set EG that linearly orders each set of edges outgoing from
a same vertex. The corresponding strict partial order is denoted by <. When
implemented, a DAG is always linearly ordered since its vertices and edges are
represented by distinct bit sequences. Hence, there is no loss of generality in

4

assuming the existence of a linear order on the set VG ∪EG. Hence every DAG
is locally ordered.
For every vertex x of G, we define DFT (G,x), a sequence of vertices starting

and ending with x and such that consecutive vertices are neighbours. We call it
a depth-first traversal of the subgraph G ↓ x, defined as the union of all directed
paths originating at x. It is defined recursively, with as auxiliary argument, a
set V of vertices intended to be the set of those already visited. The variable V
is global and is updated during the computation. We define DFT (G,V, y) as
follows :
1. If y is a leaf or if y ∈ V, then DFT (G,V, y) = (y), and y is put in V

(unless it is already in V) and said then to be visited.
2. Else, y has outgoing edges that we enumerate as e1 < ... < en, with

respective end vertices z1, ..., zn (a vertex may occur twice or more in this list),
we define :

DFT (G,V, y) = (y) ·DFT (G,V, z1) · (y) ·DFT (G,V1, z2) · (y) · ...
·(y) ·DFT (G,Vn−1, zn) · (y)

where V1 is V augmented with the set of vertices visited during the execution
of DFT (G,V, z1), (y /∈ V1),

V2 is V1 augmented with the set of vertices visited during the execution of
DFT (G,V1, z2), (y /∈ V2),...
and Vn−1 is Vn−2 augmented with the set of vertices visited during the

execution of DFT (G,Vn−2, zn).
3. To conclude the execution of DFT (G,V, y), the set of visited vertices is

updated by V := Vn−1 ∪ {y}. It contains y, z1, ..., zn and their descendants.

We denote by · the concatenation of sequences. The calls to DFT (G,V, z1),
DFT (G,V1, z2), ...,DFT (G,Vn−1, zn) are executed in this order.
We let then DFT (G,x) = DFT (G,∅, x). It is clear that every vertex y 6= x

in G ↓ x has deg(y) occurrences in DFT (G,x), i.e. is visited deg(y) times,
where deg(y) is the degree of y. The vertex x is visited deg+(x) + 1 times,
where deg+(x) is its outdegree i.e., the number of outgoing edges. (We denote
by deg−(x) the indegree of x). Every edge is traversed twice, first in its
direction, and the second time in the opposite one.
The construction of DFT (G,x) by this procedure, which we will call the

depth-first traversal of G ↓ x takes linear time in the number of edges of G ↓ x.
We assume that the DAG G is given in such a way that the first outgoing edge
from a vertex and the i-th one among those with same origin are accessible in
constant time.
Definitions 2 : AND/OR-DAGs and the trees they embed.
(a) We let D be the class of locally ordered DAGs G, called AND/OR-DAGs,

such that :
(a1) the vertex set VG is partitionned into two sets V and

G and V or
G called the

sets of AND-vertices and of OR-vertices,
(a2) there are no two edges with same origin x and same target if x is an

OR-vertex (equivalently, two such edges are fused and considered as a single
one in traversal algorithms and degree evaluations),

5

(a3) the leaves, i.e., the vertices of outdegree 0 are AND-vertices.
Such a DAG is an OR-DAG if the AND vertices are all of outdegree 1 or 0

and an AND-DAG if the OR vertices are all of outdegree 1.
(b) The height of a vertex x in G is the maximal length of a directed path

in G ↓ x.
(c) An AND-DAG G is called a tree if :
(c1) G = G ↓ r for a (unique) vertex r called its root and denoted by

Root(G) and
(c2) whenever x and y are the ends of two distinct edges with origin a same

AND-vertex, then VG↓x ∩ VG↓y = ∅.
Every tree in this sense is a directed tree in the usual sense.
(d) Tree embeddings
Let T andG ∈ D, where T is a tree, and let x be a vertex of G. An embedding

of T in G at x is a mapping h that maps V or
T into V or

G , V and
T into V and

G , ET

into EG, that preserves incidences and the linear orderings of the sets of edges
with a same origin and furthermore :
(d1) x = h(Root(T)),
(d2) if u is an AND-vertex of T then h is a bijection of the set of edges

outgoing from u in T onto the set of those outgoing from h(u) in G ; it follows
that the outdegrees of u and h(u) are the same, and the leaves of T are mapped
to leaves of G.
If u is an ancestor of v in T , then h(u) is an ancestor of h(v) and h(u) 6= h(v).

But the mapping h need not be injective on the set V or
T ∪V and

T . However it is if
G satisfies Condition (c2) (even without being a tree). We prove this as follows.
If u and v are incomparable in T , then u is in T ↓ u0 and v is in T ↓ v0 where u0
and v0 are two distinct sons of a vertex w that must be an AND-vertex. Hence
h(w) is an AND-vertex, h(u) is in G ↓ h(u0), h(v) is in G ↓ h(v0). The two edges
w −→ u0 and w −→ v0 of T are mapped to two distinct edges h(w) −→ h(u0)
and h(w) −→ h(v0) of G. Condition (c2) implies that VG↓h(u0) ∩ VG↓h(v0) = ∅,
hence h(u) 6= h(v).
We denote by EMB(G,x) the set of trees (up to isomorphism) embedded

in G at x, and by EMB(G) the set of those embedded in G at some x.
If G is an AND-DAG, then EMB(G,x) consists of a single tree (up to

isomorphism), also called the unfolding of G from x, and denoted by Unf(G,x).
(e) A linear notation for embedded trees.
We write a tree T as r(T1, ..., Tn) if r is its root and Ti = T ↓ yi

where y1, ..., yn are the sons of r, numbered by increasing order of the edges
with origin r and respective ends y1, ..., yn. Clearly, each Ti is a tree with root
yi. By using recursively this notation, we obtain a linear notation for trees. It
does not distinguish the AND-vertices from the OR-vertices; vertices of both
types can be of outdegree 1.
If h is an embedding of a tree T in G, and T is linearly denoted as above by

r(..., ..., ...), then, by replacing in this notation each node u of T by its image
h(u), we obtain a linear notation that represents simultaneously T (or any tree
isomorphic to T) and its embedding in G.

6

For an example, let the AND-DAG G have edges x −→ y, y −→ u, x −→ z,
z −→ u. The set EMB(G,x) has a unique element denoted by x(y(u), z(u)).
For another example, consider the DAG of Figure 1, where the OR-vertices

are x and y. The tree p(q(r(u)), q0(s(v, w))) embeds into this DAG by the
embedding k such that k(p) = f, k(q) = k(q0) = x, etc... The linear notation
f(x(y(a)), x(h(b, c))) represents this embedding.
(f) Linear orderings of the sets EMB(G,x).
We define on each set EMB(G,x) a strict ordering ≺ as follows :
T ≺ T 0 if and only if :
(f1) either x is an OR-vertex with sequence of sons y1, ..., yn, ordered ac-

cording to the ordering of edges outgoing from x, T = x(U), T 0 = x(U 0),
U ∈ EMB(G, yi), U 0 ∈ EMB(G, yj) and i < j, or i = j and U ≺ U 0 in
EMB(G, yi).
(f2) either x is an AND-vertex with sequence of sons y1, ..., yn as above,

T = x(T1, ..., Tn), T
0 = x(T 01, ..., T

0
n) and :

either Tn ≺ T 0n,
or Tn = T 0n and Tn−1 ≺ T 0n−1,
or Tn = T 0n and Tn−1 = T 0n−1 and Tn−2 ≺ T 0n−2,
or ... and T2 = T 02 and T1 ≺ T 01.

Remarks 1 : (1) Consider the DAG G with AND-vertices a, b, c, with OR-
vertices x and y and edges x −→ y, x −→ c, y −→ a, y −→ b, y −→ c. Then
EMB(G,x) = {xya, xyb, xyc, xc}, EMB(G, y) = {ya, yb, yc, c}.We do not have
EMB(G, y) ⊆ EMB(G,x) as one might think. That is we do not "evaluate"
OR-vertices as set unions. (For readability, parentheses surrounding a single
subtree are omitted. We write xya instead of x(y(a))). It follows that two sets
EMB(G,x) for distinct vertices x are disjoint.
(2) By using the linear notation of Definition 2 (e), one can define alterna-

tively the set of trees EMB(G,x) by :
1. either x is a leaf and EMB(G,x) = {x},
2. or x is an OR-vertex and :

EMB(G,x) = {x(T) | T ∈ EMB(G, y), y is a son of x},

3. or x is an AND-vertex with sons y1, ..., yn as in (f2) and :

EMB(G,x) = {x(T1, ..., Tn) | Ti ∈ EMB(G, yi) for i = 1, ..., n}.

Lemma 1 : The relation ≺ is a strict linear ordering of each set EMB(G,x).
As an illustration, we note that the ≺-smallest element of EMB(G,x), de-

noted by F (x), is defined recursively as follows :
F (x) = x if x is a leaf,
F (x) = x(F (y1), ..., F (yn)), if x is an AND-vertex with sons y1, ..., yn as in

(f2),
F (x) = x(F (y1)), if x is an OR-vertex with sons y1, ..., yn as in (f1).

7

LetG be a DAG inD and x a vertex ofG. We defineN(x) = Card(EMB(G,x)).
By assuming that arithmetic operations can be performed in unit time, inde-
pendently on how large the values of arguments are, we get the following lemma.

Lemma 2 : (1) The numbers N(x) can be computed by the following rule :
N(x) = 1 if x is a leaf,
N(x) = N(y1) · ... ·N(yn) if x is an AND-vertex with sons y1, ..., yn,
N(x) = N(y1) + ...+N(yn) if x is an OR-vertex with sons y1, ..., yn.
(2) The labelling of all vertices y of G ↓ x by the corresponding integers

N(y) can be done in time O(Card(EG↓x)).

Proof : (1) This is clear from the definitions. We use here condition (a2).
(2) The rules specify N(x) in a unique way, this is clear by induction on the

height of x. The value N(y) can be attached to each vertex y of G ↓ x during
a depth-first traversal of G ↓ x, which gives the result. ¤

For every vertex y in G we denote by E(i, y) the i-th element of EMB(G, y).
The function E depends on the ordering < of the set of edges.

Lemma 3 : (1) E(1, y) = y if y is a leaf ; E(i, y) is undefined if y is a leaf
and i > 1.
(2) E(i, y) = y(E(i−N(z1)−...−N(zk), zk+1)) if y is an OR-vertex with sons

z1 < ... < zn, k is the largest integer in {0, 1, ..., n} such thatN(z1)+...+N(zk) <
i ; E(i, y) is undefined if y is so but no such k does exist, which means that
i > N(z1) + ...+N(zn) = N(y).
(3) E(i, y) = y(E1, ..., En) if y is an AND-vertex with sons z1 < ... < zn,

and the following hold :
i = i1+(i2−1)N(z1)+(i3−1)N(z1)N(z2)+...+(in−1)N(z1)N(z2)...N(zn−1),
with 1 ≤ i1 ≤ N(z1), 1 ≤ i2 ≤ N(z2), ... , 1 ≤ in ≤ N(zn) and
E1 = E(i1, z1), ... , En = E(in, zn).
E(i, y) is undefined if y is an AND-vertex with sons z1, ..., zn as in (f2) and

the above conditions cannot be realized, which means that i > N(z1)·...·N(zn) =
N(y).
The sequence i1, ..., in is unique when it exists.

Proof : Clear from the recursive definition of EMB(G,x) and elementary
properties of the lexicographic ordering of a Cartesian product C1, ..., Cn where
each set Ci has N(zi) elements.¤

We will denote by SelectOR the mapping that associates (i−N(z1)− ... −
N(zk), zk+1) with each (i, y) satisfying Case (2), by SelectAND the mapping
that associates (i1, z1, i2, z2, i3, z3, ..., in, zn) with each (i, y) satisfying Case (3)
and by degOR(G) the maximum outdegree of an OR-vertex. The size of a tree
E is | E |= Card(VE).

8

Theorem 1 : Let G be an AND/OR-DAG and x a vertex.
(1) After a preprocessing taking time O(Card(EG↓x)), one can enumerate

the set EMB(G,x) with linear delay.
(2) After a preprocessing taking time O(Card(EG↓x)), one can compute for

any i the tree E(i, x) in time O(| E(i, x) | · log(degOR(G))).

Proof : (1) The characterization of Lemma 3 yields a recursive procedure
for defining E(i, x). For enumerating the set EMB(G,x), it suffices to compute
successively E(i, x) for i = 1, ..., N(x).
The preprocessing consists in the labelling defined in Lemma 2. However, we

must examine the time taken for computing SelectAND(i, y) and SelectOR(i, y)
whenever they are needed.
For SelectAND(i, y) where y has sons z1, ..., zn as in (f2), and since the values

N(z1), ..., N(zn) are available, one obtains the sequence (i1, z1, i2, z2, i3, z3, ..., in, zn)
in time O(n) by n Euclidian divisions. Since this computation is intended to set
up n outgoing edges in the resulting tree, it fits inside the desired linear time
bound in terms of the size of the result.
This is not the same for SelectOR(i, y). Its computation in the case where

it produces (i −N(z1)− ... −N(zk), zk+1) takes time O(k). This time is not
always proportional to the size of the resulting tree. However, SelectOR(i, y) can
be computed in constant time from SelectOR(i− 1, y). Since SelectOR(i, y) is
requested only after SelectOR(i− 1, y) has been also requested, we can build a
table for the function SelectOR. The entries of the table are computed only when
needed and immediately inserted in view of later use. They are not computed
during a preprocessing. Thus we obtain a linear delay enumeration algorithm.
Setting up a similar table for SelectAND can also be done for accelerating later
computations but is not necessary for achieving linear delay.
(2) The progressive construction of a table for SelectOR does not work if

one only wants E(i, y) for random values i. In this case the remedy is to build
for each OR-vertex y a binary search tree of height hy = dlog(deg+(y))e for
obtaining SelectOR(i, y) in time O(hy). This can be done for each y in time
O(deg+(y)) during the traversal of G that computes and installs the values
N(y). We obtain thus with a preprocessing time of same order as for (1) a
generation time O(| E(i, x) | · log(degOR(G))). ¤

Example 1 : Figure 1 shows an AND/OR-DAG with its vertices labelled by
the values of function N . The OR-vertices are x and y. The enumeration yields
the following sequence of trees, written with the linear notation of Definition 2
(e). With each tree we indicate the values of SelectOR entered in the table.
We assume that the table is initialized with SelectOR(1, w) = (1, w0) for every
vertex w, where w0 is its first son.
1 : f(xg(a, b, ya), xg(a, b, ya))
2 : f(xg(a, b, yc), xg(a, b, ya)) ;
SelectOR(2, y) = (1, c) ; SelectOR(2, x) = (2, g)
3 : f(xya, xg(a, b, ya)) ; SelectOR(3, x) = (1, y),

9

Figure 1: An AND/OR-DAG and the values N(y) at its vertices y.

