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Abstract

We study several algebras of graphs and hypergraphs and the corresponding notions of equational sets and
recognizable sets. We generalize and unify several existing results which compare the associated equational and
recognizable sets. The basic algebra on relational structures is based on disjoint union and quantifier-free definable
operations. We expand it to an equivalent one by adding operations definable with “few quantifiers,” i.e., opera-
tions that take into account local information about elements or tuples. We also consider monadic second-order
transductions and we prove that the inverse image of a recognizable set under such a transduction is recognizable.
c© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Formal language theory studies sets of finite and infinite words and terms (usually called trees) that
are finitely described by means of grammars, automata, or logical formulas. It also investigates trans-
formations of words and terms in a similar perspective. Its scope now extends to descriptions of sets of
graphs, hypergraphs, partial orders, and related combinatorial structures, and to that of transformations

∗ Corresponding author.
E-mail addresses: blumensath@mathematik.tu-darmstadt.de (A. Blumensath), courcell@labri.fr (B. Courcelle).

1 Work done during a postdoctoral stay at LaBRI supported by the European RTN GAMES.

0890-5401/$ - see front matter c© 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.11.006



854 A. Blumensath, B. Courcelle / Information and Computation 204 (2006) 853–919

of these objects, which we will call, as for words and terms, transductions. Universal algebra and logic
are fundamental for developing this extension, and this article contributes to showing why.

1.1. Algebras, equational and recognizable sets

Context-free languages can be characterized as least solutions of systems of recursive equations, while
regular languages can be characterized as unions of classes of finite congruences on the free monoid.
Both characterizations are based on the algebraic structure on words associated with concatenation. As
observed by Mezei and Wright in [30] the two notions of least solution of a system of recursive equations
and of a congruence with finitely many classes are meaningful in every algebra, not only in the monoid of
finite words and in the algebra of finite terms. In every algebra, they yield two families of sets, the family
of equational sets and the family of recognizable sets. These notions generalize those of context-free
languages and of regular languages, respectively.

The advantage of this algebraic approach, especially for describing sets of graphs, is that it depends
neither on rewriting rules nor on automata. This is essential because graph rewriting rules are compli-
cated to define and to study, and graph automata satisfying good closure and decidability properties
do not exist, except for very particular classes of graphs. By contrast, the families of recognizable and
equational sets of any algebra satisfy useful closure properties: the family of recognizable sets is closed
under union, intersection, and difference, and the intersection of an equational set with a recognizable
one is equational.

A class of graphs is made into an algebra by equipping it with graph operations. These operations form
the signature of the algebra. A graph operation linking two graphs can be considered as a generalized con-
catenation. However, graphs can be concatenated in several ways, and different operations are specified
in terms of labellings of the vertices. We will also use unary graph operations that manipulate labellings.
In every algebra of graphs, we have thus equational sets and recognizable sets. Their definitions only use
concepts of universal algebra and need not deal with the specific combinatorial properties of the graphs
under consideration.

In the above description, we have written “graphs” for simplicity, but it equally applies to hypergraphs,
partial orders, and actually all combinatorial objects represented by relational structures with a finite set
of relations. For example, a graph is represented by the relational structure whose domain is the set of
vertices and that has a binary relation describing the edges. (The multiplicity of edges is lost in this
representation. There exists another one for graphs with multiple edges, see [4].)

Several signatures can be defined on the same class of relational structures. However, in many cases,
“small” variations of the signature do not modify the classes of equational and recognizable sets, a fact
indicating the robustness of the algebraic framework. We will say that two signatures are equivalent if
the corresponding classes of equational and recognizable sets are the same. One of the purposes of this
article is to investigate equivalences of signatures. Another one is to relate these algebraic notions with
monadic second-order logic. We now explain the role of logic in this theory.

1.2. The role of logic

Logic is used for three purposes: first to specify the operations on relational structures in the signa-
tures, second to define recognizable sets of relational structures, and third to specify transformations of
relational structures. Let us comment each of these uses.
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The basic signature of operations, denoted by QF , consists of disjoint union, of all unary operations
that can be defined by quantifier-free formulas (called quantifier-free operations), and of constants denot-
ing structures with a single element. The edge complement is an example of a quantifier-free operation:
the edge relation of the output graph is just the complement of the edge relation of the input graph, hence
the former is definable by a formula without quantifiers in terms of the latter. Quantifier-free operations
can be combined with disjoint union to form various kinds of graph concatenations.

This definition generalizes and unifies previously defined algebras, the algebra of graphs called VR,
and the algebra of hypergraphs called HR. They have been defined in such a way that their equational
sets are the sets of graphs and hypergraphs defined by certain context-free graph grammars, based re-
spectively on vertex replacement and on hyperedge replacement (see [4] and other chapters of the same
book on graph grammars). Many results proved independently for these two algebras can now be proved
as particular instances of more general results relative to QF .

Monadic second-order logic (MSO) is the fundamental language for defining recognizable sets and
transductions of relational structures. That MSO is useful is not too surprizing given that, for sets of
words and terms, MSO-definability is equivalent to definability by finite-state automata, and that many
types of tree transductions can also be described by MSO-formulas (see [1,5,21]). A fundamental result
says that every set of relational structures that is the set of finite models of an MSO-formula is QF-rec-
ognizable (i.e., is recognizable with respect to the algebra of relational structures defined by the signature
QF). On the other hand, it is much easier to check that a property is definable by an MSO-formula
than to construct a finite congruence saturating the corresponding set. In the cases of words and trees,
finite-state automata offer such a convenient specification language for recognizable sets, but they do not
work on graphs and, a fortiori, on relational structures. Hence MSO takes their place in a natural way.
Transducers which define transformations of words or terms into words or terms are finite-state automata
with outputs. Hence, they cannot be generalized to graphs on the basis of automata, and MSO, again,
offers a powerful and easy to use specification language.

Furthermore, there are quite close connections between equational sets and recognizable sets of re-
lational structures, and MSO-transductions: for example, a set is QF-equational iff it is the image of a
recognizable set of finite terms under an MSO-transduction, and it follows that the class of QF-equa-
tional sets is stable under MSO-transductions. Further, we prove in this article that the inverse image of
a QF-recognizable set under an MSO-transduction is QF-recognizable.

1.3. The main results

We will only consider finite terms, graphs, hypergraphs, and relational structures. Furthermore, we
will consider relational structures only up to isomorphism. There are several reasons for doing so. First,
we have no use for distinguishing isomorphic relational structures. This is also a requirement for applying
logic since logical formulas cannot distinguish between isomorphic structures. To derive algorithms from
this theory as done in [6], we need to use whenever possible finite relational signatures and we do not
want to introduce infinitely many constants to describe infinitely many isomorphic structures. Hence a
term will not define a single relational structure but the isomorphism class of some relational structure.

Our starting point is the signature QF of operations on relational structures consisting of disjoint
union, quantifier-free operations (there are countably many, the use of infinite signatures for dealing with
graphs, even finite ones, is unavoidable), and constants denoting relational structures having a singleton
domain.
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We prove in Section 5 that the inverse image of a QF-recognizable set under an MSO-transduction
is QF-recognizable. This result, of which weak forms are already known, confirms the robustness of the
formal framework associating graph operations and MSO.

In Section 6, we prove that the signature QF can be restricted to an equivalent subsignature. This
“small” (although still countably infinite) signature is based on quantifier-free operations of three types:
we can forget a relation R (i.e., delete all tuples in R without modifying the domain of the considered
structure), rename a relation R into S (where R and S have same arity; if R and S are both present in
the input structure then this operation merges them into a single relation), and we can add either a new
relation T or tuples to an existing relation T (roughly, given two relations R and S we concatenate the
tuples of R with those of S and add the resulting tuples to T ). If the relational signature � contains only
relations of arity at most n then we can define an equational set of �-structures by a system of equations
where the operations only use the relations of � and auxiliary relations of arity at most n− 1. In the
case of graphs, that is for n = 2, we obtain known results about the signature VR (cf. [7,8]) where the
auxiliary relations are unary, i.e., they encode vertex labels.

In Section 7, we develop a method for enlarging the signature QF to an equivalent one, and we apply
this method to the fusion operation considered by Courcelle and Makowsky in [9]. This operation fuses
all elements satisfying a given unary relation. It is not quantifier-free. Roughly speaking, we prove that
adding it to QF yields an equivalent signature. This generalizes the results of [9].

In Section 8, we consider the algebra HR whose equational sets are those defined by hyperedge re-
placement context-free graph grammars. This is an algebra of relational structures with distinguished
elements called sources. The operations consist of constants for singleton structures and parallel com-
position which combines two structures with sources into the one obtained from their disjoint union
by fusing the sources with same label. One can replace a relational structure with sources by a purely
relational one by introducing, for each constant c, a unary relation labc which contains as single element
the value of c. However, if we do so, quantifier-free definable operations on relational structures with
sources are no longer quantifier-free definable on the corresponding relational structures without sources.
We overcome this difficulty by showing that nevertheless the operations of HR can be handled in the
general framework of purely relational structures.

These results contribute to build a robust foundation for the extension of formal language theory to
sets of graphs, hypergraphs, and relational structures. Let us say a few words about the tools we use
for establishing them. The main one is the classical notion of a logical type used, e.g., in [2,25,26,28].
Given a finite set � of formulas with n free variables (for instance, the set of MSO-formulas of quan-
tifier height at most k, up to logical equivalence), we define the �-type of an n-tuple of elements ā of
a relational structure as the set of those formulas of � that are satisfied by ā. There are thus finitely
many possible �-types. If the formulas in � are quantifier-free or if their quantifications are restricted
to a “neighbourhood” of ā, then the �-type of ā encodes local information associated with ā. Given a
structure A, its �-annotation is the structure M�(A) with same domain where, for each �-type p , we
have a new n-ary relation Tp containing all n-tuples of A with type p . The annotation M�(A) provides
information about A that is immediately available from the relations without the need to use formulas
with quantifiers. In the language of database theory, this construction builds an extensional database out
of an intensional one. In this article, a typical use is the following: a transduction of structures A, defined
by MSO-formulas of quantifier height at most k can be replaced by a quantifier-free transduction acting
on the annotated structures M�(A) where � is the set of MSO-formulas of quantifier height at most
k.
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1.4. Related works

This article develops the algebraic and logical extension of formal language theory to sets of re-
lational structures initiated by Courcelle and presented in [10] (its algebraic background) and [4] (its
application to graphs and hypergraphs, and its relationships with graph grammars). This theory also
uses results from [1,11,22]. Sections 6 and 8 elaborate the definition given in [7] of an algebra for
relational structures with constants. Section 7 generalizes the definition of fusion given in [9] and es-
tablishes new results. Closure properties of the family of HR-recognizable sets of hypergraphs have
been studied in [12], and Section 5 continues this work. The stability of the family of recognizable sets
under modifications of signatures is studied in [8], and the notion of equivalence of signatures investi-
gated in Sections 6, 7, and 8 extends this stability requirement to also include the family of equational
sets.

1.5. Summary of the article

The article is organized as follows. Section 2 reviews algebras, equational and recognizable sets, and
it introduces an extension of the notion of derived operation closely related to linear deterministic bot-
tom-up tree transductions. It also extends the notion of a homomorphism to that of a heteromorphism,
making it possible to relate algebras of different signatures. Section 3 reviews relational structures, mo-
nadic second-order logic, monadic second-order transductions, and operations on relational structures
defined by quantifier-free formulas. Section 4 introduces monadic types (sets of monadic second-or-
der formulas of bounded quantifier height) as a first form of type information, and establishes several
technical results. Section 5 establishes the preservation of recognizability under inverse MSO-trans-
ductions. Section 6 shows the equivalence of the basic signature QF on relational structures with a
proper subsignature that generalizes the signature VR to relational structures and, hence, to hyper-
graphs. Section 7 takes the opposite direction. Its objective is to extend QF by operations that are
not quantifier-free definable, but to obtain nevertheless an equivalent signature. A method for doing
so is introduced and applied to the fusion operation. Section 8 shows how the operations defining the
HR-equational and HR-recognizable sets can be studied in terms of relational structures without con-
stants.

1.6. Notation, conventions, and general facts

In this article we only consider equational and recognizable sets of finite structures. The reason for
this limitation is that the algebraic definitions of these notions are not well suited to infinite objects.
In particular, the recognizable sets of infinite trees are not those defined by tree automata. However,
our technical constructions of transformations of structures based on logical formulas work for infinite
structures as well. But their algebraic consequences are only meaningful in the finite case.

All proofs in this article are effective. Hence every statement of the form “For every m, n, there exists
an MSO-transduction such that . . . ” can be read as “There exists an algorithm that, givenm, n, constructs
an MSO-transduction such that . . . ”

Let us fix notation and introduce some conventions. The set � of natural numbers contains 0. We set
[k] := {1, . . . , k} and [0] := ∅. We denote by P(X) the power set of a set X . For an n-tuple ā = a1 . . . an,
we sometimes also write ā for the set {a1, . . . , an} of its components. In particular, we sometimes write
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ā ⊆ A instead of ā ∈ An. The empty tuple is denoted by 〈〉. We will denote by |x| both, the cardinality of
a set x and the length of a word x. (No ambiguity will arise.)

2. Equational and recognizable sets in arbitrary algebras

The notions of an equational set and a recognizable set are due to Mezei and Wright [30]. While they
were originally defined for algebras over one sort, we adapt them to the many-sorted case with infinitely
many sorts. We begin with definitions concerning such algebras. We refer the reader to [10] for more
about recognizable and equational sets.

2.1. Algebras

Let S be a set whose elements we call sorts. An S-signature is a set F of function symbols each of
which has a type s1 × s2 × · · · × sn → s where s1, . . . , sn, s ∈ S. We may have n = 0; in this case the
symbol is called a constant. We denote by T(F ,X) the set of finite well-formed terms built with functions
from F and variables from X . They will simply be called terms in the following. In the case X = ∅, we
simply write T(F ). Automata defining sets of terms are usually called tree automata, and multivalued
mappings from terms to terms are called tree transductions. We will keep this standard terminology,
although trees in the sense of graph theory do not coincide with terms.

An F -algebra is an object M = 〈(Ms)s∈S , (fM )f∈F 〉 where each set Ms, called the domain of M
of sort s, is nonempty and, for every symbol f ∈ F of type s1 × · · · × sn → s, we have a total func-
tion fM : Ms1 × · · · ×Msn → Ms. These mappings are called the operations of M . We assume that
Ms ∩Ms′ = ∅, for s /= s′. We denote the set

⋃ {Ms | s ∈ S } also by M . We assume that the notions of a
homomorphism, subsignature, subalgebra, etc. are well-known. See [10] or [8] for details.

We can define a canonical F -algebra (the free F -algebra) on the set of terms T(F ) such that, for
every F -algebra M , there exists a unique homomorphism valM : T(F )→ M . For t ∈ T(F )s, the image
of t under valM is an element of Ms, called the value of t in M . A term t with variables x1, . . . , xn of
sort s1, . . . , sn defines a function tM : Ms1 × · · · ×Msn → M which is obtained by replacing all function
symbols f in t by the corresponding operations fM of M . In the special case that n = 0 we obtain
tM = valM(t).

A derived operation of the algebra M is an n-ary operation defined by a term in T(F , {x1, . . . , xn})
where each variable xi occurs at most once. Such terms are called linear. Let F and G be S-signatures
and M an F -algebra. If N is a G-algebra with the same domains as M such that each operation of N is a
derived operation of M then we say that N is a derived algebra, and that it is derived of M . We call G a
derived signature of F . The signature of all derived operations of F is denoted by F der.

Our notion of a derived operation is restricted to linear terms to guarantee that the class of equational
sets is not changed by adding derived operations to a signature. The class of recognizable sets stays the
same even if we add derived operations built from nonlinear terms.

IfG is a derived signature of F every term t ∈ T(G) can be translated into a term �(t) ∈ T(F ) such that
�(t)N = tM , for all algebras M and N as above. The mapping � is a tree transducer of a particular type,
namely a deterministic, bottom-up, linear tree transducer with a single state. By a regular set of terms
we mean a subset K ⊆ T(F ), for some finite signature F , that is defined by a finite-state tree automaton.
Generalizing the notion of a regular set we will define below the notion of a recognizable set in an
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arbitrary algebra. It is an easy exercise to show that a set of terms in T(F ) is regular if and only if it is
recognizable in the free F -algebra T(F ).

For definitions and basic results concerning tree automata and tree transducers, we refer the reader
to the books [23] or [3], and to the surveys [24,31]. In the following we will only use finite-state de-
terministic, bottom-up, linear tree transducers and we will call them simply tree transducers. Among
the basic facts we recall that the image of a regular set of terms under such a tree transducer is again
regular.

Lemma 1. If C is a regular set of terms then so is �(C), for every tree transducer �.

Let us stress that, by our definition, a tree transducer is always linear. Without this condition Lemma 1
would not hold.

2.2. Recognizable and equational sets

Let F be an S-signature. We say that an F -algebraM is locally finite if each domainMs is finite. (Note
that in universal algebra the term “locally finite” has a different meaning.)

A congruence on M is an equivalence relation ≈ on
⋃ {Ms | s ∈ S } such that each set Ms is a union

of equivalence classes and such that ≈ is stable under all operations of M . It is said to be finite if, for
each sort s, the restriction ≈s of ≈ to Ms is finite, i.e., has finitely many classes. A congruence saturates
a set X ⊆ M if X is a union of equivalence classes.

Definition 2. Let M be an F -algebra and s ∈ S. A subset X ⊆ Ms is M -recognizable if it is saturated by
a finite congruence on M . We denote the set of all M -recognizable subsets of Ms by Rec(M)s, and the
union of the sets Rec(M)s by Rec(M).

An equivalent definition can be given in terms of homomorphisms. A subset X ⊆ Ms is
M -recognizable if and only if there exists a homomorphism h : M → A into a locally finite
F -algebra A and a (finite) subset Y ⊆ As such that X = h−1(Y). The class Rec(M)s forms a
boolean algebra. We have ∅,Ms ∈ Rec(M)s, and X , Y ∈ Rec(M)s implies that X ∪ Y ,X ∩ Y ,
X \ Y ∈ Rec(M)s (see [10]).

Note that in the definition of a congruence constants play no role. Hence, a set X is recognizable with
respect to an F -algebra M if and only if it is recognizable with respect to the F−-reduct of M where
F− consists of all operations of F except for the constant symbols.

Definition 3. A subset L ⊆ Ms isM -equational if it is a component of the least solution of a finite system
of recursive equations using as operations union and the extension of the operations of F to subsets ofM .
We denote the class of equational subsets of M by Equat(M), and by Equat(M)s the subclass of those
included in Ms.

For instance, the equational sets of a free monoid are exactly the context-free languages. Similarly, the
equational subsets of graph algebras are exactly those that are context-free. See [4] for the relationship
between graph grammars and equational sets. Instead of the above definition we will mainly use the
following characterization of M -equational sets.

Proposition 4 ([30,10]). Let M be an F -algebra. A set L⊆Ms is M -equational if and only if there exists
a regular set K ⊆ T(F )s such that L = valM(K).
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Note that, by definition, ifK ⊆ T(F )s is a regular set of terms then there is a finite subsignature F0 ⊆ F

with K ⊆ T(F0)s.

Corollary 5. A set K ⊆ T(F )s is regular if and only if it is equational.

In particular, if F is a finite signature that generatesM , i.e., such that every element ofM is the value
of a term in T(F ), then every recognizable set is equational. This condition is satisfied for the usual
algebras of finitely generated monoids, but not for the algebras of graphs that we will consider. See [10]
for a thorough treatment of the basic results about recognizable and equational sets.

In certain cases, for instance when considering graphs, there is a canonical choice for the domains
Ms, s ∈ S, while there are several possible signatures F . To simplify terminology and notation we
will speak in such cases of F -equational and F -recognizable sets instead of introducing a sepa-
rate name MF for the structure obtained from the signature F and using the terms “MF -equation-
al” and “MF -recognizable.” Similarly we will write Equat(F ) and Rec(F ) instead of, respectively,
Equat(MF ) and Rec(MF ).

2.3. Finite-state derived operations and homomorphisms

We will need some extensions of the classical notions of a derived operation and a homomorphism
that are closely related to tree transducers.

Definition 6. Let M be an F -algebra. A mapping " : M → X from M into an arbitrary set X is
M -computable if the sets As := "(Ms) ⊆ X , for s ∈ S, are finite and pairwise disjoint, and there ex-
ists an F -algebra A with domains As, for each s, such that " : M → A is a homomorphism. In other
words, the latter condition means that, for every f ∈ F of arity n and all a1, . . . , an ∈ M of appropriate
sorts, the value "(fM(ā)) can be computed from "(a1), . . . ,"(an).

Definition 7. Let M be an F -algebra and " : M → A be M -computable. An n-ary mapping
g : Ms1 × · · · ×Msn → Ms, n � 1, is a finite-state derived operation (based on ") if, for each ā ∈ An,
there is an n-ary derived operation t[ā] of M such that we have

g(x1, . . . , xn) = t["(x1), . . . ,"(xn)]M(x1, . . . , xn) ,
for all elements x1, . . . , xn ∈ M of sorts, respectively, s1, . . . , sn.

