
Theoretical Computer Science 281 (2002) 177–206
www.elsevier.com/locate/tcs

The evaluation of rst-order substitution
is monadic second-order compatible

Bruno Courcellea ;∗, Teodor Knapikb
aLaBRI (CNRS laboratory 5800), Universit�e Bordeaux 1, 351 Cours de la Lib�eration,

33405 Talence Cedex, France
bERMIT, Universit�e de la R�eunion, BP 7151, 97715 Saint Denis Messageries, Cedex 9,

La R�eunion, France

Abstract

We denote rst-order substitutions of nite and in nite terms by function symbols indexed by
the sequences of rst-order variables to which substitutions are made. We consider the evaluation
mapping from in nite terms to in nite terms that evaluates these substitution operations. This
mapping may perform in nitely many nested substitutions, so that a term which has the structure
of an in nite string can be transformed into one isomorphic to an in nite binary tree. We prove
that this mapping is monadic second-order compatible which means that a monadic second-order
formula expressing a property of the output term produced by the evaluation mapping can be
translated into a monadic second-order formula expressing this property over the input term. This
implies that, deciding the monadic second-order theory of the output term reduces to deciding
that of the input term. As an application, we obtain another proof that the monadic second-order
properties of the algebraic trees, which represent the behaviours of recursive applicative pro-
gram schemes, are decidable. This proof extends to hyperalgebraic trees. These in nite trees
correspond to certain recursive program schemes with functional parameters of arbitrary high
type. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Monadic second-order logic; First-order substitution; Algebraic tree; Hyperalgebraic tree;
Decidability of logical theories

∗ Corresponding author.
E-mail addresses: courcell@labri.fr (B. Courcelle), knapik@univ-reunion.fr (T. Knapik).
URLs: http://www.labri.fr/∼courcell, http://www.univ-reunion.fr/∼knapik

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00012 -9

178 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

1. Introduction

For investigating the recursive applicative program schemes considered in the 1970s
by Nivat and others [11,12,17,18] (see [5] for a survey), it is useful to associate with
every such a scheme an in nite term that represents its computations in all semantical
domains. Useful informations about a scheme can be obtained from the corresponding
tree and used, for instance, for rewriting the scheme in a simpler or in a standard
way [17]. It is thus useful to know which properties of these terms (called algebraic
trees in the above quoted works) are decidable. A fundamental theorem by Rabin [20]
(see [21]) states that the properties expressible in monadic second-order logic (MS
logic in short) are decidable over regular trees, a proper subclass of that of algebraic
trees. Monadic second-order logic is quite powerful (it subsumes temporal logics) but
regular trees are insuCcient to represent computations of recursive applicative program
schemes. However, the monadic second-order properties of algebraic trees are decidable
[8]. We give a new proof of this result which, furthermore, extends to the hyperalge-
braic trees that correspond to certain higher-level program schemes, with parameters
of function and functional types, already considered by Damm [15].
A rst result about the decidability of the MS theory of hyperalgebraic trees is given

in [19] where, so called safe applicative schemes of level 2 are considered. In these
schemes procedure names carry functional parameters in addition to individual ones
but, according to the safety restriction, a parameter of the basic type should not occur
within a functional argument of a procedure call. In an essential way, the proof of [19]
uses paths in �-graphs. The latter are borrowed form the geometry of interactions [1]
and the theory of optimal reductions [2].
The present paper is independent of these �-calculus related theories. We develop

several tools for the MS logic of higher-level trees. Our rst tool is a signature of
graph operations studied by Courcelle, Olariu, Engelfriet and others [10,16,6,9,13]. We
use operations which allow to add edges to a vertex labelled graph, from every vertex
labelled by, say, a to every vertex labelled by, say, b. Other operations rename labels
and a binary operation builds the disjoint union of two labelled graphs. Using these
operations, graphs are generated from constants, each of which represents a single
labelled vertex. In such a way, a graph may be represented by a nite or in nite
term over the corresponding signature of graph operations. The set of such terms is
organized into a continuous algebra and the unique continuous morphism from this
algebra into the algebra of graphs is called the value morphism. The graph represented
by the term is the image of the term under the value morphism. Our rst result shows
that this value morphism is a monadic second-order transduction (an MS transduction
in short). MS transductions are transformations of logical structures speci ed in MS
logic; see [7,9]. This implies that the value morphism preserves the decidability of the
MS theory of the structures to which it is applied. Hence the MS theory of a graph
de ned by an in nite regular term is decidable.
Our second main tool is an explicit operation of rst-order substitution of terms.