10

4 : f(xyc, xg(a, b, ya)) ; SelectOR(4, x) = (2, y),
5 : f(xh(b, c), xg(a, b, ya)) ; SelectOR(5, x) = (1, h),
6 : f(xg(a, b, ya), xg(a, b, yc)),
7 : f(xg(a, b, yc), xg(a, b, yc)),
8 :

Remarks 2 : (1) Theorem 1 extends to the enumeration of A =
S
{EMB(G,x)

| x ∈ X} where X is a set of vertices. The sets EMB(G,x) are pairwise dis-
joint as observed in Remark 1 (1). To enumerate A, it suffices to add a new
OR-vertex r, edges from r to all vertices of X and a linear order on these edges,
yielding an AND/OR-DAG G0 that is locally ordered. The enumeration of A
reduces to that of EMB(G0, r).
(2) Space requirements in the algorithms of Theorem 1 : The space needed to

store the function SelectOR is O(
P
{N(y) | y ∈ V or

G↓x}). However, if G satisfies
Condition (c2) of Definition 2 (without being necessarily a tree), then we need
not store SelectOR(i, y) for all i, but only (for each y) for the last value i for
which SelectOR(i, y) has been used (because embeddings of trees are injective).
In this case the required space is only O(Card(V or

G↓x)) for these values, hence
O(Card(EG↓x)) in total. For the direct generation algorithm, we need space
O(
P
{deg+(y) | y ∈ V or

G↓x}) which is bounded by O(Card(EG↓x)).
In the example of Figure 1, Condition (c2) does not hold. Observe that

E(17, f) = f(E(2, x), E(4, x)), hence SelectOR(2, x) and SelectOR(4, x) are
needed simultaneously. So we need to store all SelectOR unless we compute
each value when needed. In this case, by using the technique of (2) of Theorem
1, we achieve delay O(s · log(degOR(G))) where s is the size of the generated
tree. This may be considered as a good result if the considered graphs have
bounded outdegree.

3 Queries on words

We give a linear delay enumeration algorithm for the set of answers to a monadic
second-order query on words. Although these queries could be handled as a
particular case of queries on binary trees to be considered next, we consider
them first in order to facilitate the presentation of the general construction. All
our constructions use DAGs based on finite automata associated with monadic
second-order formulas.

Let w be a word in A+, the set of finite nonempty words over a finite alphabet
A. It will be handled as the relational structure Sw with domain DSw consisting
of one element for each occurrence of a letter, a successor relation defining the
next occurrence, and unary predicates associated with letters in A which say
which letter is at an occurrence. The relational signature of Sw is denoted by
σA.

11

Let ϕ(X1, ...,Xk) be a monadic second-order formula (MS formula) and
Sat(Sw, ϕ(X1, ...,Xk)) be the set of k-tuples of subsets of DSw that satisfy ϕ.
(Monadic second-order logic is reviewed in the appendix.). We define the size
of (U1, ..., Uk) as k+Card(U1) + ...+Card(Uk), so that the size of (∅, ...,∅) is
not 0. It could also be defined as 1+Card(U1 ∪ ...∪Uk), this would not change
our results regarding linear delay enumeration.

Theorem 2 : Let A be a finite alphabet and ϕ(X1, ...,Xk) be an MS formula
over the signature σA. For every word w in A+ there exists a linear delay
enumeration algorithm of the set Sat(Sw, ϕ(X1, ...,Xk)) with preprocessing time
O(| w |2). There is an algorithm using a preprocessing of same time complexity
that generates the i -th result Bi within time O(| Bi | · log(n)) where |Bi | is
the size of Bi . The results are enumerated or generated with respect to a fixed
lexicographic order.

Proof : The set Sat(Sw, ϕ(X1, ...,Xk)) is represented in a well-known way
(see [17]) by a regular language Lϕ(X1,...,Xk) ⊆ C+, where C is the alphabet
A×Bk, B = {True, False}. For w ∈ A+ and subsets U1, ..., Uk of DSw , we let
w[U1, ..., Uk] be the word in C+ obtained by replacing in w each occurrence u of
a letter a by (a, α), where α = (b1, ..., bk), bi = False if u /∈ Ui, and bi = True
if u ∈ Ui. Hence w[U1, ..., Uk] encodes w and the k-tuple (U1, ..., Uk).
The set Lϕ(X1,...,Xk) of all words w[U1, ..., Uk] for w ∈ A+ and (U1, ..., Uk) ∈

Sat(Sw, ϕ(X1, ...,Xk)) is recognizable, and is recognized by a finite deterministic
automaton A effectively constructible from ϕ(X1, ...,Xk). Let Q be its set of
states. For every w in A+ of length n, we build a DAG GA(w) as follows :
1. Its set of vertices is Q× [0, n] where [0, n] denotes {0, 1, ..., n}.
2. The edges are from (q, i− 1) to (p, i) with label (i, α) in {1, ..., n} ×Bk

whenever there is inA a transition from q to p associated with letter (a, α) where
a is the i-th letter of w. (We replace letter a by the corresponding occurrence i
in the word).
This DAG is an OR-DAG, where all vertices except the leaves are OR-

vertices. It has (n+ 1) · Card(Q) vertices and at most n · Card(Q) · 2k edges
(exactly this number if the automaton is complete). It can be constructed in
time O(n).
Let q0 be the initial state of A, and QAcc be its set of final (accepting)

states. In the DAG GA(w), all paths going from (q0, 0) to a vertex (p, n)
for some p in QAcc have length n. They are in bijection with the elements
of the set Sat(Sw, ϕ(X1, ...,Xk)) (because the automaton A is deterministic).
By applying Theorem 1 to GA(w), one can enumerate with linear delay this
set of paths. Hence one obtains a set of sequences, each of length n, that rep-
resents Sat(Sw, ϕ(X1, ...,Xk)). However, in these sequences, the components
(i, λ) where λ = (False, ..., False) are useless. They correspond to occurrences
in the word which belong to no component of the considered tuple. One can
delete them from the outputs, but the enumeration delay is then no longer
linear.

12

Considering the DAG GA(w) as a finite-state automaton, we will apply
to it the well-known transformation called ε-reduction. We will mainly replace
sequences of edges with labels of the form (i, λ) by direct edges. This transfor-
mation can be described as follows :
First step : We remove (or mark as "removed") all vertices of GA(w) which

are not on paths from the vertex (q0, 0) to a vertex (p, n) for any p in QAcc.
We obtain a DAG G1(w).
Second step : For every transition from (p, i − 1) to (q, i) with label (i, λ),

we replace this label by ε.
Third step : For every state (q, i), i < n− 1, from which there is a sequence

of ε-transitions to (p, n) for some p in QAcc, we create a "direct" ε-transition
from (q, i) to (p, n).
Fourth step : For every q, i, p, r, j such that there is a sequence of ε-

transitions from (q, i) to (p, j) and there is a transition from (p, j) to (r, j + 1)
with label (j+1, α), we create a "direct" transition from (q, i) to (r, j+1) with
label (j + 1, α).
Fifth step : We delete all ε-transitions except those with target (p, n) for

some p in QAcc.

We let G2(w) be the AND/OR-DAG obtained in this way. (The AND-
vertices are those of the form (p, n) for some p in QAcc). The trees inEMB(G2(w),
(q0, 0)) are actually paths. Their edges are labelled by pairs (j, α) with α 6= λ
and 0 < j ≤ n, except for the last edges which can be labelled by ε. The length
of a path is the cardinality of U = U1 ∪ ...∪Uk up to 1, where (U1, ..., Uk) is the
represented element of Sat(Sw, ϕ(X1, ...,Xk)). (The length is one more than the
cardinality of U when the last edge of such a path is labelled by ε). These paths
can be enumerated with linear delay, which gives a linear delay enumeration of
Sat(Sw, ϕ(X1, ...,Xk)).
In the fourth step, there are at most n − i − 1 pairs (p, j) associated with

each (q, i) (because the automaton A is deterministic, so that no two transitions
with label (i, λ) have same origin). It follows that at most (2k − 1)(n − i − 1)
"direct" transitions with source (q, i) are created. In total, the DAG G2(w) has
less than n2 · Card(Q) · 2k edges, and outdegree bounded by n · 2k.
The first two steps can be performed in time O(n) in the course of depth-

first traversals as defined in Section 2. Step 4 may produce a DAG with O(n2)
edges.
Steps 3 to 5 can be done in time O(n2) as follows. We let L(i) be the

set of 4-tuples (q, r, α, j + 1) where q, r, α, j are defined in Step 4, including
the case empty sequences of ε-transitions, so that we can have in L(i) some
4-tuples with j = i, corresponding to the transitions of G1(w) that are not
(i + 1, λ)-transitions. We put also in L(i) the triple (q, p, n) whenever there is
a direct edge from (q, i) to (p, n) as specified in Step 3. Each set L(i− 1) can
be computed from L(i) in time a · Card(L(i)) for a constant a depending on k
and the number of states. Hence, we obtain the DAG G2(w) by computing
successively L(n−1), L(n−2), ..., L(0) in total time a ·(

P
{Card(L(i)) | 0 ≤ i <

13

n}) = O(n2). We can apply Theorem 1, and we obtain an enumeration with
finite delay. The number of results is known from the preprocessing.
The results with their complexity evaluations follow from Theorem 1, using

the fact that degOR(G) ≤ n · 2k.
An element of Sat(Sw, ϕ(X1, ...,Xk)) is encoded by a sequence (i1, α1), ...,

(ip, αp) with 0 < i1 < ... < ip ≤ n and α1, ..., αp ∈ Bk − {λ}. Let us order
pairs by (i, α) < (j, β) if and only if, either i < j, or i = j and α <lex β,
where <lex is the lexicographic order on Bk, and let ε < (i, α) for every i and
α. We obtain a lexicographic linear order on sequences (i1, α1), ..., (ip, αp). By
Theorem 1, the set Sat(Sw, ϕ(X1, ...,Xk)) can be enumerated in this order,
provided the edges of the DAG G2(w) are treated according to the order < on
their labels.The i-th element of Sat(Sw, ϕ(X1, ...,Xk)) can be output in linear
time in its size. Its elements can be randomly generated with respect to the
same order. ¤

Remarks 3 : (1) We can roughly evaluate the efficiency of this algorithm
as follows: for time p = b · n2 spent in preprocessing for a word of length n, we
may enumerate 2k·n = 2a.p

1/2

results with linear delay.
(2) Required space : Condition (c2) holds trivially. The required space is thus

the size of the DAG G2(w), hence O(n2). For the direct generation algorithm,
one needs space O(n · log(n)) to handle the selection at OR-vertices, thus in
total we need space O(n2).

Example 2 : We consider words with a single letter a and the MS formula
with first-order variables x, y, z expressing that x < y < z where < is the
natural order on occurrences of letters. This formula is MS and not first-order
because the structure Sw uses a successor relation and not an order relation.
The corresponding language is described by the regular expression λ∗αλ∗βλ∗γλ∗

where :

α = (True, False, False), β = (False, T rue, False),
γ = (False, False, True), λ = (False, False, False),

and we replace (a, μ) by μ for each μ inB3. The triple α (resp. β, γ, λ) means
that the corresponding occurrence is the value of x (resp. of y, of z, of none of
x, y, z). For a word of length n, the preprocessing time takes timeΘ(n2), because
the resulting automaton has Θ(n2) edges (see below its description). The delay
between two results is constant (since the results are triples of occurrences in
the word), and there are Θ(n3) results. So the construction of the total set of
satisfying triples cannot be done during a preprocessing step taking only time
O(n2). The enumeration algorithm cannot be replaced by the trivial listing of
a set constructed during a preprocessing phase taking time O(n2).
We now describe the construction of G2(w). We use a deterministic au-

tomaton A for the language λ∗αλ∗βλ∗γλ∗ with states p, q, r, s , p initial, s
accepting, transitions p −→ q for letter α, q −→ r for letter β, r −→ s for letter
γ, and loops on each state for letter λ. It is not complete.

14

The DAG GA(w) can be described as follows : Its vertices are pi, qi, ri, si for
i = 0, ..., n. The edges are pi −→ q(i+ 1) labelled by (i+ 1, α), qi −→ r(i+ 1)
labelled by (i+ 1, β), ri −→ s(i+ 1) labelled by (i+ 1, γ), and xi −→ x(i+ 1)
labelled by λ, for every x in {p, q, r, s} and for all relevant integers i. The first
step eliminates vertices q0, r0, r1, s0, s1, s2 and p(n − 2), p(n − 1), pn, q(n −
1), qn, rn.
The final DAG G2(w) consists of the following edges :
pi −→ qj labelled by (j, α) for 0 ≤ i < j < n− 1,
qi −→ rj labelled by (j, β) for 1 ≤ i < j < n,
ri −→ sj labelled by (j, γ) for 2 ≤ i < j ≤ n,
si −→ sn labelled by ε for 3 ≤ i < n.
This example does not witness the maximal efficiency described in Remark

3 (1). ¤

4 Queries on binary trees and terms

This section contains the main results : linear delay enumeration algorithms for
MS queries on terms given directly or as unfoldings of DAGs.