Example 8. Let X be a set and F the signature consisting of one binary operation · and constant symbols
ε and a, for every a ∈ X . LetM be the free monoid over X , that is, the F -algebra with domain X ∗ where
·M is concatenation, εM the empty word, and aM := a, for a ∈ X . Fix some element a ∈ X . We define a
binary operation � on X ∗ by

u� v :=
{
uv if neither u nor v contains an occurrence of a,
a otherwise.

We claim that � is a finite-state derived operation. We define an F -algebra N on [2] by setting

i ·N k :=
{
2 if i = k = 2 ,
1 otherwise ,
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εN := 2 , aN := 1 , and bN := 2 , for b /= a .

Let " : M → N be the homomorphism

"(u) :=
{
1 if u contains an occurrence of a,
2 otherwise.

Then we can define � by the terms

t[1, 1](x, y) := a , t[1, 2](x, y) := a ,

t[2, 1](x, y) := a , t[2, 2](x, y) := x · y .
If M is an F -algebra and G a set of finite-state derived operations we obtain a G-algebra N with the

same sorts and domains as M . We call G a signature of finite-state derived operations, and we call N a
finite-state derived algebra ofM . If the operations ofG are all based on the sameM -computable mapping
" then we say that G and N are based on ".

For each M -computable mapping ", we denote by F der
" the signature of all finite-state derived oper-

ations based on ". If F is countable then so is F der
" since we require that the sets As are finite. Clearly,

F der
" contains F der because the operations t[ā] in the above definition may actually not depend on ā. Note

that the operations of F der
" depend onM via ", whereas those of F der do not: they are defined in a purely

syntactic way without reference to any algebra.

Remark 9. Let F be a finite signature, M an F -algebra, and G a finite signature of finite-state derived
operations based on some M-computable mapping " : M → A. Let N be the associated (F ∪ G)-algebra.
For every t ∈ T(F ∪ G), there exists a term �(t) ∈ T(F ) with tN = �(t)M . This mapping � can be defined
by a tree transducer.

We will see below that adding finite-state derived operations does not change the notions of an equa-
tional or a recognizable set. Hence, when we want to compare algebras with respect to such sets we
need a kind of homomorphism that is invariant under this operation. Furthermore, we will need to relate
algebras with different signatures.

Definition 10. Let M be an F -algebra with set of sorts S and N a G-algebra with set of sorts S ′.

(a) A heteromorphism h : M → N is a collection of mappings consisting of hsort : S → S ′ and
hs : Ms → Nhsort(s), for each s ∈ S, such that, for every f ∈ F of type s1 × · · · × sn → s, there
exists a linear term tf ∈ T(G, {x1, . . . , xn}) such that

hs(fM(b1, . . . , bn)) = t
f
N (hs1(b1), . . . , hsn(bn)) ,

for all b1, . . . , bn ∈ M of sorts s1, . . . , sn.
(b)Let " : M → A be an M -computable mapping. A collection h as above is a finite-state heteromor-

phism based on " if, for every f ∈ F of type s1 × · · · × sn → s, there exist linear terms tf [ā] ∈
T(G, {x1, . . . , xn}), for ā ∈ An, such that

hs(fM(b1, . . . , bn)) = tf ["(b1), . . . ,"(bn)]N (hs1(b1), . . . , hsn(bn)) ,
for all b1, . . . , bn ∈ M of sorts s1, . . . , sn.
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In the following we will write in both cases h instead of hsort or hs, without risk of ambiguity.

Remark 11. An important special case of a (finite-state) heteromorphism consists of a function
h : M → N from an F -algebraM to a G-algebra N such that there exists a set G′ of (finite-state) derived
operations of N that turns h : M → N into a homomorphism from M to the G′-algebra N .

Example 12. Let M be the free monoid as in the previous example.

(a) The function h : u �→ ũ that maps every word to its mirror image is a heteromorphism. Since ũv = ṽũ

we can choose the term t·(x, y) := y · x.
(b)An example of a finite-state heteromorphism is the function

g(u) :=
{
ũ if u contains no occurrence of a,
an if u contains n > 0 occurrences of a.

If we again choose " : M → [2] to be the homomorphism with

"(u) :=
{
1 if u contains an occurrence of a,
2 otherwise,

then we can define g by the terms

tg[1, 1](x, y) := x · y , tg[1, 2](x, y) := x ,

tg[2, 1](x, y) := y , tg[2, 2](x, y) := y · x .

Remark 13. Let h : M → N be a finite-state heteromorphism. For every term t ∈ T(G), there exists a
term �(t) ∈ T(G) such that h(tM ) = �(t)N . If the signature F of M is finite then this mapping � can be
defined by a tree transducer.

Lemma 14. Let h : M → N be a finite-state heteromorphism based on " between an F -algebra M and
a G-algebra N.

(a) L ∈ Rec(N) implies h−1(L) ∈ Rec(M).
(b) L ∈ Equat(M) implies h(L) ∈ Equat(N).

Proof. (a) Let L ∈ Rec(N) and≈ be a finite G-congruence saturating L.We define a relation≡ onM by
setting

x ≡ y : iff x and y have the same sort,
h(x) ≈ h(y) , and "(x) = "(y) .

It is clear that≡ is an equivalence relation. For each sort s, it has at most |Nh(s)/≈| · |As| classes. If x ≡ y

then h(x) ∈ L implies h(y) ∈ L since h(x) ≈ h(y) and ≈ saturates L. Consequently, ≡ saturates h−1(L).
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It remains to prove that ≡ is a congruence. Let f ∈ F be of arity n and let x̄, ȳ ∈ Mn with xi ≡ yi,
for all i. By the definition of ≡, we have "(xi) = "(yi), and since " is a homomorphism it follows that
"(fM(x̄)) = "(fM(ȳ)).

It remains to prove that h(fM(x̄)) ≈ h(fM(ȳ)). We have

h(fM(x̄)) = tf ["(x1), . . . ,"(xn)]N (h(x1), . . . , h(xn))
= tf ["(y1), . . . ,"(yn)]N (h(x1), . . . , h(xn))

(since "(xi) = "(yi))

≈ tf ["(y1), . . . ,"(yn)]N (h(y1), . . . , h(yn))
(since h(xi) ≈ h(yi))

= h(fM(ȳ)) ,

which completes the proof.
(b) Each set L ∈ Equat(M) can be written L = valM(K), for some regular set of terms K ⊆ T(F )

(see Proposition 4). We have remarked that there exists a tree transducer � associated with h such that

valN (�(t)) = h(valM(t)) , for all t ∈ T(F ) .
Hence h(L) = valN (�(K)). Since, by Lemma 1, tree transducers preserve regularity it follows that h(L)

is N -equational. �
Definition 15. Let F andG be S-signatures for some set of sorts S andM = (Ms)s∈S a family of domains.
Let MF and MG be algebras with the same family of domains M and signatures F and G, respectively.
We say that MF and MG are equivalent if

Equat(MF ) = Equat(MG) and Rec(MF ) = Rec(MG) .

If MF and MG are understood from the context we will simply say that F and G are equivalent
signatures.

Remark 16. For F ⊆ G we obviously always have

Equat(F ) ⊆ Equat(G) and Rec(G) ⊆ Rec(F ) .

Hence, when testing for equivalence we only need to check the converse inclusions.

Consider an F -algebra M and let G be a signature of finite-state derived operations of M that are
all based on the same M -computable mapping " (cf. Definition 7). It follows from the next lemma that
F ∪ G is equivalent to F .

Lemma 17. Let M be an F -algebra. For every M -computable function " : M → A, the signature F der
"

is equivalent to F.

Proof. If ≈ is a finite F -congruence on M then the equivalence relation defined by

x ≡ y : iff x and y are of the same sort, "(x) = "(y), and x ≈ y
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is a finite F der
" -congruence. (The proof is the same as in Lemma 14 (a).) Hence, if ≈ witnesses the

F -recognizability of some set L then ≡ witnesses the F der
" -recognizability of L. It follows that

Rec(F der
" ) = Rec(F ).

Suppose that L is F der
" -equational. Then we have L = valM(K) for some regular subset K ⊆ T(F der

" ).
We have noted that there exists a tree transducer � such that

valM(�(t)) = valM ′(t) , for all t ∈ T(F der
" ) ,

where M ′ is the F der
" -algebra with same domains as M . Hence, L = valM(�(K)) and since tree

transducers preserve regularity it follows that L is F -equational. Consequently, we have Equat(F der
" ) =

Equat(F ). �

3. Relational structures and monadic second-order logic

A relational signature is a finite set� = {R, S , T , . . .} of relation symbols each of which is given with
an arity ar(R) � 1. We denote by STR[�] the set of all finite �-structures A = 〈A, (RA)R∈�〉 where
RA ⊆ Aar(R). The set A is called the domain of A. The arity of � is the maximal arity of a symbol in �.
We denote it by ar(�). The arity of a �-structure A is the arity of its signature �.

Intuitively, a �-structure A can be seen as a directed hypergraph where A is the set of vertices and,
for every tuple ā ∈ R, we have a hyperedge with label R and sequence of vertices ā.

For a relational �-structure A and a set X ⊆ A, we denote by A[X ] the substructure of A induced by
X . This is the structure with domain X and relations

RA[X ] = RA ∩ X ar(R) , for R ∈ � .
A graph G is defined as an {edg}-structure G = 〈VG , edgG〉 where VG is the set of vertices of G and
edgG ⊆ VG × VG is a binary relation representing the directed edges. For undirected graphs, the relation
edgG is symmetric. In particular, graphs are always simple, i.e., without parallel edges.

A term t ∈ T(F ) where F is a finite signature of symbols of arity at most k can be seen as a direct-
ed labelled tree. We encode such a tree by a relational structure of the form S(t) := 〈N , (suci)1�i�k , rt,
(labf )f∈F 〉 where

• N is the set of nodes,
• suci(x, y) holds iff y is the ith successor of x,
• rt(x) holds iff x is the root, and
• labf (x) holds iff the node x has label f .

We denote by +(F ) the relational signature of this structure.
We recall that monadic second-order logic extends first-order logic by set variables, quantification over

set variables, and new atomic formulas of the form x ∈ X that express the membership of an element x
in the set X . We will denote by MSO[�,W ] the set of all MSO-formulas over the signature � with free
variables in W . Similarly, FO[�,W ] is the set of first-order formulas and QF[�,W ] denotes the set of
quantifier-free formulas. Frequently, we will omit the parameters � and W if their values are obvious
from the context.
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The quantifier height of a formula ϕ, either first-order or monadic second-order, is the maximal number
of nested quantifiers in ϕ. We denote it by qh(ϕ). The quantifier-free formulas are those of quantifier
height 0.

A subset C ⊆ STR[�] is MSO-definable if there is some formula ϕ ∈MSO[�,∅] such that

C = {A ∈ STR[�] | A |= ϕ } .

3.1. Transductions of relational structures

We will use logic for several purposes. First, we use formulae to define transformations on structures
and second, we label structures by logical types that encode properties of tuples. Let C and D be sets of
structures. A transduction g : C → D is a binary relation g ⊆ C × D that we consider as a multivalued
partial mapping associating with certain structures in C one or more structures in D.

An MSO-transduction is a transduction specified by MSO-formulas. Given a structure A and a tuple
of parameters W1, . . . ,Wn ⊆ A it constructs a new structure B whose domain is a subset of A× [k], for
some k � 1. Such a transduction g has an associated backwards translation, a mapping that effectively
transforms an MSO-formula ϕ over B (possibly with free variables) into an MSO-formula ϕg over A

whose free variables correspond to those of ϕ (k times as many actually) together with those for the
parameters. The formula ϕg expresses in A the property of B defined by ϕ. We now give some details.
See also [5,4].

Definition 18.
Let � and / be two relational signatures and let W be a finite set of set variables called parameters.

(a) A definition scheme (from � to /) is a tuple of formulas of the form

D = (ϕ, 1, . . . , k , (ϑw)w∈/�k)

where k > 0:

/� k := {
(R, ı̄)

∣∣ R ∈ /, ı̄ ∈ [k]ar(R) } ,
ϕ ∈MSO[�,W ] ,
 i ∈MSO[�,W ∪ {x1}] , for i = 1, . . . , k ,

and ϑw ∈MSO[�,W ∪ {x1, . . . , xar(R)}] , for w = (R, ı̄) ∈ /� k .

(b) Let A ∈ STR[�] and let 4 be a W -assignment in A. We say that D defines the /-structure B in
(A, 4) if
(i) (A, 4) |= ϕ ,
(ii) B = {

(a, i) ∈ A× [k] ∣∣ (A, 4) |=  i(a)
}
,

(iii) for each R ∈ /,

RB =
{
((a1, i1), . . . , (an, in)) ∈ Bn

∣∣ (A, 4) |= ϑR,ı̄(a1, . . . , an)
}
,

where ı̄ = i1 . . . in and n = ar(R).
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(By (A, 4) |= ϑ(a1, . . . , an) we mean (A, 4 ′) |= ϑ where 4 ′ is the assignment extending 4 such that
4 ′(xi) = ai, for all i � n.) Note that we do not redefine equality (in contrast to, e.g. [2]). Two elements
of B are equal if they are equal as elements of A× [k].

The structure B is uniquely determined by A, 4 , and D whenever it is defined, i.e., whenever
(A, 4) |= ϕ. Therefore, we can use a functional notation and we write B = D̂(A, 4). The relation

{ (
A, D̂(A, 4)

) ∣∣ 4 is some W -assignment in A
} ⊆ STR[�] × STR[/]

is called the transduction defined by D.
Let L be some fragment of MSO. A transduction g ⊆ STR[�] × STR[/] is an L-transduction if it

is defined (up to isomorphism) by some definition scheme D consisting of formulas from L. In the case
whereW = ∅, we say that g is parameterless. (Note that parameterless transductions are functional.) We
will refer to the integer k by saying that D is k-copying. If k = 1 we will call D and D̂ noncopying. A
noncopying definition scheme has the simple form (ϕ, , (ϑR)R∈/).

The quantifier height of a definition scheme is the maximal quantifier height of the formulas it consists
of. Since, up to logical equivalence, there are only finitely many MSO-formulas of a given quantifier
height k ∈ �, it follows that the number of MSO-transductions (defined by schemes) of quantifier height
k is finite.

Note that since logical equivalence is not decidable one cannot effectively select representatives of
each class of logically equivalent formulas. However, one can replace logical equivalence by a decidable
finer equivalence relation that still has only finitely many classes. A construction is given in [8].

Example 19. As an example we recall from [9], Lemma 2.1, that if we have an MSO-definable equiva-
lence relation ≈ on A ∈ STR[�] then there is an MSO-transduction mapping A = 〈A, (RA)R∈�〉 to its
quotient structure

A/≈ := 〈A/≈, (RA/≈)R∈�〉 ,

where RA/≈ :=
{
([a1], . . . , [an])

∣∣ (a1, . . . , an) ∈ RA

}
and [a] denotes the equivalence class of a. Note

that A/≈ can be defined from A with the help of any set X ⊆ A containing exactly one representative
of every ≈-class. Therefore, we can write down a noncopying definition scheme with one parameter X
where the formula ϕ states that X contains one representative of every ≈-class and  (x) is the formula
x ∈ X . We omit routine details.

Let F and G be finite signatures. By encoding terms as labelled trees we can consider a mapping from
T(F ) to T(G) as a transduction between relational structures. Similarly, mappings from T(F ) to STR[�]
can also be given by transductions.

Every transduction defined by a tree transducer can be represented by a parameterless MSO-trans-
duction (see [1,21]). The fact that we only consider linear tree transducers is here essential.

On several occasions we will use transductions that transform a structure into the substructure induced
by a definable subset X of its domain. If  (x) is a formula with a single free variable we denote by del 
the transduction that eliminates all elements satisfying  .
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3.2. The fundamental property of MSO-transductions

Every definition scheme D does not only define an MSO-transduction between structures but it also
gives rise to a translation of formulas. The following proposition says that if B = D̂(A, 4) then all mo-
nadic second-order definable properties of B can be expressed by monadic second-order formulas over
A. The usefulness of MSO-transductions is based on this fact.

Let D = (ϕ, 1, . . . , k , (ϑw)w∈/�k) be a definition scheme with a set of parameters W . Given a set
V of set variables disjoint from W we introduce new variables X (i), for X ∈ V and i ∈ [k], and we set
V (k) := {X (i) | X ∈ V , i ∈ [k] }.

Let A ∈ STR[�] be a structure. For every mapping 6 : V (k) → P(A), we define 6k : V → P(A× [k])
by

6k(X) := 6(X (1))× {1} ∪ · · · ∪ 6(X (k))× {k} .
Let Y = {y1, . . . , yr} be a set of first-order variables. For a mapping 8 : Y → A and an r-tuple
ı̄ = i1 . . . ir ∈ [k]r , we denote by 8ı̄ : Y → A× [k] the function with

8ı̄(yj) := (8(yj), ij) .

If k = 1 then we identify A× [1] with A and 81...1 with 8.

Proposition 20 ([13,12]). Let D be a k-copying definition scheme from � to / of quantifier height m
with set of parameters W . Let V be a finite set of set variables and Y = {y1, . . . , yr} a set of first-order
variables.

For every formula � ∈MSO[/, V ∪ Y ] and all ı̄ ∈ [k]r , one can effectively construct a formula
�D
ı̄ ∈MSO[�, V (k) ∪ Y ∪ W ] of quantifier height

qh(�D
ı̄ ) � k · qh(�)+ m

such that, for each A ∈ STR[�] and all assignments 4 : W → P(A), 6 : V (k) → P(A), and8 : Y → A,
we have

(A, 6 ∪ 4 ∪ 8) |= �D
ı̄ iff D̂(A, 4) is defined, 6k ∪ 8ı̄ is a

(V ∪ Y)�assignment in D̂(A, 4), and(D̂(A, 4), 6k ∪ 8ı̄
) |= � .

Proof. LetD = (ϕ, 1, . . . , k , (ϑw)w∈/�k). For every monadic second-order formula�(y1, . . . , yr ,X1, . . . ,
Xs) and all tuples ı̄ ∈ [k]r , we define a formula �∗̄ı with first-order variables y1, . . . , yr and set variables
X
(i)
j , for 1 � i � k and 1 � j � s, by induction on �. W.l.o.g. we may assume that � does not contain

universal quantifiers and conjunctions. In the atomic case we set

(x = y)∗ij := x = y ,

(x ∈ X)∗i := x ∈ X (i) ,
(Rx̄)∗̄ı := ϑR,ı̄(x̄) ,
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boolean operations remain unchanged

(¬�)∗̄ı := ¬�∗̄ı ,
(� ∨ 4)∗̄ı := �∗̄ı ∨ 4 ∗̄ı ,

and for quantifiers we define

(∃yr+1�)∗̄ı :=
∨
j∈[k]

∃yr+1( j(yr+1) ∧ �∗̄ıj) ,

(∃X�)∗̄ı := ∃X (1) · · · ∃X (k)�∗̄ı .
Note that in the case of a second-order quantifier ∃X� we do not need to add the condition that every
x ∈ X (i) satisfies  i since set variables X are only used in atomic formulas of the form y ∈ X and we
require that every y satisfies the corresponding  i.

To conclude the proof we can set �D
ı̄ := �∗̄ı ∧ ϕ ∧

r∧
j=1
 ijyj. The construction ensures that qh(�D

ı̄ ) �

k · qh(�)+ m. (We can slightly improve this bound to

qh(�D
ı̄ ) � k · qh2(�)+ qh1(�)+ m ,

by distinguishing between the quantifier heights qh1(�) and qh2(�) of first-order and second-order quan-
tifiers.) �

Note that, even if B = D̂(A, 4) is well-defined, the mapping 6k is not necessarily a V -assignment in
B because 6k(X) may not be a subset of the domain of B.

We call �D
ı̄ the backwards translation of � relative to the transduction D. If g is the transduction defined

by D then we also write �g instead of �D. For k = 1 and r � 1, we abbreviate �D
1...1 by �D. Similarly, we

write �D instead of �D〈〉 .

Proposition 21 ([13,12]).

(1) The inverse image of an MSO-definable class of structures under an MSO-transduction is MSO-
definable. The domain of an MSO-transduction is MSO-definable.

(2) The composition of two MSO-transductions is an MSO-transduction.

We prove a special case of the second statement.

Lemma 22. Let f : STR[/] → STR[+] and g : STR[�] → STR[/] be MSO-transductions of quan-
tifier height m and n, respectively, and suppose that g is noncopying.

Then f ◦ g is an MSO-transduction of quantifier height at most m+ n. Furthermore, if both f and g
are parameterless and noncopying then so is f ◦ g.
Proof. Let D = (ϕ, 1, . . . , k , (ϑw)w∈+�k) be the definition scheme of f . We obtain a definition scheme
of f ◦ g consisting of(

ϕg,  g1 , . . . , 
g
k , (ϑ

g
w)w∈+�k

)
.
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By Proposition 20, the quantifier height of these formulas is bounded by m+ n. The second claim also
follows easily. �

3.3. Operations on relational structures

Let us introduce the basic operations on relational structures that constitute the standard signature QF
to which we will compare other signatures.

