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Abstract. Regular trees can be defined by two types of rational expressions. For these two types
we solve the star-height problem, i.e., we show how to construct a rational expression of minimal
star-height from the minimal graph of the given tree (i.c., the analogue of the minimal deterministic
automaton for regular languages). In one case, the minimal starheight is the rank (in the sense
of Eggan) of the minimal graph. There corresponds a characterization of the star-height of a
prefiv-free regular language w.r.t. rational expressions of a special kind (called deterministic) as
e mana of its minimal deterministic automaton considered as a graph.
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Introduction

Regular trees, i.e., trees which are either finite or infinite with only finitely many

distinct subtrees, play an important role in the theory of programn schemes. They
have been investigated by Cousineau [9], Jacob [16]. Elgot et al. [13] and Courcelle

[8).

Since they form the free iterative theory (generated by some ranked alphabet

F), they are denoted by certain iterative theory expressions (see [2, 13, 14]). These
iterative theory expressions include the rational expressions independently defined
hy Cousineau [9]. The relation between these two classes of expressions has been
shown by Courcelle [8].
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All these exbressions use an iteration operator (denoted ¥ or *) very close to
Kleene's * for languages. They raise a star-height problem, i.e., the problem of
constructing a rational expression of minimal star-height which defines a given
regular tree.

This problem is trivial for iterative theory expressions which use vector iteration
since every regular tree can be defined by such an expression with one iteration if
the tree is infinite and no iteration if it is finite [12]. It is not if iterative theory
expressions are restricted so as to use only scalar iteration. We solve it and we show
that the minimal star-height is exactly the rank of the minimal graph of the tree
(the rank of a directed graph has been introduced by Eggan [10] for the study of
rational expressions defining languages and further investigated by McNaughton
[17, 18] and Cohen and Brzozowski [3-6]).

These expressions use an operation called composition, a typical case of which is
e..le,.....e,), which denotes the tree obtained by the substitution of
Val(e,),...,Val(e,) at certain leaves of Val(e) (we denote by Val(e) the tree
defined by the expression e).

The major contribution of Cousineau was to show that the cperation of composi-
tion is dispensable and that the resulting expressions still generate all regular trees
(see [8] for a simple proof). These restricted expressions raise another star-height
problem for which we also give the solution. The minimal star-height in this scnse
15 also obtained from the consideration of the minimal graph of ihe tree.

For technical reasons, we shall work neither with iterative theory expressions
[2, 8. 13] nor with rational expressions [8, 9] but with slightly diff¢rent expressions
(still called rational) which use the following constructions:

* (e): iterate Val(e) with respect to the variable ¢

Corepl€r. oo e substitute Val(e,),...,Val(ey) for vy,...,v, in
Val(e).

Our results will be obtained for these rational expressions but they transfer easily
to the above mentioned expressions.

The proofs of our two resnlts follow the same pattern that can be sketched as
follows.

A regular tree is manipulated by means of a finite pointed graph of which it is
the infinite unlooping. These graphs can be “structured’, in different ways, but each
“structuring’ is characterized by an integer. its ‘depth’.

For each structuring of “depth’ n, one can construct a rational expession of
star-height n. Hence, a certain rational expressicn can be associated with a ‘structur-
ing” of minimal *depth” of the minimal pointed graph of the given tree.

It turns out that this rational expression is the right one, i.e., is of minimal
star-height among all those defining the given tree.

In order to prove this, we first define some syntactical manipulations performing
some simplifications of rational expressions. They transform a rational expression
into an equivalent one in normal form.
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From the syntactical structuring of a minimal rational expression in normal form,
one can construct a ‘structuring’ of the minimal graph of the tree whose ‘depth’ is
not less than the star-height of the expression. And from the first construction one
gets an equality as required.

1. Preliminaries. Regular trees and rational expressions

We recall quickly frem [8] the following terminology and notations:

- F is a finite ranked alphabet,

-p(f) for fe F is the rank (=0) of the function symbol f,

-Fi={feF|p(f) =k}

- V is an infinite set of variables (of arity 0),

- M(F, V) is the set of finite well-formed terms built on /' V and identified in a
classical way with finite trees,

- M (F, V) is the set of finite and infinite such trees,

- R(F, V) is the set of finite and infinite regular trees, i.e., of trees T in M™(F, V)
such that the set Subtree(T) of their subtrees is finite,

-Va~(T) tor T in M (F, V) is the set of variables having an occurrence in T.

1.1. Definition. E(F, V) is the set of rational expressions (r.e.) we shall use in this
paper; it is inductively defined as follows:
() vin Visar.e.

(it) ain Fyis a r.e.

(ii1) f(e,,....e)isare. if fe F, and e,...., e arer.e.

(iv) *.(e')isar.e.if ve Vand e’ is a r.e. j

(v) en.(e,...,e) is a re. if e, e,...,e are re. and o s a sequence
(et v, ) of distinct variables of V.

We shall denote by o (i) the ith element of o (1<i<k). We shall also write
e'..¢” instead of e'....e". We shall denote by E,(F, V) the set of resiricted rational
expressions (r.1.¢), i.e.. the subset of E(F, V) consisting of r.e. built without rule (v).

For trees T, T\,..., T, we denote by T[T,/ v,,.... T,/ vi] the substitution of T;
for ¢, in T. where v, ..., v, are distinct variables in V.

1.2. Definition. The value Val(e) of a rational expression e is a regular tree defined
as follows:

a if e=a, acF,,
v ife=v, veV,
Val(e) =< f(Val(e,), ..., Val(e)) if e=fle,...,e),

Val(ey)[Val(e,)/a(1),...,Val(e,)/o(k)] if e=ey.(e,...,e),
the unique tree f such that 1 = Val(e")[t/v] ife= % (e') and Val(e') # v.
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The tree Val(e) is undefined if in the last case Val(e') = v or Val(e') or any of
the required Val(e), ..., Val(e,) is undefined (depending on the case).
It is easy to decide whether Val(e) is defined or not.

Convention. We shall only consider r.e.’s e such that Val(e) is defined.
Two r.e.’s are equivalent if they define the same tree.
A few more definitions concerning the syntax of r.e. will be necessary.

1.3. Definition. The set Suli(e) of the subexpressions of an r.e. e defined as in
Definition 1.1 is given by

{e} in cases (i) and (ii),
{e} USub(e,)u: - -uSuble,) incase (iii),
{e} USub(e') in case (iv).
{e} USub(ey) U+ -USub(e,) incase (v).

['rom Definition 1.2 it is easy to see that if a subexpression e’ of e is replaced by
an cquivalent r.e. & at some of its occurrences in e, then the resulting r.e. € is
cquivalent to e.

1.4. Definition. All occurrences of the variable v in *,(e') are bound: if o(i)=1v
for some i. the occurrences of v in ¢’ are bound in e'..(¢",.. .., e}).

An occurrence of v which is not bound is free. Bound variables can be renamed
provided classical conflicts are avoided. Note that v may be both free and bound
ime'. (el ... er)(ifo(i)=rvand visfreein ef....,e}). Asin the lambda-calculus
for instance in [1]. we shall consider as identical two r.e. e and e’ which only differ
by renaming of bound variables and we shall write e =¢'.

Finally, we denote by Fvar(e) the set of variables having free occurrences in e.
It is clear that Fvar(e) 2 Var(Val(e)) but the inclusion may be strict. Take for
example e=(v\)..,, .. (vs.v;). Then Fvar(e)={v:.t;} and Val(e)=1v; so that
Var(Val(e)) # Fvar(e).

L5. Definition. The star-neight of e in E(F, V) is defined as follows:
(0 ifec F,uV,
hiey= }Max{h(e’.), oahte) HHe=flen. . e ore=e (e ... e
{1+ hte) if e=%.(¢').

The star-height of a regular tree T is the minimum star-height of an r.e. with
value T, and will be denoted by h(T). An re. e is of minimal star-height if
hte) = h(Val(e)). The restricted star-height of a regular tree T is the minimum
star-height of an r.r.e. with value T. We denote it by hy(T).
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When saying that an r.r.e. is of minimal star-height we shall mean that it has this
property among the r.r.e.’s defining the same tree. We shall also use the length of
& r.e., denoted by |e| and defined as follows:

lel=1 if ee FyuV,
Iflern....e)l=1+|e |+ -+led,

[*.(e)] = 1+]e],

lenalern. .., e =el+|e)|+- - -+]ex] where k#0.

It follows that |e] < |e’| when e is a sub-expression of e’ which is proper, i.e., e # ¢’
Finally, the notation e,..(e,,..., e.) will be (exceptionally) extended to the case
k=0 (i.e., o =¢) and it means e,.

Our constructions will make a heavy use of various types of graphs.

1.6. Definition. Bv a graph we shall mean a pair G = (N, A), consisting of a finite
set of nodes N and 2 finite set of arcs A. Each arc a in A has a source and a target
in N.

A suberoph of G is a graph G'=(N’, A’) such that N2 N and A'= A. It is
full 't every arc of A having a source and a target in N' is in A". If N"c N we
denote by G\ N" the full subgraph of G with set of nodes N — N". [t may be emipty
if N“=N.

If one has a path a,.a.,....a, n=1,from s to s’ (i.e., s is the source of a,, s’
the target of a,. the source of a,,, is the target of a;), then s is a descendant of s
and s is an ancestor of s'. A path from s to s is a cycle. We denote by G s the full
subgraph of G whose nodes are s and its descendants in G.

A pointed graph is a pair (G, s) of a graph and one of its nodes.

A homomorphism ¢: G- G' is a pair of mappings: N> N’ and A~ A’ both
denoted by ¢. such that sources and targets are preserved in an obvious way.

1.7. Definition. Given F and V, we define a ranked graph as a graph satisfying the
following extra conditions:
(1) each node s has a label in FU V denoted by Lab(s).