A (functional) signature is a pair (F,A) of a finite set F of function symbols
of positive arity (ρ(f) is the arity of f) and a finite set A of constants. We denote
by T (F,A) the set of terms built over it, by Occx(t) the set of occurrences of a
symbol x in t ∈ T (F,A), and by OccA(t), OccF (t) the sets of occurrences of
symbols in A and in F and we let Occ(t) = OccA(t) ∪ OccF (t). (Occurrences
may be defined as sequences of integers or in another way). We denote by
| t |= Card(Occ(t)) the size of t in T (F,A) and by ht(t) its height, i.e., the
number of nodes of a longest path in t (considered as a tree) from the root to a
leaf. Hence ht(a) = 1, if a is a constant.
Each term t in T (F,A) can be represented by a relational structure St whose

domain DSt is Occ(t). If p is the maximum arity of a symbol in F , the structure
St has p binary (functional) relations for pointing to the i-th son of each occur-
rence (1 ≤ i ≤ p) and unary relations relating symbols and their occurrences.
We denote by τF,A the relational signature of St. (Examples of formulas using
this signature are given in the appendix, see Example 7).
Let ϕ(X1, ...,Xk) be an MS formula over τF,A. As in Section 2, we will

use B = {True, False} and λ to denote (False, ..., False) ∈ Bk. We want
to enumerate the set Sat(St, ϕ(X1, ...,Xk)) of k-tuples of subsets of DSt that
satisfy ϕ. A tuple (U1, ..., Uk) in this set will be handled as the set of pairs
(u, α) where u ∈ U1 ∪ ... ∪ Uk, α = (b1, ..., bk) ∈ Bk − {λ} with bi = False if
u /∈ Ui and bi = True if u ∈ Ui. We define the size of a tuple (U1, ..., Uk) as
1 + Card(U1 ∪ ... ∪ Uk). In complexity evaluations, we consider that k is fixed
and that each element of DSt is a data of fixed size, as done by Durand and
Grandjean in [8].

15

For t ∈ T (F,A) and subsets U1, ..., Uk of Occ(t), we let t[U1, ..., Uk] be the
term in T (F ×Bk, A×Bk) called an annotation of t obtained by replacing at
each occurrence u of a symbol x in F ∪ A this symbol by (x,α) where α =
(b1, ..., bk), bi = False if u /∈ Ui, and bi = True if u ∈ Ui. Hence the term
t[U1, ..., Uk] encodes t (its underlying term) and the k-tuple (U1, ..., Uk). We
denote by NL(t[U1, ..., Uk]) the set of pairs (u, α) such that α ∈ Bk − {λ} and
u ∈ Occ(a,α)(t[U1, ..., Uk]) for some a ∈ A.

Assumptions : (a) We assume that F has only binary function symbols.
The terms in T (F,A) are considered as binary trees. Furthermore, we assume
that ϕ(X1, ...,Xk) is written in such a way that the sets X1, ...,Xk which
satisfy ϕ are sets of occurrences of constants, called below leaves, by using the
terminology of trees.
(b) We assume that Sat(St, ϕ(X1, ...,Xk)) is not empty, and does contain the

k-tuple (∅, ...,∅). In all cases we will consider, this condition can be decided
in linear time, and this test can be included in the preprocessing phase. If
Sat(St, ϕ(X1, ...,Xk)) contains (∅, ...,∅), we can output this result and continue
with the modified formula ϕ(X1, ...,Xk) ∧ (

W
1≤i≤kXi 6= ∅).

Assumption (a) will be lifted later. It simplifies the main proof. Assumption
(b) will be made without loss of generality.

We will use complete deterministic bottom-up finite tree-automata (see the
book on line [3] for tree automata) simply called automata in the sequel. (Us-
ing complete automata is not essential but simplifies the formal description of
constructions). We recall that the transitions of an automaton A (for a binary
signature) are pairs (a, q) in A×Q and 4-tuples (q1, q2, f, q) in Q×Q ×F ×Q
that define total mappings from A and from Q×Q ×F to Q. A run of A on a
term t is a total mapping runA from Occ(t) to Q that satisfies the transitions.
It is accepting if runA(Root(t)) is an accepting state.
We let Lϕ(X1,...,Xk)[t] be the finite set of annotated terms t[U1, ..., Uk] for all

k-tuples (U1, ..., Uk) in Sat(St, ϕ(X1, ...,Xk)) (it may be empty). Our problem is
thus to enumerate the set {NL(t) | t ∈ Lϕ(X1,...,Xk)[t]}. We define Lϕ(X1,...,Xk)

as the union of the sets Lϕ(X1,...,Xk)[t] for all t ∈ T (F,A). This set is recog-
nizable by a classical result of Doner, Thatcher and Wright [6, 16] (see the book
chapter by Thomas [17]). An automaton A recognizing it can be built from
ϕ(X1, ...,Xk).

For every term t in T (F,A), we now define an AND/OR-DAG GA(t) that
embeds the terms t[U1, ..., Uk] for all (U1, ..., Uk) in Sat(St, ϕ(X1, ...,Xk)).

Definition 3 : The AND/OR-DAG associated with a term t.

We let Q be the set of states of A and QAcc be its set of accepting states.
We define V and, the set of AND-vertices of GA(t) as (OccA(t) × Bk) ∪

(OccF (t)×Q×Q). We define V or, the set of OR-vertices of GA(t) as Occ(t)×Q.

16

We define the edges as follows :
1. If u is an occurrence of a constant a, then we define edges:

(u, q) −→ (u, α) for all α such that ((a, α), q) is a transition of A.
2. If u is an occurrence of a function symbol f , then we define edges :

(u, q) −→ (u, q1, q2) for all q1, q2 such that (q1, q2, f, q) is a transition
of A.
All these edges go from an OR-vertex to an AND-vertex.
3. We also define edges from AND-vertices to OR-vertices :

(u, q1, q2) −→ (u1, q1) and (u, q1, q2) −→ (u2, q2) if u1 and u2 are the
first and second sons of u.

This graph is a directed graph without circuits by construction. Its leaves
are AND-vertices. A linear order on edges outgoing from a vertex (u, q) can be
defined from the lexicographical ordering on Bk and a lexicographic ordering on
Q×Q based on a linear order onQ.We also define the edge (u, q1, q2) −→ (u1, q1)
as smaller than the edge (u, q1, q2) −→ (u2, q2).

Remark 4 : Without being a tree (because an OR-vertex may have indegree
more than 1) this DAG satisfies Condition (c2) of Definition 2 : if in this graph
we have a directed path from x to y, then the first components of x and y are
occurrences u and v in the term t, and u is an ancestor of v in t or is equal to v.
Furthermore, an AND-vertex x with two sons y1 and y2 is of the form (u, q1, q2),
the sons y1 = (u1, q1) and y2 = (u2, q2) correspond to the two sons u1 and u2 of
u in t. The vertices in GA(t) ↓ y1 and in GA(t) ↓ y2 correspond to occurrences
in the subterms t ↓ u1 and t ↓ u2 of t rooted at u1 and u2. Hence they have no
vertex in common.
Assuming that t has n occurrences of constants and n − 1 occurrences of

binary symbols, we note that GA(t) has n · 2k + (n− 1) · Card(Q)2+ (2n−
1) ·Card(Q) = O(n) vertices, (3 · n− 2) ·Card(Q)2 + n · 2k = O(n) edges and
can be constructed from t in time O(n).

Lemma 4 : Let t ∈ T (F,A) and T ∈ EMB(GA(t), (Root(t), p)). The con-
stants labelling the leaves of T define a term t in T (F,A×Bk) with underlying
term t. The OR-vertices of T are pairs in Occ(t)×Q and these pairs define the
unique run of A on t and futhermore p = runA(Root(t)). Conversely, on every
term t in T (F,A × Bk) the automaton A has a unique run associated with a
unique tree T ∈ EMB(GA(t), (Root(t), p)) for some p ∈ Q.

Proof : Clear from the definitions. ¤

It follows that the set EMBAcc(GA(t)) defined as the union of the sets
EMB(GA(t), (Root(t), p)) for p in QAcc is in bijection with Lϕ(X1,...,Xk)[t].
Hence, the set Lϕ(X1,...,Xk)[t] can be enumerated with linear delay by Theo-
rem 1 (and the remark following it). But as in the case of words, we do not
obtain a linear delay enumeration algorithm for the set Sat(St, ϕ(X1, ...,Xk)).
To obtain one, we will again perform a kind of ε-reduction.

17

A leaf of GA(t), or of a tree embedded in GA(t) is a λ-leaf if it is of the
form (u, λ), where λ = (False, ..., False).
If T is embedded inG we denote byNL(T) the set of its leaves that are not λ-

leaves. The set Sat(St, ϕ(X1, ...,Xk)) is in bijection with NL(EMBAcc(GA(t)))
defined as the set of sets NL(T) for trees T in EMBAcc(GA(t)). This latter
bijection preserves sizes up to constant multiplicative factors. Our objective is
now to transform GA(t) into an AND/OR-DAG H with a vertex r such that :

NL(EMB(H, r)) = NL(EMBAcc(GA(t)))

and the size of a tree T in EMB(H, r) is proportional to NL(T).

Definitions 4 : Transformations of GA(t).

First step : We add to GA(t) a new OR-vertex r and edges from r to the
vertices (Root(t), p) for all accepting states p and we obtain an AND/OR-DAG
G1(t). Thus the enumeration problem reduces to enumerating EMB(G1(t), r).
The construction of G1(t) can be done from GA(t) in constant time.

Second step : Let us define a λ-tree as a tree T in EMB(G1(t), u) for some
u, having only λ-leaves. Let us say that a vertex x of G1(t) is of type A (for
always) if all the trees in EMB(G1(t), x) are λ-trees. It is of type N (for never)
if no tree in EMB(G1(t), x) is a λ-tree. It is of type S (for sometimes) otherwise.
The second step consists in marking the vertices of G1(t) ↓ r with their

types N,S or A. This can be done during a depth-first traversal of G1(t) ↓ r
starting and ending at r, hence in time O(| t |), using the procedure DFT
described in Section 2, and the following computation rules for types. The type
of a λ-leaf is A, that of another leaf is N. The type of an OR-vertex is N if
all its sons have type N, A if all its sons have type A and S in all other cases.
The type of an AND-vertex is N if one of its sons has type N, A if all its sons
have type A and S in all other cases.
One can also delete the λ-leaves because the information they contain is now

included in the types of OR-vertices. Some OR-vertices may become leaves.
It r is of type A, then one can report that (∅, ...,∅) is the only satisfying

assignment and stop.
It r is of type S, then (∅, ...,∅) will be one result, say the first one.

Third step :
1. For each AND-vertex of the form (u, q1, q2) we do the following concerning

its two sons (u1, q1) and (u2, q2) and its father (u, q) :
(a) if (u1, q1) and (u2, q2) are both of type A we delete the AND-vertex

(u, q1, q2) ;
(b) otherwise
if (u1, q1) is of type S or A we add an ε-edge (i.e., an edge labelled by ε)

from (u, q) to (u2, q2) ;
if (u2, q2) is of type S or A we add an ε-edge from (u, q) to (u1, q1) ;

18

in both cases, if (u1, q1) or (u2, q2) is of type A we delete the AND-vertex
(u, q1, q2).
2. We delete the vertices of type A, and then, the vertices not reachable

from r by a directed path. We let G2(t) be the graph obtained in this way in
time O(| t |).

Claim 1 : G2(t) is a locally ordered AND/OR dag.
Proof : Can an OR-vertex of G2(t) be a leaf ? No because this vertex would

be of type A (because a vertex having a son not of type A is never deleted) and
all vertices of type A are finally deleted.
For each u at most one of the nodes (u, q) has type S or A because this

implies that there is a run of A on the term (t ↓ u)[∅, ...,∅] yielding state q at
u, but A is deterministic hence, there is at most one such state q. It follows
that we do not create parallel edges, the origin of which is an OR-vertex (in case
(b), if we would create two parallel edges from (u, q) to (u2, q2) this would mean
that two pairs (u1, q1) and (u1, q01) are of type S or A.) Since the occurrences
of t can be linearly ordered, we have a linear order on the set of edges. Hence,
G2(t) is locally ordered.
Condition (c2) of Definition 2 holds for G1(t), hence also for G2(t) as one

checks easily. ¤

Claim 2 : NL(EMB(G2(t), r)) = NL(EMB(G1(t), r)).
Proof : The deleted vertices are all of type A ; the corresponding subtrees

are λ-trees and do not contribute to the sets in NL(EMB(G1(t), r)). They
need not be explored, hence they can be deleted.
Deleting them does not block explorations because in case (b) of the third

step, if (u1, q1) is of type A we add an ε-edge from (u, q) to (u2, q2). Hence, the
subgraph G1(t) ↓ (u2, q2) will be explored from (u, q) through the ε-edge from
(u, q) to (u2, q2). (And similarly if we exchange (u1, q1) and (u2, q2).) It follows
that NL(EMB(G2(t), r)) ⊇ NL(EMB(G1(t), r)).The other inclusion is proved
by a similar argument.¤

Claim 3 : The trees in EMB(G2(t), r) have no λ-leaves.
Proof : Clear because we have deleted all vertices of type A.¤

Since a tree T in EMB(G2(t), r) may contain "long" paths consisting of
ε-edges, its size is not proportional to that of NL(T). Hence we need a fourth
step which, as in the case of words, consists in replacing sequences of ε-edges
by direct edges.

Fourth step : The ε-edges we want to eliminate are all between OR-vertices
and are of the form (v, p) −→ (u, q) where v is the father of u.
(1) For every AND-vertex that is a leaf (u, α) we do the following :
For every OR-vertex (v, p) such that there is a directed path of ε-edges

from (v, p) to (u, q) and an edge from (u, q) to (u,α) we create an edge from
(v, p) to (u, α).

19

(2) For every AND-vertex with two sons, hence of the form (u, q1, q2) we do
the following :
For every OR-vertex (v, p) such that there is a directed path of ε-edges

from (v, p) to (u, q) and an edge from (u, q) to (u, q1, q2) we create an edge from
(v, p) to (u, q1, q2).
(3) We delete all ε-edges.
We denote by G3(t) the AND/OR-DAG constructed by this step. Like G2(t)

it is locally ordered from the global linear ordering on its set of vertices.