Disjoint union. The disjoint union A⊕B of two structures A ∈ STR[�] and B ∈ STR[/] is the struc-
ture C ∈ STR[� ∪ /] whose domain C := A ·∪ B is the disjoint union of A and B and, for each relation
R ∈ � ∪ /, we have RC := RA ∪ RB where we set RA := ∅ for R ∈ / \�, and RB := ∅ for R ∈ � \ /.
(We are only interested in properties of structures up to isomorphism. Hence we can freely replace
structures by isomorphic copies.)

Quantifier-free operations. A quantifier-free definition scheme is a parameterless noncopying definition
scheme D = (ϕ, , (ϑR)R∈/) where ϕ = true and the formulas  and ϑR, for R ∈ /, are quantifier-free.
The transduction D̂ : STR[�] → STR[/] defined by such a scheme is total and functional. When con-
sidered to be part of a signature, we will call functions of this form quantifier-free operations. (We keep
the term transduction for transformations of structures that are, typically, encodings relating different
classes of relational structures.)

Note that since we require ϕ = true not every parameterless noncopying definition scheme of quan-
tifier height 0 defines a quantifier-free operation. By inspecting the proof of Lemma 22, one easily sees
that the composition of two quantifier-free operations is again a quantifier-free operation.

Example 23. The edge complement for simple, loop-free, undirected graphs can be defined as the quan-
tifier-free operation where

ϑedg(x1, x2) := x1 /= x2 ∧ ¬edg(x1, x2) .

Another edge complement could be defined for graphs with loops by deleting x1 /= x2 in the above
formula.

Remark 24. To shorten notation we will usually omit defining formulas ϑR of the form ϑR =
Rx̄ (= Rx1 . . . xar(R)) that do not modify the relations R.

If we have a quantifier-free definition scheme of the form D = (true, , (ϑR)R∈�) where / = �

and ϑR is Rx1 . . . xar(R), for all R ∈ �, then we say that D̂ is a (quantifier-free) domain restriction. In
this case we have D̂ = del¬ and D̂(A) is the substructure of A induced by the set of elements
satisfying  .

If, on the other hand, D = (true, true, (ϑR)R∈/), then we call D̂ nondeleting. Then the structure D̂(A)
has the same domain as A but its relations are redefined by the formulas ϑR. Other examples will be
given in Section 3.5 below.

Lemma 25. Every quantifier-free operation is the composition of a quantifier-free domain restriction
and a nondeleting quantifier-free operation.
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Proof. For every quantifier-free definition scheme D = (true, , (ϑR)R∈/) from � to / we have
D̂ = D̂′ ◦ del¬ where

del¬ := (true, , (Rx̄)R∈�) and D′ := (true, true, (ϑR)R∈/) . �

3.4. The many-sorted algebra of relational structures

We define an algebra STR of relational structures as follows. Suppose that �∞ is a fixed relational
signature with countably many symbols of each arity. We assume that every relational signature � is a
subset of �∞. We regard every signature � ⊆ �∞ as a sort of STR. The corresponding domain (of sort
�) is the set STR[�] of all finite �-structures.

The operations consist of the disjoint union ⊕ and all quantifier-free operations. Furthermore, we
add constant symbols for all singleton structures, that is, structures whose domain contains exactly one
element. Note that every set STR[�] contains only finitely many of them (up to isomorphism).

This signature, which we denote by QF , will be our reference signature for the algebra STR. We will
construct alternative equivalent signatures.

If� ⊆ /we could regard structures A ∈ STR[�] as elements ofSTR[/]where all relationsR ∈ / \�
are empty. However we will distinguish A from its expansions, so the sets STR[�] are pairwise disjoint.
The natural inclusion i : STR[�] → STR[/] is a quantifier-free operation. In particular, i ∈ QF . The
operation symbol⊕ is overloaded. It actually represents countably many binary operations, one for each
pair of sorts.

According to our general definitions we obtain the classes Equat(STR) and Rec(STR) of all QF-
equational and QF-recognizable sets. Since QF is our standard signature we will call such sets simply
equational and recognizable.

Proposition 26 ([7,4]). Let C ⊆ STR[�].

(a) If C is MSO-definable then C ∈ Rec(STR)�.
(b) If C ∈ Rec(STR)� and D ⊆ STR[�] is MSO-definable then C ∩ D ∈ Rec(STR)�.
(c) If � ⊆ / and i : STR[�] → STR[/] is the inclusion map then we have C ∈ Rec(STR)� iff

i(C) ∈ Rec(STR)/.

Proposition 27 ([7,4,22]). Let C ⊆ STR[�]. The following statements are equivalent:

(i) C ∈ Equat(STR)�.
(ii) C = valSTR(K), for some K ∈ Rec(T(QF )�).
(iii) C = :(L), for some MSO-transduction : : STR[+(F )] → STR[�] and some regular set of terms

L ⊆ T(F ) (over an arbitrary finite signature F ).

Corollary 28. Let C ∈ Equat(STR)�.

(a) If : : STR[�] → STR[/] is an MSO-transduction then :(C) ∈ Equat(STR)/.
(b) If D ⊆ STR[�] is MSO-definable then C ∩ D ∈ Equat(STR)�.
(c) If � ⊆ / and i : STR[�] → STR[/] is the inclusion map then we have C ∈ Equat(STR)� iff

i(C) ∈ Equat(STR)/.
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Proof.

(a) If C ∈ Equat(STR)� then there exists a regular set of terms L and an MSO-transduction ; such
that C = ;(L). Hence, :(C) = (: ◦ ;)(L) and Proposition 21 implies that :(C) ∈ Equat(STR)/.

(b) If D is MSO-definable then the identity function idD : D→ D is an MSO-transduction. Since
C ∩ D = idD(C) the claim follows from (a).

(c) follows immediately from (a) since i and its inverse are MSO-transductions. �

3.5. VR-operations on graphs

Let us consider the special case of graphs. We recall the definitions of two algebras of graphs, called
VR and VRp, which are connected to certain context-free graph grammars and to the graph complexity
measure called clique width (see [4,14,6]). We show that these algebras can be considered as subalgebras
of STR. In addition to the edge relation edg we fix a countable set<∞ of unary relation symbols that we
will use as vertex labels. The algebra of graphs VR has domains of the form STR[{edg} ∪<], for finite
< ⊆ <∞. The corresponding structures are labelled graphs G = 〈VG , edgG , (PG)P∈<〉 where a vertex v
has label P iff it belongs to the set PG. Hence a vertex may have no, one, or several labels.

We define a signature VR that, apart from the disjoint union ⊕ and constant symbols for the basic
graphs with a single vertex, contains the following particular quantifier-free operations. The mapping
renP→Q changes every label P to Q, the operation fgtP (forget P ) deletes every label P , and addP ,Q, for
P /= Q, is defined by the quantifier-free definition where

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧ Qx2) .
Hence addP ,Q adds a new directed edge from each vertex labelled by P to each vertex labelled by
Q – unless there exists already one (we deal with simple directed graphs, possibly with loops).

A more restricted algebra of labelled graphs isVRp. A<-graph is a structureG = 〈VG , edgG , (PG)P∈<〉
in STR[{edg} ∪<] such that the unary relations form a partition of the domain. (The superscript p refers
to this fact.) Hence every vertex has one and only one label. The above defined operations, except fgtP ,
preserve this property. (Of course, we have to omit those constant symbols which define labelled graphs
that are not <-graphs.)

For each set <, we denote by VRp
< the signature

{P,P
loop

,⊕, addP ,Q, renP→Q | P ,Q ∈ <, P /= Q } ,

where P is a single vertex labelled by P , and P
loop

is the same with an incident loop. We obtain in this
way the VRp

<-algebra of <-graphs which was first introduced in [11].

Remark 29. The algebra VR is obtained from STR by deleting certain sorts, the corresponding domains,
all operations involving them, and certain unary operations between sorts kept in VR. For VRp, we ad-
ditionally remove those structures from the remaining domains where the relations of< do not partition
the set of vertices.

Every term t ∈ T(VRp
<) defines a <-graph, and every <-graph is the value of some t ∈ T(VRp

?), for
a sufficiently large set? ⊇ <. The clique width of G is defined as the smallest cardinality of? such that
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G is the value of some term in T(VRp
?) (see [15,6]). We recall that trees have clique width at most 3.

This signature originates from context-free graph grammars defined by vertex replacement (see [4,11]).
To generate undirected graphs we can make the definition of addP ,Q symmetric by setting

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧ Qx2) ∨ (Px2 ∧ Qx1) .
The notion of clique width of an undirected graph follows immediately. Every clique has clique width 2.
We recall the following result from [4,22].

Proposition 30. A set of finite graphs has bounded clique width if and only if it is contained in the image
of a set of finite trees under an MSO-transduction.

We have defined a many-sorted algebra VR of graphs. The notion of a VR-recognizable set of graphs
follows from the general definitions. This notion is robust as proved in [8] Theorem 4.5: a set of graphs is
VR-recognizable iff it is recognizable w.r.t. VR+ (the signature consisting of the operations from VR<

and all quantifier-free operations) iff it is QF-recognizable. We will establish further robustness results
below.

Example 31. Recall that, for a finite signature F , we denote by + = +(F ) the signature used to encode
terms t ∈ T(F ) as labelled trees S(t) ∈ STR[+]. We show that the function STR[+] × STR[+] →
STR[+] that corresponds to the mapping T(F )× T(F )→ T(F ) : (t1, t2) �→ f(t1, t2), for fixed f ∈ F ,
can be expressed in terms of ⊕, some quantifier-free operations, and one constant. Let rt be a constant
symbol denoting a single element labelled by rt and no other relation. In addition to the relation of +
we will use unary relations rt1 and rt2, and a constant symbol rt . If t1, t2 ∈ T(F ) are represented by
S(t1),S(t2) ∈ STR[+] with disjoint domains then we have

S(f(t1, t2)) = (fgtrt1 ◦ fgtrt2 ◦ addrt,rt1,suc1 ◦ addrt,rt2,suc2)
[rt ⊕ renrt→rt1(S(t1))⊕ renrt→rt2(S(t2))] ,

where the operation addrt,rti ,suci adds all pairs (x, y) with rt(x) and rti(y) to the relation suci. This
operation can be defined by the quantifier-free transduction where

ϑsuci (x, y) := suci(x, y) ∨ (rt(x) ∧ rti(y)) .

4. Annotated structures

A central notion in many of our proofs is that of a type annotation which we use to encode information
about a tuple of elements of the considered structure. We define finite sets �n of formulas by certain
syntactic restrictions such that all formulas in�n have free variables among x1, . . . , xn. With every n-tuple
ā we associate the set of those formulas in�n that are satisfied by ā. Such sets are called logical n-types
(see, e.g. [28,26,25]). The syntactic restrictions defining �n (we will consider several variants) ensure
that each type is finite and that there are finitely many types of the considered form.

We enrich a relational structure A by adding, for every n-type, a new n-ary relation containing all
tuples of that type. This operation is called annotating the structure A. We will examine the relationship
between annotations and MSO-transductions and their effect on recognizability.
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4.1. Monadic types

The monadic type of a tuple ā is just the set of all MSO-formulas of a given maximal quantifier height
satisfied by ā. In particular, since it contains all quantifier-free formulas that hold for ā, such a type
completely describes, up to isomorphism, the substructure induced by ā.

Definition 32. Let A be a �-structure and ā ∈ An an n-tuple, n � 0. The monadic n-type of quantifier
height k of ā is the set

tpk(ā/A) :=
{
ϕ(x̄) ∈MSO[�, {x1, . . . , xn}]

∣∣ qh(ϕ) � k , A |= ϕ(ā)
}
.

We denote by Sn,kM (�) the set of all such monadic n-types realized in some �-structure,2 and we write
S

�m,k
M (�) := ⋃

1�n�m S
n,k
M (�) for the union over all n with 1 � n � m. (We need the subscript M to

distinguish monadic types from other kinds of types which we will introduce in Section 7.)
Types of quantifier height 0 are also called atomic or quantifier free. They contain local information

about the given n-tuple. For the empty tuple ā = 〈〉, we use the abbreviation tpk(A) := tpk(〈〉/A).
We will treat the monadic type of the empty tuple differently from the monadic n-types with n > 0.

For n > 0, we can introduce n-ary relations to label tuples of the corresponding type whereas we do
not allow relations of arity 0. This is the reason why we exclude the case n = 0 in the union defining
S

�m,k
M (�). A type tpk(A) contains a finite amount of global information concerning A which, according

to Lemma 45 below, is QF-computable.
As stated in the next lemma types are MSO-definable because we only consider finite relational sig-

natures. Furthermore, for finite structures we can effectively compute the type tpk(ā/A) from ā and
A.

Definition 33. Let p ∈ Sn,kM (�) be a monadic n-type. The Hintikka-formula of p is defined by

 p(x̄) :=
∧
p .

(By convention we do not distinguish between logically equivalent formulas so that the above con-
junction is finite, cf. Section 3.1.)

It follows immediately from the definition that a type is defined by its Hintikka-formula.

Lemma 34. For every monadic n-type p ∈ Sn,kM (�), we have qh( p) = k and

A |=  p(ā) iff tpk(ā/A) = p ,

for every structure A and each tuple ā ∈ An.
Finally, let us remark that quantifier-free operations induce a map on the set of types.

2 The reader may worry about the fact that Sn,kM (�) is not recursive (only recursively enumerable). Instead of Sn,kM (�)we could
use the larger set of all sets of formulas over the signature �. This will not affect our proofs.
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Lemma 35. For every quantifier-free operation f : STR[�] → STR[/], there exist mappings
f nk : Sn,kM (�)→ S

n,k
M (/) such that

tpk(ā/f(A)) = f nk (tpk(ā/A)) ,

for every structure A ∈ STR[�] and every n-tuple ā in f(A).

Proof. For every formula ϕ(x̄) of quantifier height at most k, we have

ϕ(x̄) ∈ tpk(ā/f(A)) iff A |= ϕf (ā) iff ϕf (x̄) ∈ tpk(ā/A) .

Note that qh(ϕf ) = qh(ϕ), by Proposition 20. Therefore, f nk can be defined by

f nk (p) := {ϕ | ϕf ∈ p } . �

4.2. Monadic annotations

Sometimes it is useful to have all monadic information available via a single relation. To make the full
monadic type accessible we add new relations Tp , for every type p . After adding all these relations Tp
the original relations are superfluous, and we can delete them.

Definition 36. Let A be a�-structure,m > 0, and k � 0. The monadic annotations of A are the structures

Mm
k (A) :=

〈
A, (Tp )p∈S�m,k

M (�)

〉
with the same domain as A where, for each monadic n-type p ∈ S�m,k

M (�), we add the n-ary relation

Tp := { ā ∈ An | tpk(ā/A) = p }

of all tuples of type p . We denote the relational signature of Mm
k (A) by

�
m,k
M := { Tp | p ∈ S�m,k

M (�) } .

For m = ar(�), we simply write Mk(A) and �kM.

Definition 37. Let A be a structure. The rank of an n-tuple ā ∈ An is the size of the set {a1, . . . , an}. An
n-tuple is a loop if its rank is less than n.

By A|m we denote the structure obtained from A by removing from all relations every tuple of rank
greater than m. Let STRm[�] be the set of all structures A ∈ STR[�] such that A|m = A.

Remark 38. Ifm � ar(�) then we can reconstruct A from Mm
k (A). Form < ar(�), we can only recover

the atomic information about tuples of rank at most m.

Example 39. We consider the following vertex labelled graph G ∈ STR[edg, P ,Q]with domain (i.e., set
of vertices) {a, b, c, d} and labels P and Q.
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The annotated structure M2
0(G) is the complete graph where each vertex x has a unique label tp0(x/G)

and every edge (x, y) is labelled by tp0(xy/G). For instance:

tp0(a) = {¬Px, Qx, ¬edg(x, x), . . .} ,
tp0(b) = {Px, ¬Qx, ¬edg(x, x), . . .} ,
tp0(c) = {¬Px, ¬Qx, edg(x, x), . . .} ,
tp0(d) = {Px, Qx, ¬edg(x, x), . . .} ,

tp0(ab) = {edg(x, y), edg(y , x), x /= y , . . .} ∪ tp0(a) ∪ tp0(b)[y/x] ,
tp0(ac) = {edg(x, y), ¬edg(y , x), x /= y , . . .} ∪ tp0(a) ∪ tp0(c)[y/x] .

Note that every type contains a lot of redundant formulas. For the purpose of clarity we have omitted
in the above list all formulas that are logical consequences of those shown. To improve readability we
also have used the variables x and y instead of x1 and x2. Finally, [y/x] denotes the substitution of y
for x.

The Hintikka-formula  tp0(a)(x) of a is thus equivalent to

¬Px ∧ Qx ∧ ¬edg(x, x) .

If we delete from M2
0(G) the vertex labels we obtain a symmetric labeled 2-structure as defined by

Ehrenfeucht et al. [20]. Our results show that equational and recognizable sets of graphs can be defined
in an algebraic framework based on vertex and edge labeled complete graphs that are quite close to
2-structures.

Monadic annotations are compatible with MSO-transductions. First of all, the operation Mm
k is itself

an MSO-transduction.

Lemma 40. Let � be a relational signature.

(a) The mapping Mm
k : STR[�] → STR[�m,kM ] is a noncopying parameterless MSO-transduction of

quantifier height k.
(b) There exists a quantifier-free noncopying parameterless transduction g : STR[�m,kM ] → STRm[�]

such that

g(Mm
k (A)) = A|m , for all A ∈ STR[�] .

(c) The restriction of Mm
k to STRm[�] is injective. Its inverse (Mm

k )
−1 : STR[�m,kM ] → STRm[�] is

an MSO-transduction.
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Proof.

(a)We have already seen in Lemma 34 that one can define the relation Tp by the formula p of quantifier
height k.

(b) For n � m, we can write an n-ary relation R ∈ � as

RA = { ā ∈ An | ā ∈ Tp for some p with Rx̄ ∈ p } .

Hence, we obtain a definition scheme for g by setting

ϑR(x1, . . . , xn) :=
∨
{ Tpx1 . . . xn | p ∈ Sn,kM (�),Rx1 . . . xn ∈ p } .

For n > m, we need some notation to write down ϑR. With an n-tuple ā of rank r we can associate
a surjective function ; : [n] → [r] such that ai = al iff ;(i) = ;(l). Given such a function ; we set
8i(;) := min ;−1(i), for i ∈ [r], and

C;(x1, . . . , xn) :=
∧
i∈[r]

∧
k ,l∈;−1(i)

xk = xl .

Then we can define R by

ϑR(x1, . . . , xn) := ∨ { Tpx81(;) . . . x8r(;) ∧ C;(x1, . . . , xn) |
1 � r � m , ; : [n] → [r] surjective with
81(;) < · · · < 8r(;) , and
p ∈ Sr,kM (�) with Rx;(1) . . . x;(n) ∈ p } .

For example, if ; : [6] → [3]maps [6] to the sequence 1, 2, 2, 1, 2, 3 then the above disjunction includes
the formula

Tpx1x2x6 ∧ x1= x4 ∧ x2= x3 ∧ x2= x5 ∧ x3= x5
if and only if we have Rx1x2x2x1x2x3 ∈ p .

Note that the above disjunctions are finite since there are only finitely many types in S�m,k
M (�).

(c) In light of (b) we only need to prove that the range of Mm
k restricted to STRm[�] isMSO-definable.

Then we can restrict the transduction g of (b) appropriately. Let A ∈ STR[�m,kM ]. If A = Mm
k (B), for

some B ∈ STRm[�], then we have

B = B|m = g(Mm
k (B)) = g(A) ,

which implies that A = Mm
k (g(A)). Conversely, if A = Mm

k (g(A)) then A is in the range of Mm
k . We

can express that A = Mm
k (g(A)) by the formula

∧
p∈S�m,k

M (�)

∀x̄(Tp x̄↔ ( p)
g(x̄))
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where  p is the Hintikka-formula for p and ( p)g its backwards translation via g. This formula can
be used in the definition scheme of the transduction (Mm

k )
−1 : STR[�m,kM ] → STRm[�] to define the

domain. �
Since, by Corollary 28, QF-equational sets are closed under MSO-transductions it follows immedi-

ately that Mm
k preserves equationality.

Corollary 41. A set C ⊆ STRm[�] is QF-equational if and only if Mm
k (C) is QF-equational.

Each noncopying parameterless MSO-transduction of quantifier height k factors through Mm
k .

Lemma 42. Let g : STR[�] → STR[/] be a noncopying parameterless MSO-transduction of quan-
tifier height k and m := ar(/). There exists a noncopying parameterless quantifier-free transduction
f : STR[�m,kM ] → STR[/] such that

g(A) = f
(Mm

k (A)
)
, for all A ∈ STR[�] such that g(A) is defined .

Proof. Given a definition scheme (ϕ, , (ϑR)R∈/) of g, we construct a quantifier-free logical definition
scheme (true, ′, (ϑ′R)R∈/) for f by setting

 ′ :=
∨
{ Tpx1 | p |=  } and ϑ′R :=

∨
{ Tp x̄ | p |= ϑR } .