(it) for cach node s, an order is given on the set of arcs with source s,

(ii1) for each node s, the number of arcs with sourc: s is equal to p(Lab(s)).

[t is convenient to define a ranked graph as a triple G = (N, Suc, Lab), where N
is the set of nodes. Lab(#) is the label of node n, Sue is a mapping: N = N* defining
the sequence of successors of a node, i.e.. the sequence of targets of arcs (in the
order defined by (i1)) having that node for source

Hence. every ranked graph has an underlying graph. All definitions given w.r.t.
eraphs will apply to a ranked graph by the intermediate of its underlying graph.
Note that a subgraph of a ranked graph is not necessarily the underlying graph of
a ranked graph.
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A homomorphism ¢: G- G’ is a mapping ¢: N - N’ such that Lab=Lab'- ¢
and ¢ o Suc=8Suc’ c ¢ (labels and successors are preserved).

1.8. Definition (using terminology and results of Courcelle [8]). A regular tree can
beé associated as follows with a pointed ranked graph (G, s), where G = (N, Suc, Lab).
First we associate with G a regular system of equations s =(w, =1t,; n€ N) with
set of unkncwns W ={w,|ne N} and , being defined as follows:

a if Lab(n)=acekF,,
t,=<0v if Lab(n)=ve V,
fWes oo oywy,) if feF, k=1, Sue(n)=(ny,..., n).

This system has a unique solution in M*(F, V) consisting of a family (T,,|ne N)
of regular trees. We associate T, with (G, s) and denote it by T(G, s).

Let now T be a given regular tree. There exists a canonical pointed ranked graph
({1, s) such that T(G, s) =T, denoted by (G, ny) and constructed as follows:

G =(Subtree(T), Suc, Lab), nr=T,
Suc(U)=(U,,..., U,

Lab(U)=f whenever U= f(U,...., U,), fe F,,
U,...., U, eSubtree(T).

1.9. Proposition. (1) (G, ny) is the unique (up to isomorphism) pointed ranked
graph (G, s) with minimal number of nodes and such that T(G,s)=T.

(2) For every pointed ranked graph (G. s) such that G =Gls and T=T(G, s).
there exists a unique homomorphism ¢: G - G such that ¢(s) = n,. This homomorph-
Ism Is surjective.

We call (G, ny) the minimal pointed graph of T and G, its minimal graph
(omitting the word ‘ranked’). This graph corresponds to the minimal deterministic
automaton recognizing a regular language. The proof of Proposition 1.9 is fully
simifar to that of the corresponding proposition fos regular languages (see [11]).

1.10. Definition. A graph is strongly connected (s ¢.) if for every pair of dwstinet
nodes (') there is a path from #nto 0’ A stronsly connected component (s.c.c.)
of a graph (7 is a maximal s.c. subgraph of (. i.c., the full subgraph of G' with set
of nodes N, ={n’|n"¢ Gl nand ie G} n'} for some n.

Such a s.c.c. is trivial if it is reduced to a single node with no arc. (If it is reduced
to a single node n together with loops. i.e., arcs from n to n. it is not trivial.)

We denote by SCC(G) the set of nontrivial s.c.c.’s of a graph G.

L.11. Definition. We can now define the rank of a graph G with set of nodes N
as follows:
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(0) if G is empty or SCC(G) =0, then r(G)=0,
(1) if G is not empty and SCC(G) ={G}, then r(G) =1+Min{r(G\ n)|ne N},
(2) otherwise, r(G) =Max{r(G')|G' € SCC(G)}.

Note that r(G)=1 if G consists of one node with one loop and that r(G) =0 if
G has no cycle. This concept of rank has been introduced by Eggan [10] who showed
that, for every regular language R defined by a transition graph G, a rational
expression of star-height r(G) could be constructed to define it, and conversely that
a transition graph of rank h(e) could be associated with a rational expression e.
Cohen [5] has shown that the star-height of R is exactly the minimal rank of the
graph corresponding to a non-deterministic finite automaton without e-transitions
recognizing R (but this does not give any algorithm to compute the star-height of
R). But for certain types of finite automata (called reset-free, with single final-state),
the star-height of R is the rank of the minimal deterministic automaton [3, 4].

We can state a similar result.

1.12. Theorem. The star-height of a regular tree is the rank of its minimal graph.
The restiicted star-height of a regular tree will be characterized in terms ol
anotl.er concept. the length of a poirted graph that we now define.

1.13. Definition. Let GG be a graph with set of nodes N.

A subset B of N is called a base of G if every cycle of G has at least one node
in B. A basc is minimal if no proper subset of B is a base. A B-simple path is a
path where no node of B occurs more than once. By B~ 7 we denote the set of
nodes of B appearing in a path .

We now define the length (G, n) of a pointed graph (G, n) as the integer

I(G, n)=Min{l;(G, n)|B is a base of G},
where
[x(Gon)=Max{Card(B~ 7) |7 is a B-simple path starting at n}.
Remark that Min can be restricted to the minimal bases of G 1t (G has no cycle.

then O s a base and (G i) =0,

1.14 Theorem. The restricted star-height of a regular tree is the length of its minimal
pointed praph.

We shall close this section by defining some operations on graphs.
1.15. Definition. Let (G.n,), i=0,..., k, be pointed ranked graphs. and T, =

TtGon)forall L Let vy, ..., vy be distinct variables in V. Let us also assume that
G, = (N, Suc,, Lab,) with N, N, =@ for i #J.
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We denote by (G, no)[(Gy, ny)/ vy, - .., (Gi, m)/ vi] the pointed ranked graph
(G, n) with G =(N, Suc, Lab) defined as follows:
N=NjuN,u: - UN,
N{=Ny—{se Ny|Lahy(s)e{v,,..., v }},
Suc,(s) if se N,1si<k,
Suc(s)=1<(s1,...,s') if se Ny, Sucy(s)=(s,...,s;) and
s;=if Lab,(s;) = v; and 1<i<k then n; else s,
Lab(s) =Lab,(s) if se N,0=<i<k,
n=if Lab (ny) = v, and 1 <i<k then n, else n,,.

Remark that if G,/ n, =G, for all i=0,1,...,k and each v, labels at least one
node of G, then G| n=G.

1.16. Proposition. With the above notations,
T(G, n)=T(G,, ny)[T(G.n)/ vy, ..., T(Gp ne)/ il

Proof. The proof follows from the consideration of the systems 3. ..., X, and
Yoo
-y .

1.17. Definition. Let (G, n;), i=1,..., k., be as in Definition 1.15 and let fe F;,
k=1.

We denote by f((Gy, ny)..... (G, i) the pointed ranked graph (G, n) with
G = (N, Suc, Lab), and where

N=N,u---uUN,u{n}. ngN,,....N.

Suc(n)=(n,,...,n),

Suc(s)=Suc;(s) for sin N, I =ik,

Lab(n),=f.

Lab(s)=Lab,(s) forsin N, I =isk
1.18. Proposition. T(G.n)=f(T(G,.n))..... TG ).

I.19. Definition. Let G = (N. Suc, Lab) be a ranked graph, v be a variable, n one
of its nodes not labeled by © and such that v labels at least one descendant of n.
We denote by +, (G, n) the pointed ranked graph (G', n) where G' = (N', Suc’, Lab")
such that

N’'=N~{se N|Lab(s) = v}.
Lab'(s)=Lab(s) for se N’,

!

Suc’ts)=(s},....s5.). where Sue(s)=(s.....: s, ) and

s;=1if Lab(s,) = ¢ then n else s,
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Intuitively, G' is obtained from G by identifying with n all nodes labelled by v.

1.20. Proposition. 7(*,(G, n))=*,(T(G, n)).
We close this preliminary section with two more lemmas concerning rational
expressions.

1.21. Lemma. If v¢ o and is not free in (e,,...,e), then *,(e. (e,...,e)) is
equivalent to *.(e).,(e;,...,e). '

Proof. It suffices to show that if TeM™(F,V), Valle)#v, Var(T)n
{o(1),....0(k),v}=0 and T =Val(e)[T/v], then

T[Val(e;)/ a(1),...,Val(e)/a(k)]=
= Val(e)[T[Val(e)/o(1),...,Val(e)/a(k}]/v],
and this follows from [8, Proposition 3.4.2]. O

Remark that this lemma does not hold for the r.e. introduced by Cousineau (see
their formal definition in Sections 4 and 5 below).

Notation. For ¢ in E(F, V) and v,, 0s,..., 0, W,,..., W, in V, we denote by
e[t/ w,. ..., ty/wi] the result of the substitution in e of v; for all free occurrences
of w, 1< i<k We denote by = the equivalence of r e.’s.

1.22. Lemma. We have *.(*,.(e)) =x*  (*.(e))=x,(e[v/w]).

Proof. The proof follows by similar computations as above. [l

2. Constructing a rational expression from a ranked graph

The first half of the proof of our main theorem consists in establishing the following
analogue of Eggan’s theorem.

2.1. Theorem. For every regular tree T, one can construct a rational expression
defining I with star-height at most r(Gy).

We first introduce a set of notations, remarks and technical resuits.

2.2. Notations. For graphs G and G',
- |G| is ithe number of nodes of G,
- G~ G’ means that G and G’ are isomorphic; by G = G’ we shall mean that G
and G’ have same nodes and same arcs,
- Core(G) for a ranked graph G denotes the (non-ranked) graph G\N' where
N’ is the set of its nodes labeled in F,u V,
- |G|l = |Core(G)|.
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2.3. Remark. For any ranked graph G,
SCC(Core(G)) =SCC(G). r(Core(G)) =r(G).

2.4. Proposition [5, Proposition 2.2]. If G is a subgraph of G', then r(G) < r(G’).

2.5. Proposition. Let (G, n) be a pointed ranked graph such that G} n= G and let
T =T(G, n). Then r(Gt) =< r(G).

Proof. Recall from Proposition 1.9 that there exists a unique surjective
homomorphism ¢: G - G such that ¢(n)=ny In fact, ¢(s) = T(G, s) (which is a
node of G by the construction we gave of Gr) for all modes s of G.