Claim 4 : The number of edges created by this step is O(| t | ·ht(t)). The
fourth step can be performed in time O(| t | ·ht(t)).
Proof : We create edges from (v, p) to AND-vertices (u, q1, q2) or (u, α) only

if v is an ancestor of u. Hence, we create at most Card(Q) · d(u) edges where
d(u) is the distance of u to the root of t. The number of AND-vertices is O(| t |)
and d(u) ≤ ht(t), hence in total at most O(| t | ·ht(t)) edges are created. This
fourth step can be performed in time O(| t | ·ht(t)) by processing G2(t) from
the leaves to the root r, as we did in the proof Theorem 2 to compute the sets
L(n− 1), ..., L(0). Here is the method : for each occurrence u we define the set
M(u) consisting of all pairs (q, w) such that q is a state, w is an AND-vertex
and there is an edge from the OR-vertex (u, q) to w, which is either an edge of
G2(t) or a edge added by Step 4. If u has sons v and v0(in t) then M(u) can
be computed in time proportional to Card(M(v)) + Card(M(v0)). The total
time is thus proportional to the sum of cardinalities of the sets M(u) for all
occurrences, hence to the number of edges of G3(t). We obtain thus the bound
O(| t | ·ht(t)). ¤

Claim 5 : NL(EMB(G3(t), r)) = NL(EMB(G2(t), r))
Proof : Clear from the construction. ¤

Proposition 1 : Let A be a finite set of constants, F be a finite set of
binary function symbols and ϕ(X1, ...,Xk) be an MS formula over the signature
τF,A such that Sat(St, ϕ(X1, ...,Xk)) ⊆ P(OccA(t))k for every t in T (F,A).
(1) For every term t in T (F,A), there exists a linear delay enumeration

algorithm of the set Sat(St, ϕ(X1, ...,Xk)) = {B1, ..., Bm} with preprocessing
time O(| t | ·ht(t)).
(2) For each i, the element Bi can be computed in time O(| Bi | · log(| t |)),

after a preprocessing taking time O(| t | ·ht(t)).

Proof : Assumption (a) before Definition 3 is satisfied. We use the above
described construction. In time O(| t | ·ht(t)) we can transform GA(t) into
an AND/OR-DAG G3(t) with a root r such that NL(EMB(G3(t), r)) =
NL(EMBAcc(GA(t))). Furthermore, the size of a tree in EMB(G3(t), r) is
proportional to the size of the k-tuple in Sat(St, ϕ(X1, ...,Xk)) that it char-
acterizes since we have eliminated all λ-leaves and all ε-edges introduced at
intermediate steps of the construction. This gives the desired result with help
of Theorem 1 and the observation that :

20

Figure 2: An AND/OR-DAG GA(t)

degOR(G3(t)) ≤| t | ·(Card(Q) + 2k). ¤

Example 3 : We consider a term f(g(f(a, b), c), h(d, g(e, i)))). Figure
2 shows a part of a DAG GA(t). The OR vertices are black dots. Figure 3
shows the N,S,A types of OR vertices, the created ε-edges (curved lines) and
with dotted lines, the edges deleted at Steps 2,3,4. Figure 4 shows the resulting
AND/OR-DAG G3(t).
Some of the 36 results of the query represented by this DAG are :
{aα, bα, cα, dα}, {aβ, bα, cα, dα}, {aα, bβ, cα, dα},
{aα, bα, cα}, {aβ, bα, cα}, {aα, bβ, cα}, {aβ, bβ, cα},
{bα, cβ, dα}, {cα}, {cβ}.¤

In the following theorem, we allow F to contain symbols that are not binary.
The signature τF,A has in this case p binary relations relating a vertex to its sons,
where p is the maximal arity of a symbol in F . Furthermore, the free variables
of formulas are not restricted to range over sets of occurrences of constants. We
will use transformations of structures defined by monadic second-order formulas
called MS transductions and reviewed in the appendix.

Definition 5 : Transfering enumeration results from a class to another.

21

Figure 3: An intermediate step of the transformations

Figure 4: The resulting DAG G3(t)

22

Let C and D be two classes of concrete relational structures (not of relational
structures up to isomorphism). Let us assume we have a total injective mapping
γ : C −→ D and a noncopying MS transduction δ : D −→ C satisfying the
following conditions (we denote by DS the domain of a structure S) :
(1) If T = γ(S), then DS ⊆ DT .
(2) For every S in C, we have δ(γ(S)) = S.
We denote this by C Àγ

δ D. From definitions and properties of MS trans-
ductions, in particular from the "backwards translation lemma" applied to the
transduction δ (see [4] or the appendix for background) we have the following
facts :
(3) If T = γ(S), then DS = {x ∈ DT | T |= θ(x)} for some MS formula

θ(x).
(4) For every MS formula ϕ(X1, ...,Xk) one can construct an MS formula

ψ(X1, ...,Xk) such that for every S in C we have, because S = δ(γ(S)) :

Sat(S, ϕ(X1, ...,Xk)) = Sat(γ(S), ψ(X1, ...,Xk)).

If we have C Àγ
δ D and if the results of an MS query defined by ψ as in (4)

for structures γ(S) can be enumerated with linear delay, then the same holds
for those of an MS query defined by ϕ in every S in C. The preprocessing time
is the sum of that for computing γ(S) and of that for the enumeration of the
set Sat(γ(S), ψ(X1, ...,Xk)).
Note also that C Àγ0◦γ

δ◦δ0 D if C Àγ
δ F and F Àγ0

δ0 D.

Theorem 3 : Let A be a finite set of constants, F a finite set of function
symbols and ϕ(X1, ...,Xn) be an MS formula over the signature τF,A.
(1) For every term t in T (F,A), there exists a linear delay enumeration

algorithm of the set Sat(St, ϕ(X1, ...,Xk)) = {B1, ..., Bm} with preprocessing
time O(| t | ·ht(t)).
(2) For each i, the element Bi can be computed in time O(| Bi | · log(| t |)),

after a preprocessing taking time O(| t | ·ht(t)).

Proof : In order to use Proposition 1, we introduce a new set of binary
function symbol F∗ a defined as {∗} ∪ {∗f | f ∈ F} and we define recursively
an injective mapping γ : T (F,A) −→ T (F∗, F ∪A) as follows :

γ(a) = a if a ∈ A,
γ(f(t1, ..., tm)) = ∗f (f, ∗(γ(t1), ∗(γ(t2),, ∗(γ(tm−1), γ(tm)))...)).

This transformation is called curryfication in Niehren et al. [14]. Informally,
a function symbol f of aritym is replaced by the term ∗f (f, ∗(x1, ∗(x2,, ∗(xm−1,
xm))...). (There is a certain redundancy in this encoding, but it will be useful
later.) For an example if t = f(a, g(b, c), h(d)), then γ(t) = ∗f (f, ∗(a, ∗(∗g(g, ∗(b, c)),
∗h(h, d)))).
The function symbols of F are made into constants. If t has height h,

then γ(t) has height at most p · h + (1 − p), where p is the maximal arity

23

of a symbol in F . The inverse of γ is a noncopying MS transduction δ :
T (F∗, F ∪ A) −→ T (F,A). In the appendix, we detail its definition (Example
7). The transformation γ is an MS transduction up to isomorphism.
Hence we have T (F,A)Àγ

δ T (F∗, F ∪ A). The formula ψ(X1, ...,Xk) which
translates "backwards" (with respect to δ) a formula ϕ(X1, ...,Xk) satisfies the
condition that X1, ...,Xk can only denote sets of occurrences of constants (be-
cause function symbols of the original signature F are made into constants in
the new signature (F∗, F ∪A)).
The computation of γ(t) (or rather of γ(St)) can be done in time O(| t |) for

t in T (F,A) hence we get the result by Proposition 1 and the previous remarks.
¤

Remarks 5 : (1) The efficiency of this algorithm can be measured (cf. Re-
mark 3 (1)) as follows : for a preprocessing time p, we may enumerate 2a·p/ log(p)

results, which is more than what gives Theorem 2. To see this, we consider the
terms tn defined by t1 = b, tn+1 = f(tn, tn). With a preprocessing taking time
p = c · n2n, we can obtain 2k·2n results.
(2) Required space : For the algorithms of Proposition 1 and Theorem 3, we

observe that in both cases, Condition (c2) holds for the DAGs we construct,
the trees of which are to be enummerated. This gives a space requirement for
the preprocessing proportional to the size of the DAG to be explored, that is
O(| t | .ht(t)). For the direct generation algorithm, one needs the same space,
by Remark 2. The reduction used for proving Theorem 3 preserves these values.

Words over an alphabet A can be handled as terms over a signature con-
sisting of a set A of unary function symbols and a constant denoting the empty
word. In this case, the height of a word is its length plus 1 and Theorem 3 gives
Theorem 2 (we omit some technical details necessary for deriving rigorously
Theorem 2 from Theorem 3). Clearly, the construction of Theorem 2 is more
direct. However, words can also be handled as terms in T ({•}, A) where • is
the binary concatenation operation. A word of length n can be expressed by
a term of height dlog(n)e, and Theorem 3 gives for words the following better
result than Theorem 2 :

Corollary 1 : Let A be a finite alphabet and ϕ(X1, ...,Xk) be an MS formula
over the signature σA.
(1) For every word w in A+ there exists a linear delay enumeration algorithm

of the set Sat(Sw, ϕ(X1, ...,Xk)) using a preprocessing taking time O(| w | . log(|
w |)).
(2) For each i, the i-th element Bi of this set can be computed in time

O(| Bi | · log(| w |)). The preprocessing takes time O(| w | . log(| w |)).

A similar improvement can be done for the case of terms with function
symbols of arbitrary arity. We will use the following result by Courcelle and
Vanicat [5].

24

Proposition 2 : Let A be a finite set of constants, F a finite set of binary
function symbols. Let ◦ be a new binary symbol and # be a new constant.
There exists a mapping μ : T (F,A) −→ T (F ∪{◦}, A∪{#}) such that for every
t ∈ T (F,A) we have :
(1) | μ(t) |≤ 2· | t |, Occx(μ(t)) = Occx(t) for every x ∈ F ∪ A, and

ht(μ(t)) ≤ 3 · log(| t |) + 1.
(2) Its inverse is a noncopying MS transduction ν : T (F ∪{◦}, A∪{#}) −→

T (F,A).
(3) μ(t) is computable in time O(| t | · log(| t |)).

Proof sketch :
In order to give the definition of ν we define a context as a term in T (F,A∪

{u}) having one and only one occurrence of a special variable u. Then ν is the
partial mapping : T (F ∪ {◦}, A ∪ {#}) −→ T (F,A ∪ {u}) defined inductively
as follows :

ν(a) = a if a ∈ A,
ν(#) = u,
ν(f(s, t)) = f(ν(s), ν(t)), if f ∈ F , ν(s) and ν(t) are both defined, both are

in T (F,A) or one is in T (F,A) and the other is a context,
ν(◦(s, t)) = ν(s)[ν(t)/u], if ν(s) and ν(t) are both defined, ν(s) is a context

and ν(t) is in T (F,A) or is a context, and ν(s)[ν(t)/u] denotes the substitution
of ν(t) for the unique occurrence of u in ν(s),

ν(t) is undefined if none of the above clauses is applicable.

For an example, if t = ◦(◦(f(a,#), f(b,#)), f(c, d))) then ν(t) = f(a, f(b,
f(c, d))).

The mapping μ is an inverse of ν that transforms a term into a "balanced"
one, of logarithmic height in its size. It is defined in [5], Theorem 1. That ν
is an MS transduction is Theorem 2 of [5]. The equality Card(Occx(μ(t))) =
Card(Occx(t)) for every x ∈ F ∪ A is clear from the definition of ν. One can
designate concretely the occurrences in terms μ(t) in such a way that one has
the equality Occx(μ(t)) = Occx(t). ¤

Theorem 4 : Let A be a finite set of constants, F a finite set of function
symbols and ϕ(X1, ...,Xk) be an MS formula over the signature τF,A.
(1) For every term t in T (F,A) there exists a linear delay enumeration

algorithm of the set Sat(St, ϕ(X1, ...,Xk)) with preprocessing time O(| t | · log(|
t |)).
(2) For each i, the i-th element Bi of this set can be computed in time

O(| Bi | · log(| t |)), where | Bi | is its size. The preprocessing takes time
O(| t | · log(| t |)).

Proof : We have T (F,A)Àγ
δ T (F∗, F ∪A) by the proof of Theorem 3, and

T (F∗, F ∪A)Àμ
ν T (F∗ ∪ {◦}, F ∪A ∪ {#}) by Proposition 2.

The preprocessing time for t ∈ T (F,A) is :

25

O(| t |) + O(| γ(t) | · log(| γ(t) |)) + O(| μ(γ(t)) | ·ht(μ(γ(t))))

which gives O(| t | · log(| t |)) because | γ(t) |≤ k· | t | and by (2) of
Proposition 2 we have | μ(γ(t)) |≤ 2· | γ(t) |= O(| t |) and ht(μ(γ(t))) ≤ 3 · log(|
γ(t) |) + 1 = O(log(| t |)).¤

Remark 6 : Required space : The reduction used for proving Theorem 4
preserves the values obtained for Theorem 3. The space requirement is O(| t |
· log(| t |)) in both cases.

By using Proposition 2, we have reduced the preprocessing time by reor-
ganizing any tree into a balanced one, i.e., a tree of height that is logarithmic
in its size. This applies to all trees. We now describe another way to reduce
the preprocessing time. It does not apply to all trees, but only to those having
"few distinct subtrees". We recall from Definition 2 (d) that the unfolding of
an AND-DAG G starting from a vertex x yields a tree denoted by Unf(G,x)
which may have exponentially more vertices than G.

Definitions 6 :
(a) We denote by D(F,A) the set of AND-DAGs H satisfying the following

conditions :
(a1) All vertices are AND-vertices and are reachable from a unique vertex

called the root, denoted by Root(H).
(a2) Each vertex x has a label in F ∪ A, the arity of this label is equal to

the outdegree of x.

(b) Every H in D(F,A) unfolds into a term Unf(H,Root(H)) in T (F,A)
denoted in a simpler way by Unf(H). A DAG H in D(F,A) is defined as locally
ordered and the ordering of edges with origin a same vertex defines the order of
arguments of function symbols in the term Unf(H).