(|= is the logical entailment relation.) �

4.3. Operations on annotated structures

It turns out that the mapping tpk : STR[�] → S
0,k
M (�) is QF-computable (cf. Definition 6). One part

of the proof is given by the following (special case of a) theorem of Shelah [33] (see also the thorough
study by Makowsky [29]).

Proposition 43. Let k ,m, n � 0. For every formula ϕ ∈MSO[� ∪ /, {x1, . . . , xm+n}] of quantifier height
k , one can effectively construct finite sequences of formulas

 1, . . . , l ∈MSO[�, {x1, . . . , xm}]
and ϑ1, . . . ,ϑl ∈MSO[/, {xm+1, . . . , xm+n}]

of quantifier height at most k such that, for all structures A ∈ STR[�] and B ∈ STR[/], and all tuples
ā ∈ Am and b̄ ∈ Bn, we have

A⊕B |= ϕ(ā, b̄) iff A |=  i(ā) and B |= ϑi(b̄) for some 1 � i � l .

Corollary 44. For all k , n ∈ � and every set I ⊆ [n], there exists a binary function ⊕k ,I such that

tpk(c̄/A⊕B) = tpk(c̄|I /A)⊕k ,I tpk(c̄|[n]\I /B) ,

for all structures A and B and all tuples c̄ ∈ (A ∪ B)n such that c̄|I ⊆ A and c̄|[n]\I ⊆ B. (By c̄|I we
denote the subtuple of all components ci with i ∈ I.)
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Lemma 45. The function tpk : STR[�] → S
0,k
M (�) is QF-computable.

Proof. It is sufficient to find operations on S0,kM (�) such that tpk : STR[�] → S
0,k
M (�) becomes a QF-

homomorphism. For the disjoint union, we can use the operation ⊕k ,∅ introduced in Corollary 44. And,
if g : STR[�] → STR[/] is a quantifier-free operation then we have shown in Lemma 35 that

tpk(g(A)) = g0k(tpk(A)) , for all structures A . �

Lemma 46. For every m ∈ �, the mapping Mm
k : STR[�] → STR[�m,kM ] is a finite-state heteromor-

phism based on tpk .

Proof. We have to show that, for every operation f ∈ QF of arity 0 � n � 2, there exist linear terms
t[p1, . . . , pn] ∈ T(QF , {x1, . . . , xn}), for p1, . . . , pn ∈ S0,kM (�), such that

Mm
k (f(A1, . . . ,An)) = t[tpk(A1), . . . , tpk(An)]

(Mm
k (A1), . . . ,Mm

k (An)
)
,

for all structures A1, . . . ,An ∈ STR[�].
First, we consider a quantifier-free operation f : STR[�] → STR[/]. Recall the mappings f ik :

S
i,k
M (�)→ S

i,k
M (/) defined in Lemma 35. We have

Mm
k (f(A)) = g(Mm

k (A))

where the definition scheme of the quantifier-free operation g consists of the formulas:

 (x) :=
∨
{ Tqx | q ∈ S1,kM (�),  ′ ∈ q } ,

ϑTp (x̄) :=
∨
{ Tqx̄ | q ∈ (f ik )−1(p) } , for every p ∈ Si,kM (/) , 1 � i � m ,

where  ′ is the formula of the definition scheme for f that specifies the domain of the output structure.
Note that in this case the term t[tpk(A)] = g(x1) does not depend on tpk(A).

Second, we consider the case where f = ⊕. We define quantifier-free operations h0, h1, and g depend-
ing on tpk(A) and tpk(B) such that

Mm
k (A⊕B) = g

(
h0(Mm

k (A))⊕ h1(Mm
k (B))

)
.

The operations h0 and h1 just add a new unary relation P /∈ � to their argument such that P = ∅ for
h0 whereas, for h1, P contains every element. These functions are only needed so that we can tell the
elements of the two structures apart. The main work is done by g which updates the type annotation.
Recall from Corollary 44, that there exists a binary operation ⊕k ,I on S�m,k

M (�), for n � m and I ⊆ [n],
such that

tpk(c̄/A⊕B) = tpk(c̄|I /A)⊕k ,I tpk(c̄|[n]\I /B) ,
for all structures A and B and all tuples c̄ ∈ (A ∪ B)n with c̄|I ⊆ A and c̄|[n]\I ⊆ B. Hence, we can define
the definition scheme of g by the formulas

 (x) := true ,
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and ϑTp (x̄) :=
∨ { ∧

i∈I ¬Pxi ∧
∧
i /∈I Pxi ∧ Tqx̄|I ∧ Trx̄|[n]\I

∣∣∣
I ⊆ [n], I /∈ {∅, [n]}, q⊕k ,I r = p

}
∨ ∨ { ∧

i∈[n] ¬Pxi ∧ Tqx̄
∣∣∣ q⊕k ,[n] tpk(B) = p

}
∨ ∨ { ∧

i∈[n] Pxi ∧ Trx̄
∣∣∣ tpk(A)⊕k ,∅ r = p

}
,

for p ∈ Sn,kM (�) . (In the case where A and B have different signatures the argument is adapted in the
obvious way.)

Finally, we consider the case where f is a constant. Then the value of f is a singleton structure A.
Consequently, its annotation Mm

k (A) is also a singleton structure that can be denoted by a constant. �

Recall that we write Mk(A) for Mar(�)
k (A). As usual we set

Mk(C) := {Mk(A) | A ∈ C } ,
for classes C ⊆ STR[�].

Theorem 47. A set C ⊆ STR[�] is QF-recognizable if and only if Mk(C) is QF-recognizable.

Proof. (⇐) By Lemma 46, Mk is a finite-state heteromorphism based on tpk . We have seen in Lemma
40 that Mk is injective. Therefore, we have C = (Mk)

−1(Mk(C)) and, by Lemma 14, it follows that C
is QF-recognizable.
(⇒) Suppose thatC ⊆ STR[�] is QF-recognizable. Let≈ be a QF-congruence witnessing this fact.
By Lemma 40 (c), the range D := Mk(STR[�]) ⊆ STR[�kM] of Mk is MSO-definable and, there-

fore, QF-recognizable by Proposition 26. We denote the corresponding QF-congruence by +.
To show that Mk(C) is QF-recognizable we define

A ≡ B iff A + B and A ≈ B .

Clearly, ≡ is a finite QF-congruence.
It remains to show that≡ saturates Mk(C). Let A ∈ Mk(C), that is, A = Mk(C), for some C ∈ C. If

B ≡ A then A + B implies that B = Mk(D), for some D ∈ STR[�]. We have seen in Lemma 40 (b)
that there exists a left-inverse g of Mk that is a quantifier-free operation. Hence, A ≈ B implies

C = g(A) ≈ g(B) = D .

Consequently, we have D ∈ C and B = Mk(D) ∈ Mk(C), as desired. �

4.4. Annotating the leaves of a binary tree

We state some definitions and lemmas that we will use in Section 6. Let F be a set of binary function
symbols and C a set of constants. As remarked at the beginning of Section 3 we can represent every term
t ∈ T(F ∪ C) by a tree

S(t) := 〈
N(t), suc1, suc2, rt, (laba)a∈F∪C

〉 ∈ STR[+(F ∪ C)] ,
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where N(t) is the set of nodes of t. Let + := +(F ∪ C) be the corresponding signature. We denote the
set of leaves by L(t) ⊆ N(t) and by � the usual linear left-right order on L(t).

Definition 48. Let t be a term, m > 0, and k � 0. A tuple ā ∈ L(t)n is increasing if a1 < · · · < an. The
restricted monadic annotations of S(t) are the +m,kM -structures

Rm
k (t) :=

〈
L(t), (Tp )p∈S�m,k

M (+)

〉
with domain L(t) where, for each monadic n-type p ∈ S�m,k

M (+), we add the n-ary relation

Tp :=
{
ā ∈ L(t)n ∣∣ ā increasing, tpk(ā/S(t)) = p

}
.

Remark 49. There are formulae ϕ(x) and  (x, y) of quantifier height qh(ϕ) = 1 and qh( ) = 5 such
that ϕ defines the set of leaves and  defines the ordering <:

ϕ(x) := ¬∃y[suc1(x, y) ∨ suc2(x, y)] ,
 (x, y) := ∃z[∃u1(suc1(z, u1) ∧ u1 , x) ∧ ∃u2(suc2(z, u2) ∧ u2 , y)] ,

where the tree ordering , is defined by

x , y iff ∀Z[y ∈ Z ∧ ∀u∀v[v ∈ Z ∧ (suc1(u, v) ∨ suc2(u, v))→ u ∈ Z] → x ∈ Z] .
(x , y can be read as “x is an ancestor of y”.) Hence, there exists a formula ϑn(x1, . . . , xn) of quantifier
height 5 expressing that x̄ is an increasing tuple of leaves. It follows that, for k � 5, we can tell from
tpk(ā/S(t)) whether ā is such a tuple. Consequently, we can obtain Rm

k (t) from Mm
k (S(t)) by

• deleting all nodes that are not leaves,
• removing all relations Tp such that p -|= ϑn.

For t ∈ T(F ∪ C) and u ∈ N(t), we denote by t/u ∈ T(F ∪ C) the subterm of t rooted at the node u. Let
∗ be a new constant symbol. We denote by t \ u ∈ T(F ∪ C ∪ {∗}) the term obtained from t by replacing
the subterm t/u by the constant ∗. Hence, the unique occurrence of ∗ in t/u is u.

Lemma 50. Let k ∈ �.

(a) For every f ∈ F and all numbers 0 � m � n, there exists a mapping

.fm,n : Sm,kM (+)× Sn−m,kM (+)→ S
n,k
M (+)

such that we have

tpk
(
āb̄/S(f(t1, t2))

) = tpk
(
ā/S(t1)

).fm,n tpk(b̄/S(t2)) ,
for all t1, t2 ∈ T(F ∪ C) and all increasing tuples ā ∈ L(t1)m and b̄ ∈ L(t2)n−m.
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(b) For every f ∈ F and all numbers 0 � m � n, there exists a mapping

.̂fm,n : S0,kM (+)× Sm,kM (+)× Sn−m,kM (+)→ S
n,k
M (+)

such that we have

tpk
(
āb̄/S(t)

) = .̂fm,n
(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
,

for every t ∈ T(F ∪ C) such that t/u = f(t1, t2) and all increasing tuples ā ∈ L(t1)m and b̄ ∈
L(t2)

n−m.

Proof. (a) We recall from the example after Proposition 30 that the mapping 〈S(t1),S(t2)〉 �→ S(f(t1, t2))
is a QF-derived operation. Consequently, the result follows from Lemma 35 and Corollary 44.

(b) The claim follows as in (a) since we have

S(t) = (
ren∗→f ◦ fgtrt1 ◦ fgtrt2 ◦ add∗,rt1,suc1 ◦ add∗,rt2,suc2

)(
S(t \ u)⊕ renrt→rt1(S(t1))⊕ renrt→rt2(S(t2))

)
�

5. Inverse MSO-transductions preserve recognizability

In this section we establish the following theorem which is one of the main results of the article.

Theorem 51. If L ∈ Rec(STR)/ and : : STR[�] → STR[/] is an MSO-transduction then
:−1(L) ∈ Rec(STR)�.

The special case where L is CMSO-definable (CMSO is the extension of monadic second-order logic
by counting predicates which count the cardinality of a set modulo a fixed integer) follows from existing
results. It is known that everyCMSO-definable set is recognizable [7] and the inverse image of aCMSO-
definable set under an MSO-transduction is CMSO-definable. The case where L is a recognizable set of
(simple) graphs of bounded tree width is a consequence of a result by Lapoire [27] stating that such sets
are CMSO-definable if we allow quantification over sets of edges (and not only over sets of vertices).
It follows that L is also CMSO-definable by a result of [12] where it is shown that, in the case of finite
graphs of bounded tree width, quantifiers over sets of edges can be eliminated.

On the other hand, in [8] it is shown that there are uncountably many VR-recognizable sets of graphs.
Hence, uncountably many of them are not definable in monadic-second order logic or in its extensions
like CMSO, because these languages are countable. This shows that Theorem 51 cannot be proved by
reduction to the special case of CMSO-definable sets.

The proof is based on the fact that a k-copying MSO-transduction : with parameters W1, . . . ,Wn can
be written as : = H ◦ copyk ◦ 4 where

• H is a noncopying parameterless transduction,
• 4 is a noncopying transduction guessing W1, . . . ,Wn, and
• copyk is a k-copying parameterless transduction constructing the k-fold disjoint union of its argument,

with some additional annotations to tell apart the different copies.

We will prove the theorem separately for these three special cases.
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5.1. Transductions that replicate structures

The simplest MSO-transduction we consider is a parameterless k-copying transduction denoted by
copyk . It transforms a structure A into the disjoint union of k copies of A, denoted by A1, . . . ,Ak ,
expanded by

• new binary relations Yi that encode the canonical isomorphisms A1 → Ai,
• new unary relations Pi that “mark” the elements of the ith copy Ai.

Definition 52. Let ϒk := { Pi | 1 � i � k } ∪ { Yi | 1 < i � k }. We assume that ϒk is disjoint from every
other relational signature�,/,+, . . . that we will consider. For each relational signature�, we define an
operation

copyk : STR[�] → STR[� ∪ ϒk ]
that maps a structure A = 〈A, (RA)R∈�〉 to the structure C = copyk(A) with domain C = A× [k] and
relations:

RC :=
{
((a1, i), . . . , (aar(R), i))

∣∣ (a1, . . . , aar(R)) ∈ RA , i ∈ [k] } ,
(Pi)C := A× {i} , (1)

(Yi)C :=
{
((a, 1), (a, i))

∣∣ a ∈ A }
.

It is clear that copyk is a parameterless k-copying MSO-transduction.

Lemma 53. For every parameterless k-copying MSO-transduction : : STR[�] → STR[/], there exists
a parameterless noncopying MSO-transduction H : STR[� ∪ ϒk ] → STR[/] such that : = H ◦ copyk
and H(B) is undefined if the argument B is not of the form copyk(A), for some A.

Proof. Note that a structure C ∈ STR[� ∪ ϒk ] of the form copyk(A) satisfies the following conditions:

(1) The sets (P1)C, . . . , (Pk)C form a partition of the domain.
(2) For every R ∈ � and all tuples ā ∈ RC, there is some i with ā ⊆ (Pi)C.
(3) Each relation (Yi)C defines an isomorphism between fgtP1(C[P1]) and fgtPi (C[Pi]).

Conversely, every structure C ∈ STR[� ∪ ϒk ] satisfying these conditions is isomorphic to copyk(A)
where A is the �-reduct of C[P1]. The conjunction of (1)–(3) can be expressed by a first-order formula
C.

We denote the relativization of a formula " to the set Pi by "(Pi). Suppose that : is defined by

D = (ϕ, 1, . . . , k , (ϑw)w∈/�k) .

A definition scheme E = (ϕ′, ′, (ϑ′R)R∈/) for H can be defined as follows. The formula ϕ′ has to
express in C that there is some A with C = copyk(A) and A |= ϕ. We can set

ϕ′ := C ∧ ϕ(P1) .
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The formula  ′ should define the set of all elements (a, i) ∈ C such that A |=  i(a). This can be done
by defining

 ′(x) :=
k∧
i=1
(Pix→  

(Pi)
i (x)) .

Finally, we must construct formulas ϑ′R, for R ∈ /. We use the relations Yi to obtain a copy of a given
tuple that lies in the first copy. We have

((a1, i1), . . . , (an, in)) ∈ RD̂(A) iff A |= ϑR,i1...in(a1, . . . , an) .

For fixed i1, . . . , in, we can express this by the formula

�i1...in(x̄) := ∃y1 · · · ∃yn
( n∧
k=1

Yik ykxk ∧ ϑ(P1)R,i1...in
(ȳ)

)
.

(If ik = 1 then instead of Y1ykxk we use the formula yk = xk ∧ P1xk .) Therefore, we can set

ϑ′R(x̄) :=
∧
i1,...,in

( n∧
k=1

Pik xk → �i1...in(x̄)
)
. �

Lemma 54.

(a) For all structures A,B ∈ STR[�] and every k , we have

copyk(A⊕B) = copyk(A)⊕ copyk(B) .

(b) For every k and every quantifier-free operation f : STR[�] → STR[/] there is a quantifier-free
operation f ′ : STR[� ∪ ϒk ] → STR[/ ∪ ϒk ] such that we have

copyk(f(A)) = f ′(copyk(A)) , for every A ∈ STR[�] .
Proof. (a) is clear. (b) Let D = (true, , (ϑR)R∈/) be the definition scheme of f . We can define a definition
scheme

D′ = (
true, ′, (ϑ′R)R∈/, (ϑ′Pi )1�i�k , (ϑ

′
Yi
)1<i�k

)
of f ′ by

 ′(x) :=  (P1)(x) ∨ · · · ∨  (Pk)(x) ,
ϑ′R(x̄) := (ϑR)(P1)(x̄) ∨ · · · ∨ (ϑR)(Pk)(x̄) ,
ϑ′Pi (x) := Pix ,

ϑ′Yi (x, y) := Yixy ,



884 A. Blumensath, B. Courcelle / Information and Computation 204 (2006) 853–919

where ϕ(Pi)(x̄) denotes the relativization of ϕ(x̄) to Pi written in such a way that the formula ϕ(Pi)(x̄)
implies Pixl, for all l. �
Proposition 55. Theorem 51 holds for : = copyk .

Proof. By Lemma 54, the mapping copyk is a heteromorphism for the subsignature of QF obtained by
removing all constants. Therefore, the result follows from Lemma 14 and the remark that recognizability
does not depend on the constants in the signature. �

5.2. Parameterless noncopying transductions

Proposition 56. Theorem 51 holds for parameterless noncopying MSO-transductions.

Proof. Let : : STR[�] → STR[/] be a noncopying parameterless MSO-transduction of quantifier
height k with definition scheme (ϕ, , (ϑR)R∈/). Suppose that L ∈ Rec(STR)/ and let≈ be a congruence
witnessing the recognizability of L. Let m := ar(/). By Lemma 42, there is a quantifier-free operation
f : STR[�m,kM ] → STR[/] such that, if :(A) is defined then :(A) = f(Mm

k (A)). Consequently, we have

:−1(L) = {A ∈ STR[�] | A |= ϕ } ∩ (Mm
k )
−1(f−1(L)) .

Clearly, ≈ also witnesses the recognizability of f−1(L). By Lemmas 46 and 14, it follows that
(Mm

k )
−1(f−1(L)) is also recognizable. Furthermore, by Proposition 26 (a) the set {A ∈ STR[�]|

A |= ϕ } is recognizable. Since recognizable sets are closed under intersection (cf. the remark after
Definition 2) the result follows. �

5.3. Handling parameters

Let <m := {P1, . . . , Pm} be a set of unary relation symbols disjoint from the other signatures �,/,ϒ
etc. that we will consider. Let fgt<m : STR[� ∪<m] → STR[�] be the quantifier-free transduction that
deletes all relations in<m. Its inverse is a noncopying MSO-transduction withm parameters that specify
the values of the relations P1, . . . , Pm.

Lemma 57. Every MSO-transduction : : STR[�] → STR[/] with m parameters can be factorized as
H ◦ fgt−1<m where H : STR[� ∪<m] → STR[/] is a parameterless MSO-transduction.

Proof. When we apply fgt−1<m to a structure A we obtain all possible expansions of A by m unary rela-
tions P1, . . . , Pm ⊆ A. The transduction H can simulate : by replacing the parameters by these relations.
If B = (A, P̄ ) ∈ fgt−1<m(A) is a structure such that P̄ does not satisfy the first formula of the definition
scheme of : then H(B) is undefined. �
Proposition 58. If L ∈ Rec(STR)�∪<m then fgt<m(L) ∈ Rec(STR)�.

Proof. The following obvious facts will be used.

(1) For all structures A0, A1, and C and every m, we have

A0 ⊕A1 = fgt<m(C)
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if and only if there exist structures B0 and B1 such that

C = B0 ⊕B1 , A0 = fgt<m(B0) , and A1 = fgt<m(B1) .

(2) For every quantifier-free operation f : STR[/] → STR[+] and every m, there exists a quantifi-
er-free operation g : STR[/ ∪<m] → STR[+ ∪<m] such that, for all structures A and B, we
have

f(A) = fgt<m(B)

if and only if there exists a structure C with

B = g(C) and A = fgt<m(C) .

We apply a technique which was used in [16] to prove that certain operations on hypergraphs preserve
recognizability. We fix m and we will write < instead of <m. Let ≈ be a congruence witnessing the rec-
ognizability of a set L ∈ Rec(STR)�∪<. To show that fgt<(L) is recognizable we define an equivalence
relation on each set STR[+] by

A ≡ B iff
{ [C] ∣∣ C ∈ STR[+ ∪<], fgt<(C) = A

}
= { [C] ∣∣ C ∈ STR[+ ∪<], fgt<(C) = B

}
,

where [C] denotes the equivalence class of C w.r.t. ≈.
Since ≈ is an equivalence relation with finitely many classes of each sort so is ≡. Furthermore, ≡

saturates fgt<(L). If A = fgt<(C) with C ∈ L and B ≡ A then, by definition, there is some structure
D ≈ C such that B = fgt<(D). Hence D ∈ L and B ∈ fgt<(L).