A path in a ranked graph like G can be represented as a sequence 7=
(n;.i;,n+, i, ...,10,_,,N,), where n,, n»,...,n, are nodes and i,,...,1I,.; are
integers such that n,., is the ijth successor of n; Its image under ¢, namely,
elm)=(e(n), i, ..., 0n-1, ¢(n,)), is a path in G

Let us show that, conversely, every path 7' of G is ¢ () for some path 7 in
G. This will show that ¢ is a pathwise homomorphism in the sense of McNaughton
[17] (see also [S]), hence, by a theorem of [17], that r(G+) < r(G).

Let 7" =(t,,i,, t3,i5,....t,). Let n; be any node of G such that ¢(n,) =1, (there
exists some since ¢ is surjective). Then define n, as the i;th successor of n,. This is
possible since n; and f, have the same label, say f. Note that ¢, =f(t}...., ;) for
some f and t.=t;. Hence 1= T(G. ny) = ¢(n,).

We can go on and define n; from n, and i, and prove similarly that ¢(n3) =t;.
By repeating the construction one gets a path == (n,, i, n>. .. .. , n,,) and the proof
that (7)) ==". ]

Theorem 2.1 will be a corollary of the following more general proposition.

2.6. Proposition. Let G be a ranked graph. For each node n of G, one can construct
a rational expression e such that

(1) h(ey=r(G),
(2) Valle)=T(G, n).

Proof. We do the proof by induction on r(G) with G = (N. Suc, Lab).
Basis. If r(G) =0, this means that G has no cycle, hence that T(G, n) is finite;
one <an simply take e = T((, n), or that G is empty and the result holds trivially.
Inductive step: Let us now consider the case r(G)> (. Assuming the result for
all graphs of lower rank, we do the proof by using an induction on |G| =|Core(G)|.
Case 1. Core(() is not strongly connected.
Given a node n we let H be its s.c.c. in Core(G). 1t is clear that |H| < |Core(G)| =
G
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is a proper subgraph of Core(G) since it does not contain at least the node n.
Note alsn that r(G;) =Max{r(G’)| G’ € SCC(Core(G;))} by Remark 2.3. Since
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H € SCT(Core(G)) and SCC(Core(G,)) < SCC(Core(G)) we have

r(G)=Max{r(H), r(Core(G,)),. .., r(Core(Gy))}

rG)=<r(G), |G <|Gl,

so that by induction we can assume the existence of ey, ..., e, such that
hie)<r(G,), Val(e,)=T.
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y ms o\ e LN - 2 s N2 \ I

Vai(e) =T, h(e)=Max{h(e,), h(e,),...., h{e)}

/n

r{

//\

Case 2. Core((G) is strongly connected.
Let p be a cycle center [5], i.e. a node in Core(G) such that

r(Core(G}\_p) =r(Core(G))—1=r(G)—1.

Suc,y(s) =Sac(s) if s#p,

Suc,( .D) = §,

Lab,(p)=1v, where v is a variable not appearing in G.
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It is clear that Core(G,)=Core(G)\ p and that r(G,)=r(G)—1. Let also
(ny,..., n) be Suc( p). Some of the nodes n,, ..., n, may be equal to p. Without
loss of generality we shall assume that Sue(p)=(n,,...,n,p,p,...,p) with n; #p
fori=1,...,1L

Hence, by induction, there exist r.e.’s ey, ..., ¢, with

Val(e;) = T(Gy, n;), h(e)<r(Gy)=r(G)—1
fori=1,..., 1L Note that
T(G, n;) = T(Gq, n)[T(G, p)/ v],
T(G,p)=f(T(G,ny),..., T(G,n), T(G, p),..., T(G, p))
=Val(e')[T(G, p)/v],

where e’ is the r.e. (of star-height at most r(G)—1) f(e,,. ... eLuL,...., ).
It follows that

T(G, p)=Val(*,.(¢")), h(x.(e")) =< r(G).

Going back to the initial problem, i.e., to find e defining T(G, n) we have two
cases. If n=p then we are done. Otherwise, as for the n;,’s we have

T(G,n)=T(G,, n)[T(G, p)/v].
Assuming by induction that we already have ¢, such that
Val(e,\ = T(G,, n), hie)=<r(G)—1,

we can take e = ¢, (*,(¢e')) of star-height at most r(G) to define T(G.n). O

Proof of Theorem 2.1. By applying Proposition 2.6 to (G ny) one gets a rational
expression defining T(Gy, ny) =T of star-height at most r(Gy). [

2.7. Remark. The construction of Proposition 2.6 is effective. By brute force
enumeration it is always possible to find the necessary p for Case 2. The rank of a
graph can be determined similarly. We shall not consider here the problem of finding
cthicient algorithms for doing this.

2.8. Example. Let X be the following regular system:
x=flay), o v=glnazh, z=glzownt, t=hint.

to which correspond the 4-tuple (X, Y, Z, T) of regular trees as unique solution.
The trees X, Y. Z have the same minimal graph G depicted in Fig. 1(a). Its
nodes are denoted by x. y. 2. 1 and are labeled respectively by f. g. g and h The
rank of (7 is 2 with cycle center .
Let us construct a re. of star-height 2 which defines X.
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The graph G has two s.c. components: the full subgraphs with sets of nodes
{x. y, z} and {t}. The second one corresponds to the tree T and one can define it
by e, =*.(h(v, v)).

iience we shall define X by e,..e., where e, is obtained from the graph G’ of
Fig. 1(b) a1d is ussumed to define T(G'. x). Since y is a cycle center of G', we
consider G" shown in Fig. 1(c), which is exactly G'\|y completed with some arcs
with target v so as to get a ranked graph (i.e., the graph G, of the proof of
Froposition 2.6, Case 2).

One gets e> =#,.(f(w, v)) for defining T(G", x), and e; = *,,(g(w, v, u)) for defin-
ing T(G", z). The tree T(G', y) can now be defined by e,==*,(g(v, e, €3)).

Recall that we want e, defining T(G', x) (remark that e, was ‘only’ defining
T(G", x)). We can take e, = e..e, and finally e = (e.. ;). ., to detine X = T(G, x)
as wanted.

3. The star-height of a regular tree

We prove here that the construction used for the proof of the Theorem 2.1 is
optimal w.r.t. star-height.
We shall need a certain notion of normal form for rational expressions.

3.1. Definition. Let M he the set of rational expressions e satisfying the following
conditions:

(1) e and all its subexpressions are of minimal star-height,

(2) if ey.(ey,....e) is a subexpressicn of e, then each o(i) belongs to
Var(Val(e,)),

(3) if =,(e,) is a subexpression of e, then ¢, is of the form f(e,....,e:) and
veVar{Val(e,)).
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3.2. Proposition. Every rational expression is equivalent to some rational expression
in M.

The proof will be given in Appendix A.

3.3. Theorem. Let ¢ be anr.e. in M, let T =Val(e) and G be the minimal graph of
T. Then h(e)=r(G).

Proof. Since every subexpression of e is in M, it will be possible to do the proof
by induction on the structure of e.

Case 1. ec Fyu V. Then h(e)=r(G;)=0.

Case 2. e=f(e,...,e).

Let T=Val(e), T,=Val(e,) so that T=f(T,,...,Ty). Since h(e)=
Maxihie)), . ... h(e,)} and, by induction, h(e;) = r(Gy,) for all i. we need only show
that (G, ) =Max{r(G;).....r{(G:)}.

Note that G, = G| n;, where (ny, ..., n,) is the list of successors of ny in Gy

Subcase 1. ny is not the target of any arc in G, Then clearly SCC(G) =
SCC(Gy \n;)=SCC(Gy)u- - -uSCC(Gy,) and the result follows. (For two sets
of graphs A and B, A= B means that for all graph H in A there exists H' in B
such that H = H' and vice-versa.)

Subcase 2. ny is the target of some arc in G, the source of which is in G, n;,
for some i=1,....k, say i, This means that G,{n,; is cqual to G,: since
Giin, =G, . we have Gy =Gy, . Hence r(Gy, )~—r((1,) Since G, =Gl n,
which is « subgmph of G, G ,)< r(G,) for all i hence nG)=rG, )=
Max{r((i;).....r(G,)} as was to be shown,

Case 3. e=e¢, le,..... ek).

Let 7, =Valle) for i=( .k and T=Valle)=T,[T,/o(]), T/ olk)].
Let (G.n) be the minimal pnmt«..d graph of T; for i=0..... k. Wc can assume
that the scis of nodes of G, ..., G, are disjoint. Let (7 be the pointed ranked
graph (G, n)[(Gon)/ o). ... (G m)/o(k)]. Note that for each i=1,....k
there exists in G, a node labeled by o(i). It follows that every G. . ... G, is a sub-
eraph of ( and that SCC(G) =SCC(Gy) - uSCC(G,) so that rG) =
Max{, (G, ..., rt(; )} Hence. by induction, we have r(G) = hie) fori=0, ..., k

so that #(G) = hte).
Let us now show that #(G) = r(G). It will follow that h(e) = r((,;) hence
fitey = ri€iy) by the hypothesis that ¢ is of minimal star-height and Theorem 2.1
But

PG ng) = T(Gaon) [ TG ) ot T(Gong) o(k)]
=TAT,/ath...., T, /o(k)]
=T

Smee G i = Gl Proposition 2.5 savs that r(G ) = r( G, as was to be shown.
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Case 4. e=x(e,) with e,=f(e,,..., €).

Let T,=Val(e,) and T =Val(e). Let (G, n,) be the pointed ranked graph
*.(Gr,, ny) (see Definition 1.19). By Proposition 1.20, T(G, ny) = T. It is easy to
see that G| n,= G. It follows from Proposition 2.5 that r(Gy) < r(G).