(c) If all symbols in F have arity 2 we can apply to DAGs in D(F,A) the
constructions of Definitions 3. That is, for a complete deterministic automaton
A recognizing a subset of T (F,A×Bk) and a DAG H in D(F,A), we construct
an AND/OR-DAG GA(H) by slight modifications in the construction of GA(t)
given in Definition 3.
We let VH,A be the set of vertices of H having a label in A, and VH,F be the

set of those having a label in F. We let Q be the set of states of A, and QAcc

be its set of accepting states.
We define the set of AND-vertices of GA(H) as (VH,A×Bk)∪(VH,F ×Q×Q)

and its set of OR-vertices as VH ×Q. The edges are as follows :
1. If u in VH,A has label a we define edges
(u, q) −→ (u, α) for all α such that ((a, α), q) is a transition of A.
2. If u in VH,F has label f we define edges :
2.1. (u, q) −→ (u, q1, q2) for all q1, q2 such that (q1, q2, f, q) is a transition of

A. We also define edges from AND-vertices to OR-vertices :

26

2.2. (u, q1, q2) −→ (u1, q1), defined as the first outgoing edge, and
2.3. (u, q1, q2) −→ (u2, q2), defined as the second outgoing edge, where u1

and u2 are the first and second sons of u. (They can be identical, this is why
we specify a first and a second edge).
This graph has no circuit by construction. It is locally ordered (we use linear

orders on the sets Q and Bk to order edges going out of OR-vertices), hence it
is an AND/OR-DAG.

Lemma 5 : LetH ∈ D(F,A), t = Unf(H) and T ∈ EMB(GA(H), (Root(H), p)).
The constants labelling the leaves of T define a term t in T (F,A × Bk) with
underlying term t. The OR-vertices of T are pairs in Occ(t)×Q and these pairs
define the unique run of A on t and futhermore p = runA(Root(t)). Conversely,
the unique run of A on a term t in T (F,A×Bk) is associated in this way with
a unique tree T ∈ EMB(GA(H), (Root(H), p)) for some p ∈ Q.

Our objective is to enumerate the set {NL(t) | t ∈ Lϕ(X1,...,Xk)[t]} where
t = Unf(H). There is however a difficulty. In a pair (u,α) ∈ NL(t), the
occurrence u is not just a vertex of H because a vertex of H yields (in general)
several occurrences in t. Hence, we must specify in some way and compute
the occurrences u in the pairs (u,α) in NL(t). We could enumerate with
linear delay the set Lϕ(X1,...,Xk)[t] but its elements may contain a lot of useless
information and the size of t is not O(| NL(t) |). We will actually delete the
useless parts from the terms t.
We let ⊥ be a new constant. For each t in T (F,A×Bk), we define a term

t⊥ in T (F,A× (Bk − {λ})∪ {⊥}) by replacing every subterm of t that belongs
to T (F,A × {λ}) by ⊥. Informally, t⊥ is the union of all paths in t from the
root to a "useful" leaf, i.e., one that is not an occurrence of (a, λ).We may have
t⊥ = ⊥ if the encoded tuple is (∅, ...,∅).

Example 4 : We consider terms in T ({f}, {a}) where f is binary. We
let ϕ(X) express that in a term t = f(t1, t2) the set X has exactly two ele-
ments, one in Occa(t1) and the other in Occa(t2). We consider the term t =
f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a))) described by the DAG H = xf ⇒ yf ⇒
zf ⇒ ua. (The subscripts in xf , yf , zf , ua indicate the labels of vertices x, y, z, u).
We let α = (True) and λ = (False).
Three of the terms t⊥ associated with the 16 terms t in Lϕ(X1,...,Xk)[t] are:
f(f(⊥, f(⊥, a)), f(⊥, f(⊥, a))),
f(f(f(⊥, a),⊥), f(⊥, f(⊥, a))),
f(f(⊥, f(a,⊥)), f(⊥, f(⊥, a))),
where for clarity, we write a instead of (a, α).¤

We will enumerate the set SAT (SUnf(H), ϕ(X1, ...,Xn)) defined as {t⊥ | t ∈
Lϕ(X1,...,Xk)[Unf(H)]}. We take the size of t⊥ as size measure for the results
of our desired enumeration algorithm (the notation SAT (SUnf(H), ϕ(...))) em-
phasizes the change of size measure.) This is justified because the term t is not

27

given directly : it must be computed from H. The notion of linear delay enu-
meration is less demanding in this case because the sizes of answers are larger.
We get the following analog of Theorem 3, that uses a simpler and quicker
preprocessing.

Theorem 5 : Let (F,A) be a signature, and ϕ(X1, ...,Xk) be an MS formula
over the relational signature τF,A.
(1) For every H in D(F,A) there exists a linear delay enumeration algo-

rithm of the set SAT (SUnf(H), ϕ(X1, ...,Xk)). The preprocessing takes time
O(Card(VH)).
(2) For each i, the i-th element ti of this set can be computed in time O(| ti |).

The preprocessing takes time O(Card(VH)).

Proof, First part: As for Theorem 3 we first consider the particular
case where the symbols in F are binary and the variables X1, ...,Xk can only
denote sets of leaves. We modify as follows the constructions of Definition 4.
We apply the first two steps to GA(H) instead of to GA(t). Then we remove
all vertices not accessible from the root r by a directed path. We denote by
G1(H) the DAG obtained in this way. By Lemma 5 we have a bijection of
EMB(G1(H), r) onto Lϕ(X1,...,Xk)[t] where t = Unf(H). This bijection can
be defined as the restriction of a mapping b from

S
{EMB(G1(H), w) | w ∈

VG1(H)} into T (F,A × Bk) defined by the following recursion, where lab(u)
denotes the label in F ∪A of a vertex u of H, and T ∈ EMB(G1(H), w) :
1. If w is a leaf, T = w = (u, α) for some u ∈ VH , α ∈ Bk. Then b(T) = (a, α)

where a = lab(u) ∈ A.
2. If w is an AND-vertex of the form (u, q1, q2) with outgoing edges (u, q1, q2)

−→ (u1, q1), (u, q1, q2) −→ (u2, q2), then T = w(T1, T2) for some T1 ∈ EMB(G1(H),
(u1, q1)) and T2 ∈ EMB(G1(H), (u2, q2)). Then b(T) = f(b(T1), b(T2)) where
f = lab(u) ∈ F.
3. If w is an OR-vertex then T = w(T 0) with T 0 ∈ EMB(G1(H), w

0) for
some edge w −→ w0 in G1(H) and then b(T) = b(T 0).

In Lemma 5, for T ∈ EMB(GA(H), (Root(H), p)) the associated term t is
b(T). Then we transform G1(H) as in the third step of Definition 4 except that
the created edges are labelled by 1 or 2 instead of by ε, and there will be no
ε-reduction step. Here is the construction.
(a) For each AND-vertex of the form (u, q1, q2) we do the following concern-

ing its two sons (u1, q1) and (u2, q2) and its father (u, q) :
(a1) if (u1, q1) and (u2, q2) are both of type A we delete (u, q1, q2) ;
(a2) otherwise
if (u1, q1) is of type S or A, then we add an edge labelled by 2 from (u, q)

to (u2, q2) ;
if (u2, q2) is of type S or A, then we add an edge labelled by 1 from (u, q)

to (u1, q1) ;
in both cases, if (u1, q1) or (u2, q2) is of type A we delete (u, q1, q2).

28

(b) We delete the vertices of type A, and then, the vertices not reachable
from the root by a directed path.

By Assumption (b) made before Definition 3, there is no vertex (Root(H), q)
of type A or S where q is accepting, because this would indicate that (∅, ...,∅)
is an answer to the considered query, which Assumption (b) excludes.

We let G2(H) be the graph obtained in this way in time O(Card(VH)). We
now comment some cases of this construction. In Case (a1), (u, q1, q2) has type
A, there is a unique tree T in EMB(G1(H), (u, q1, q2)) and b(T) ∈ T (F,A ×
{λ}). The OR-vertex (u, q) is of type A or S. Its type indicates that there is
a tree T in EMB(G1(H), (u, q)) such that b(T) ∈ T (F,A× {λ}). We loose no
information by deleting (u, q1, q2).
In Case (a2), if an edge labelled by 2 is added from (u, q) to (u2, q2) this

means that there is a tree T1 in EMB(G1(H), (u1, q1)) such that b(T1) is in
T (F,A × {λ}). Hence, EMB(G1(H), (u, q)) contains trees of the form T =
(u, q)((u, q1, q2)(T1, T2)), such that T1 ∈ EMB(G1(H), (u1, q1)), b(T1) ∈ T (F,
A × {λ}), T2 ∈ EMB(G1(H), (u2, q2)). For such T1 and those T2 such that
b(T2) /∈ T (F,A × {λ}), we obtain b(T) = f(⊥, b(T2)) where f = lab(u). We
will use the labelled edges to produce directly occurrences of the constant ⊥,
without needing to explore λ-subtrees. As observed in Claim 1 we do not create
two parallel edges with same label whose origin is an OR-vertex (in Case (a2)).
However, we may create two parallel edges, one with label 1 and one with label
2. See for an example the right part of Figure 5.
We claim that there is a bijection of EMB(G2(H), r) onto SAT (SUnf(H),

ϕ(X1, ...,Xk)) where r is the root of G3(H). We define a mapping b ofS
{EMB(G2(H), w) | w ∈ VG3(H)} into T (F, (A× (Bk − {λ}))∪ {⊥}) that will

give the desired bijection. Its definition is similar to that of b given above.
1. If w is a leaf, T = w = (u, α) for some u ∈ VH , α ∈ Bk − {λ}. Then

b(T) = (lab(u), α).
2. If w is an AND-vertex of the form w = (u, q1, q2), with edges (u, q1, q2) −→

(u1, q1), (u, q1, q2) −→ (u2, q2), then T = w(T1, T2) for some T1 ∈ EMB(G2(H),
(u1, q1)) and T2 ∈ EMB(G2(H), (u2, q2)), then b(T) = f(b(T1), b(T2)) where
f = lab(u).
3. If w is an OR-vertex, then T = w(T 0) with T 0 ∈ EMB(G2(H), w

0), for
some edge w −→ w0 in G2(H), and we distinguish 3 cases :
3.1 : This edge is labelled by 1, we are in Case (a2) with w = (u, q), w0 =

(u1, q1), (u2, q2) is of type S or A , then we let b(T) = f(b(T 0),⊥) where
f = lab(u).
3.2 : This edge is labelled by 2, we are in Case (a2) with w = (u, q), w0 =

(u2, q2), (u1, q1) is of type S or A, then we let b(T) = f(⊥, b(T 0)) where
f = lab(u).
3.3 : This edge is not labelled, then b(T) = b(T 0).

The restriction of b to EMB(G2(H), r) is a bijection onto SAT (SUnf(H),
ϕ(X1, ...,Xk)) for the following reasons. The mapping b defines a bijection of

29

EMB(G1(H), r) onto Lϕ(X1,...,Xk)[t]. A tree in EMB(G2(H), r) is obtained
from one in EMB(G1(H), r) by deleting λ-subtrees, and the edges labelled by
1 and 2 keep track of these deletions. The terms in SAT (SUnf(H), ϕ(X1, ...,Xk))
are obtained in a similar way from those in Lϕ(X1,...,Xk)[t] by the replacement
of λ-subterms by the constant ⊥, and the mapping b uses the edges labelled by
1 and 2 to produce the appropriate occurrences of these constants.
The preprocessing which consists in building G2(H) from H and A takes

time O(Card(VH)). (There is no ε-reduction step to perform). We obtain
a linear delay algorithm enumerating EMB(G2(H), r). We obtain also one
for SAT (SUnf(H), ϕ(X1, ...,Xk)) because t⊥ is easily computable from T in
EMB(G2(H), r) such that b(T) = t⊥, and we have | t⊥ |= Θ(| T |).
The outdegree of an OR-vertex is bounded by Card(Q)2 in G1(H), and by

Card(Q)2 + 2 · Card(Q) in G2(H) (because of Case (a2)). Assertion (2) of
Theorem 1 yields a linear delay for the generation of the i-th element.

Example 4 (Continued) : The automaton A corresponding to ϕ(X) has
states p, q, r, s such that for every t in T ({f}, {a} × {α, λ}) encoding a subset
X of Occ(t) where t ∈ T ({f}, {a}) :

runA(t) = p if and only if t has no occurrence in X,
runA(t) = q if and only if t has one occurrence in X which is a leaf,
runA(t) = r if and only if the condition defined by ϕ(X) holds in t, hence r

is accepting,
and s is a "sink" state. The transitions are :
((a, α), q), ((a, λ), p),
(p, p, f, p), (p, q, f, q), (q, p, f, q), (q, q, f, r),
(x, y, f, s) for any x and y with (x, y) /∈ {(p, p), (p, q), (q, p), (q, q)}.

We consider the same DAG H as before, which unfolds into t = f(f(f(a, a),
f(a, a)), f(f(a, a), f(a, a))).
The DAG G1(H) is shown on the left part of Figure 5. The OR-vertices are

black dots, and the associated states p, q, r are shown. The vertices with state p
are of type A, the others are of type N. The DAG G2(H) is shown to the right
with the same conventions. From it one gets the 16 answers to the considered
query. ¤

Proof of Theorem 5, second part:
We now consider the general case where the symbols in F are not necessarily

binary and the variables X1, ...,Xk can denote arbitrary subsets of Occ(t) for
t ∈ T (F,A). A k-tuple (U1, ..., Uk) of subsets of Occ(t) is encoded by a term
t[U1, ..., Uk] in T (F ×Bk, A×Bk) that we call an annotation of t. The "useful
part" of a term s in T (F ×Bk, A×Bk) is the term s⊥ in T (F ×Bk, A× (Bk −
{λ}) ∪ {⊥}) defined recursively as follows :
1. s⊥ = ⊥ if s ∈ T (F × {λ}, A× {λ}),
2. s⊥ = s if s ∈ A× (Bk − {λ}),

30

Figure 5: For the DAG H of Example 4.

3. s⊥ = (f, β)(s1⊥, ..., sm⊥) if s = (f, β)(s1, ..., sm) and s /∈ T (F×{λ}, A×
{λ}).
In the last case, we may have β = λ if some of the terms s1, ..., sm is not a

λ-term, i.e., is not in T (F × {λ}, A× {λ}).
For an example let t = f(a, g(b, b0), h(c, c0), l(d, d0), e). Let k = 1, let α denote

(True) and λ denote (False). Let U1 consist of the occurrences of g, b, c and
let s = t[U1]. Then :

s⊥ = fλ(⊥, gα(bα,⊥), hλ(cα,⊥),⊥,⊥), where we write fλ for (f, λ), gα for
(g, α), etc... for the purpose of readability.