It remains to verify that ≡ is a congruence. Suppose that A0 ≡ B0 and A1 ≡ B1. We want to prove
that A0 ⊕A1 ≡ B0 ⊕B1.

By symmetry, it is sufficient, for each C ∈ fgt−1< (A0 ⊕A1), to construct a structure D ∈ fgt−1< (B0 ⊕
B1) such that D ≈ C. By (1), there are structures C0 ∈ fgt−1< (A0) and C1 ∈ fgt−1< (A1) such that
C = C0 ⊕ C1. By definition of≡, we can find structures D0 ≈ C0 and D1 ≈ C1 such that B0 = fgt<(D0)

and B1 = fgt<(D1). Then fgt<(D0 ⊕D1) = B0 ⊕B1 and, since ≈ is a QF-congruence, we have
C0 ⊕ C1 ≈ D0 ⊕D1, as desired.

Let f : STR[/] → STR[+] be a quantifier-free operation and suppose that A ≡ B. We want to prove
that f(A) ≡ f(B). Let C ∈ fgt−1< (f(A)). We have to find a structure D ∈ fgt−1< (f(B)) such that D ≈ C.
By (2), there exists a transduction g and some structure C′ such that C = g(C′) and A = fgt<(C

′). By
definition of≡, we can find some structure D′ ≈ C′ with B = fgt<(D

′). Hence D := g(D′) ≈ g(C′) = C

and fgt<(D) = f(B). By symmetry, it follows that f(A) ≡ f(B). �
Proof of Theorem 51. By Lemmas 53 and 57, it follows that every k-copying MSO-transduction : :
STR[�] → STR[/] with m parameters can be written as

: = H ◦ copyk ◦ fgt−1<m ,
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where H : STR[� ∪<m ∪ ϒk ] → STR[/] is a parameterless noncopying MSO-transduction and
copyk : STR[� ∪<m] → STR[� ∪<m ∪ ϒk ].

Let L ∈ Rec(STR)/. Then

:−1(L) = fgt<m(copy
−1
k (H

−1(L))) .

By Proposition 56, H−1(L) is recognizable. Thus, copy−1k (H−1(L)) is recognizable by Proposition 55.
Finally, :−1(L) ∈ Rec(STR)�, by Proposition 58. �

6. A small signature for the algebra of relational structures

Our basic signature for defining recognizable and equational sets of structures (or hypergraphs) is
QF . To show that this is a natural and robust choice we present several other signatures that all turn
out to be equivalent to QF . We have already seen in Lemma 17that the larger signatures QFder

" are
equivalent to QF and in Section 7 we will introduce more interesting examples of larger signatures.
Before doing so let us try the opposite. In this section we consider a proper subsignature that is equivalent
to QF .

Let us first state some general facts that will serve as guidelines for proving our results. We claim
that, to prove that a subsignature G ⊆ QFder

" is equivalent to QF , it suffices to prove the following two
properties:

(p1) If a subset L ⊆ STR[�] is the image :(K) of a regular set K of terms (over any signature) under an
MSO-transduction :, then there exists a regular subset K ′ ⊆ T(G) such that L = valSTR(K ′).

(p2) If a subset L ⊆ STR[�] is G-recognizable then it is QF-recognizable.

Proposition 59. Let G ⊆ QFder
" .

(a) If G satisfies (p1) then Equat(G) = Equat(QF ).
(b) If G satisfies (p2) then Rec(G) = Rec(QF ).

In particular, any signature G ⊆ QFder
" satisfying (p1) and (p2) is equivalent to QF . Furthermore, all

signatures H with G ⊆ Hder
� ⊆ QFder

" are equivalent to QF .
Proof. Since G ⊆ QFder

" and QF is equivalent to QFder
" we have

Rec(QF ) = Rec(QFder
" ) ⊆ Rec(G)

and Equat(G) ⊆ Equat(QFder
" ) = Equat(QF ) .

Therefore, if G satisfies (p2) then we have Rec(QF ) = Rec(G).
To prove (a), suppose that L ∈ Equat(QF ). By Proposition 27 (iii), L is the image of a regular set of

terms under an MSO-transduction. Hence, (p1) and Proposition 4 imply that L ∈ Equat(G).
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Finally, suppose that G ⊆ Hder
� ⊆ QFder

" . Then we have

Equat(QF ) = Equat(G) ⊆ Equat(Hder
� ) ⊆ Equat(QFder

" ) = Equat(QF )
and Rec(QF ) = Rec(QFder

" ) ⊆ Rec(Hder
� ) ⊆ Rec(G) = Rec(QF ) .

Since, by Lemma 17, H is equivalent to Hder
� , the result follows. �

6.1. Auxiliary relations of small arity

We define a subsignature QF0 of QF by retaining from the unary operations the particular opera-
tions that forget some relation (delete the corresponding hyperedges), rename some relation (relabel the
corresponding hyperedges), and build new relations from pairs of given relations of smaller arity (create
new hyperedges by concatenation of existing ones).

Definition 60. The unary operations of QF0 are the following ones:

(1) The forget operation fgtK : STR[�] → STR[� \K] deletes all R-hyperedges, for R ∈ K ⊆ �.
(2) For an arity-preserving maph : �→ /between signatures, we have the relabelling relabh : STR[�]

→ STR[/] that replaces every hyperedge label R by h(R).
(3) Let R, S , T ∈ �, k := ar(R), l := ar(S), m := ar(T), and suppose that h : [m] → [k + l] is surjec-

tive. The hyperedge addition addR,S ,T ,h has a defining formula ϑT (x̄) of the form

T x̄ ∨
(
Rxi1 · · · xik ∧ Sxik+1 · · · xik+l ∧

∧
{ xj = xj′ | h(j) = h(j′) }

)

where ij is the smallest element of h−1(j).

Remark 61. This operation adds a T -hyperedge of length m for each pair of an R-hyperedge and an
S-hyperedge (which may have loops and common vertices). The resulting T -hyperedge may be a loop.

We denote by QF0 the signature consisting of the above operations, the disjoint union, and all con-
stants for singleton structures. By QF0[�] we denote the subsignature of all those operations that refer
only to relations in �.

In the proposition below we will make use of the following normal form of MSO-transductions.

Lemma 62. Given a finite signature F , a regular set of terms K ⊆ T(F ), and an MSO-transduction
: : STR[+(F )] → STR[�], we can construct a finite signature F ′, a regular set K ′ ⊆ T(F ′), and an
MSO-transduction :′ : STR[+(F ′)] → STR[�] such that :(K) = :′(K ′) and F ′, K ′, and :′ have the
following additional properties:

(1) F ′ contains only constants and binary function symbols.
(2) :′ is noncopying and parameterless.
(3) For every t′ ∈ K ′, the relational structure :′(t′) is defined and its domain consists only of leaves

of t′.
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Proof. In three steps, we transform F , :,K into F ′, :′,K ′ with the above properties. The same construction
is used in the proof of Theorem 4.6 of [7]. Hence we only sketch the different steps.

Step 1: Eliminating parameters. Suppose that the transduction : uses m parameters X1, . . . ,Xm. We
replace F by the signature F ′ := F × {0, 1}m where the symbol (f , b̄) ∈ F ′ has the same arity as f . Every
term t′ ∈ T(F ′) encodes a pair (t, 〈P1, . . . , Pm〉) where t ∈ T(F ) is the projection of t′ to the first compo-
nent and the set Pi consists of those nodes of t′ that are labelled by a pair (f , b̄) with bi = 1. Thus, every
term in T(F ′) contains an F -term and the values of the parameters X1, . . . ,Xm. The set K ′0 of all those
terms which encode a pair (t, P̄ ) for which :(t, P̄ ) is defined is regular. This is a standard construction,
based on the result by Doner, Thatcher, and Wright stating that a set of terms is regular if and only if the
corresponding set of structures encoding them is MSO-definable (see Chapter 3 of [3]). It follows that
the subset K ′ ⊆ K ′0 of all terms encoding pairs (t, P̄ ) with t ∈ K is also regular.

Step 2: Making : noncopying and satisfy condition (3). By the first step, we can assume that : is
parameterless. Suppose that it is k-copying for k � 1. We increase the arity of each symbol in F (includ-
ing constants) by k and we add a new constant, say, ∗. Let F ′ be the resulting signature. We define a
transformation T(F )→ T(F ′) : t �→ t∗ of terms by:

c∗ := c(∗, . . . , ∗) ,
f ∗(t1, . . . , tn) := f(t∗1 , . . . , t∗n , ∗, . . . , ∗) ,

where we add k times ∗ in each case. Since ∗ is a tree transduction it follows by Lemma 1 that the image
K∗ ⊆ T(F ′) of K is regular. The nodes corresponding to the new constants ∗ are all leaves, and they offer
enough space to define the domain of the output structure, without the need to use several copies of the
term. Hence, we can construct an MSO-transduction :′ that is (still parameterless and) noncopying such
that :(t) = :′(t∗), for each t ∈ K .

Note that even if : is noncopying we have to perform this transformation to satisfy the second part of
condition (3).

Step 3: Removing non-binary function symbols. By the first two steps, we can assume that condi-
tions (2) and (3) hold. We can satisfy condition (1) as follows. Let F ′ be the signature obtained from
F by adding a new constant ⊥ and changing the arity of all functions symbols to 2. The operation
T(F )→ T(F ′) : t→ t⊥ with:

c⊥ := c ,
f(t)⊥ := f(t⊥,⊥) ,

f(t1, t2)⊥ := f(t⊥1 , t⊥2 ) ,
f(t1, . . . , tk)⊥ := f(t⊥1 , f(t⊥2 , (. . . f(t⊥k−1, t⊥k ) . . .))) , for k � 3 ,

preserves regularity. In the same way as above it follows that the image of K under ⊥ is regular. �
The following result strengthens the implication (iii) ⇒ (ii) of Proposition 27. Recall the notion of

rank introduced in Definition 37.

Proposition 63. LetK be a regular set of terms and : an MSO-transduction with :(K) ⊆ STR[�]. There
exists a finite set of relations / with ar(/) � ar(�)− 1 and a regular setM ⊆ T(QF0[� ∪ /]) such that
:(K) = valSTR(M).
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Proof. Suppose that K ⊆ T(F ∪ C), + := +(F ∪ C), and : : STR[+] → STR[�]. We assume that K ,
:, and F ∪ C satisfy conditions (1)–(3) of Lemma 62 where C is a set of constants and F a set of binary
function symbols. Furthermore, we may assume that every structure in :(K) contains at least 2 elements.
Let k be the quantifier height of : and set n := ar(�). Our aim is to construct a relational signature /
with ar(/) = n− 1 and a regular subset M ⊆ T(QF0[� ∪ /]) such that :(K) = valSTR(M).

1. Overview of the proof. The signature / will consist of three disjoint copies of +n−1,kM . We define a
function L : K → T(QF0[� ∪ /]der) such that

valSTR(L(t)) = :(t) , for all t ∈ K .
The mapping L replaces every binary function symbol f at a node u of t by a binary derived operation
of the form 8u(x1 ⊕ x2) where 8u is a composition of unary QF0[/]-operations. Similarly, it replaces a
constant c at a leaf u by a constant 4u ∈ QF0[/]. Let us denote the set of these terms 8u and 4u by <.
The definition of 8u and 4u will depend only on f , c, and tpk+3(u/S(t)). This implies that < is finite
and, by Lemma 34, there exist MSO-formulas ϕ"(x), for " ∈ <, such that, for every node u of t

8u or 4u is equal to " iff S(t) |= ϕ"(u) .

Since the required information is expressible in MSO it follows that the transformation L can be per-
formed by a tree transducer. Using the fact that K is regular we conclude that L(K) is a regular subset of
T(QF0[/]der). Furthermore, we have

:(K) = valSTR(L(K)) = valSTR(M),

where M is obtained from L(K) by replacing each derived operation by its definition. By Lemma 17, it
follows that M is a regular subset of T(QF0[/]). This completes the proof.

2. Definition of L. It remains to define L. Let / := /0 ∪ /1 ∪ /2 where

/0 := +
n−1,k
M and /i := { T ip | Tp ∈ /0 } , for i ∈ {1, 2} .

Let hi : /0 → /i be the canonical bijections Tp �→ T ip . Note that these mappings preserve arities. Recall
that t/u denotes the subterm of t rooted at u and that Rm

k denotes the restricted monadic annotation (cf.
Definition 48). The construction of L will ensure that, for every t ∈ K ,

(1) for every node u of t, we have

fgt/
(
valSTR(L(t/u))

) = :(t)[L(t/u) ∩ D] ,
where D denotes the domain of :(t),

(2) and, for every node u of t that is not the root,

fgt�
(
valSTR(L(t/u))

) = relabhi (Rn−1
k (t/u)) ,

where

i :=
{
1 if u is the left successor of its parent,
2 if u is the right successor of its parent.
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Condition (2) specifies the values of the auxiliary relations in / at inner nodes u of t. We use the distinct
copies /1 and /2 of the signature to distinguish between left and right successors.

Note that L(t) is obtained from t by replacing constants by constants and function symbols by function
symbols of the same arity. Hence, L(t) and t have the same underlying trees and the same set of nodes.

3. Definition of 4u. It is straightforward to define the constants 4u such that condition (2) is satisfied.
If u does not belong to the domain of the structure :(t) then we set 4u := ∅, where ∅ is a new constant
denoting the empty structure (which we also denote by ∅ without risk of ambiguity). This constant is not
in the signature QF0[� ∪ /] and we will eliminate it at the very last stage of our proof.

Otherwise, let 4u be the constant that denotes the structure

:(t)[u] ∪ relabhi (Rn−1
k (t/u)),

where i := 1 if u is a left successor and i := 2 if u is a right successor. This structure consists of the
single element u, the incident �-hyperedges of rank 1 of :(t) (they are defined by :(t)[u]) together with
the /-hyperedge of arity 1 that defines the (i-copy of the) monadic 1-type of u in S(t/u) (this is defined
by relabhi (Rn−1

k (t/u))). It is the unique structure A ∈ STR[� ∪ /] such that

fgt/(A) = :(t)[u] and fgt�(A) = relabhi (Rn−1
k (t/u)) .

Note that the structure S(t/u) consists of a single node labelled by some constant c. Hence, tpk(u/S(t/u))
can be computed from c. The �-hyperedges of rank 1 are determined by tpk(u/S(t)).

4. Definition of 8u. To define the mappings 8u, we recall that, by Lemma 50, there are functions.fm,n
and .̂fm,n such that

• for all t1, t2 ∈ T(F ∪ C) and all increasing tuples ā ∈ L(t1)m and b̄ ∈ L(t2)n, we have

(∗)tpk
(
āb̄/S(f(t1, t2))

) = tpk
(
ā/S(t1)

).fm,n tpk(b̄/S(t2)) ,
• for every t ∈ T(F ∪ C) such that t/u = f(t1, t2) and all increasing tuples ā ∈ L(t1)m and b̄ ∈ L(t2)n, we

have

(∗∗)tpk
(
āb̄/S(t)

) = .̂fm,n
(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
.

To satisfy condition (2) we define the operation 8u such that, for all terms t1 and t2,

relabhi
(Rn−1

k (f(t1, t2))
) = 8u

(
relabh1(Rn−1

k (t1))⊕ relabh2(Rn−1
k (t2))

)
,

where i is either 1 or 2 depending on whether u is a left successor or a right successor. (The case where
u is the root will be treated separately below.)

Let ā ∈ L(t1)m1 and b̄ ∈ L(t2)m2 be increasing with m1,m2 > 0 and m1 + m2 � n− 1. The operation
8u has to compute the type of āb̄ in S(f(t1, t2)) from the types tpk(ā/S(t1)) and tpk(b̄/S(t2)). This
can be done with the help of the operation .fm1,m2 . Let ADD/ be the composition (in any order) of the
operations addT 1

p ,T 2
q ,Tr

where p ∈ Sm1,k
M (+), q ∈ Sm2,k

M (+) and r := p .fm1,m2 q.
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Furthermore, 8u also has to update the type of tuples ā ∈ L(tj)m, j ∈ {1, 2}. Note that

tpk(ā/S(f(t1, t2))) = tpk(ā/S(t1)).fm,0 tpk(S(t2)) , for ā ∈ L(t1)m,
tpk(ā/S(f(t1, t2))) = tpk(S(t1)).f0,m tpk(ā/S(t2)) , for ā ∈ L(t2)m.

Let g : /1 ∪ /2 → / be the mapping with

g(T 1
p ) := Tq with q := p .fm,0 tpk(S(t2)) ,

g(T 2
p ) := Tq with q := tpk(S(t1)).f0,m p .

We can define

8u := relabhi ◦ relabg ◦ADD/ ◦ADD�,

where the term ADD� is defined below to satisfy condition (1), and i is either 1 or 2 depending on
whether u is a left successor or a right successor.

Note that ADD/ depends on f but not on tpk(u/S(t)). The mapping g depends on tpk(S(t1)) and
tpk(S(t2)) and, hence, on tpk+3(u/S(t)). (Since the tree ordering relation is expressed by anMSO-formu-
la of quantifier height 3 (see Section 4.4) it follows that tpk(S(t/u)) can be computed from tpk+3(u/S(t))
by relativization to the formula defining the nodes below u in t.)

5. Satisfying condition (1). The incomplete definitions of 4u and 8u given above result in a structure
L(t) ∈ STR[/ ∪�] with /-hyperedges of arity and rank at most n− 1 where the only �-hyperedges are
those of :(t) ∈ STR[�] that have rank 1. To complete the definition of 8u we have to define the term
ADD� which adds the missing �-hyperedges.

Suppose that ā ∈ L(t)r has rank s � n. There exists a unique surjective map ; : [r] → [s] and a unique
increasing s-tuple b̄ such that ai = b;(i), for all 1 � i � r. We will denote this tuple by ā; := b̄.

Let ϑU(x1, . . . , xr) be the formula of the definition scheme of : that defines the relation U ∈ � and set
ϑ;U (x1, . . . , xs) := ϑU(x;(1), . . . , x;(r)). We have

ā ∈ U:(t) iff S(t) |= ϑU(ā)

iff S(t) |= ϑ;U (ā
;)

iff tpk(ā
;/S(t)) |= ϑ;U .

Suppose that t/u = f(t1, t2). The operation ADD� will create all�-hyperedges āwith ā ∩ L(t1) /= ∅ and
ā ∩ L(t2) /= ∅. Note that, for such a tuple ā, we have ā; = c̄d̄ where c̄ is an increasing tuple in L(t1) and
d̄ is an increasing tuple in L(t2).

For each U ∈ � and ;, we have to choose pairs p , q of types such that the operation addT 1
p ,T 2

q ,U ,; adds
the right tuples to U . Hence, the situation is similar to that of ADD/ except that we are interested in the
type tpk(ā

;/S(t)) and not in tpk(ā
;/S(t/u)). We can compute this type with the help of the operation

.̂fm1,m2 . Thus, we define ADD� as the composition (in any order) of all operations addT 1
p ,T 2

q ,U ,; where

p ∈ Sm1,k
M (+), q ∈ Sm2,k

M (+), m1,m2 > 0, m1 + m2 � n− 1, ; : [ar(U)] → [m1 + m2] is surjective, and
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.̂fm1,m2

(
tpk(S(t \ u)), p , q

) |= ϑ;U .

Note that the definition of ADD� depends on tpk(S(t \ u)). Since the tree ordering can be defined by
an MSO-formula of quantifier height 3 (see Section 4.4) it follows that tpk(S(t \ u)) can be computed
from tpk+3(u/S(t)) (by relativizing all formulas to the set of those nodes that are not below u).

6. Final steps. We have not yet defined 8u when u is the root. In this case we set 8u := fgt/ ◦ADD�

whereADD� is defined as above. After these operations are performed all�-tuples are in the right place.
The relations in / are not needed anymore and we remove them with fgt/.

We have constructed a regular set

K ′ := L(K) ⊆ T
(QF0[� ∪ /]der ∪ {∅}

)
with :(K) = valSTR(K ′). It remains to remove the constant∅. Note thatf(∅) = ∅, for every quantifier-free
operation f , and A⊕ ∅ = ∅ ⊕A = A, for every structure A. Using these equations we can eliminate
all occurrences of ∅ in the terms of K ′. (Since every structure in :(K) is nonempty there is no term in K ′
which denotes the empty structure.) This is an easy task for a tree transducer. Hence K ′ can be replaced
by a regular set K ′′ ⊆ T(QF0[� ∪ /]der). Finally, we transform K ′′ into a set M ⊆ T(QF0[� ∪ /]) as
explained in part 1 above. This completes the proof. �
Definition 64. We denote by QF0[�,/] the subsignature of QF0[� ∪ /] that consists of disjoint union
and

• the operations fgtK, for K ⊆ /,
• only those relabellings relabh where h is the identity on �,
• the operations addR,S ,T ,h with R, S ∈ /, R not equal to S, and T ∈ / ∪�, and
• all constants.

Let QF�
0 be the union of all signatures of the form QF0[�,/].

Remark 65. Note that the proof of the preceding proposition uses only the operations of QF0[�,/].
The set M we construct is a subset of T(QF0[�,/]). We have thus shown that we can construct every
structure in STR[�] with the help of a set / of auxiliary symbols of arity ar(/) < ar(�).