Let ny,..., ne be the successors of n, in Gr,. Let G; =Gyl n,. It is clear that
(G;, n;) = (G, n;), where T, =Val(e;), hence by induction that h(e;) = r(G;), hence
that

h(e)=1+Max{h(e,}...., h(e)}=1+Max{r(G,),...,r(Gy)}.
Hence it suffices to show that
r(G)<1+Max{r(G)),....,r(Gy)} (1)

in order to conclude that r(Gy) < h(e). Let us consider the subgraph G'= G\ n,,
of G. It is clear that

Core(G\ n. = Core(Gr,\ ny),
SCC(Crre(Gr N\ ny)) =SCC(Core(G,)) U - - - USCC(Core(Gy)).
Hence,
r(Nn,,=r(Core(G;\ ny,)
=Max{r(H)|H e SCC(Core(G))),i=1,..., k}
=Max{r(H)|H e SCC(G)),i=1,...,k}
=Max{r(G,), ..., r(Gy)} (2)

Since r(G)=1+r(G\ n,), we get (1) with the help of (2), which concludes the
proof. [

This shows that the (effective) construction of Theorem 3.1 produces an r.e. of
minim.  tar-height defining a given regular tree T.

4. Application to other types of rational expressions

O.her types of rational expressions defining regular trees have been introduced
by Cousineau [9] and by Bloom and Elgot [2, 12] (see [&] for the relations between
the two approaches). They use o single iteration operator defined with respect to
a fixed enumerated set of variables V ={v,, v, v3,...}.

The following class of r.e.’s corresponds to those of Cousineau augmented with
a composition operator, defined with respect to the fixed sequence vy, vs, . .. instead
of arbitrary sequences o as in E(F, V).

We shall denote {v,,..., v} by Vi
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4.1. Definition. Let H(F, V) be the set oi expressions inductively defined as follows:
ec H(F, V) iff one of the following conditions holds:
(i) eeFuV,
(i) e=f(ey,..., &), feF,k=1,e,...,e,€e HF, V),
(ili) e=x(e'),e' € H(F, V),
(iv) e=ep(ey,...,e), €0, ...,e,.€ H(F, V).
The value Val(e) of e in H(F, V) is defined inductively as follows, according to the
four cases:
(i) Val(e)=e¢,
(i1) Val(e) =f(Val(e,),..., Val(e,)),
(iii) Val(e) is the unique tree t such that ¢t=Val(e')[t/ vy, v,/ 5. .., Uk 1/ k]
where Val(e') # v; and Val(e') e M™(F, V,); Val(e) is uadefined if Val(e') = v,.
(iv) Val(e)=Val(ey)[Val(e,)/vy,..., Val(e,)/ ]
In cases (iij to (iv), Val(e) is undefined if any of the required
Val(e,), ..., Val(e,), Val(e’) is undefined.
The star-height of e in H(F, V) is defined in an obvious way.

4.2. Proposition. For every e in H(F, V) (resp. in E(F, V)), a rational expression

é in E(F,V) (resp. in H(F, V)) can be constructed such that h(é)=h(e) and
Val(é) = Val(e).

Proof. The translation from H(F, V) into E(F, V) is easy: We do it by following
the four cases of Definition 4.1:

(1) e=e,
(i) e=f(é,, ..., &),
("l) —':(*,-‘((7')}.,, (Uh [ A5 TR L’AAI). \Vith (TZ(U:. [ A Uk)‘

(iv) €é=é,.,(é,,...,8&) with o=(b,,....0).
It is clear that h and Val are preserved in the transformation. Conversely, let
e« EXF, V):
(it f eec Fu 'V, then é=e¢,

(i) if e=f(e,...,e) . thene=f(e,....., e ).
(i) if e==_(e') and Var(Val(¢')) < V|, then
é=x=(e&").(tv-..., v ifi=1
e=%(8 (U qs Uane v Uiy Ups Uiy e v o s D)) (00 ey Ui s U Uiegeen U0)
if i 1.
(v) if e=eu le,...., e ) with o =(v; . ..., v,), then é=é,.(é\.. ... é1). where
{-=Max{i,,.... iiband e;=e if i=i and e;=0v, it ie{i,,.... 0}

It is clear that h(€) = h(e). Lect us verify that rule (iii) preserves Val. i.c.. that
Val(é) = Val(e) if we assume inductively that Val(é') = Val(e').
Case (i#1). We have to show that Val(é)=Val(e). ie. that Val(é)=
Val(¢')[Val(é)/¢,]. But Val(é)=1[v,/ ;). where
r=(Valté")v,,,.vs..... Ui Uy Uigneev s O T R AR N LN Ui/ i)

=Val(é' v, vs. .. .. (AU A MNP vl
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(Vs Uz, Vi1, 8, Visys - .-, O[O0/ 0]

)
=Val(é')[v,,..., v,_,, Val(é). vy, ..., ;]
)

Since we assume that Val(é’) =Val(e’), we are done.
The case i =1 is similar and more simple. [J

A L __m JEPU SRS o T L. 1. _1 1 ot
B U ':'nnn:.'l- L:very reguiwar re€ 1 can ove a _] nea I)y a rauunat Xpression n
XD Y\ Tla siessessnen] ctns_laial.s AF cssnle -l“:nun’ nnnnnnnnnnnn thhn cmzern o Enm
LI\, V j. 1n€ fniinimas siar-n€igrit 07 SUdrn d rauionda t:JLprcaMuu t.) IN€ Sarie as jor
TURIIUIIWE CAPICOSIUIID ML L. \L 3 ¥V J4 0 2 T\\ST)

Regular trees can also be defined by means of iterative theory expressions as
recalled in [8, Section 4.7.3]. The star-height problem (where * is considered as
the ‘star’) is trivial since by a result of Elgot [12], every iterative theory expression
can be transformed into one using T at most once. This is due to the power of
vector-iteration by which several equations can be solved simultaneousiy.

If one only allows scalar-iterations, one obtains (up to some details) the expressions

of H(F, V) and Corollary (4.3) solves the star-height problem.

Application to string rational expressicrs

We aim to explore the relations between E(F, V) and the classical r.e.’s written
with U, ., *,0, £, and the fetters of the given alphabet, which define regular languages.

Let us assume that F has no constants and let F be the new alphabet {f|fe F, 1<
i<p(fH}. )

Every tree in M™(F, V) has a branch-language Brch(7) < F*V. We only recall
from [7,8] that Brch(v)={v} and that Brch(f(¢,....,%))=/fi Brch(t))u: - v
fi Brch ().

If te M*(F, V), then Brch(t)=L,v,u" U L, and each L, is prefix-free.
if t is regular. then the L;’s are reguiar. From an r.e. e in E{F, Vi) we shali

o ey beos s =15 5 Y S SPU. S . Py
define a k-tuple e=(e,, ..., ¢) of (string) r.e.’s such t

(1) nf ¢=1v, then e=(0,0, ¢, ...0) with ¢ at ith position,

(i) if e=f(d'.....d").thene,=f,d! U f.d; U~ - f,,d;’ and d’'=(d’,....d}) for
all j=1,

(iii) if e=%,(e’), then ¢;=0 and e, =(ej)*e; for all j# i, where e’ = (e, ..., €}),

(iv) ife=e'.,(d,,...,d,),whereoc=(v,,... v, ), then g =¢€}.d\;U" - Ue.di,
where €' =(ej,...,el). di=(d;,....,d},) for 1=j<n and with dj,=0, d;,;=¢
when je{i,.i>....,i,}and i # ]

It is ciear that h(e;) < h(e).
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One can prove that Brch(Val(e)) =Val(e,)v,u- - - U Val(e,) v, by induction on
the structure of e with help of the various lemmas of [7. 8].
The r.e.’s derived from this construction can be simplified with the following rules:

Bue-se,eud->ee->0,ed>0, ce>e ec>e @ >e

Every r.e. can be transformed in a unique reduced expression red(e) by these
rules (reduced means that no rule can be applied). Remark that a reduced expression
defines the empty language iff it is exactly §.

4.5. Example. Let e = e,.(e,, ¢,), with

6’1\:*1-3(,"(01’3(02))), elzf(vl’ U‘)‘ eB:*L‘l‘(e})‘

where
e;=h(v,, vs, %, (g(v))).

We can take k =2. By Construction 4.4 we get
e, =(f.euf.e 1),
which can be reduced into
e, =(fiuf0).
Similarly, one gets for e, the reduced
e, =((f8))*f1.0).
For e, one gets, from Construction 4.4,
e:=(h.e Uh 00 hy 0, h DU hsewhy gt o),
which can be reduced into
e =(h, h>).
From this one gets
e =(h%h,.0), e =(fg) [ fiuf) 0.
Note that due to the simplifications, the star-height of €’ is less than that of e.

In order to characterize the rational expressiors constructed in this way, we define
a special class of string r.e.'s.

4.6. Definition. Let X be a finite alphabet. For A = 1. we define the set D, (X™)
of k-deterministic rational expressions over X as the set of k-tuples of r.e.’s

€={ey,....e) by the following inductive definition: e belongs to Dy (X™) iff one
of the following cases holds:
() e=0forall i=1..... k.

(i) ¢, = ¢ for some i and e, =0 for j# i,
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(i) e =red(a e, ;uase,;uU- - v a,e,;)for pairwise distinct letters a,, a,, . . . , a,

oo o (1) _(2) (n) = oy swRy v . (F) s N £
1 A 4na somec € , € ,...,¢ m pn\A ) sucn iunat € “\el"],c--ae]',k) 101
s =1 2
J=1,. , .
(iww) o0 —wod({sX¥ (') far 1471 0 p =M far cnma 7= 1 L and cnma o' in
vy & AV \C 7 \© ) UL 57§ @aulu &G Y 1UL Suliv Lyeaey o alita SUINIC © i1
D. ( X*)
2 e I
(v) e,=red(e,;.e; , U Ue; e ;) for some e e in D, (X*) such that
4 L A 1Y | 1. UK K/ 3 3 axx K\<= ~aa a8
e(”"'(e.-. ..... e l)

Finally, we define a deterministic rational expression (d.r.e.) over X as a component
of some e in D, (X™*) for some k. We denote their set by D(X¥).