Our objective is to enumerate the set SAT (SUnf(H), ϕ(X1, ...,Xk)) defined
as the set of terms t[U1, ..., Uk]⊥ for t[U1, ..., Uk] in Lϕ(X1,...,Xk)[t]. We will
apply the technique of Theorem 3. The mapping γ: T (F,A) −→ T (F∗, F ∪ A)
extends into γ: D(F,A) −→ D(F∗, F ∪A) in the obvious way (see Example 5) so
that Unf(γ(H)) = γ(Unf(H)). We will use the MS transduction δ : T (F∗, F ∪
A) −→ T (F,A) which inverses γ on terms. From an MS formula ϕ(X1, ...,Xk)
we construct the MS formula ψ(X1, ...,Xk) that translates it "backwards" with
respect to δ so that Sat(St, ϕ(X1, ...,Xk)) = Sat(Sγ(t), ψ(X1, ...,Xk)) for every
t in T (F,A).
The algorithm works as follows. Given H, we compute γ(H) and, by the first

part of the proof, we can enumerate with linear delay the set SAT (SUnf(γ(H)), ψ(X1, ...,Xk)).
We let t = Unf(H). From each term γ(t)[U1, ..., Uk]⊥ of this set, we can compute
t[U1, ..., Uk]⊥ in linear time by means of the mapping

ξ: T (F∗, (F ∪A)× (Bk − {λ}) ∪ {⊥}) −→ T (F ×Bk, A× (Bk − {λ}) ∪ {⊥})

31

Figure 6: A DAG H ∈ D(F,A) and the DAG γ(H).

defined as follows.
1. If s ∈ A× (Bk − {λ}) ∪ {⊥}, we let ξ(s) = s.
2. If s = ∗f (t0, ∗(t1, ∗(t2, ..., ∗(tp−1, tp))..)) where p = ρ(f), then:
2.1. ξ(s) = (f, λ)(ξ(t1), ..., ξ(tp)) if t0 = ⊥,
2.2. ξ(s) = (f, α)(ξ(t1), ..., ξ(tp)) if t0 = (f, α).
3. If s = ∗f (t0, ∗(t1, ∗(t2, ..., ∗(tp−1,⊥))..)) with p < ρ(f), then
3.1. ξ(s) = (f, λ)(ξ(t1), ..., ξ(tp−1),⊥, ...,⊥) if t0 = ⊥,
3.2. ξ(s) = (f, α)(ξ(t1), ..., ξ(tp−1),⊥, ...,⊥) if t0 = (f, α), and, in both cases

we have ρ(f)− p+ 1 times ⊥.
4. If none of these cases holds, or if is some necessary ξ(t1), ..., ξ(tp) is

undefined then ξ(s) is undefined.
It is clear (using an induction on t) that if s = γ(t)[U1, ..., Uk]⊥ then ξ(s) is

well-defined and equal to t[U1, ..., Uk]⊥.
We continue with the example of t = f(a, g(b, b0), h(c, c0), l(d, d0), e) and the

set U1 considered above. We have :
s = γ(t)[U1]⊥ = ∗f (⊥, ∗(⊥, ∗(∗g(gα, ∗(bα,⊥)), ∗(∗h(⊥, ∗(cα,⊥)),⊥),
In this case ρ(f) = 5, p = 4. Then ξ(s) = t[U1]⊥ = fλ(⊥, gα(bα,⊥), hλ(cα,⊥),⊥,⊥).

We note also that the sizes of s and ξ(s) are linearly related. From a linear
delay enumeration algorithm for SAT (SUnf(γ(H)), ψ(X1, ...,Xk)), we get one for
SAT (SUnf(H), ϕ(X1, ...,Xk)).¤

Example 5 : The left part of Figure 6 shows a DAG H ∈ D(F,A) and its
right part the corresponding DAG γ(H) (where the labels ∗ and ∗f are omitted
for readability). We have :

32

Unf(H) = f(a, g(a, g(a, b)), h(g(a, b), b)),
Unf(γ(H))
= ∗f (f, ∗(a, ∗(∗g[g, ∗(a, ∗g(g, ∗(a, b)))], ∗h[h, ∗(∗g(g, ∗(a, b)), b)])))
= γ(Unf(H)).¤

Remarks 7 : (1) The efficiency of this algorithm can be measured as follows:
for a preprocessing time p, we may obtain 22

a.p

results : it suffices to take the
DAGs with maximal sharing that unfolds into the terms tn defined by t1 = b,
tn+1 = f(tn, tn).
(2) Condition (c2) of Definition 2 is no longer valid for the DAG G2(H). The

space requirement is thus important because one needs to store the function
SelectOR (see Remark 2(2) in Section 2). The space needed for the linear delay
enumeration algorithm is thus O(N · Card(VH)), where N is the number of
results. For the direct generation algorithm, we need space O(Card(EH)).

5 Applications to graphs, hypergraphs and re-
lational structures.

We apply the results of the previous section to MS queries in graphs or relational
structures that are images of trees under MS transductions. We will reduce the
enumeration problems to those considered in Section 4. We refer the reader to
[4, 5] or to the appendix for the definition of clique-width and some lemmas.
A set C of relational structures is tree-like if it is the image of a subset of

T (F,A) under a noncopying MS-transduction where F is binary. Being tree-like
is meaningful only for an infinite set of structures. Every finite set of structures
is tree-like in a trivial way. The set of complete graphs is tree-like in this sense.
A set of directed or undirected graphs is tree-like if and only if it has bounded
clique-width.

Theorem 6 : Let C be a set of tree-like structures over a finite signature
σ with defining MS transduction τ : T (F,A) −→ C. Let ϕ(X1, ...,Xk) be a
monadic second-order formula over σ.
(1) For every term t ∈ T (F,A) defining a structure S = τ(St) there exists an

algorithm that enumerates the set Sat(S, ϕ(X1, ...,Xk)) with linear delay after
a preprocessing taking time O(| t | . log(| t |)).
(2) For each i, the i-th element Bi of this set can be computed in time

O(| Bi | · log(| t |)). The preprocessing takes time O(| t | · log(| t |)).

Proof : We apply the "backwards translation lemma" with respect to
the transduction τ : from ϕ(X1, ...,Xk) one can construct an MS formula
ψ(X1, ...,Xk) such that for every t ∈ T (F,A) we have, letting S = τ(St) :

Sat(S, ϕ(X1, ...,Xk)) = Sat(St, ψ(X1, ...,Xk)).

33

Hence, we are reduced to an enumeration problem and a direct generation
problem for the results of MS queries on terms of T (F,A). We finish the proof
by using Theorem 4.¤

Applications to graphs and hypergraphs

Corollary 2 : (1) Let C be a set of simple, directed or undirected graphs of
clique-width at most p. For every monadic second-order formula ϕ(X1, ...,Xk)
there exists an algorithm that takes as input a clique-width expression t of width
p defining a graph G in C with n vertices and enumerates the set Sat(G,ϕ(X1,
...,Xk)) with linear delay, after a preprocessing using time O(n · log(n)).
(2) If a graph G of clique-width at most p with n vertices is not given by a

clique-width expression, the same can be done with a preprocessing taking time
O(n3).
(3) In each of these cases and for each i, the i-th element Bi of Sat(G,ϕ(X1,

...,Xk)) can be computed in time O(| Bi | · log(n)), where | Bi | is its size. The
preprocessing takes the same time as in (1) and (2) respectively.

Proof : (1) This is an immediate consequence of Theorem 6, because, by
Lemma 3 of [5], every clique-width expression of width p defining a graph with
n vertices can be transformed into one of same width that defines the same
graph and has size O(n), and the mapping that associates with a clique-width
expression of width p the graph it defines is a noncopying MS transduction.
(2) With help of the algorithms by Hlinĕny and Oum [12,15] that take time

O(n3) to construct an f(p)-expression for graphs of clique-width at most p,
where f is a fixed function.
(3) By (2) of Theorem 6. ¤

For graphs and hypergraphs of bounded tree-width, one can use MS formulas
over incidence graphs which allow quantifications over sets of edges and hyper-
edges. We call them MS2 formulas. See Courcelle [4] for details. In this case,
the size of the relational structure Inc(G) representing a graph or hypergraph
G is the number of vertices plus the number of edges and hyperedges (see the
appendix for Inc(G)). This size is denoted by k G k . The height ht(D) of a
tree-decomposition D is defined as the diameter of the underlying tree which is
usually undirected. The tree-decompositions of a hypergraph are those of the
graph obtained by replacing a hyperedge by edges between any two vertices of
this hyperedge. The notion of tree-width follows immediately.

Corollary 3 : (1) Let D be a set of graphs or hypergraphs of tree-width
at most p. For every MS2 formula ϕ(X1, ...,Xk) there exists an algorithm that
takes as input a tree-decomposition D of width at most p defining a graph
or hypergraph G in D and enumerates the set Sat(Inc(G), ϕ(X1, ...,Xk)) with
linear delay. The preprocessing takes time O(k G k · log(k G k)).
(2) The same holds if the graph or hypergraph G is given without its tree-

decomposition, after a preprocessing taking the same time.

34

(3) In each of these cases and for each i, the i-th element Bi of Sat(Inc(G),
ϕ(X1, ...,Xk)) can be computed in time O(| Bi | · log(k G k)), where | Bi | is its
size. The preprocessing takes the same time as in (1) and in (2).

Proof : (1) This is a consequence of Theorem 6 : a tree-decomposition D of
width ≤ p can be converted into a term over an appropriate alphabet and this
term has height O(ht(D)). The mapping from such a term for a decomposition
of width ≤ p to the corresponding graph or hypergraph G, represented by
Inc(G) is a noncopying MS transduction. We also use the fact that a tree-
decomposition D of width ≤ p can be transformed into one of bounded width
with ht(D) = O(log(k G k)), via the constructions of Theorem 4.
(2) With help of the algorithm by Bodlaender (see [7]) that constructs in

time O(n) a tree-decomposition of width p if there exists one for a graph or
hypergraph with n vertices.
(3) By (2) of Theorem 6.¤

Remarks 8 : In these algorithms, the main part consists in enumerating
or generating answers to queries on terms, and, from them the answers to the
considered queries in relational structures, graphs or hypergraphs. The space
requirement is as for Theorem 4, which gives O(k G k · log(k G k)).

6 Enumeration of sets of words and terms

Our purpose is here to enumerate sets of words or terms, not answers to queries
in one given word or term. However, the techniques will be similar to the
ones used in Sections 3 and 4, and will use the algorithm of Theorem 1 that
enumerates the set of trees embedded in an AND/OR-DAG.
We will consider languages L ⊆ A+ specified by finite-state automata or

context-free grammars. We will consider the problems of enumerating the set
L[n] of words in L of length at most n and the set L(n) of words generated
by a derivation tree of height at most n in case L is defined by a context-free
grammar.

Proposition 3 : (1) Let L ⊆ A+ be a regular language. For every n, the
finite language L[n] can be enumerated in lexicographic order with linear delay
and preprocessing time and space O(n).
(2) Let L ⊆ A+ be defined by a linear nonambigous context-free grammar.

For every n, the finite language L(n) can be enumerated with linear delay and
preprocessing time and space O(n).
(3) In each case, the i-th element can be obtained in linear time in its size,

with preprocessing time and space O(n).

Proof : (1) Letting $ be not in A, we can assume that L$ is given by a
deterministic finite automaton A with set of states Q. We construct a DAG

35

GA[n] as in the proof of Theorem 2. Its vertices are pairs (q, i) of a state q of
A and some i ∈ {0, ..., n} together with a unique accepting state qAcc receiving
the transitions on letter $ that terminate an accepted word. A linear order on
A∪ $ is fixed such that $ is the minimal symbol and a linear order on the edges
of GA[n] follows. The associated lexicographic order on L is the same as on L$.
The enumeration of the paths in GA[n] from (p, 0) (p initial) to qAcc i.e., of the
words of L[n], can be done with linear delay by Theorem 1. Since there are no
ε-transitions to remove, the preprocessing time is O(n). It consists in removing
the vertices which are not on a path to qAcc.
(2) A context-free grammar, linear or not, that is unambigous is necessarily

loop-free. This means that it has no derivation sequence of the form S −→+ S
where S is a nonterminal occurring in a derivation of a word of the generated
language (otherwise, some word derivable using S would have several derivation
trees). It follows that the size of a derivation tree t and the length of the
generated word w are related by | w |≤ m· | t | and | t |≤ (2M + 1)· | w |
where m is the maximal number of terminal symbols in the right handside of a
rule andM is the maximal number of steps of a derivation sequence of the form
S −→+ U where S,U are nonterminal symbols.
If such a grammar is linear (at most one nonterminal in each right handside)

its derivation sequences (derivation trees with a single path) are described by
a regular language. We can use (1) to enumerate derivation sequences d with
linear delay. We get from each sequence d the derived word w in time O(| d |)
or equivalently, in time O(| w |). The words are thus enumerated with linear
delay in the lexicographic order on their derivation sequences.
(3) This follows from Assertion (2) of Theorem 1 and Remark 2 (2), because

the constructed DAGs have bounded degree (in terms of the size of A). ¤

Next we consider the case of a recognizable set L ⊆ T (F,A). We denote by
L{h} the set of terms in L of height at most h. We sketch a proof using only
the results of Section 2.

Theorem 7 : Let (F,A) be a signature. If L ⊆ T (F,A) is recognizable, then
for each n, the set L[n] and the set L{n} can be enumerated with linear delay
with a preprocessing taking time O(n2). The computation of the i-th element ti
according to a fixed linear order can be done with the same preprocessing time,
within time O(| ti | · log(n)).

Proof : We first consider the case of L[n] and we first assume that all symbols
of F have arity 2. We order linearly the set F ∪ A. We let L be defined by a
(complete deterministic) automaton A with set of states Q and set of accepting
states QAcc. We let L(q,m) be the set of terms t with size equal to m such
that runA(Root(t)) = q. For a fixed integer n we construct an AND/OR-graph
GA[n] as follows.
Its set of OR-vertices isQ×[n], where [n] = {1, ..., n}. Its set of AND-vertices

is (A× {1}) ∪ (F ×Q×Q× [n]× [n]). We define its edges as follows:
(q, 1) −→ (a, 1) if (a, q) is a transition of A,

36

(q, i) −→ (f, q1, q2, i1, i2) if i > 1, (q1, q2, f, q) is a transition ofA and i1+i2 =
i− 1,
(f, q1, q2, i1, i2) −→ (q1, i1),
(f, q1, q2, i1, i2) −→ (q2, i2).

It has O(n2) vertices and edges, and :

degOR(G) ≤Max{Card(A), n · Card(F) · Card(Q)2} = O(n).