This operation speci es the variables to which substitutions are made. The arguments
are thus: the term on which the substitution acts and the terms which are substi-
tuted. We show that the evaluation of substitutions is an MS-compatible operation.

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 179

A transformation of structures f is MS-compatible if for every MS formula ’, one
can eGectively construct an MS formula such that for every structure S; S satis-
 es iG f(S) satis es ’. Every MS-transduction is MS compatible, but some MS-
compatible mappings, like the unfolding of a graph into a tree (by a result of [14], see
Theorem 2.11), are not MS transductions.
Our proof uses in a crucial way the MS-compatibility of unfolding.
We also consider second-order substitutions in the context of recursive applicative

program schemes. By reducing second-order substitutions to rst-order ones, we reduce
the functionality of the types of the variables in recursive de nitions. In such a way, we
establish that every algebraic tree may be obtained from a regular tree with rst-order
substitution operators by evaluating these substitution operators (a result known from
[15]). This gives another proof of the decidability of the MS theory of every algebraic
tree.
Since the evaluation of rst-order substitutions is MS-compatible, by evaluating them

on algebraic trees, we get more complex trees with decidable MS theories. This process
may be iterated. We obtain that each tree in the strict hierarchy de ned by Damm in
[15] has a decidable MS theory. It is not clear yet whether these trees represent all
lambda-schemes, i.e., all systems of typed mutually recursive de nitions using lambda-
abstraction in the right-hand sides of equations.

2. Graphs, terms, monadic second-order logic: basic de�nitions

In Sections 2.1–2.5, we review from previous articles de nitions and notation con-
cerning relational structures and MS logic, nite and in nite terms, graphs and graph
operations. In Section 2.5 we prove that the value mapping associating a graph to an in-
 nite term is an MS-transduction, hence is MS-compatible. In Section 2.6 we introduce
notation for new graph operations derived from those of Section 2.5. In Section 2.7
we review graph unfolding.

2.1. Structures and monadic second-order logic

We let R be a nite set of relation symbols, each of them, say r, being given with an
arity �(r) in N+. We denote by S(R) the set of nite or countable R-structures, i.e.,
of tuples of the form S=〈DS; (rS)r∈R〉 where rS⊆D�(r)

S for r∈R. For two structures
S and S ′ in S(R), we write S⊆S ′ (read S is included in S ′) if DS⊆DS′ , and rS⊆rS′

for each r in R.
We recall that monadic second-order logic (MS logic for short) is rst-order logic

augmented with (uppercase) variables denoting subsets of the domain of the considered
structure, and new atomic formulas of the form x∈X expressing the membership of x
in a set X . We denote by MS(R;X) the set of MS formulas over R with free variables
in X (the set of all individual and set variables.)
A property of structures (or of elements and=or of sets of elements of a structure)

is MS-de:nable if it can be expressed by an MS formula.

180 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

We denote by S≡S ′ the existence of an isomorphism between two structures S and
S ′. If L; L′⊆S(R), we write L≡L′ if every structure of L is isomorphic to a structure
in L′ and vice-versa.