6.2. The case of graphs

As an example we apply the above result to graphs. Let� = {edg}. Since edg is a binary relation every
equational set of graphs can be defined by a system of equations over a signature of the form QF0[edg,<]
where < contains only unary symbols. We compare such signatures with the signature VR reviewed in
Section 3.5.

The operations in QF0[edg,<] are the disjoint union, constants, and the quantifier-free operations:

• fgt�, for � ⊆ <,
• relabh, for h : <→ <, and
• addP ,Q,edg,h, with P ,Q ∈ <.
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The mapping fgt�, is the composition of the mappings fgtP , for P ∈ �. A mapping relabh is a composi-
tion of mappings renP→Q. Depending on h, the mapping addP ,Q,edg,h is either addP ,Q or addQ,P . Hence,

the signature QF {edg}
0 is, up to some details of writing, the one considered in Section 3.5.

We obtain Corollary 4.9 of [7] which states that equational sets of graphs need not be defined with
operations that use relation symbols of arity more than 2 or operations that label edges. Only vertices
must be labelled. More about this in Section 6.4.

6.3. The recognizable sets are also the same

Our objective is now to establish the result that both signatures QF�
0 and QF lead to the same notion

of recognizability for subsets of STR[�]. Recall Section 4 where we defined monadic types tpk(ā/A)
and monadic annotations Mm

k (A). In particular, k denotes the quantifier height andm is the maximal size
of annotated tuples. We will make use of the following lemma which follows immediately from Lemma
35.

Lemma 66. For every quantifier-free transduction f : STR[�] → STR[/] and eachm > 0, there exists
a mapping f m : �m,0M → /

m,0
M such that, for all structures A ∈ STR[�] and all D ⊆ A, we have

Mm
0 (f(A)[D]) = relabf m(Mm

0 (A[D])) .

Proof. Note that we have:

f(A[D]) = f(A)[D] ,
Mm

0 (A[D]) = Mm
0 (A)[D] ,

and relabf m(A[D]) = relabf m(A)[D] .

Since f is nondeleting the mapping Mm
0 (A) �→ Mm

0 (f(A)) only manipulates the relations. For p ∈
S
n,0
M (�) with n � m, we can define the relabelling by

f m(Tp) := Tf n0 (p) ,

where f n0 is the function from Lemma 35. �

Proposition 67. Every QF�
0 -recognizable set L ⊆ STR[�] is QF-recognizable.

Before giving the proof let us state the following consequence of Propositions 63 and 67.

Theorem 68. The signatures QF�
0 and QF yield the same equational sets and the same recognizable

sets of structures in STR[�]. Hence the signatures QF0 and QF are equivalent.

Proof of Proposition 67. Suppose that L ⊆ STR[�] is QF�
0 -recognizable and let m := ar(�). There

exists a finite QF�
0 -congruence saturating L. We denote the corresponding finite equivalence relations

on STR[� ∪ /] by +/ where / is a relational signature with ar(/) < m.
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For a relational signature+, let �(+) := +
�m−1,0
M . With each quantifier-free operation f : STR[+] →

STR[�] we associate the function f̂ : STR[+] → STR[� ∪ �(+)] with

f̂ (A) := f(A) ∪Mm−1
0 (A)[D]

whereD ⊆ A is the domain of f(A). Note that the union above is not a disjoint one. The domain of f̂ (A)
is that of f(A) and the relations are those of f(A) and those of Mm−1

0 (A)[D]. We assume that �(+) is
disjoint from � so there is no confusion. f̂ is obviously a quantifier-free operation.

For A,B ∈ STR[+] we define

A ≈ B iff tpm(A) = tpm(B) ,

and A ≡+ B iff A ≈ B and, for every quantifier-free operation

f : STR[+] → STR[�] , we have f̂ (A) +�(+) f̂ (B) .

We claim that ≡+ is a finite QF-congruence, for all +, and that ≡� saturates L. Clearly, ≡+ is
an equivalence relation. It is also finite since ≈ and +�(+) are finite and there are only finitely many
quantifier-free operations STR[+] → STR[�] (because + and � are finite).

To see that ≡� saturates L assume that A ∈ L and A ≡� B. Set f := fgt�(�). We have f̂ (A) +�(�)
f̂ (B), which implies that

A = f(f̂ (A)) +∅ f(f̂ (B)) = B .

Since +∅ saturates L it follows that B ∈ L.
Next we check that ≈ is a congruence. In Corollary 44 we have shown this for the disjoint union. It is

easy to see that for quantifier-free operations it can be derived from Lemma 35.
It remains to verify that ≡+ is a congruence. Let g : STR[+] → STR[+′] be a quantifier-free trans-

duction and suppose that A ≡+ B. Since≈ is a congruence we have g(A) ≈ g(B). Let f : STR[+′] →
STR[�] be a quantifier-free operation. By definition, we have

(f̂ ◦ g)(A) = (f ◦ g)(A) ∪Mm−1
0 (g(A))[D] ,

and (f ◦ g)∧(A) = (f ◦ g)(A) ∪Mm−1
0 (A)[D] ,

where D is the domain of the structure (f ◦ g)(A). Therefore, it follows from Lemma 66 that there is
some function h : � ∪ �(+)→ � ∪ �(+′) such that

(f̂ ◦ g)(A) = relabh((f ◦ g)∧(A))

and h is the identity on �. Since relabh ∈ QF�
0 and

(f ◦ g)∧(A) +�(+) (f ◦ g)∧(B)
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we have

f̂ (g(A)) = relabh((f ◦ g)∧(A))
+ �(+′) relabh((f ◦ g)∧(B)) = f̂ (g(B)) ,

which implies that g(A) ≡+ g(B).
It remains to consider the case of disjoint union. Suppose that A0 ≡+ B0 and A1 ≡+ B1. We have

to prove that A0 ⊕A1 ≡+ B0 ⊕B1. We already know that A0 ⊕A1 ≈ B0 ⊕B1. Let f : STR[+] →
STR[�] be a quantifier-free operation such that f(A0 ⊕A1) ∈ STR[�].
Claim 69. Let �′(+) be a disjoint copy of �(+) and let h be the relabelling mapping R ∈ �(+) to
R′ ∈ �′(+). There exists a QF0[�,�(+) ∪ �′(+)]-derived operation g such that

f̂ (A⊕B) = g(f̂ (A)⊕ h(f̂ (B))) , for all structures A and B .

Assuming the claim to be true we continue the proof as follows. Since A0 ≡+ B0 and A1 ≡+ B1 we
have

f̂ (A0) +�(+) f̂ (B0) and h(f̂ (A1)) +�′(+) h(f̂ (B1)) .

As g is a QF0[�,�(+) ∪ �′(+)]-derived operation it follows that

f̂ (A0)⊕ h(f̂ (A1)) + �(+)∪�′(+)f̂ (B0)⊕ h(f̂ (B1)) ,

and f̂ (A0 ⊕A1) = g(f̂ (A0)⊕ h(f̂ (A1)))

+ �(+)g(f̂ (B0)⊕ h(f̂ (B1)))

= f̂ (B0 ⊕B1) .

This completes the main proof.

Proof of the claim. To define g let us consider the action of f̂ on A⊕B. Since f̂ is quantifier-free it
adds tuples ā ⊆ A to a relation R if and only if we have ā ∈ R

f̂ (A)
. The same holds for tuples b̄ ⊆ B.

Therefore, we have

f̂ (A⊕B)[A] = f̂ (A) and f̂ (A⊕B)[B] = f̂ (B) ,

and the desired operation g only needs to add those tuples c̄ to relations R that contain elements of both
A and B. Since f̂ is quantifier-free we can tell whether such a tuple c̄ should be added to R by looking at
the quantifier-free types

tp0(c̄|A/A⊕B) = tp0(c̄|A/A) and tp0(c̄|B/A⊕B) = tp0(c̄|B/B) .
(By c̄|A we denote the subtuple of c̄ contained in A.) This information is available in Mm−1

0 (A) and
Mm−1

0 (B). Hence, g can be written as g = relabk ◦ CREATE where k is the canonical projection
�(+) ∪ �′(+)→ �(+) and CREATE is a composition of operations of the form addR,S ,T ,h with
R ∈ �(+), S ∈ �′(+), and T ∈ � ∪ �(+) ∪ �′(+). This completes the proof of the claim. �
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6.4. Optimality

These results prove that when dealing with equational or recognizable sets of hypergraphs of arity at
most n, auxiliary relation symbols (like the labels from sets< for dealing with graphs) can be limited to
be of arity at most n− 1.

The next example shows that, for equational sets, this bound is optimal. We define structures of arity
3 that cannot be defined without auxiliary symbols of arity 2.

Example 70. LetR be a ternary relation symbol and< a set of unary predicates as in Section 3.5. Consider
the signature

F< := {⊕, renP→Q, fgtK, addN ,P ,Q,P | N , P ,Q ∈ <, K ⊆ < },

where ⊕, renP→Q, fgtK, and P are the usual VR-operations of Section 3.5 and addN ,P ,Q is the quantifi-
er-free operation defined by the formula

ϑR(x, y , z) := Rxyz ∨ (Nx ∧ Py ∧ Qz) .

Every structure A ∈ STR[R] is of the form A = valSTR(t), for some t ∈ T(F<), provided < is large
enough (say, |<| = |A|). Let An ∈ STR[R] be the structure with domain A = [n] and relation

R := { (a, b, c) ∈ [n]3 | a < b < c } ,

and denote the set of all structures An by C. There exists an MSO-transduction : such that C = :(K),
where K is the set of all terms of the form gn(c), n ∈ �, for some unary function symbol g and a constant
c. Since K is regular it follows by Proposition 27 that C is equational. We claim that C � val(T(F<)),
for any finite set <.

Fix a finite set< and set n := 2|<|. We will prove that A2n+1 /∈ val(T(F<)). Suppose that there exists
a term t ∈ T(F<) with value val(t) = A2n+1. Then t = f(t1 ⊕ t2) where f is a composition of unary
operations that has to add all necessary hyperedges between B1 := val(t1) and B2 := val(t2).

For a, b ∈ val(t1), we define

a ∼ b iff for all P ∈ <, a ∈ PB1 ⇔ b ∈ PB1 .

If f adds the tuple (a, b, c) to R, for a ∼ b in B1 and c ∈ B2, then it must also add the tuple (b, a, c). This
is not possible. Therefore, each ∼-class of B1 contains only one element and we have

|B1| = |B1/∼| � 2|<| = n .

By symmetry, it follows that |B2| � n in contradiction to |B1 ∪ B2| = 2n+ 1.
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7. Rich signatures with operations based on local information

7.1. The general framework

After investigating small signatures we will now look at the opposite problem of defining signatures
that are as rich as possible while still being equivalent to QF . Let F be a signature equivalent to QF .
We are interested in finding a set G of new operations on STR[�] that satisfy the following conditions:

(c1) Every (F ∪ G)-equational subset of STR[�] is F-equational.
(c2) Every F-recognizable subset of STR[�] is (F ∪ G)-recognizable.

Lemma 71. If G satisfies (c1) and (c2) then F ∪ G is equivalent to QF .
Proof. Since F ⊆ F ∪ G, we have

Rec(F ∪ G) ⊆ Rec(F ) and Equat(F ) ⊆ Equat(F ∪ G) .

By (c2), it follows that Rec(F ∪ G) = Rec(F ) = Rec(QF ), while (c1) impies that Equat(F ∪ G) =
Equat(F ) = Equat(QF ). �

Our approach is as follows. Suppose that, for each signature �, we have defined an injective mapping

∧ : STR[�] → STR[�̂] : A �→ Â

from �-structures to �̂-structures, for some signature �̂. Natural conditions implying both (c1) and
(c2) are the following ones.

(h) The family of functions ∧ : STR[�] → STR[�̂] forms a finite-state heteromorphism from the
(F ∪ G)-algebra STR to the QF-algebra STR.

(m) The mapping ∧ has a left-inverse Â �→ A that is an MSO-transduction. Furthermore, for every �,
there is an MSO-formula defining the image D� := (STR[�])∧ ⊆ STR[�̂] of STR[�] under ∧.

Remark 72. By Definition 10, to verify (h) we have to find

• a (F ∪ G)-computable mapping " : STR→ A, and
• for every n-ary operation f ∈ F ∪ G, QF-terms tf [ā], for ā ∈ An, that “emulate” f .

Note that the second step can be performed independently for every operationf . Below we will sometimes
split it into two or more parts each dealing only with a subset of F ∪ G.

Lemma 73. Let C ⊆ STR[�] be a set of structures and Ĉ its image under ∧. If (h) and (m) hold then
the following conditions are equivalent:

(i) C is QF-equational.
(ii) Ĉ is QF-equational.
(iii) C is (F ∪ G)-equational.
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In particular, (h) and (m) imply (c1).

Proof. (iii)⇒ (ii) follows from Lemma 14 and (h), and (ii)⇒ (i) follows from Corollary 28 (a) and (m).
For (i)⇒ (iii), suppose that C is QF-equational. Since F is equivalent to QF it is also F-equational.

Finally, F ⊆ F ∪ G implies that C is (F ∪ G)-equational. �
Lemma 74. Let C ⊆ STR[�] be a set of structures and Ĉ its image under ∧. If (h) and (m) hold then
the following conditions are equivalent:

(i) C is QF-recognizable.
(ii) Ĉ is QF-recognizable.
(iii) C is (F ∪ G)-recognizable.

In particular, (h) and (m) imply (c2).

Proof.

(i) ⇒ (ii) Since Ĉ=D� ∩ (∧)−1(C) this direction follows from (m), Proposition 26 (b), and Theorem 51.
(ii) ⇒ (iii) follows from Lemma 14 and (h).
(iii)⇒ (i) Suppose that C is (F ∪ G)-recognizable. Since F ⊆ F ∪ G it is also F-recognizable. By

assumption, F is equivalent to QF which implies that C is QF-recognizable. �

Example 75.

(a) We can apply the above machinery to the mapping Â := Mm
k (A). Condition (m) follows from Lemma

40, and in Lemma 46 we proved (h) for the case that G = ∅ and F = QF . It follows that a class C is
QF-equational or QF-recognizable if and only if its annotated version Mm

k (C) is. Hence, our framework
provides an alternative proof of Corollary 41 and Theorem 47.
(b) It is not easy to find nontrivial signatures G that satisfy condition (h) for the annotation Mm

k . We give
an example of a simple operation that, for k > 0, violates condition (h). Consider the square operation
G �→ G2 where G2 is the graph with the same vertices as G and edge relation

edgG2 := { (x, y) | (x, y) ∈ edgG or (x, z), (z, y) ∈ edgG for some z } .
The mapping M1(G) �→ G2 is a quantifier-free operation. To satisfy (h) we have to lift it to a map
M1(G) �→ M1(G

2). But this cannot be done. We have G2 |= ∃z(edg(x, z) ∧ edg(z, y)) iff G |=
∃z[(edg(x, z) ∨ ∃u(edg(x, u) ∧ edg(u, z))

) ∧ (
edg(z, y) ∨ ∃u(edg(z, u) ∧ edg(u, y))

)]
.By looking only at

tp1(xy/G) we cannot decide whether this formula holds in G.
(c)We give a last counterexample consisting of an operation defined by a very weak form of quantifi-

cation such that the corresponding value mapping from terms to graphs is not an MSO-transduction. Let
P ,Q,R be unary relations and suppose that our signature contains the operations g and h where

h(x) := (relabR �→Q ◦ relabQ �→P ◦ addQ,R,edg)(x ⊕ R)

is a derived QF {edg}
2 -operation, and g labels every vertex a by Q that has a neighbor labelled Q while the

other relations remain unchanged. The term tmn := gnhm(Q) describes a path of length m where the last
n+ 1 vertices are labelled by Q and the remaining ones are labelled by P .
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P −→ · · · −→ P −→ Q −→ · · · −→ Q

We claim that the function val mapping a term tmn to its value is not an MSO-transduction. Note that the
set

T := { val(tmn) | m � n } ,

which consists of all finite paths where all vertices are labelled by Q, is MSO-definable and, hence,
recognizable. If val were an MSO-transduction then the set

val−1(T) ∩ { tmn | m, n ∈ � } = { tmn | m � n }

would be recognizable as well. But, using pumping arguments, one can easily see that this is not the case.
The set T is QF-recognizable but not recognizable with respect to the operations used above.

7.2. Fusion and local types

Our main application of the approach described in the previous section concerns the fusion operation
that merges all elements of a structure satisfying a given quantifier-free formula into a single element.
We will show that one can augment the signature QF0 of Section 6.1 by this operation without changing
the notions of recognizability and equationality. Let us first introduce the appropriate operation A �→ Â

on structures. Similarly to the operation Mm
k of Section 4.2, we use a labelling by a certain kind of types

but with a more restricted form of quantification.

Definition 76.

(a) Let n ∈ �. A formula ϕ(x1, . . . , xn) is monadically existential, m.e. for short, if

ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧  1 ∧ . . . ∧  m)
or ϕ = ∃y1 1 ,

where each  i is either the Hintikka-formula (cf. Definition 33) of a quantifier-free 1-type with free
variable yi, or it is of the form yi = xk , for some k. (Note that we do not require every variable xi
to appear in ϕ.)

(b)Let A be a structure and ā ∈ An, for n ∈ �. The local n-type of ā is the set

ltp(ā/A) := {ϕ(x̄) | ϕ is m.e., A |= ϕ(ā) } .

The set of all local n-types realized in some �-structure is denoted by SnL(�) and we set S∗L(�) :=⋃
1�n�ar(�) S

n
L(�). As usual, we abbreviate ltp(〈〉/A) by ltp(A). Note that ltp(A) is included in all local

n-types with n � 0.
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Example 77. Suppose that � = {R, P } where R is 4-ary and P is unary. The following formula is m.e.

ϕ(x1, x2) = ∃y1∃y2∃y3∃y4
(
Ry1y2y3y4 ∧ (Py1 ∧ ¬Ry1y1y1y1)

∧ y2 = x1 ∧ y3 = x1

∧ (¬Py4 ∧ ¬Ry4y4y4y4)
)
.

Remark 78. Note that the local type ltp(ā/A) of a tuple uniquely determines its quantifier-free type
tp0(ā/A) since we have

Rxi1 . . . xim ∈ tp0(ā/A)

iff ∃y1 · · · ∃ym(Rȳ ∧ y1 = xi1 ∧ · · · ∧ ym = xim) ∈ ltp(ā/A) .

As for monadic types we can annotate a structure with local types. This annotation is an FO-transduction
which satisfies condition (m).

Definition 79. Let A be a �-structure. The local annotation of A is the structure

L(A) := 〈
A, (Tp )p∈S∗L(�)

〉
with the same domain as A where, for each local n-type p ∈ S∗L(�), 1 � n � ar(�), we add an n-ary
relation

Tp := { ā ∈ An | ltp(ā/A) = p } .
We denote the signature of L(A) by �L.

The following lemma is the analogue of Lemma 40.

Lemma 80. Let � be a relational signature.

(a) The mapping L : STR[�] → STR[�L] is an injective FO-transduction of quantifier height ar(�).
(b) The function L has a left-inverse that is a quantifier-free FO-transduction.
(c) L satisfies condition (m).

Proof. (a) We can define the relation Tp by the formula∧
p ∧

∧
{ ¬ϕ | ϕ is m.e., ϕ /∈ p } .

This formula has quantifier height qh( p) = ar(�).
(b) Conversely, we can write an n-ary relation R ∈ � as

RA = { ā ∈ An | ā ∈ Tp for some p with

∃ ȳ(Rȳ ∧ y1 = x1 ∧ . . . ∧ yn = xn) ∈ p } .
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Since S∗L(�) is finite this definition is equivalent to a finite disjunction of atomic formulas.
(c) Having proved (b) it remains to show that L(STR[�]) is MSO-definable. By composing the trans-

ductions of (a) and (b) we can construct a first-order formula ϕ such that A |= ϕ if and only if A = L(B),
for some structure B. �

We have seen in Theorem 68 that the signature F := QF0 is equivalent to QF . Using the methods
of Section 7.1 we extend it in two steps to a larger signature that is still equivalent to QF . First, we add
all domain restrictions del (cf. the end of Section 3.1). Let QF∗ be the resulting signature. We start by
proving an analogue to Lemma 35 for local types.

Lemma 81. For every unary operation f ∈ QF∗ of type �→ /, there exist functions fn : SnL(�)→
SnL(/), n ∈ �, such that

ltp(ā/f(A)) = fn(ltp(ā/A)) ,

for all structures A and all n-tuples ā in f(A).

Proof. Let g = f 1
0 : S1,0M (�)→ S

1,0
M (/) be the function from Lemma 35. If  is the Hintikka-formula of

an atomic 1-type q we denote by g( ) the Hintikka-formula of g(q), and, if  is yi = xk , then we set
g( ) :=  .

Let p ∈ SnL(�). For an m.e. formula of the form ϕ = ∃y (y) we have

∃y (y) ∈ fn(p) iff ∃y ′(y) ∈ p for some  ′ ∈ g−1( ) .