4.7. Remark. Whether a given r.e. is a d.r.e. is decidable although not completely
trivially. A k-d.re. e=(e,,...,e) has the star-hcight h(e)=Max{h(e,),...,
h(e)}.

4.8. Proposition. If ¢ is a rational expression in E(F, V,), and e is as given in
Construction 4.4, then e’ =red(e) is a k-deterministic rational expression over F and
hie'y< h(e).

Saying that an r.e. is non-ambiguous means that every word it defines is defined
exactly once (see [11]).

We now sketch the proof of the converse of (2) of Propnsition 4.9.

Let us assume that X is totally ordered in a fixed way, say X ={a,,...,a,}. and
let Fx be a ranked alphabet in bijection with {a € X | @ # @}. The rank of the element
of Fx corresponding to « is taken as Card(«). Finally we denote by ¢ the mapping:
Fv-»X associating with a; (considering a as an elemeni of Fx) its ith element
w.r.t. the ordering on X.

By [7, Coroliary 5.14] for every prefix-free language L < X™, there is a unique
Vnalle, B nles scne T 10 AMAX/IIT Y/ \ crirnhh tbhntd dDBanbk! T VWV = T sv Luvetharmara T
10Cally NNIC e 1, i ivi (Cx, vy) SUlil Uidl UBIC 1] )) = LU, PULHCHivie, 1y
i ragilacif I 3¢ Andframara 2in F(E V. Ydafining Ao oatc o =1{o. e.)
I lbsulcll H LD AUV al.C. © ML L \F Xy V) ULliiiiilg 1], UnLv ghio v LR ,’ Tk
ciich that o 0. =Aand Valie. ). = Reek! 7. ) 1 et 0w{e.) be gbtained bv replacing
UL LIIGRL © 0y vy B Y7/ RNV eRR\ L [y v ] AFEWEE| 4 [ o Aewr YT ] Vv U RARAN R J r =)
in e; each x in Fy by ¢(x). It is clear that Val(¢p(e,)) = ¢(Val(e,)). i.e., that ¢(e,)

We know that (e,,....¢e)€ D.(F%). Since, for all f in Fx, ¢(f) # o(f;) if i #},
the k-tuple (@(e))....,¢(e)) is still in D (X*). Hence, ¢(e;)e D(X*). These
remarks establish the following proposition.

4.10. Proposition. Every prefix-free regular language is defined by some deterministic
rational expression.
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Let us define the deterministic star-height hy(L) of a regular language L as the
minimum star-height of a d.r.e. defining L if L is prefix-free and L$ otherwise
{where $ is a new symbol). It is easy to see that if L is prefix-free, L and L$ have
the same deterministic star-height.

Let G, be the transition graph associated with the minimal deterministic
automaton of L.

4.11. Theorem. For all regular language L, hy(L) = r(G,).

Proof. Let us first show that hy(L)=<r(G,). Since r(G,) =r(G;s) we can assume
that L is prefix-free.

The tree T=T, in M™(Fx, V,) canonically associated with L is regular and its
minimal graph G+ is isomorphic (up to the labels) to the graph G,. It follows that
r(Gy)=r(G.). By Theorem 1.12, there exists an r.e. ¢ in E(FYy, V) defining T with
star-height r(Gy), and by the proof of Proposition 4.8 thare exists a d.r.e. e’ of
star-height at most h(e) = r(Gy) which uefines L. Hence, hy(L) < r(G,).

Conversely, let L =Val(e) for some d.r.e. e of star-height n. We shall construct
a transition graph G, of rank at most n, corresponding to some finite deterministic
automaton recognizing L.

Since the surjective homomorphism: G, -» G, is pathwise. MacNaughton’s
theorem (see [5, 17]) shows that r(G,)=<r(G,), hence that r(G,) < n.

Finally, r(G;) =< hy(L). With every k-d.r.e. e=(e,,....e;) we shall associate a
pointed directed graph (G,, u) satisfying the following conditions:

(1) cach arc is labeled by some letter in X.
(i) for every node s and every a in X, there is at most one arc with source s
and labelled by a,

(i) some nodes are defined as i-terminal for some i, 1 <i<k, and are not the
source of any arc,

(iv) letting G,; denote the subgraph of G, consisting of all nodes and arcs
belonging to some path from u to some i-terminal node, then G, =, ik Geie

From this last condition it is easy to prove that r(G,) =Max{r(G, )|l <si<k}. It
is clear that such a graph G, is the transition graph of a finite deterministic automaton
with final states of k different types. It defines a k-tuple of regular languages
(Li(Geu),. .., L (G, u)) in an obvious way.

We shall construct (G,, 1) so that L,(G,. u)=Val(e,) (where e={(e,,....e ).
and r(G, )< h(e) feralli=1.... . k.

In the following inductive construction, we assume that e = (e;.... . e).

(a) In Definition 4.6(ii) we iet G, be reduced to the node u, considered as
i-terminal. In Definition 4.6(i). G, is the same and u is not i-terminal for any i.

(B) In Definition 4.6(iii) we construct ((-,, u) as follows by using the (G, ), u'’''s
for I=j=n: we let G, consist of a new node u« and the (disjoint) union of
Geroo. ., G, augmented with arcs from u to u'” labelled by a,, forall j=1,.. ., n.
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(v) In Definition 4.6(v) we construct similarly (G., u) from the (G, u'")’s,
0<j<k, by identifying with u'” the i-terminal nodes of G.» for 1<i<k and
letting u = u'?.

(3) In Definition 4.6(iv}, i.e., if ¢;=red((e})*e}) for i#j and ¢;=@ for some
j=1,...,k, then we define (G, u) from (G,, u’) by identifying with u’ the j-
terminal nodes of G, and letting u=u'.

From the construction, it is clear that L;,(G,, u) = Val(e;). One can show by
induction on the construction that r(G,,;) < h(e;):

Cases {u}, (B), (y) are easy to establish.

Case (d):

r(Gf.]) = Os
r(G.))<Max{r(G. ;)+1,r(G,;)} fori#j].

This inequality follows from the remark that by adding one arc to a graph one
cannot increase its rank by more than one.

Hence, r(G.;) < h(e;) if we assume inductively that r(G, ;)< h(e;) for all i'=
...,k

This construction is applicable to a d.r.e. e defining a language L, by considering
it as the k-d.1.2. (e,0, 9, ...,0) for the purpose of induction. It gives us the required
graph <;, (O

4.12. Remark. Itis clear that for a regular language L, h(L) < hy(L). The following
example is adapted from Cohen and Brzozowski [6] and shows that the inequality
may be strict:

L=(awv abu abbbu ba)*bc, h(L)=1.

The graph G, is shown in Fig. 2. Its rank is 2. Hence, hy(L)> h(L).
The same situation holds for the language defined by the r.e. (abu abbb U ba)* bc
which is non-ambiguous since {ab, abbb, ba} is a code (it is suffix-free).

S. The restricted .tar-height of regular trees

In this section we establish Theorem 1.14 which says that the restricted star-height
of a regular trec is the length of its minimal pointed graph.
We fix F and V exactly as in Sections 1-3.

5.1. Definitions. A quasi-tree is a pointed ranked graph (G, n) such that for every
node n' in G there exists one and only one cycle-free path from n to n'. This is
equivalent to saying that (G, n) is a pointed ranked graph such that

(i) G=Gln,

(ii) the set of arcs of G is the disjoint union of two sets A" and A" such that
(N, A") is a tree with root n (N is the set of nodes of G) and every arc a in A”
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Fig. 2.

has a target which either is equal to the source or is an ancestor of the source with
respect to the tree (N, A").

It is easy to see that the partition of A into A’U A" is possible in at most one
way. An arc in A" will be called a backedge.

The set C of nodes which are the target of a backedge is a base of G. We shall
call it the canonical base.

It is easy to see that if (G, n) is reduced to a single node n labeled in Fyu 'V,
then it is a quasi-tree, and that the operations on pointed graphs o: Definitions 1.17
and 1.19 preserve quasi-trees. It follows that every r.e. in E(F, V) denotes a
quasi-tree. Let us denote by Q(e) the quasi-tree associated with e. From Propositions
.18 and 1.20 one immediately gets the following lemma.

5.2. Lemma. For eveiy e in Ey(F, V), T(Q(e)) = Val(e).

Remark that if ¢’ is obtained from e by a renaming of bound variables, then
Qte')=Ofe).

An r.r.e e is in normal form if for all subexpressions of e of the form *.(e,) then
e,=f(e,....,e) for some f in F, and some e,, ....e, in E,(F, V) such that v has
a free occurrence in at least one of ey, ... . ¢.

Equivalently, an r.r.e. is in normal form (is in NE,(F. V)) if and only if either
(1} ec Fou'V,
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(i) e=f(ey,...,e), with ey, ..., e in NEy(5~, V),
(iii) e==*.(f(e,,...,ey)), with e,..., e, in NE,(F, V) and v has at least one
free occurrence in e; or - * - Or €.

5.3. Proposition. (1) Every e in Ey(F, V) can be transformed into an equivalent one
e’ in normal form, with same quasi-tree and a star-height at most that of e.

(2) Two r.e.’s in normal form defining the same quasi-tree are identical up to a
renaming of the bound variables.

(3) Every quasi-tree is defined by some r.r.e.

The proof will be given in Appandix A.