We order the edges (q, 1) −→ (a, 1) outgoing from (q, 1) by using the
linear order on A. We also order linearly the set Q. We order the edges
(q, i) −→ (f, q1, q2, i1, i2) outgoing from (q, i) by lexicographic order on the
sequences (f, q1, q2, i1, i2). Hence GA[n] is a locally ordered AND/OR-DAG. It
is essentially a tree automaton. With (q,m) as accepting state, it recognizes the
set L(q,m).

Claim : For every m ≤ n and T ∈ EMB(GA[n], (q,m)), the tree obtained
from T by contracting the edges outgoing from OR-vertices (all of outdegree 1)
is an element of L(q,m). Conversely every term in L(q,m) is obtained in this
way from a unique tree T in EMB(GA[n], (q,m)). The size of T is exactly twice
that of t.

It follows that the enumeration of L[n] and the computation of its i-th ele-
ment with respect to a linear order that we will make precise below reduce to the
corresponding problems for

S
{EMB(GA[n], (q,m)) | m ≤ n, q ∈ QAcc}. We

order linearly the set {(q,m) | m ≤ n, q ∈ QAcc} by right to left lexicographic
order, hence we order the output trees by increasing sizes. We can apply Theo-
rem 1. We obtain a linear delay enumeration algorithm with preprocessing time
O(n2), and a direct generation algorithm with time complexity O(s · log(n))
where s is the size of the result.
We now make precise the order in which terms are enumerated. For t in

T (F,A) we define R(t) as the sequence :

(| t |, runA(Root(t)), F irst(t), runA(Root(t1)), runA(Root(t2)), | t1 |, t1, t2)

where t1 and t2 are such that t = First(t)(t1, t2) if First(t) ∈ F and
t1 = t2 = First(t) if First(t) ∈ A . We do not use | t2 | in this list because this
value is determined from | t | and | t1 | by | t2 |=| t | − | t1 | −1 if First(t) ∈ F
and is 1 otherwise.
Then, we let s ≺ t if and only if R(s) <lex R(t), where <lex is based on the

orderings on the set N of nonnegative integers, on the sets F ∪A and Q, and on
≺ itself (for comparisons of the last two components). This is a (well-defined)
recursive definition of a strict linear order on T (F,A). The ordering of edges
outgoing OR-vertices is such that the terms of L[n] are enumerated according
to this linear order.

37

If F has symbols of arity up to p, the coding γ of the proof of Theorem 3
can be used. Note that | γ(t) |= Θ(| t |); the set γ(L) is a recognizable subset
of T (F∗, F ∪A) and by an easy modification of the above construction, one can
enumerate with linear delay the set of terms t in γ(L) such that | γ−1(t) |= n.
From them, one obtains those of L[n], also with linear delay.
One can also enumerate or generate with the same complexity the sets of

terms in L having size between m and n. Similar constructions can be done for
the set L{n} of terms of height at most n of a recognizable subset L of T (F,A).
¤

Remarks 9 : Space requirements. Here Condition (c2) of Definition 2 does
not hold. Hence the space needed is proportional to the number of results, (but
is not the total size of the set of results). For the direct generation algorithm,
the space requirement is O(n2) (cf. Remark 2 (2)). Its data structure can also
be used for an enumeration algorithm with delay O(s · log(n)) where s is the
size of the generated result.

Question : Can one generate L[n] according to the natural lexicographic
order. This order does not depend on any automaton ?

Other enumeration parameters
The Strahler number (also known as register allocation number) is defined

as follows for a binary tree t ∈ T (F,A) :
Str(a) = 1, if a ∈ A,
Str(f(t1, t2)) =Max{Str(t1), Str(t2)} if Str(t1) 6= Str(t2),

= 1 + Str(t1) if Str(t1) = Str(t2).

We denote by L{h,m} the set of terms in L of height at most h and of
Strahler number at most m.

Corollary 4 : If L ⊆ T (F,A) is recognizable, then for all h,m with m ≤
h, the set L{h,m} can be enumerated with linear delay after a preprocessing
taking time O(m2 · h2). The computation of the i-th element ti according to
a fixed linear order can be done with the same preprocessing time, within time
O(| ti | · log(m · h)).

Proof : It uses the same technique as for size or height, with L(q, n) replaced
by L(q, n, c) defined as the set of terms t with ht(t) = n, Str(t) = c and such
that runA(Root(t)) = q. The set of OR-vertices is Q× [m]× [h] and the set of
AND-vertices is (A × {1} × {1}) ∪ (F ×Q × Q × [m] × [h] × [m] × [h]). The
constructions and proofs extend easily. ¤

We now show how the second assertion of Theorem 7 can be improved by
using Theorem 5.

38

Theorem 8 : Let F be a finite set of function symbols. If L ⊆ T (F,A) is
recognizable, then for each h, the set L{h} can be enumerated with linear delay
with a preprocessing taking time O(h). The computation of the i-th element
ti according to a certain linear order can be done with the same preprocessing
time within time O(| ti |).

Proof : Let h, k > 0, let T(h, k) be the tree of words over {1, ..., k} of length
at most h− 1, ordered by the prefix order. The sons of a vertex are compared
lexicographically. Let F be a set of function symbols of arity at most k. A term
t in T (F,A) of height at most h can be described by a coloring of the nodes of
T(h, k) by elements in F ∪A. (A constant has height 1 and is represented by the
empty word.) A node of T(h, k) with no color is not an occurrence of t. Such
a coloring can be defined as an assignment of sets of nodes to the variables of
the set WF,A = {Xb | b ∈ F ∪ A}. (One can actually use only dlog(| F ∪ A |)e
variables.) We denote by νt the assignment which encodes t ∈ T (F,A). For
every recognizable set L ⊆ T (F,A) there exists (by the direction of the theorem
of Doner, Thatcher and Wright [6, 16] opposite to the one we have used up to
now), an MS formula ϕL with set of free variables WF,A such that for every
positive integer h, for every t ∈ T (F,A):

ht(t) ≤ h =⇒ (t ∈ L⇐⇒ (T(h, k), νt) |= ϕL)

The MS formula ϕL is independent of h. The tree T(h, k) is the unfolding
of a DAG with h vertices and (h − 1) · k edges. For each h and by Theorem
5, we can enumerate with linear delay the set SAT (T(h, k), ϕL). The size of a
term s in this set is proportional to that of the term t of L that it encodes (we
have | t |≤| s |≤ k· | t |), and the term t can be constructed in linear time from
s. (See Example 6). This gives a linear delay enumeration algorithm for L{h}
with preprocessing time O(h). ¤

Example 6:
We let k = 2, h = 5, and t = f(a, g(f(g(b)), f(c, d))) where ρ(f) = 2, ρ(g) =

1. The tree T(5,2) can be written linearly as :

ε(1{1[1(1, 2), 2(1, 2)], 2[1(1, 2), 2(1, 2)]},
2{1[1(1, 2), 2(1, 2)], 2[1(1, 2), 2(1, 2)]})

Its annotation T(5, 2)[νt] which encodes t is then

εf (1a{1λ[1λ(1λ, 2λ), 2λ(1λ, 2λ)], 2λ[1λ(1λ, 2λ), 2λ(1λ, 2λ)]},
2g{1f [1g(1b, 2λ), 2f (1c, 2d)], 2λ[1λ(1λ, 2λ), 2λ(1λ, 2λ)]})

where the subscripts f, a, g etc... indicate that the tuple of sets νt specifies
f, a, g, ... respectively for the corresponding occurrence.
The term T(5, 2)[νt]⊥ is :

39

εf (1a{⊥,⊥}, 2g(1f [1g(1b,⊥), 2f (1c, 2d)],⊥)).

from which we get t by removing the occurrences of ⊥ and replacing εf
by f, 1a by a etc...
Remarks 10 : (1) If F consists of one binary function symbol and A

consists of two constants, then, L{h} can contain more than 22h terms. The
efficiency of this algorithm is thus 22

a.p

.
(2) Space requirement : O(N · h) where N is the number of results. Or

alternatively, O(h) with an enumeration delay of O(s.h) by using the generation
algorithm.

Applications to context-free grammars.

Corollary 5 : Let L ⊆ A+ be defined by a nonambigous context-free gram-
mar. For every n, the finite language L(n) can be enumerated with linear delay
and preprocessing time O(n). So can be the finite language L[n] with pre-
processing time O(n2). The computation of the i-th element according to a
fixed linear order can be done with the same preprocessing time within time
O(s. log(n)) where s is the size of the result.

Proof : We use the observations made in the proof of Proposition 3 (2).
The case of L(n) is an immediate consequence of Theorem 8. For L[n] we recall
that a classical algorithm can transform the given grammar into one that is
nonambigous and has only rules of the forms S −→ a and S −→ TU for nonter-
minal symbols S, T, U and terminal symbol a. For such grammars, a word w is
generated by a derivation tree of size 3· | w | −1. The result follows then from
Theorem 7. ¤

If the given grammar is ambigous, the methods apply but some words will
be output several times. The algorithms of Corollary 5 actually enumerate
without repetitions their derivation trees. This technique can also be applied
to context-free graph grammars [4]. However, context-free graph grammars are
usually ambigous. Hence the enumeration will present repetions.

7 Summary, conclusion and open questions

We first summarize our results in a table. The efficiency is discussed above
after each theorem. We recall that p is the time spent for preprocessing, and s
the size of a result. We denote by tS a term the value of which, under a fixed
MS transduction τ is a structure S (see Theorem 6). For Theorem 5, the size
measure of the results is not the same as for Theorem 4.

40

Results Class of structures ; Preprocessing time Time for
enumerated for linear direct
objects delay enumeration ; generation

efficiency
Theorem 1 DAG G ; O(Card(EG)) O(s · log(degOR(G)))

embedded trees
Theorem 2 word of length n ; O(n2) ; 2a·p

1/2

O(s · log(n))
Corollary 1 MS query O(n · log(n)); 2a·p/ log(p)
Prop. 1 term t ∈ T (F,A) ; O(| t | ·ht(t)) O(s · log(| t |))
Theorem 3 MS query 2a·p/ log(p)

Theorem 4 term t ∈ T (F,A) ; O(| t | · log(| t |)) O(s · log(| t |))
MS query 2a·p/ log(p)

Theorem 5 term t = Unf(H), O(Card(VH)) O(s)
H ∈ D(F,A);
MS query on t 22

a.p

Theorem 6 Tree-like structure S ; O(| tS | · log(| tS |)) O(s · log(| tS |))
MS query

Prop. 3 Regular or linear O(n) O(s)
context-free language L ;

L[n] or L(n)

Theorem 7 Recognizable set O(n) or O(n2) O(s · log(n))
Theorem 8 of terms L ;

L[n] or L{n} 22
a.p

G. Bagan gives in [1] another algorithm for enumerating with linear delay the
set of answers to a monadic second-order query on classes of tree-like graphs or
structures. He also uses DAGSs like G2(t) in Definition 4, but his preprocessing
is different. A clever data structure makes possible to avoid the ε-reduction
step, hence his preprocessing takes only linear time in the size of the structure,
assumed to be given by its tree as in Theorem 3. However, his technique does
not apply to terms representing by DAGs, as we can do in Theorem 5.

Here are some questions.
1. Concerning size functions : Let us define a size function is a total mapping

s : T (F,A) −→ N such that s(f(t1, t2, ..., tk)) ≥ s(ti) for all f, t1, t2, ..., tk and
i. For which size functions do we have results like Theorem 7 and Corollary 4 ?

2. Concerning applications to context-free languages : Can one perform
a preprocessing which avoids generating a word several times when the given
context-free grammar is ambigous ? Ambigous grammars are considered in
[2], but in a different way. Other references on random generations of words
of context-free languages are [2,11,13], however these works do not consider
the enumeration problem. Can one enumerate with linear delay finite parts of
context-free languages L, say L[n] or L(n) in lexicographic order ?

41

3. Endless enumeration. Can one enumerate with linear delay the words
of an infinite recognizable or context-free set of words, terms or graphs by in-
creasing lengths, and at which cost in terms of preprocessing time ? One would
obtain a program that never stops.

4. Applications to chemistry. The enumeration of trees and graphs repre-
senting molecules is an important topic to which a lot of work has been devoted.
This work is described in the book by Trinajstíc et al. [18]. Furthermore the
enumerated structures are of low tree-width (at most 2 in most cases). The
methods of Section 6 are perhaps applicable to such problems.

Acknowledgement : This work has been inspired by reading the arti-
cle [8] by A. Durand and E. Grandjean who give a constant delay enumera-
tion algorithm for the answers to first-order queries on relational structures of
bounded degree. I acknowledge useful discussions and exchanges with F. Olive,
J. Niehren, G. Bagan, I. Durand, G. Sénizergues and M. Kanté.

8 References

[1] G. Bagan, MSO queries on tree decomposable structures are computable with
linear delay, Proceedings of Computer Science Logic 2006, Lec. Notes Comput.
Sci. 4207 (2006) 167-181.

[2] A. Bertoni, M. Goldwurm, M. Santini, Random generation for finitely
ambigous context-free languages, Theoretical Informatics and Applications 35
(2001) 499-535.

[3] H. Comon et al., Tree Automata Techniques and Applications, Book on-
line, freely readable :
http://www.grappa.univ-lille3.fr/tata/

[4] B. Courcelle, The expression of graph properties and graph transfor-
mations in monadic second-order logic, Chapter 5 of the Handbook of graph
grammars and computing by graph transformations, Vol. 1 : Foundations, G.
Rozenberg ed., World Scientific (New-Jersey, London), 1997, pp. 313-400.

[5] B. Courcelle, R. Vanicat, Query efficient implementations of graphs of
bounded clique-width, Discrete Applied Mathematics 131 (2003) 129-150

[6] J. Doner, Tree acceptors and some of their applications. J. Comput. Syst.
Sci. 4 (1970) 406-451

[7] R. Downey, M. Fellows, Parameterized complexity, Springer-Verlag, 1999

42

[8] A.Durand, E. Grandjean, First-order queries on structures of bounded de-
gree are computable with constant delay, ACM Transactions on Computational
Logic, to appear.

[9] M. Frick, M. Grohe, The complexity of first-order and monadic second-
order logic revisited. Ann. Pure Appl. Logic 130 (2004) 3-31.