Consider an m.e. formula of the form

ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧  1 ∧ · · · ∧  m) .
To define fn(p) we consider the following cases.

(1) f = fgtK. If R ∈ K then ϕ /∈ fn(p). Otherwise, ϕ ∈ fn(p) iff there are formulas  ′i ∈ g−1( i),
i � m, such that

∃y1 · · · ∃ym(Ry1 . . . ym ∧  ′1 ∧ · · · ∧  ′m) ∈ p .
(2) f = relabh. We set ϕ ∈ fn(p) iff there are a relation S ∈ h−1(R) and formulas ′i ∈ g−1( i), i � m,

such that

∃y1 · · · ∃ym(Sy1 . . . ym ∧  ′1 ∧ · · · ∧  ′m) ∈ p .
(3) f = addS ,T ,U ,h. If R /= U then we define ϕ ∈ fn(p) iff there are formulas  ′i ∈ g−1( i), i � m,

such that

∃y1 · · · ∃ym(Ry1 . . . ym ∧  ′1 ∧ · · · ∧  ′m) ∈ p .
For R = U , we have ϕ ∈ fn(p) iff one of the following two cases holds.
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Case 1. There are formulas  ′i ∈ g−1( i), i � m, such that

∃y1 · · · ∃ym(Uy1 . . . ym ∧  ′1 ∧ · · · ∧  ′m) ∈ p .
Case 2. Otherwise, for all i, j with h(i) = h(j), we have either

•  i =  j, or
•  i is yi = xk and j is the Hintikka-formula of the type tp0(ak/f(A)) = g

(
tp0(ak/A)

)
(note that this

type is determined by p), or
• vice versa.

Furthermore, there are formulas  ′′1 , . . . , 
′′
k+l, where k := ar(S), l := ar(T), such that

∃y1 · · · ∃yk(Sy1 . . . yk ∧  ′′1 ∧ · · · ∧  ′′k ) ∈ p
and ∃y1 · · · ∃yl(Ty1 . . . yl ∧  ′′k+1(y1) ∧ · · · ∧  ′′k+l(yl)) ∈ p ,

and, for all i, we either have

•  i is a Hintikka-formula and  ′′h(i) ∈ g−1( i), or
•  i is yi= xj, for some j, and  ′′h(i) is yh(i) = xj.

(4) f = delϑ. We have ϕ ∈ fn(p) iff ϕ ∈ p and  i -|= ϑ(yi), for all i � m. �
Example 82. Let us illustrate the case f = addS ,T ,U ,h. Suppose that the arities of S, T , and U are 2, 3,
and 7, respectively. Let h : [7] → [5] be the function mapping 1, . . . , 7 to the sequence 1, 2, 3, 4, 4, 5, 5.
We consider a formula ϕ(x1, x2, x3) of the form

∃ȳ(U ȳ ∧ y1 = x1 ∧  2(y2) ∧ y3 = x2 ∧ y4 = x3 ∧  5(y5) ∧  6(y6) ∧  7(y7)) .

For ā ∈ A3, we have f(A) |= ϕ(ā) iff either

A |= ∃ȳ(U ȳ ∧ y1 = x1 ∧  ′2(y2) ∧ y3 = x2 ∧ y4 = x3 ∧  ′5(y5) ∧  ′6(y6) ∧  ′7(y7)) ,
for some ′i ∈ g−1( i), i ∈ {2, 5, 6, 7}, or 5 is the Hintikka-formula of g(tp0(a3/A)), we have ′6 =  7,
and there are  ′i ∈ g−1( i), i ∈ {2, 6}, such that

A |= ∃y1∃y2(Sy1y2 ∧ y1 = x1 ∧  ′2(y2)) ∧ ∃y1∃y2∃y3(Ty1y2y3 ∧ y1 = x2 ∧ y2 = x3 ∧  ′6(y3)) .
The next lemma is analogous to Corollary 44.

Lemma 83. Let A and B be structures and ā ∈ Ak , b̄ ∈ Bl with k , l � 0.

ltp(āb̄/A⊕B) = ltp(ā/A) ∪ p ,
where p is the type obtained from ltp(b̄/B) by replacing every variable xi by xk+i.

Corollary 84. Every operation f ∈ QF∗ satisfies condition (h).
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Proof. We claim that the function L is a finite-state heteromorphism based on ltp. The proof is analogous
to that of Lemma 46. For unary operations the claim follows immediately from Lemma 81. It remains to
consider the disjoint union. Lemma 83 implies that there exist QF-terms t[p , q], for p , q ∈ S0L(�), such
that

L(A⊕B) = t[ltp(A), ltp(B)](L(A),L(B)) .
(Note that the local type of a tuple ā determines the type of any permutation of ā. Therefore, we only
need Lemma 83 for tuples āb̄ with ā ⊆ A and b̄ ⊆ B, not for arbitrary interleavings of elements of A
and B.)

From Lemmas 81 and 83 we can deduce that the local 0-type of a structure is QF∗-computable (cf.
Definition 6). Consequently, the mapping L is a finite-state derived operation based on ltp. �

In the second step we extend QF∗ by all fusion operations which are defined as follows. Recall the
definition of quotient structures at the end of Section 3.1.

Definition 85. Let A be a structure and ϕ(x) a quantifier-free formula. We set fuseϕ(A) := A/∼ where
∼ is the equivalence relation

a ∼ b iff a = b or A |= ϕ(a) ∧ ϕ(b) .

By Fuse we denote the signature consisting of all operations of the form fuseϕ.

We have seen that every operation of QF∗ satisfies (h). To do the same for Fuse it therefore remains
to prove (h) for fusion operations.

Lemma 86. Let ϕ(x) be a quantifier-free formula and g : A → fuseϕ(A) the canonical mapping. There
exist functions fn : SnL(�)→ SnL(�), for n ∈ �, such that

ltp
(
g(ā)/fuseϕ(A)

) = fn(ltp(ā/A)) , for all ā ∈ An.

Proof. Let p1, . . . , ps ∈ S1,0M (�) be an enumeration of all quantifier-free 1-types p with p |= ϕ that
are realized in A. Let q ∈ S1,0M (�) be the quantifier-free 1-type with

Rx1 . . . x1 ∈ q iff Rx1 . . . x1 ∈ pi , for some i � s .

If b ∈ A is some element of type tp0(b/A) = pi then g(b) has the type

tp0(g(b)/fuseϕ(A)) = q .

To simplify notation we define a function f : S1,0M (�)→ S
1,0
M (�) by

f(r) :=
{
q if r ∈ {p1, . . . , ps} ,
r otherwise .

For Hintikka-formulas r we setf( r) :=  f(r), and for formulas of the formyi = xk we setf( ) :=  .
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For m.e. formulas of the form ϑ = ∃y (y) we have

∃y (y) ∈ ltp(g(ā)/fuseϕ(A)) iff ∃y ′(y) ∈ ltp(ā/A) for some  ′ ∈ f−1( ) .

Let ϑ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧  1 ∧ · · · ∧  m) be a m.e. formula. We have

ϑ ∈ ltp(g(ā)/fuseϕ(A))

if and only if

∃y1 · · · ∃ym(Ry1 . . . ym ∧  ′1 ∧ · · · ∧  ′m) ∈ ltp(ā/A) ,

for some formulas ′i ∈ f−1( i), 1 � i � m. Since the types p1, . . . , pr can be determined from ltp(ā/A)
this gives the desired definition of fn. �
Corollary 87. The signature QF∗ ∪ Fuse satisfies condition (h).

Proof. For the operations of QF∗, we have already shown in Corollary 84 that L is a finite-state het-
eromorphism based on ltp. It remains to consider the operations fuseϕ ∈ Fuse . The preceding lemma
implies that there exists a QF-term t such that

L(fuseϕ(A)) = t
(L(A)) .

Together Lemmas 81, 83, and 86 show that the local 0-type of a structure is (QF∗ ∪ Fuse )-computable.
Hence, the claim follows. �

By the results of the previous section, we immediately obtain the following theorem which is one of
our main results.

Theorem 88. The signatures QF and QF∗ ∪ Fuse are equivalent.

Let us compare this result with those of Courcelle and Makowsky [9] who show that the signature F
consisting of the disjoint union ⊕, of certain restricted quantifier-free operations, and of the operations
fusePx satisfies the following properties. For every finite subsignature F0 ⊆ F ,

(1) the value mapping valSTR : T(F0)� → STR[�] is an MSO-transduction,
(2) every F0-equational set is QF-equational, and
(3) each MSO-definable set of (hyper-)graphs contained in valSTR(T(F0)�) is F0-recognizable.

The restrictions imposed in [9] on quantifier-free operations and relational structures are the following
ones:

• the sets PA form a partition of A,
• the only quantifier-free operations allowed to modify the vertex labellings are operations of the form
renP→Q as described in Section 6, and
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• no quantifier-free operation restricts the domain of its argument.

In the present section we were able to remove the first and third restriction by using 1-types instead of
vertex labels. Furthermore, we have shown that both signatures lead to the same notion of recognizabil-
ity. Unfortunately, to do so we had to modify the second restriction by only allowing the quantifier-free
operations of QF∗. By the results of [9] and Theorem 88 we have

Equat(QF ) = Equat(QF∗ ∪ Fuse ) = Equat(QF ∪ Fuse ) ,

and Rec(QF ) = Rec(QF∗ ∪ Fuse ) ⊇ Rec(QF ∪ Fuse ) .

We currently do not know whether the last inclusion can be strengthened to an equality.

7.3. Fusion and complete local types for graphs

For graphs—or more generally for structures of arity at most 2—we can improve the above result by
showing that the signatures QF and QF ∪ Fuse are equivalent. One would expect that this holds for
arbitrary arities, but so far we have neither been able to prove such a statement, nor could we construct a
counterexample. For the remainder of this section, we fix a signature � of arity ar(�) � 2.

The reason why the above proof works only for QF∗ is the fact that, if we use the labelling
L then arbitrary quantifier-free operations do not satisfy condition (h). For arity 2, we are able
to modify the notion of a local type such that all QF-operations satisfy (h). The basic idea is to
replace in an m.e. formula ∃ȳ(Rȳ ∧  1 ∧ · · · ∧  m) the atom Rȳ by the Hintikka-formula of a quan-
tifier-free 2-type. Though, to simplify notation we will not use such formulas but the quantifier-free
2-types themselves.

Definition 89. Let A be a structure and a, b ∈ A. The complete local 2-type of a pair ab in A is its
quantifier-free type

ctp(ab/A) := tp0(ab/A) .

The complete local 1-type of a single element a in A is the set of all complete local 2-types of pairs
extending a

ctp(a/A) := { ctp(ac/A) | c ∈ A } .
Finally, we will also need the complete local 0-type of the empty tuple 〈〉 which is the set of all realized
1-types.

ctp(〈〉/A) := { ctp(a/A) | a ∈ A } .
As usual, we abbreviate ctp(〈〉/A) by ctp(A). For 0 � n � 2, we denote by SnC(�) the set of all possible
complete local n-types and we set S∗C(�) := S1C(�) ∪ S2C(�).
Remark 90. Since satisfiability is decidable for the 2-variable fragment of first-order logic it follows that
the sets S0C(�), S

1
C(�), and S2C(�) are decidable.
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As in the case of the other types one can define Hintikka formulas for complete local types.

Lemma 91. For every complete local n-type p ∈ SnC(�), 0 � n � 2, there exists a first-order formula
 p(x̄) of quantifier height 2− n such that

A |=  p(ā) iff ctp(ā/A) = p ,

for all structures A and every tuple ā ∈ An.
Proof. We define  p by reverse induction on n. The construction is analogous to that of Definition 33.
For n = 2, we define

 p(x1, x2) :=
∧
p .

For n = 1, we have to express the back-and-forth property (cf. [26,19]). The formula

 p(x1) :=
∧
q∈p

∃x2 q(x1, x2) ∧ ∀x2
∨
q∈p

 q(x1, x2)

states that every type q ∈ p is realized and every realized type is contained in p . Similarly, for n = 0, we
have

 p :=
∧
q∈p

∃x1 q(x1) ∧ ∀x1
∨
q∈p

 q(x1) . �

Corollary 92. The 0-type ctp(A) is QF-computable.

Proof. As in Lemma 45, we can prove that first-order types of bounded quantifier depth are QF-
computable. Since ctp(A) is logically equivalent to the first-order 0-type of quantifier depth 2 the claim
follows. �

We use Hintikka formulas to define the logical consequences of a local type.

Definition 93. For p ∈ SnC(�) and ϕ ∈ FO[�], we write p |= ϕ iff |=  p → ϕ.

Remark 94. It follows that p |= ϕ if and only if we have A |= ϕ(ā), for every structure A and all tuples
ā ⊆ A of type ctp(ā/A) = p .

Following the usual lines of our approach we annotate structures by types and we show that these
annotations satisfy conditions (m) and (h).

Definition 95. Let A be a�-structure with ar(�) � 2. The complete local annotation of A is the structure

C(A) := 〈
A, (Tp )p∈S∗C(�)

〉
with the same domain as A where, for each local n-type p ∈ S∗C(�), n ∈ {1, 2}, we add the relation

Tp := { ā ∈ An | ctp(ā/A) = p } .
We denote the signature of C(A) by �C.
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Lemma 96. Let � be a relational signature.

(a) The mapping C : STR[�] → STR[�C] is an injective FO-transduction of quantifier height 1.
(b) C has a left-inverse that is a quantifier-free transduction.
(c) C satisfies condition (m).

Proof.

(a) The formula  p(x̄) from Lemma 91 can be used to define the relation Tp . For p ∈ SnC(�), this
formula has quantifier height qh( p) = 2− n.

(b)Conversely, we can write an n-ary relation R ∈ � as

RA = { ā ∈ An | ā ∈ Tp for some p with p |= Rx1 . . . xn } .

Since S∗C(�) is finite this definition is equivalent to a finite disjunction of atomic formulas.
(c) Finally, by composing the transductions of (a) and (b) we can construct an FO-formula that defines

the set C(STR[�]). �

It remains to check condition (h). We start by considering the operations of QF .

Lemma 97. Let : : STR[�] → STR[/] be a quantifier-free operation with ar(/) � 2. There exist func-
tions fn : SnC(�)→ SnC(/), 0 � n � 2, such that

ctp(ā/:(A)) = fn(ctp(ā/A)) ,

for every structure A and every tuple ā in :(A).

Proof. We decompose : = ; ◦ delϕ into a domain restriction and a nondeleting quantifier-free operation
(cf. Lemma 25), and we deal with the two cases separately. For : = delϕ and a, b ∈ delϕ(A), we have:

ctp(ab/delϕ(A)) = ctp(ab/A) ,

ctp(a/delϕ(A)) =
{
p ∈ ctp(a/A)

∣∣ p |= ¬ϕ(x2)
}
,

ctp(〈〉/delϕ(A)) =
{
f1(p)

∣∣ p ∈ ctp(〈〉/A), p |= ¬ϕ(x1)
}
,

where f1 in the last line is the function given by the second equation.
It remains to consider the case that : = ;. By Lemma 35, there exists a function g such that

tp0(ab/;(A)) = g(tp0(ab/A)) .

Hence, we can set f2 := g. The functions f1 and f0 are defined by

ctp(a/;(A)) = { g(p) | p ∈ ctp(a/A) } ,
ctp(〈〉/;(A)) = { f1(p) | p ∈ ctp(〈〉/A) } . �
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We are interested in the fusion operation. It turns out that the annotation C can be used to treat an even
stronger operation which we call the gluing of two structures.

Definition 98. A gluing function is a mapping

g : S1C(�)× S1C(�)→ S2C(�) ,

such that, for all types p , q ∈ S1C(�) and every quantifier-free formula ϕ(x) with one free variable, we
have

ϕ(x1) ∈ g(p , q) iff p |= ϕ(x1) ,

and ϕ(x2) ∈ g(p , q) iff q |= ϕ(x1) .

For such a gluing function g and structures A,B ∈ STR[�], we denote by A⊗g B the following struc-
ture. Its domain is the disjoint union A ·∪ B. For unary relations P , we have

PA⊗gB := PA ∪ PB ,

while binary relations R are defined by

RA⊗gB := RA ∪ RB

∪ {
(a, b) ∈ A× B ∣∣ g(ctp(a/A), ctp(b/B)) |= Rx1x2

}
∪ {

(b, a) ∈ B× A ∣∣ g(ctp(a/A), ctp(b/B)) |= Rx2x1
}
.

Finally, we extend⊗g to an operation STR[�] × STR[/] → STR[� ∪ /] on structures of different sig-
natures by defining A⊗g B := A′ ⊗g B′ where A′ is the (� ∪ /)-structure obtained from A by adding
empty relations RA′ := ∅, for every R ∈ / \�, and B′ is defined analogously.

By Glue we denote the signature consisting of all operations of the form ⊗g.
Remark 99.

(a) Note that A⊗g B = A⊕B if we have ¬Rx1x2,¬Rx2x1 ∈ g(p , q), for all p , q ∈ S1C(�) and all
binary relation symbols R.

(b)The conditions on a gluing function g ensure that

ctp(ab/A⊗g B) = g
(
ctp(a/A), ctp(b/B)

)
,

for all structures A and B and all elements a ∈ A and b ∈ B. For instance, we have

Rx1x2 ∈ ctp(ab/A⊗g B) iff (a, b) ∈ RA⊗gB
iff g(ctp(a/A), ctp(b/B)) |= Rx1x2 ,

and Px1 ∈ ctp(ab/A⊗g B) iff a ∈ PA

iff ctp(a/A) |= Px1

iff g(ctp(a/A), ctp(b/B)) |= Px1 .
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Example 100. Cunningham [18] studies graph decompositions, called split decomposition, that are based
on the following operation (see also [14]). Given two undirected, simple, loop-free graphs G and H in
STR[{edg} ∪<] with labelled vertices as in Section 3.5 and some relations P ∈ <, one forms the graph

G 3P H := delPx(G⊗g H),

where delPx deletes all vertices labelled P and g is the gluing function such that

g(p1, p2) |= edg(x1, x2) iff pi |= ∃y(edg(x1, y) ∧ Py) for both i ,

that is, ⊗g creates an edge (a, b) between a vertex a of G and a vertex b of H if and only if both a and b
have a neighbour labelled P . Actually, in [18] this operation is used only on graphs where P contains a
unique vertex.

The next lemma is analogous to Corollary 44 and Lemma 83.

Lemma 101. Let g be a gluing function. There exist functions fn, 0 � n � 2, such that

ctp(ā/A⊗g B) = fn
(
ctp(ā|A / A), ctp(ā|B / B)

)
,

for all structures A and B and all tuples ā ∈ (A ∪ B)n, where ā|X denotes the subtuple of ā consisting of
all elements ai ∈ X.
Proof. We start with the case n = 2. If a, b ∈ A then

ctp(ab/A⊗g B) = ctp(ab/A) .

The case that a, b ∈ B is similar. If a ∈ A and b ∈ B then:

ctp(ab/A⊗g B) = g(ctp(a/A), ctp(b/B))
and ctp(ba/A⊗g B) = ;g(ctp(a/A), ctp(b/B)) ,

where ;(p) interchanges the variables x1 and x2 in every formula of p . (We have proved the first equation
in the remark above. The second one follows from the fact that ctp(ba/A⊗g B) = ;(ctp(ab/A⊗g B)).)

For a ∈ A, we have

ctp(a/A⊗g B) = ctp(a/A) ∪ {
g(ctp(a/A), p)

∣∣ p ∈ ctp(B)
}
,

and, for b ∈ B,

ctp(b/A⊗g B) = ctp(b/B) ∪ {
;g(p , ctp(b/B))

∣∣ p ∈ ctp(A)
}
.

Finally, for n = 0, we have

ctp(A⊗g B) = {
f1(p , ctp(B))

∣∣ p ∈ ctp(A)
} ∪ {

f1(ctp(A), p)
∣∣ p ∈ ctp(B)

}
. �
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Corollary 102. If we only consider structures of arity at most 2 then the signature QF ∪ Glue satisfies
condition (h).

Proof. We claim that the function C is a finite-state heteromorphism based on ctp. For quantifier-free
operations and the gluing operation ⊗g this follows from the preceding lemmas. For the disjoint union
⊕, it is sufficient to note that ⊕ = ⊗g, for a suitable gluing function g (cf. the Remark after Definition
98).

It remains to show that ctp is (QF ∪ Glue )-computable. We have already seen that it is QF-comput-
able in Corollary 92. Hence, Lemma 101 implies that ctp is (QF ∪ Glue )-computable. �
By the results of Section 7.1, it follows that, for structures of arity at most 2, the signature QF ∪ Glue
is equivalent to QF , i.e., the corresponding subalgebras of STR are equivalent.

Corollary 103. For structures of arity at most 2, the signatures QF ∪ Glue and QF are equivalent.

The signature we are actually interested in is QF ∪ Glue ∪ Fuse . The following theorem, which is
one of our main results, states that it is equivalent to QF .

Theorem 104. For structures of arity at most 2, the signatures QF ∪ Glue ∪ Fuse and QF are equiva-
lent.

Proof. By Corollary 103 and Lemma 17, it is sufficient to show that

QF ∪ Glue ∪ Fuse ⊆ (QF ∪ Glue )der .