5.4. Remark. If (G, n)=Q(e) for e in Ey(F, V), then h(e) =[G, n), where C is
the canonical base of G.

We shall establish Theorem 1.14 saying that for every regular tree T, ho(T) =
(G, ny) as we did for Theorem 1.12, that is, by first constructing an r.e. from a
pointed graph (G, n) and then showing that it is minimal when applied to the
minimal pointed graph of some tree.

The following proposition gives the construction and yields the inequality ho( T) <
1( GT’ ’17;‘?.

5.5. Proposition. Let (G, n) be a pointed ranked graph with base B. One can
construct a quasi-tree (H, m) such that T(H, m) = T(G, n) and l(H, m) < l3(G, n).

Proof. Together with (H, m) one defines a homomorphism ¢:H - G such that
¢{m)=n (this insures T(H, m)=T(G, n)) and the canonical base C of (H, m),
we shall have I-(H, m) <5 G. n) (insuring [(H, m)<Ig(G, n)).

Since we can always replace G by Gln and B by B'=Bn (Gl n) so that
T(G} n,n)=T(G, n) and l;(G} n, n)<I3(G, n) (it is clear that B’ is a base of
Gl n), we can assume that Gl n=G.

We do the proof by induction on the integer m(G, n, B)=Y {|v||y € I'}, where
|| is the number of nodes of a cycle-free path y and I' is the (finite) set of cycle-free
paths from n to the elements of B. (If ne B, we consider (n) as a path in I', and
count it for 1.)

Letting G = (N, Suc, Lab) (such that G} n = G) we have 4 cases to consider.

Case 1. Lab(n)e Fyu V.

Then we take (H, m)=(G, n), C=¢ ¢ the identity.

In all other cases we assume Lab(n)=fe F,, k=1 and Suc(n)=(n,,..., n).

Case 2. n is not the target of any arc.

Let G, = G} n, B;=Bn (G| n;). It is clear that m(G,, n, B;) <m(G, n, B) hence
we can assume inductively that we already have (H;,, m,), ¢;: H;> G, sending m,
onto n;, and C; such that I (H, m;) < Iy (G, n;). We can assume that Hy, ..., H,
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have disjoint sets of nodes. Then we take (H, m)=f((H,, m,), ..., H,, m,)) for
some new node m, o(m)=n, o(m')=¢,(m')foranode m'in H,C=C,u- - v .
It is clear that C is the canonical base of H and that

l-(H, m)=Max{l.(H, m)|1<i<k}.
Similarly,
I5(G, n) =Max{l; (G, n)|1 i<k},

Since by induction we assume that lo- (H;, m;) < Iy (G, n;) we get I (H, m) < Ix(G, n)
as wanted.

Case 3. ne B and n is the target of some arcs.

Let v be a new variable (not appearing in G).

Let Gy be obtained from G by adding a new node s labelled by v and letting s
be the target of every arc having target n in G, so that (G, n) ==*,(G\, n).

Let By = B~{n}.

It is easy te check from the definitions that B, is a base of G, that [ (G, n)=
,(Gyon)—1.

The set of paths I'} is exactly I" minus the one-node path (n) hence m(G,, n, B)) =
m(G. n, B)— 1. One can assume by induction that we have (H,, m), ¢ ., C, associated
with (G, n).

One then let (H, m) =% (H,, m), ¢ be the restriction of ¢, to the nodes of H(i.e.,
the nodes of H, not labelled by v), C=C,u{m}. It is clear that

lo-(H.m)=I(H.m)+ 1<, (G, m)+1=1s(C, n),

that ¢ is a homomorphism and C is the canonical base of H.

Case 4. nZ B and n is the target of some arcs.

Let s be a new node. Let G, be obtained from G by:

(i) the addition of node s, labelled by f,

(i1} the addition of the arcs from s to nodes in G, in such a way that Sue(s) =
(nye....n ) in Gy,

(1) defining s as the new target of all arcs having target n in G.

The homomorphism 7: GG, - G sending s onto 2 and all other nodes onto them-
selves shows that T(G,. n)=T(G. n).

Let us define By = B. This set is a base of Gy and I, (G, n) = [,(G, n).

Woyi=tmm,m. .. .. my) is a B-simple path  of (G, then ¢(y)=
tnogtmy).e(ms) ..o e(my)) 1s B-simple since ¢ is injective on B, Hence,
Card( B, y,) =Card(B ¢ (y)). It follows that 1 (G n) < [(Gon).

Conversely, any path y=(n.m,,....m) w0 G is ¢(y) for a unique path y, =
(n.my..... mi) in G, and Card(B,ny,)=Card(Bny). hence (G, n)=
L 1Giyony,

Then 1= 1 and m(Gy,on By =m (G n, B but Case 2 s applicable to (G, n,
£3,0 since nois cot the target of any arc in G,. Hence, by tae argument of the Case
2 and inductic: one car assume that one has (H, m), ¢,, € associated with (G, n)
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and B,. Setting ¢ = 7 © ¢, the triple (H, m), ¢, C is the reqmr ed one. In particular,
TLT .\ — T ..\ { A~ &~ thna Avictan~a LI .\/l { ) —
I\, Mj= 1\, nj (ague 10 tne existence of q)}, l(\ 1, )< g\, i) =
| (£ n) M
lB\Ug ) | -
= ‘ pn-n.'n-nr pﬂ’ n1owry voaiilny tvonn T NN ran rnnolvieint nnn » o0 111 p { E ‘/\ I"n II‘;MII
w/eWUe W ULUVIEEDE JYe I UT T VLT FTORUIWT HICC 1 U LU Lvnioiruct ure 1., ity LJ()\‘ s ¥V ] ucluuus
T and such that h(a )< (G, n;) once h (MY< (... n..)
v s\ vy SANS Ty 8T Jo BACIOLTy IR & J TS U\NT Ty IV .
Proof. lLet B be a base of G+ for which 1,(G+ n.)=U{G+, n). The gquasi-tree
. Let B base of G for which [z(Gr n,; ) =1(G4, ny). The gquasi-tree
(H, m) associated with G;, ny, B by Proposition 5.5 corresponds to an r.e. e in

applies also to the computation of l( Gr, n,)

5.8. Proposition. Let ec E,(F. V) be an r.r.e. of minimal star-height defining T.
One can defire a base B of G such that h(e) = l( Gy, ny). Hence, hy(T) = (G, niy).

Proof. Since hv Proposition 5.3 one can

(-

ransform an r.e. e in Ey(F, V) into an

muwalent one in NE,(F, V) without increasing the star-height, one can a sume
that e is in NE,(F, V).

Let (H, m) be the associated quasi-tree with canonical base C. Let ¢:(H, m) -
(G, np) be the unique homomorphism (see Proposition 1.9). It is surjective. Let
B =¢(C), We have to verify that B is a base.

Recall from the proof of Proposition 2.5 that for every path y from n’ to n” in
G. for every s” in H such that ¢(s') = n’, there is a unique path in H starting at s’
having the image y by ¢; it will be denoted by ¢-'(y).

Let now vy be a cycle, say, from n; to n; in (1, Let s be an armtuxry noede of H

such that ¢(s) = n, and consider the paths ¢, '(y") for ail k = i. There exist k and
DLt Ve o ky . a0 o~ dy  k+k'y [N P L. d

k-+k'"suchthat ¢, (y )und @, (y ") naw the same target s'. Hence, t

d CVC‘HE from s to 5 in .7 with image y oy ¢.
Thic runla hae camaoe nada ¢ in Ite 1imaoce o ¢"Y halanog to '\/A Loanee to v and
[N "'Y\.l\- [SYANIENIVIER AN S AWV LA | ik . 11 Illlll:’\., ey ) kl\.l\lllb.‘ Wy ivitww Ln J aEina
also to B Hence Rica base of GG
aso to 8 ¢ 318 a base of {5
Let us now show that [ .(H, m) = l,(Gy, i)
Let vi(n, =ng, ny. ...n)bea B-simplepathin G,and B'= B y.Letg,, (y) =

(m=ny,my, ..., ¢y . Ii i#jand m;=m, e C, then n; = n;€ B contradicting the
hypothesis. Hence, . (y)is C-simple.
It is clear that B’ = ¢(C n e, (v)), hence,

Coard( BV Caed(C Ao U< AH m)
Catul 17 ) == w.alrui M l\ym A} )’ J =L\ L E, TTE ).
Henee, [,( G np)<ic(H,m). O
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Proposition 5.8 and Corollary 3.6 give us Theorem 1.14, i.e., the equality ho(T) =
(G, ny).

We now show that this result applies to the rational expressions defined by

Cousineau [9] and to the class of restricted scalar (iterative theory) expressions
defined by Courcelle [8].

With the notations of the present paper, these expressions correspond to the
subset Hy(F, V) of H(F, V) consisting of r.e ’s of H(F, V) which do not use the
composition operator .(,...,).

All that we need is the following analogue of Proposition 4.2:

5.9. Proposition. For every r.r.e. in Hy(F, V) (resp. in E,(F, V)) one can construct

an r.re. € in E,(F, V) (resp. in Hy(F, V)) which defines the same tree and has no
larger star-height.

Proof. Let ec H,(F, V). We define € inductively as follows by assuming that no
variable is both bound and free in € (bound variables are renamed if necessary):

e=e if eec Fyu 'V,
e=f(e,...., éx) if e=f(e,...,ex),
e=x# (e[ /v, v /v, v/ s o o /u]) i e=#(e),

where k is such that Fvar(e')<{v,,..., v} and [ is large enough so that v, does
not appear in é’.

Let us only verify that Val(e) = Val(e) if Val(e') = Val(e’). 1t suffices to show that
Val(é) = Val(e')[Val(é)/ vy, v,/ vy ..., vk o/ 1) (3)
But from the definition
Val(e)=Val(é'[v/ vy, v\/vsy ..., U /o D[ Val(€)/ v)]
=Val(e')[v/ v, 0,/ vs, ..., v [ ][Val(€)/ v]
=Val(é')[Val(é)/v), v,/ vs, ..., v/ 0],

which gives (3) since we assume that Val(é') = Val(e').