[10] M. Goldwurm, Random generation of words in an algebraic language in
linear binary space, Inf. Proc. Letters 54 (1995) 229-233.

[11] T. Hickey, J. Cohen, Uniform random generation of strings in a context-
free language, SIAM on Comput. 12 (1983) 645-655.

[12] P. Hliněny, S. Oum, Finding branch-decompositions and rank-decompositions,
Preprint, March 2007.

[13] H. Mairson, Generating words in a context-free language uniformly at
random generation, Inf. Proc. Letters 49 (1994) 95-99.

[14] J. Niehren, L. Planque, J.-M. Talbot, S. Tison, N-ary queries by tree
Automata, 10th Int. Symp. on Data Base Programming Languages, Lec. Notes
Comp. Sci. 3774 (2005) 217-231.

[15] S. Oum, Approximating rank-width and clique-width quickly, 2006, Ex-
panded version of the communication in Proceedings of WG 2005, Lec. Notes
Comp. Sci. 3787 (2005) 49-58.

[16] J. W. Thatcher, J. B. Wright: Generalized finite automata theory with
an application to a decision problem of second-order Logic. Mathematical Sys-
tems Theory 2 (1968) 57-81.

[17] W. Thomas: Languages, automata and logic, in Handbook of Formal
Languages Volume 3, G. Rozenberg, A. Salomaa eds., Springer 1997, pp. 389-
455.

[18] N. Trinajstíc, S. Nikolíc, J. Knop, W. Müller, K. Szymanski, Computa-
tional chemical graph theory : Characterization, enumeration and generation of
chemical structures by computer methods, Ellis Horwood, Chichester, England,
1991.

9 Appendix : Monadic second-order logic and
clique-width

This appendix reviews Monadic second-order logic and transformations of struc-
tures expressed in this language, called MS transductions. The reader is referred
to the book chapter [4] or to the related article [5].

43

9.1 Relational structures and monadic second-order logic

Let R = {A,B,C, ...} be a finite set of relation symbols each of them given with
a nonnegative integer ρ(A) called its arity. We denote by ST R(R) the set of
finite R-structures S = hDS , (AS)A∈Ri where AS ⊆ D

ρ(A)
S if A ∈ R is a relation

symbol, and DS is the domain of S. If R consist of relation symbols of arity
one or two we say that the structures in ST R(R) are binary.
A simple graph G can be defined as an {edg}-structure G = hVG, edgGi

where VG is the set of vertices of G and edgG ⊆ VG × VG is a binary relation
representing the edges. For undirected graphs, the relation edgG is symmetric.
If in addition we need vertex labels, we represent them by unary relations.
Binary structures can be seen as vertex- and edge-labelled graphs. If we have
several binary relations say A,B,C, the corresponding graphs have edges of
types A,B,C.
The incidence graph of G, undirected is the relational structure Inc(G) =

hVG ∪EG, incGi such that incG(x, y) holds if and only if x ∈ EG, y ∈ VG and y
is an end of x. For G directed we use Inc(G) = hVG ∪ EG, inc1G, inc2Gi such
that inc1G(x, y) (resp. inc2G(x, y)) holds if and only if x ∈ EG, y ∈ VG and y is
the origin (resp. the target) of x.
We recall that Monadic Second-order logic (MS logic for short) is the exten-

sion of First-Order logic (FO logic for short) with variables denoting subsets of
the domains of the considered structures and new atomic formulas of the form
x ∈ X expressing the membership of x in a setX. (Uppercase letters will denote
set variables, lowercase letters will denote first-order variables). We denote by
FO(R,W) (resp. by MS(R,W)) the set of First-order (resp. Monadic second-
order) formulas written with the set R of relation symbols and having their free
variables in a set W consisting of first-order as well as of set variables. Hence,
we allow first-order formulas with free set variables and written with atomic
formulas of the form x ∈ X. In first-order formulas, only first-order variables
can be quantified.
As a typical and useful example, we give an MS formula with free variables

x and y expressing that (x, y) belongs to the reflexive and transitive closure of
a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X).

If the relation A is not given in the structure but defined by an MS formula,
then one replaces A(u, v) by this formula with appropriate substitutions of
variables.

9.2 Monadic Second-order transductions

We will also use MS formulas to define certain graph transformations. As in
language theory, a binary relationR ⊆ A×B whereA and B are sets of relational

44

structures will be called a transduction : A → B. An MS transduction is a
transduction specified by MS formulas. It transforms a structure S, given with
an n-tuple of subsets of its domain called the parameters, into a structure T ,
the domain of which is a subset of DS × [k]. ([k] denotes{1, ..., k}). We will
refer to the integer k by saying that the transduction is k-copying ; if k = 1 it is
noncopying. Furthermore, each such transduction, has an associated backwards
translation, a mapping that transforms effectively every MS formula ϕ relative
to T , possibly with free variables, into one, say ϕ#, relative to S and having
free variables corresponding to those of ϕ (k times as many actually) and to
those denoting the parameters. This new formula expresses in S the property
of T defined by ϕ. We now give some details. In this article we need not use
transductions with parameters. Hence we simplify the definitions accordingly.
More can be found in [4].

We let R and Q be two finite sets of relation symbols. A (Q,R)-definition
scheme is a tuple of formulas of the form :

∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k)

where k > 0, Q ∗ k := {(q,�j) | q ∈ Q,�j ∈ [k]ρ(q)}, ϕ ∈ MS(R,∅), ψi ∈
MS(R, {x1}) for i = 1, · · · , k and θw ∈MS(R, {x1, · · · , xρ(q)}) for w = (q,�j) ∈
Q ∗ k. These formulas are intended to define a structure T in ST R(Q) from a
structure S in ST R(R).
Let S ∈ ST R(R). A Q-structure T with domain DT ⊆ DS × [k] is defined

from S by ∆ if :
(i) S |= ϕ
(ii) DT = {(d, i) | d ∈ DS , i ∈ [k], (S, d) |= ψi}
(iii) for each q in Q : qT = {((d1, i1), · · · , (dt, it)) ∈ Dt

T | (S, d1, · · · , dt) |=
θ(q,�j)}, where �j = (i1, · · · , it) and t = ρ(q).

Since T is associated in a unique way with S and ∆ whenever S |= ϕ,
we can use the functional notation def∆(S) for T . The transduction defined
by ∆ is the binary relation D∆ = {(S, T) | T = def∆(S)}. Hence D∆ ⊆
ST R(R)×ST R(Q). A transduction f ⊆ ST R(R) × ST R(Q) is an MS trans-
duction if it is equal, up to isomorphism of structures, to D∆ for some (Q,R)-
definition scheme ∆. A noncopying definition scheme can be written more
simply : ∆ = (ϕ,ψ, (θq)q∈Q). If the formula ψ is the Boolean constant True
and T = def∆(S), then DT contains DS × {1}, an isomorphic copy of DS .
This transduction defines the domain of T as an extension of that of S (up to
isomorphism).

Example 7 :
We give some details of the definition scheme of the transduction δ defined

in Section 4 as the inverse of the mapping γ : T (F,A) −→ T (F∗, F ∪A).
We denote by p the maximum arity ρ(f) of a symbol f in F . We let F∗ be

the set of binary function symbols consisting of ∗ and ∗f for each f in F . The
mapping γ is defined recursively as follows :

45

γ(a) = a if a ∈ A,
γ(f(t1, ..., tm)) = ∗f (f, ∗(γ(t1), ∗(γ(t2),, ∗(γ(tm−1), γ(tm)))...)) if m =

ρ(f) and t1, t2,, tm ∈ T (F,A).
A term t in T (F,A) is represented by the relational structure

St = hDSt , suc1t, ..., sucpt, (labct)c∈F∪Ai,

where DSt = Occ(t), sucit(u, v) holds if and only if v is the i-th son of u,
labct(u) holds if and only if u is an occurrence of c. The corresponding relational
signature is τF,A.
A term t in T (F∗, F ∪A) is represented by the relational structure:

St = hDSt , suc1t, suc2t, (labct)c∈F∗∪F∪Ai.

There exists a definition scheme ∆ = (ϕ,ψ, (θq)q∈τF,A) that defines St from
S whenever S = Sγ(t) for some t in T (F,A).
The formula ϕ is such that S |= ϕ if and only if S = Sw for some w in

T (F∗, F ∪A) and, furthermore w = γ(t) for some t in T (F,A); its construction
is routine with the techniques presented in [4].
The formula ψ(x1), defined as

W
c∈F∪A labc(x1) specifies the domain of St

as the set of elements of DSγ(t) labelled by symbols in F ∪A (as opposed to by
symbols of F∗).
The formulas θlabc(x1), defined as labc(x1) for each c in F ∪A, express that

the labels do not change in the transduction δ.
We will use an auxiliary formula η(u, x2) defined as :

(u = x2 ∧
W
a∈A laba(x2)) ∨ (suc1(u, x2) ∧

W
f∈F labf (x2))).

This formula expresses the fact that if t = a ∈ A, then γ(t) = t and that,
otherwise, the root of γ(t) is the left son of the root of t. Then we define
θsuci(x1, x2) as the formula :

ψ(x1) ∧ ψ(x1) ∧
W
f∈F θf,i(x1, x2)

where for each f , the formula θf,i is defined for 1 ≤ i ≤ ρ(f). We write
these formulas for the case where ρ(f) = 3. The extension to the general case
is straightforward. We obtain the following three formulas:

θf,1(x1, x2) is the formula :

∃y1, y2, u.[lab∗f (y1)∧lab∗(y2)∧suc1(y1, x1)∧suc2(y1, y2)∧suc1(y2, u)∧η(u, x2)],

θf,2(x1, x2) is the formula :

∃y1, y2, y3, u.[lab∗f (y1) ∧ lab∗(y2) ∧ lab∗(y3) ∧ suc1(y1, x1) ∧ suc2(y1, y2) ∧
suc2(y2, y3) ∧ suc1(y3, u) ∧ η(u, x2)],

θf,3(x1, x2) is the formula:

46

∃y1, y2, y3, u.[lab∗f (y1) ∧ lab∗(y2) ∧ lab∗(y3) ∧ suc1(y1, x1) ∧ suc2(y1, y2) ∧
suc2(y2, y3) ∧ suc2(y3, u) ∧ η(u, x2)].¤

The following lemma says that if T = def∆(S), then the monadic second-
order properties of T can be expressed as monadic second-order properties of
S. The usefulness of definable transductions is based on it.

Let ∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme. Let V
be a set of set variables. For every variable X in V , for every i = 1, · · · , k, we
let Xi be a new variable. We let V 0 = {Xi | X ∈ V, i = 1, · · · , k}. Let S be a
structure in ST R(R) with domain D. For every mapping η : V 0 −→ P(D), we
let ηk : V−→ P(D× [k]) be defined by ηk(X) = η(X1)×{1}∪ · · ·∪η(Xk)×{k}.

Backwards Translation Lemma [4] : For every formula β in MS(Q,V)
one can construct a formula β# inMS(R, V 0) such that, for every S in ST R(R),
for every assignment η : V 0 −→ S we have :

(S, η) |= β# if and only if :
def∆(S) is defined, ηk is a V —assignment in def∆(S),
and (def∆(S), ηk) |= β.

If the definition scheme and the formula β are FO, then the formula β# is
also first-order. Note that, even if T = def∆(S) is well-defined, the mapping
ηk is not necessarily a V -assignment in T , because ηk(X) may not be a subset
of the domain of T which may be a proper subset of DS × [k]. We call β# the
backwards translation of β relative to the transduction def∆.

The composition of two transductions is defined as the composition of the
corresponding binary relations. If they are both partial functions, then one ob-
tains the composition of these functions.

Proposition 4 [4] : 1) The composition of two MS transductions (resp.
noncopying MS transductions) is an MS transduction (resp. a noncopying MS
transduction).
2) The inverse image of an MS-definable class of structures under an MS

transduction is MS-definable.

In Section 5, we defined a class of tree-like structures as the image of a set
of binary terms under a noncopying MS transductions. This is equivalent to
taking the more liberal definition of the image of a set of trees under an MS
transductions possibly using parameters.

9.3 Clique-width

Clique-width is like tree-width a graph complexity measure. It is defined and
studied in [5] and in [4], among other works. Graphs are simple, directed or

47

not, and loop-free. Let C be a set of k labels. A C-graph is a graph G given
with a total mapping labG from its vertex set to C. Hence G is defined as a
triple hVG, edgG, labGi. We call labG(v) the label of a vertex v. The operations
on C-graphs are the following ones :
(i) For each i ∈ C, we define a constant i to denote an isolated vertex

labelled by i.
(ii) For i, j ∈ C with i 6= j, we define a unary function addi,j such that :

addi,j(hVG, edgG, labGi) = hVG, edg0G, labGi

where edg0G is edgG augmented with the set of pairs (u, v) such that labG(u) =
i and labG(v) = j. In order to add undirected edges, we take :

addi,j(addj,i(hVG, edgG, labGi)).

(iii) We let also reni→j be the unary function such that

reni→j(hVG, edgG, labGi) = hVG, edgG, lab0Gi

where lab0G(v) = j if labG(v) = i, and lab0G(v) = labG(v), otherwise. This
mapping renames into j every vertex label i.
(iv) Finally, we use the binary operation ⊕ that makes the union of disjoint

copies of its arguments. (Hence G⊕G 6= G and its number of vertices is twice
that of G).

A well-formed term t over these symbols will be called a k-expression where
k = Card(C). Its value is a C-graph G = val(t). The set of vertices of val(t)
is (or can be defined as) the set OccC(t). However, we will also consider that a
term t designates any graph isomorphic to val(t). The clique-width of a graph
G, denoted by cwd(G) is the minimal cardinality of C such that G is the value of
some C-expression. A set of graphs has bounded clique-width if it has bounded
tree-width, and the converse does not hold.
If we need to define graphs with vertex labels from a set L, then we use

constant symbols ia for i in C and a in L. The labels from L are not modified
by any operation, and do not interfere with the other operations. To build a
graph with labelled edges we can use the operation adda,i,j to add edges labelled
by a from the vertices labelled by i to those labelled by j. The clique-width of a
graph depends strongly on edge directions. Cliques and transitive tournaments
have clique-width 2 but tournaments have unbounded clique-width.

Proposition 5 [4] : A set of graphs has bounded clique-width if and only
if it is the image of a set of binary terms under a noncopying MS transduction.

48