We can express the operation fuseϕ as a derived (QF ∪ Glue )-operation as follows. We add a new ele-
ment c satisfying ϕ(x) to the given structure by a suitable gluing operation that creates an R-edge from
an element a to c iff there exists an R-edge (a, b) ending in an element b satisfying ϕ(x). Then we delete
all elements satisfying ϕ(x) except for c. Formally, we have

fuseϕ(x) = (fgtP ◦ delϑ)(x ⊗g ;(c))

where:

• c is a constant denoting a singleton structure whose only element b satisfies ϕ,
• ; creates a new unary relation P /∈ � and it adds all elements to it,
• g creates an R-edge between an element a and ;(c) iff there is some element b satisfying ϕ such that
(a, b) ∈ R. That is,

g(p , q) := {Rx1x2 | p |= ∃y(Rx1y ∧  (y)) for some  ∈ ? }
∪ {Rx2x1 | p |= ∃y(Ryx1 ∧  (y)) for some  ∈ ? }
∪ { (x1) | p |=  (x1) , quantifier free }
∪ { (x2) | q |=  (x1) , quantifier free } ,

where q is the complete local 1-type of the single element of the structure ;(c) and ? is the set of all
Hintikka-formulas  r , r ∈ S1C(�), with r |= ϕ,
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• ϑ := ϕ ∧ ¬Px1, i.e., delϑ deletes all elements satisfying ϕ except for the new one which is labelled by
P , and

• fgtP deletes the auxiliary relation P again. �

8. Sources in hypergraphs are not necessary

Equipping graphs and hypergraphs with distinguished vertices is useful for defining operations like
series composition or parallel composition that generalize concatenation. These distinguished vertices
are called sources. In terms of relational structures such distinguished elements can be defined as values
of nullary symbols which are also called constants. They have been defined in this way in the general
logical and algebraic framework of [7] which is further developed in [8]. Constants can be eliminated if
one replaces them by unary relations containing single elements. However, the quantifier height of the
definition scheme of a given transduction usually increases under this transformation. Take for example
the quantifier-free definition

Rxy iff Sxa ∧ Tyb,

where a and b are constants. If we encode a and b by unary relations Pa and Pb, this definition becomes

Rxy iff ∃u∃v(Sxu ∧ Tyv ∧ Pau ∧ Pbv) ,

which is no longer quantifier-free. Hence, after the transformation the signature QF may contain fewer
operations. In this section, we show that quantifier-free operations using constants can be emulated by
quantifier-free operations on relational structures without them. We will prove that the signature of quan-
tifier-free operations using constants, denoted by QFc, is “equivalent” to the signature QF on relational
structures without constants (for the precise meaning of “equivalent” cf. Proposition 105 and Theorem
112).

8.1. Relational structures with constants

We recall definitions from [7,8]. We fix a countable set C∞ of constant symbols. For a relational
signature � and a finite subset C ⊆ C∞, we denote by STR[�,C] the set of all finite structures of the
form

A = 〈
A, (RA)R∈�, (cA)c∈C

〉
,

where 〈A, (RA)R∈�〉 ∈ STR[�] and cA ∈ A, for every c ∈ C.
By A[C] we denote the substructure of A induced by the set of all elements that are denoted by some

constant c ∈ C.
We call quantifier-free transductions between structures with constants QFc-transductions, for

short (the superscript c indicates that we allow constants). A definition scheme for such a transduction
STR[�,C] → STR[/,D] is of the form

D = (
ϕ,  , (ϑR)R∈/, (Lcd )c∈C ,d∈D

)
,
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where:

• ϕ = true (cf. Section 3.3),
•  ∈ QF[� ∪ C , {x1}],
• ϑR ∈ QF[� ∪ C , {x1, . . . , xar(R)}], for R ∈ /, and
• Lcd ∈ QF[� ∪ C ,∅], for each c ∈ C and d ∈ D.

As usual, the formula  defines the domain of the new structure and the formulas ϑR define the new
relations R. The new constants are determined by the formulas Lcd . Given a structure A we define the
constant d in the new structure to denote that element cA such that Lcd holds in A.

In order that a definition scheme defines a total mapping, the formulas Lcd must satisfy the following
conditions, for every structure in A ∈ STR[�,C] and every d ∈ D :

• d denotes an element of the new structure, that is, A |= ∧
c∈C(Lcd →  (c)) .

• d has some value, that is, A |= ∨
c∈C Lcd .

• d is unique, that is, A |= ∧
c,c′∈C(Lcd ∧ Lc′d → c = c′) .

These conditions are given by quantifier-free formulas without free variables. Hence, they hold in a
structure A ∈ STR[�,C] iff they hold in A[C]. It is therefore decidable whether they are valid in every
structure because we only need to check their validity in the finitely many structures of the form A[C].

A definition scheme D as above defines a total mapping D̂ : STR[�,C] → STR[/,D] where the
domain and the relations of B := D̂(A) are defined in the same way as for structures without constants
and, additionally, we have dB = cA whenever A |= Lcd .

We obtain thus an algebra STRc of structures with constants where each pair (�,C) is a sort. The oper-
ations are the QFc-transductions and the disjoint union⊕which we apply only to structures with disjoint
sets of constants. (For structures A ∈ STR[�,C] and B ∈ STR[/,D] with C ∩ D = ∅, the structure
A⊕B ∈ STR[� ∪ /,C ∪ D] is well-defined). We denote by QFc the corresponding signature.

We could define MSO-transductions between structures with constants in the same way as QFc-trans-
ductions. But when we allow quantifiers then the formulas Lcd are not needed. Therefore, we choose a
simpler approach by reducing such transductions to MSO-transductions without constants.

Let <C := { Pc | c ∈ C } be a set of unary relations in bijection with C and disjoint from �. For
A ∈ STR[�,C], we denote by A< ∈ STR[� ∪<C] the structure with the same domain as A and the
same �-relations. For every constant c ∈ C, we add a new unary relation Pc := {cA} to A<. Clearly, the
mapping

STR[�,C] → STR[� ∪<C] : A �→ A<

is an injective QFc-transduction. (We identify STR[� ∪<C ,∅] and STR[� ∪<C].)
We define an MSO-transduction (of structures with constants) as a transduction : : STR[�,C] →

STR[/,D] such that the relation { (A<,B<) | B ∈ :(A) } is an MSO-transduction. Routine arguments
show that the composition of two MSO-transductions is an MSO-transduction, also when they use
constants.

We now recall from [7] the following result, formulated with the terminology of the present article. It
is the analogue of Proposition 27 for structures with constants.
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Proposition 105. Let L ⊆ STR[�,C]. The following statements are equivalent:

(i) L is the image of a regular set of terms under an MSO-transduction.
(ii) L is QFc-equational.
(iii) The set L< := {A< | A ∈ L } is QF-equational.

Proof. The equivalence (i) ⇔ (ii) is proved in [7]. Let us sketch the equivalence of (i) and (iii). With
routine manipulations of MSO-transductions one can show that (i) is equivalent to the statement

L< is the image of a regular set of terms under an MSO-transduction.

Hence, the equivalence (i) ⇔ (iii) follows from Proposition 27. �
Our objective is to obtain a similar characterization of QFc-recognizability of L ⊆ STR[�,C] in

terms of the QF-recognizability of L<. Theorem 112 below achieves this goal. Following our general
framework we will introduce a construction on structures that makes it possible to emulate the operations
of QFc in terms of QF-operations.

8.2. A second way of eliminating constants

The basic idea is to replace a structure A by the structure Â obtained by deleting all elements that are
denoted by some constant and by adding new relations that memorize links with the deleted elements.
For example, an edge from x (where x is not the value of any constant) to cA will be represented by a new
unary relation edg[∗c]. An essential fact is that A can be reconstructed from Â and A[C]. (Note that, up
to isomorphism, there are only finitely many structures A[C] for A ∈ STR[�,C].)
Definition 106.

(a) For every n-ary relation R ∈ � and each word w ∈ (C ∪ {∗})n, we introduce a new relation symbol
R[w] whose arity is the number of symbols ∗ occurring in w. Let �(C) be the set of these symbols
where we identify R with R[∗ . . . ∗], hence �(C) contains �.

(b) For A = 〈A, (RA)R∈�, (cA)c∈C〉 ∈ STR[�,C], we define a �(C)-structure Â := 〈Â, (R
Â
)R∈�(C)〉

with domain Â := A \ { cA | c ∈ C } and the following relations. Forw = w1 ∗w2 . . . wk ∗wk+1 with
w1,w2, . . . ,wk+1 ∈ C∗, we have

R[w]
Â
:= {

(a1, . . . , ak)
∣∣ w̃1a1w̃2 . . . w̃kakw̃k+1 ∈ RA

}
,

where w̃i is the sequence of elements of A denoted by the constants in wi ∈ C∗.
Note that the substructure of A induced by Â is a substructure of Â. The following statements follow

immediately from the definitions.

Lemma 107.

(1) The structure A can be reconstructed from Â and A[C].
(2) The mapping ∧ : STR[�,C] → STR[�(C)] is a QFc-transduction.
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(3) For each structure C ∈ STR[�,C] with C = C[C], there exists a (|C| + 1)-copying MSO-trans-
duction of quantifier height 0 that maps every nonempty structure B ∈ STR[�(C)] to the unique
structure A ∈ STR[�,C] such that A[C] = C and Â = B.

Definition 108. Let L ⊆ STR[�,C] and suppose that C ∈ STR[�,C] is a structure with C∼=C[C]. We
denote by L 45 C the set of structures A ∈ L such that A[C]∼=C and A /= C (so A contains at least one
element not denoted by a constant).

Proposition 109. A set L ⊆ STR[�,C] is QFc-equational iff (L 45 C)∧ is QF-equational for each C.

Proof. Let L be QFc-equational. Since, for fixed C, the condition A[C]∼=C is MSO-definable (even
FO-definable) it follows by Proposition 105 and Corollary 28 (b) that each set L 45 C is QFc-equational.
Hence, it is the image of a regular set of terms under an MSO-transduction and so is (L 45 C)∧, by
Proposition 105 and Lemma 107 (2).

Conversely, since L is a finite union of sets L 45 C and singletons {C}, it suffices to prove that each
L 45 C is QFc-equational. This follows from Lemma 107 (3) by a similar argument as above. �

We will improve Lemma 107 (2) to have statements like Proposition 109 relating QF- and
QFc-recognizability. Let us first state an immediate corollary of Lemma 107 (3) and Proposition 20.

Corollary 110. Let C ∈ STR[�,C] be a structure such that C = C[C].For every formula ϕ(x1, . . . , xn) ∈
QF[� ∪ C], one can construct a formula ϕ̂(x1, . . . , xn) ∈ QF[�(C)], such that we have

A |= ϕ(ā) iff Â |= ϕ̂(ā) ,

for every structure A ∈ STR[�,C] with A[C] = C and every ā ∈ Ân.
Proof. Let : : STR[�(C)] → STR[�,C] be the transduction of Lemma 107 (3). We can set
ϕ̂ := ϕ: . �

Among the QFc-operations, it will be convenient to single out particular ones. If d ∈ C, we denote
by fgtd the operation STR[�,C] → STR[�,C \ {d}] that “forgets” the constant d . Nothing is changed
except that some element of the domain is no longer denoted by d .

Proposition 111. The function ∧ : STR[�,C] → STR[�(C)] is a finite-state heteromorphism based on
the mapping A �→ A[C].
Proof. We recall that on STR[�,C]we use the disjoint union and the QFc-transductions as unary opera-
tions. We first observe that the mapping A �→ A[C] is QFc-computable. This follows from the following
obvious facts.

(1) For all structures A ∈ STR[�,C] and B ∈ STR[/,D] with C ∩ D = ∅, we have

(A⊕B)[C ∪ D] = A[C] ⊕B[D] .
(2) For every QFc-operation f : STR[�,C] → STR[/,D], we have

f(A)[D] = f(A[C])[D] .
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(This is true because Df(A) ⊆ CA.)

Going back to the main proof, we consider the various operations. First it is clear that

(A⊕B)∧ = Â⊕ B̂ .

The case of a QFc-operation f : STR[�,C] → STR[/,D] is more involved. Suppose that f is defined
by the definition scheme

D = (ϕ,  , (ϑR)R∈/, (Lcd )c∈C ,d∈D) .

We consider a structure A. Our objective is to express f(A)∧ as t(Â) for some QF-term t that may
depend on A[C]. Let CA be the set of all elements of A denoted by some constant c ∈ C. We denote by
N ⊆ CA the set of all elements that are not deleted by f (i.e., that satisfy  ) but that are not denoted by
any constant d ∈ D in f(A). (Note that we can compute N from A[C].) The set CA is thus partitioned
into Df(A), N , and the set of all elements deleted by the transduction f . The domain of f(A)∧ consists
of N and all elements of Â = A \ CA that are not deleted by f . We distinguish several cases.

(a) First, suppose that N = ∅. The domain of f(A)∧ is the set of elements of Â that satisfy  in A. By
Corollary 110, these are the elements that satisfy  ̂ in Â.

Now we consider a relation in /(D), say R[∗c∗dd∗] to take a representative example. We have

(x, y , z) ∈ R[∗c∗dd∗]f(A)∧
iff (x, cf(A), y , df(A), df(A), z) ∈ Rf(A)
iff A |= ϑR(x, c′, y , d ′, d ′, z) ∧  (x) ∧  (y) ∧  (z) ∧ Lc′c ∧ Ld ′d ,

for some c′, d ′ ∈ C
iff Â |= ϑ̂c′,d ′ for some c′, d ′ ∈ C
iff Â |= ϑ̂ :=

∨
c′,d ′

ϑ̂c′,d ′ ,

where ϑ̂c′,d ′ is the formula associated with

ϑR(x, c′, y , d ′, d ′, z) ∧  (x) ∧  (y) ∧  (z) ∧ Lc′c ∧ Ld ′d
according to Corollary 110.

The formula  ̂ which defines the domain of f(A)∧ and the formulas ϑ̂ as above yield a definition
scheme for the transformation Â �→ f(A)∧. Hence, t is a quantifier-free operation.

(b) Next, we consider the case thatN /= ∅ and f = fgtd . ThenN = {d} and there is no c ∈ C \ {d} such
that cA = dA. The domain of f(A)∧ is that of Â augmented with dA. Hence we have f(A)∧ = t′(Â⊕D)

where t′ and D are defined as follows.
D is a structure with the single element dA. The relations of D either are empty or consist solely

of the tuple (dA, . . . , dA) depending on whether the corresponding relation of A[C] contains this tuple.
For example, if (dA, bA, cA, dA, dA) ∈ RA, for b, c ∈ C, then we put the tuple (dA, dA, dA) into the set
R[∗bc∗∗]D. We also use a special new unary relation symbol to “mark” dA, that is, to distinguish it from
the elements of Â .
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Let us call a relation R[w] a d-relation if d occurs in w. The mapping t′ is a quantifier-free operation
that performs the following transformations:

(1) It preserves those relations of Â and D that are not d-relations.
(2) It removes all d-relations (they are all in Â).
(3) For every tuple in a d-relation, like (x, y , z) ∈ R[∗∗abdd∗d], it creates a corresponding tuple

(x, y , dA, dA, z, dA) in the relation R[∗∗ab∗∗∗∗]. The marking of dA is useful here.
(4) Finally, it removes the “marking” unary relation.

Hence, in this case we can take for t the QF-term t′(x ⊕D).
(c) For the general case, we show that every QFc-operation can be expressed as the composition of a

bounded number of transformations of the above two forms.
Fix an enumeration a1, . . . , ak of N . (If it is empty case (a) applies.) Let E = {e1, . . . , ek} ⊆ C∞ be a

set of constants disjoint from C and D.
Let g be the QFc-transduction that maps a structure C with C[C] = A[C] to the structure g(C) ∈

STR[�,D ∪ E] obtained from f(C) by assigning the value ai to the new constant ei, for i � k.
The definition scheme of g can be constructed by adding to D the formulas Lcei := true where, for

each i, c is some element of C such that cA = ai. This choice can be made depending only on A[C].
The resulting QFc-transduction g is of the type considered in case (a). Furthermore, for every structure
B with B[C] = A[C], we have

f(B) = (fgte1◦ · · · ◦ fgtek )(g(B)) .
Hence the general case follows by combining the constructions of (a) and (b). �
The main result of this section is the following theorem.

Theorem 112. Let L ⊆ STR[�,C]. The following statements are equivalent:

(i) L is QFc-recognizable.
(ii) L< is QF-recognizable.
(iii) (L 45 C)∧ is QF-recognizable, for every C with C[C] = C.

Proof. (ii)⇔ (iii) Note that, by Lemma 107, for every C, the sets (L 45 C)∧ and (L 45 C)< are in bijection
by an MSO-transduction the inverse of which is also an MSO-transduction. It follows from Theorem
51 that one is QF-recognizable if and only if the other is. Furthermore, the set {A | A = A[C] } is
MSO-definable and hence recognizable. This proves (iii) ⇒ (ii) since

L< = {A | A = A[C] or Â ∈ (L 45 C)∧, for some C }
and a finite union of recognizable sets is recognizable.

For the other direction, note that, if L< is QF-recognizable then so is (L 45 C)< because the conditions
A[C]∼=C and A � C are MSO-definable.

(iii) ⇒ (i) Suppose that (L 45 C)∧ is QF-recognizable, for every C. Then L 45 C is the inverse image
of (L 45 C)∧ under the finite-state heteromorphism ∧ (Proposition 111). Hence it is QFc-recognizable,
by Lemma 14. It follows that L is QFc-recognizable since L is a finite union of recognizable sets.
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(i) ⇒ (iii) We now assume that L is QFc-recognizable. Let ≈ be a finite congruence saturating L. By
replacing it if necessary by a finer one, one can assume that A ≈ A′ implies that A[C] = A′[C] and the
same relations from � are nonempty in A and in A′. Hence this congruence saturates each set L 45 C.

Consider now the inverse mapping (∧)−1 : STR[�(C)] → STR[�,C]. For every C ∈ STR[�,C]
such that C = C[C], one can construct a QFc-term t, using both the relations of �(C) (this set contains
�) and the constants of C such that, for every structure A ∈ STR[�,C] 45 C, we have A = t(Â⊕ C).

The effect of applying t to Â⊕ C must be to replace a tuple like (x, y , u, v,w) in a relationR[∗∗ab∗∗c∗]
by the tuple (x, y , aC, bC, u, v, cC,w) ∈ R. This can be done by a QFc-transduction : : STR[�(C)] →
STR[�,C]. Hence, we can set t := :(x).

The restriction of the congruence≈ to the setsSTR[�] is a QF-congruence since QF is a subsignature
of QFc. It remains to check that it saturates (L 45 C)∧. Consider a structure A ∈ (L 45 C)∧, and suppose
that A′ ≈ A. Let B ∈ L 45 C be such that A = B̂. Since A′[C] = A[C] = C, A[C]� C, and the same
relations from�(C) occur in A and A′, there exists a structure B′ ∈ STR[�,C] 45 C such that A′ = B̂′.
Applying the term t defined above we obtain B = t(A⊕ C) and B′ = t(A′ ⊕ C). Hence B ≈ B′. But
the congruence ≈ saturates L 45 C. Hence B′ belongs to L 45 C and A′ belongs to (L 45 C)∧. It follows
that each set (L 45 C)∧ is recognizable. �

Some variants of the operations of QFc are considered in [8] where it is shown that one can use the
following generalization of disjoint union. If A and B have a common set of constants C then their
parallel composition A //B is defined from their disjoint union by fusing those elements in A and in B

that are denoted by the same constant. The results of this section extend to the corresponding variant of
QFc.

9. Conclusion

The main results we have established above (Theorem 51 in Section 5, Theorem 68 in Section 6,
Theorem 88 and 104 in Section 7 and Theorem 112 in Section 8) tighten even more the relationships
between recognizability for algebras of relational structures, monadic second-order transductions, and
operations on relational structures defined in terms of logical formulas—quantifier-free or with a limited
form of quantification. We have extended older results on the fusion operation and we gave new uniform
proofs in a wider algebraic setting.

Some questions remain open though. In particular, a uniform treatment of the fusion operation for
relational structures would be desirable.

Open question 1. Are the signatures QF and QF ∪ Fuse equivalent?

Let us mention some other possible future research directions.

(1) Which quantifier-free operations on relational structures preserve recognizability?
(2) Is it true that, if a set of graphs of clique width at most k is VR<-recognizable, for some set < of

size at most k (or f(k), for some fixed function f ), then it is recognizable?
(3) Using the signature QF�

0 and its distinction between auxiliary relations and those of �, one can
define a complexity measure on relational structures that generalizes the notion of clique width:
Given a structure A ∈ STR[�], letw(A) be the minimal number n such that there exists a signature
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/ and a term t ∈ T(QF0[�,/]) with A = valSTR(t) and
∑
R∈/ ar(R) � n. By Proposition 63, it

follows that a set L ⊆ STR[�] is the image of a set of terms under an MSO-transduction if and
only if w(L) is bounded.

For the case of the so-called HR-operations and HR-recognizability, questions related to (1) and (2)
have been considered in [16,17]. A measure similar to (3) but based on a different signature is investigated
in [2].
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