The other verifications are trivial.

Let us now start from e in Ey(F. V). We can assume that no variable in e 1s both
bound and free. nor is bound twice. Let k be large enough so that ee E(F, V,).

By induction on the structure of e. we define @ in Hy(F. V) for all e in E,(F. V,)
satislying the above condition on the bound variables.

e=e¢ if ec Fyou V.
(;:f((;l,....ék) ifé‘:f((’, ..... (’j\),
€ =x%(e") if e==,(e).

and where ¢"=comp(é’. v.. vy . ... Upo Oy Uyynee e s Uk )
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Here we use an operation on Hy(F, V) introduced in {8, Definition 4.5.4] which
associates with an (n+1)-tuple of rre’s (ee,...,e,) an rre &=
comp(e, e,,...,e,) such that ‘

Val(e') = Val(e)[Val(e,)/v,,..., Val(e,)/v,].

This operation allows to eliminate the composition operator .(,...,) from r.e.’s,
i.e., to translate in Hy(F, V) a r.e. of H(F, V).

Let us verify that Val(é) =Val(e) by assuming that Val(é') =Val(e’) and the
fundamenta! property of comp recalled above.

We have 1> verify that

Val(e) = Val(e")[Val(e)/ v, v,/ v;, . .., U/ Uiy
But this amounts to verify

Val(e) =Val(&)[vs/ vy, ..., 0/ Vv, U1/ Ul Ui/ Oprs o o5 Okst/ Ok ]

equivalently

Val(e) =Val(é')[v\/ vy, ..., v/ v-, Val(e)/ vy, vt/ Vrers e -5 U/ Uk

1 1 ~ 1 1

and th's hold: from the hypothesis that Val{(é') =Val(e’) and ¢ =% (¢e’).

There only remaiis to establish that hie") < h(e'). We show that h{e") = h(&")
in the above construction by looking at the definition of comp that we recall from
[8]; ¢'=comp(e, e, ..., ¢,) is the following r.e.

(1) e=¢ife=0,1<i<n

) e'=eife=1,i>norif ecF,,
(iii) e’ =f(e}.....ek) if e=f(d,,...,d,) and e;=comp(d.e,, ....e,}, I=
I.....k '

(iv) e =+*(comp(", v\, d,,....d,)) if e=x(e") and  where d, =
comp(e;, vs, U3, ..., V) for i=1,...,n and [ is large enough so that Fvar (e) <
{v....,uh

The result will follow from the following claim.

Claim. Ife,,...,e,€ V, then h(comp(e, e,,...,e,))=<h(e).

We prove it by induction on the structure of e.

Cases (i)-(iii) are clear.

In case (iv) 1t is als

o Alan S TP S | Tendnecs 40 Y/ IXAasmanan e racdsrationn
o clear that the d;’s belong to V. Hence, by induction,

) IR PRy N | B | A4\ Liia" an s { o (o 1

ricompie ., v, dy,....aq,))=rmeja id hie'yshle). O]

This concludes the proof of Proposition 5.9 and shows that ho(T) = 1(Gp, nq) is
also the minimal star-height of an r.r.e. in Hy(F, V) defining T.

5.10. Remark. A family of rational expressions for languages could be derived
from E,(F, V) as we did in Section 4 from E(F, V) and a result analogous to
Theorem 4.11 could be derived from Theorem 1.14.
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en=*,(8(v, ey, €)),

where ¢, should define the tree T(G", x) and e, the tree T(G", z), where G" is
shown in Fig. 3 (compare with Fig. 1(c)).
We can take

=x (f(x, v)) e

e, = =% {o(z. b. e
bl | X\ vy ¥ TN S\Od\~ b

where ez shouid definc T(G", t). Clearly we can take

cy=%*,(h(1 ).

Fig. 3.

5.12. Example. This example shows that the canonical base C of a quasi-tree (G, n)
Is not necessarily the *best’ one, i.e., that we can have I(G, n) <I-(G n). Let (G, x)
be the quasi-tree Q(e) associated with e =% (f(*,(g(y h(a, x))})) with nodes
denoted by x, v, z, 1 in an obvious way, labeled with f, g, h, a, and represented in

¢ rovmvivevinnl laonoa 2o fe 0l Aaald {1 \ | PO S T P S L AL V3 2~ T

SLanunital vddc B A, ¥y ald ic(U, X)= out LV]‘ IS AiSO d DASC glVlI g U, xX)=1.
1 + ¢ a
i &

e' :[(<‘(g( i\‘,, h((l, f‘_‘y‘)))))-

cquivalent to e and of smaller star-height. The quasi-tree of ' is suown in Fig. 4(b).
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O]
()
(1)
&
(@) Fig. 4. (b)

5.13. Example. Consider the pointed graph (G, 1) where G is shown in Fig. 5. The
sets B={i, 2, 3} and B’ ={4, 5} are two minimal bases of G. We have I;(G,1)=2
and l3(G, 1) =3 (due to the path 1, 4, 2, 5, 3).

Appendix A

This appendix is devoted to the proofs of Propositions 3.2 and 5.3.

A.l. Definition. We first define a set of rewriting rules on E(F, V) that will be
used to simplify an r.e. in a certain way.

Let R be the union of the following sets of rules (R1) to (R3), where e, €y, . .. , &
are in E(F, V):

(RD) v, (e,....e)~>e if v=0(i),

(R2) e, (e,...,e)>e (€, ....€_1, €Ci1y... ),
where o’ =(o(1),...,0(i—1),0(it1),...,0(k)),
if o(i) 2 Var(Val(e)',

(R3) =.(e)>e if veVar(Val(e)).
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The notation e - g € means that one can find a subexpression e’ of e which is the
left part of some rule in R. Letting &' be the corresponding right part, ¢ is obtained
by the replacement of e’ by &' at one of its occurrences in e.

This corresponds to one step of simplification of e.

It is clear that Val(e) = Val(e) and that h(é) < h(e) for any rule e->¢ in R. It
follows, in particular from Definition 1.3, that the same holds for e, €such that e - €.
Since each rule of R reduces the length of the expression to which it applies, -
is Noetherian. It is easy to prove that it is also locally confluent, hence confluent
(see [15]). Hence, every r.e. e has a unique normal form w.r.t. -, that we shall
denote by simpl(e). Our previous remarks have established the following lemma.

A.2. Lemma. For every r.e. e simpl(e) is equivalent to e and h(simpl(e)) < k(e).

We denote by SE(F, V) the set {simpl(e)|e € E(F, V)}. It would be easy to prove
by induction on the structure of e that'for ail e in SE(F, V), Fvar(e) = Var(Val(e)),
whereas only 2 holds in the general case.

We now define a new type of simplification based on the remarks that *, (*,(e))
is equivalent to *.(e[v/w]), and that *.((*.(e)..(e;, €:))..(e3, €;)) is equivalent to
# ((e[v/w]., (e, e))..(ea, ;) (provided v does not appear in o and 7).

We include all these situations by defining an operator g, such that *.(q.(e)) is
equivalent to *.(e) and h(q,(e)) < h(e).

Let us recall that e[v/ W] denotes the substitution of v for all free occurrences
of win e

A.3. Definition. For every v in V let q. be the following operator defined on
SE(F, V)-V:
(1) q.(*.(e)=q.(e)[v/w],
(1) g.le, (e,....e))=q.le).. (e ....e0)
Gi) q.(fler,....e))=f(en.....e),
where in (i) we allow w = v, in (ii) we assume that v ¢ o (some renaming is done
in e and o if necessary) and in (iii) we allow k =0.

A.d. Lemma. (1) For e in SE(F, V)~V such that veFvar(e), q.(e) is defined.
belongs to SE(F, V) and h(q.(e))< h(e).

(2) Let x,.(e)e SE(F, V). Then *.(q.(e)) is equivalent to x.(e) and belongs to
SE(F, V).

Proof. (1) Itisclear that the computation of ¢, (e) terminates for all e in SE(F, V)~
V.
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By using an induction on the computation, it is not difficult to prove that
q.(e) € SE(F, V) by using the auxiliary assertion that Fvar(q.(e)) =Fvar(e).
Case (i). Fvar(e)={v, w, x,y,...,t}=Fvar(q.(e)) by induction;

Fvar(q,(e)[v/wD={v,x, y,..., 1} =Fvar(x,(e)).

[tis easy tosee thatif e'isin SE(F, V), thensois e'[v/ w], hence g,.(*,.(¢)) e SE(F, V)
if g.(e)e E(F, V).

Case (ii). From the assumption that e.,(e,,..., ;) € SE(F, V) we have Fvar(e) =
{v,o0(1),...,0(k).x,y,...,t} and Fvar(q,.(€¢)) is the same.

Now
Fvar(e.,(e,....,e))={v.x, y.... .t} o U {Fvar(e) |1 <i< i}
=Fvar(q (e). (e, ..., €)).
Hence, Fvar(e..(e,..... e.)) =Fvar(g.le.,(e,...,e))).

Since ey....,e. q.(e)eSE(F, V), the only possibilities for g.(e)..(e;,....ex)
not to be in SE(F. V) are that rules (R1) or (R2) are applicable at the top level.
Since g.(e) never belongs to V, the first case is excluded. Since

“Yar(Val(e)) =Fvar(e) =Fvar(g,.(e)} =Var(Val(g,.(¢})),

the second case would imply that a similar rule would be applicable to e, (e, . . ., e.)
contradicting the initial assumption.

Hence, g.(e.. (€. ..., e ))eSE(F, V).

Case (iii). Trivial.

{2) Since

Var(Val(q,(e))) =Fvar(qg.(¢)) = Fvar(e) = Var(Val(e)),

no rule of (R3) is applicable to *.(q.(e)) if *.(e)e SE(F, V.

To prove that *,.(g.(€)) is equivalent to *,(e) we also use an induction on the
computation of gq,.(e).

Case (1). We must show that

s (x (e =% (g (e)v/w)
from the hypothesis that
:J(-' {q(_(‘cn = :4:!_(‘))‘

but this follows from femma 1.22.
Case (11). We must show that

e, e ... e )y =x.Aqg.(e). (e;.....e))
from the hypothesis that

* (g (e))==.e).
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But this foliows from Lemmas 1.21 and 1.22 by some caicuiations:

]9 R ek[w/ U])))

e.fTw/oh)
kL W/i Vi)

<

*L,(e,,,(el, sees ek))E *w(*u(e'(r(el[w/

=x#,((*,(qu(€))..(e)[w/v], ..., e[w/0v])
= *v(qv(e)-rr(ela sy ek))9

1_ i P S - ~
where w doe€s not occur in ¢, €4, » €k.
Naco (133 Trivial cinro 0 (DY = 0o mM
© U \Il‘}- Allvial Jdllliwe ‘11\"/ Ce LJ
Tas shlan cxnemzannl £avenn wxrn axsich 64 ont 202 Dencvncitinem 2 ) wra maritirs ¢that 10a Aerass
i tn¢ normal 1orm we wisn {0 get in rroposition J.2. wWe Tequire tnat in every
roa nf fharm « (o) tha s o o 1c nf tha farm fio 0. )
1.C. Ul 1\ 1111 l‘c(]’, LS § TR (r() 13 Ul uUlILv 1uviig J\‘lg 9 Dk,-
The aneratar a_ helne hy nutting tnoether ceveral iteratione hut ic incnficient 1«
LU VPVl Yp GlLIES Uy pPuluiig tUETLIEVE SUVRIGD VI QUGS Ut 2 anduintaviaa A8
transform = (( f(e,_ e+). (e.. e;)). (e-. e.)) Into
transtorm = (0 fi@,, €2}.,1€3,€4))..1 €5, €5)) INIC

*l'(f((el'lf(e37 6’4)).7(65, 6(,), (82'1r(e3’ eJ))'T(eS* eh)))-

This will be the job of the operator p defined below.

A.S5. Definition. Let p:SE(F, V) > SE(F, V) be the following operator:
(1) p(v) 1s undefined,
(1) p(+.(e)) is undefined,
(i) plfley,....eN=f(e.....,e) with k=0,
(iv) ple..(e,.....e))=f(e}.....ex)if p(e)isdefined and equal to f(ey,....ep)
and e/ =simpl(e].  (e,.....e,)) for all i and is undefined if p(e) is.
We shall denote by SE(F, V) the set of r.e.’s in SE(F, V). for which p is defined.

A.6. Lemma. Let ecSE(F, V). Then p(e) belongs to SE(F. V). is equivalent to e
and h( p(e)) = h(e). We havep(e)=f(e,.....e.) forsomefin F. k=0, and |e;] <|e|
foralli=1.... k. If ez V, then p(q.(€)) is defined.

Proof. The first three assertions are casy (by induction). Let us prove that if
enf 3V —. &1, (RS TR
prey=fle, ... e ). then e | < e

Thig 1o oloar Foar o fa3e)

DEEIY 13 LIl all 182 CddNU LT,

For cace (1v) wer onn assume U’li“ Ia"{q“ [ol e all 5 Mlonen

4 173 wdiSN vev g YL oL dl Aadoaag i < ‘ll IUFE All e LANLIN Y,

}(',[‘ (_,:+ i(’,i+- st f('ki\‘i i(’i + §e1i+ ‘- °+i(’,\i = it’.‘,(t'l. N t’;\)i.

That ptg,.te)) iy defined for e in SE(F, V)= V' can be shown by induction on the

M

structure of e. 1
A.7. Definition. An r.e. e in F(E. V) is strongly minimal if it is minimal (i.e., of
minumal star-height) and there is no subexpression e’ of e that could be replaced
in ¢ by ¢ giving & that h(é') < h(e’) and Val(é) = Val(e).
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his implies in particuiar that every subexpression of e is minimal. Here is an
ubs ~pressions:

PN A wmlialle 2o cemiieioan PPN exoale o tao os
an r.e. which is minimal together with all its su

e=x,((*,(f(v, w, x)))..*,(g(y, v, @))).

It is not strongly minimal since *,,(f(v, w, x)) can be replaced in

---------------- WAs TS

Proof. Lt e be minimal. Then simpl(e) is equivalent to ¢ and h(simpl(e)) < h(e)
by Lemma A.2, hence we have an equality and simpl(¢) is minimal. [

A9. Definition. An r.e. is in normal form if it is in SE(F, V) and for all its
subexpressions of form *.(e,), the r.e. e, is of the form f(e,, ..., e,) for some f in

F., k=1 and some r.e. ¢,..... €.

All our ciluits converge to the following proposition.

A.10. Proposition. Every r.e. is equivalent to some strongly minimal r.e. in normal
form.

Proof. By L.emima A.8 we can start from e in SE(F. V) of minimal star-height. We
show the existence of the desired morm(e) by induction on (h(e),|e]) w.r.t. the
lexicographical ordering.

So let e€ SE(F, V) be of minimal star-height. We consider several cases.

Case 1. ee Fyu V. Obviously, norm(e) =e.

Case 2. e=f(e\,...,¢.). Forevery i=1,...,k let e] be equal to ¢ if ¢ is of
minimal star-height and be any equivalent r.e. in SE(F, V) of minimal star-height
otherwise.

IEUEES PR A R I 0N VN A2 U I SR T 1. I TR L siim mrcsizana thoa

In both cases, (n1{e,).le:]) < (n(e),|e]) sO that DY mduction we can assume tne
rvtutrmnn ol mamesal 0') ansivalant ta oo otranaly minimmel and v narmal farm S
CAIDICLHILT Ul lullll\t,‘]., C\,lul\’ﬂl\, It Lt ¢, dSUU Igly HINMILHILIAl aAlllu il 11TULIIIAL fULIL. JU
lot morm{s) = finorm{ s’ ) normi{ s’ )) hen marm(2) ic eamvalent to g
LU WEURa\ ¢ FALLIM IR y ARUFRBRE\C | /). Nl RO ) 5 cyuiva:iCur 10 o,
h(nerm(e)) < h(e), hence the equality holds since e is assumed minimal. It foliows
that norm(e) is minimal. It is stronglv minimal and in normal form since

norm(ey).....norm(¢s}) are.
Case 3. e=e,..(e,,...,e) with k= 1.-The argument is the same with e; for
i=U.....k One gets

Cuse 4. e=%,(¢;). We let e;=¢q,.(e,) and e}=p(¢2). By Lemma A4, *,(e5) 18
equivalent to e, is in SE(F, V) and h(*,(e.)) < h(e), D)= |el.




238 J.P. Braquelaire, B. Courcelle

We cannot have e, in F,u V since otherwise ¢ would not have been in SE(F, V).
Hence by ! uma A.6, e; is defined. Let ;= f(ej, ..., e;) for some f in Fy, k=1.
Note that h(e])< h(e) forall i=1,..., k. Let e be equal to e; if e; i-t minimal and
be any equivalent r.e. in SE(F, V) of minimal star-height otherwise.

Once again h(e!) < h(e). Hence we can take

norm(e) =*,(f(norm(e}), ..., norm(e}))).

It is clear that Val(zzorm(e)) = Val(e), that h(norm(e)) < h(*,(e,)) < h(e), hence
since e is assumed minimal we have the equality and norm(e) is minimal. Also
norm(e) € SE(F, V) since norm(e}),...,norm(ey) € SE(F, V); if a rule of (R3)
would be applicable at the top level, then e would not be minimal.

Similarly, norm(e) is strongly minimal since norm(ey),...,norm(e;) are so and
since if f(aorm(e}),...,norm(e})) could be replaced by some strictly smaller r.e.
in norm(e), then e would not be minimal.

Finally, norm(e) is in normal form due to the presence of f after *. and the
inductive hypothesis that norm(ej), ..., noerm(e}) are in normal form too. O

Proposition A.10 just proved is stronger than Proposition 3.2. in particular due
to the fact that the strong minimality is a more severe requirement than Definition
3 13).

Let us now turn our attention to the restricted rational expressions and their
normal form required by Proposition 5.3.

We shall denote by SE\(F, V) the set SE(F, V)n E(F., V).

A.11. Remark. By inspecting the definitions and the proof of the preceding proposi-
tions and lemmas, the reader will notice that they all work for r.e.’s in Ey(F, V).
More precisely, the operators simpl, g,. p produce expressions in Ey(F, V) from
given expressions in Ey(F, V), SE,(F, V)=V and SE,(F. V)~ Ey(F. V), respec-
tively. In the proof of Proposition A.10, the minimal expressions e; (in Case 2) and
e, (in Case 4) are 1o be taken in SE,(F, V) of course.

Hence Proposition A.10 holds for restricted rational expressions exactly as for
rational expressions.

Proof of Proposition 5.3. (1) Let n be the following operator:SE.(F, V) -
SEL(F. V):
(1 nte)=-eforein F,u V.

(1) n(fle,..... e ) =f(nle), ... nte)),

() n(x (e))=x.n(q.(e))).

With help of Lemma A.4 it is casy to prove that n(e) is well defined and in
SEGF, V)., that h(n(e))< h(e), and that Q(n(e))=Q(e) (whence Val(n(e)) =
Val(e)). all this by induction on the structure of e.

And it is clear that n{e) is in normal form (since. in particular. in case (iii)
e¢ oo Vig (e)is of the form fle,, ..., e) as required).
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(2) and (3). Itiseasy to define a mapping n' from quasi-trees tor.r.e. in NE,(F, V)
such that n(n’(e)) = e, and to show that there is a unique such mapping. The results
now follow. [J
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