2.1.1. MS-transductions
A transduction of structures is a multivalued mapping: S(R)→S(R′), formally han-

dled as a mapping f :S(R)→˝(S(R′)) such that S≡S ′ implies f(S)≡f(S ′), where
˝(−) denotes a powerset operation. We say that f as above is MS-compatible [14]
if there exists a total recursive mapping f# :MS(R′; ∅)→MS(R; ∅) such that S |=f#(’)
iG S ′ |=’ for some S ′∈f(S). We call f#(’) the backwards translation of ’ relative
to f.
Let L⊆S(R). We say that a transduction f :S(R)→S(R′) is deterministic on L if

for every S∈L; f(S) is not empty and its elements are pairwise isomorphic.
We now consider transductions de ned by MS formulas. A parameterless MS-

de:nable transduction f :S(R)→S(R′) is de ned as follows, from k∈N+ and MS
formulas � in MS(R; ∅); �1; : : : ; �k in MS(R; {x}); �r; i1 ; :::; in in MS(R; {x1; : : : ; xn}), for
r∈R′; n=�(r); 16i1; : : : ; in6k:

(1) f(S) is non-empty iG S |=�.
(2) Assuming S |=�, then f(S)={T} where T is constructed as follows:

• DT =D1×{1}∪ · · · ∪Dk ×{k}⊆DS×{1; : : : ; k};
• each Di is {x∈DS | S |=�i(x)};
• each relation rS , for r∈R′ is de ned on T as the union of the sets of tu-
ples of the form {((x1; i1); : : : ; (xn; in)) | S |=�r; i1 ;:::; in(x1; : : : ; xn)}, for all i1; : : : ; in∈
{1; : : : ; k}.

The tuple 〈�; �1; : : : ; �k ; (�r; i1 ; :::; i�(r))r∈R;16i1 ; :::; i�(r)6k〉 is called a de:nition scheme.
An MS-de nable transduction is k-copying, if k¿1 (and noncopying if k=1). In

all cases, f is deterministic: L→S(R′) where L={S∈S(R) | S |=�} and its domain is
of course MS-de nable.
A parameterless MS-de nable transduction f is MS-compatible [7,9]. One can even

de ne a backwards translation f#(’) for MS formulas ’ over R′ with free variables.
If ’ has p free variables, then f#(’) has kp free variables. We refer the reader to
[7,9] for details.

2.1.2. MS-transductions with parameters
We now extend the previous de nitions in order to de ne (by MS formulas) trans-

ductions: S(R)→S(R′) that are not deterministic. Let p1; : : : ; pn be n unary relation
symbols, that we will call parameters (p1; : : : ; pn =∈R∪R′). We let �R :S(R∪{p1; : : : ;
pn})→S(R) be the mapping that “forgets” the relations p1; : : : ; pn. (It is actually a
noncopying MS-de nable transduction.)
A transduction f :S(R)→S(R′) is MS-de:nable with parameters (we also say that

it is an MS-transduction) if there exists an MS-de nable subset L of S(R∪{p1; : : : ;
pn}) and a parameterless MS-de nable transduction g :L→S(R′) such that:

f(S) = {g(S ′) | S ′ ∈ L;�R(S ′) = S}:

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 181

It is k-copying or noncopying if g is so. The set {S∈S(R) |f(S) �=∅} is MS-de nable:
it is de ned by the formula ∃X1; : : : ; Xn :�[X1=p1; : : : ; Xn=pn] where �∈MS(R∪
{p1; : : : ; pn}; ∅) de nes L and Xi=pi denotes the substitution of Xi for pi in �. (We
replace pi(x) by x∈Xi for every i and x.).
An MS-transduction f as above is MS-compatible: for every ’∈MS(R′; ∅) one takes

f#(’) equal to

∃X1; : : : ; Xn:(� ∧ g#(’))[X1=p1; : : : ; Xn=pn]:

If f :S(R)→S(R′) and g :S(R′)→S(R′′) are two MS-transductions then the trans-
duction (g◦f):S(R)→S(R′′) de ned by

(g ◦ f)(S) =
⋃ {g(S ′) | S ′ ∈ f(S); S ∈ S(R)}

is an MS-transduction. It is noncopying if f and g are so. See [7,9].
We now consider as an example and for later use the mapping S �→S=≈ which

associates with a structure S its quotient by an MS-de nable equivalence relation ≈.
We will see that this mapping is a deterministic noncopying MS-transduction, and its
de nition uses one parameter.
Let S=〈DS; (rS)r∈R〉 be a structure in S(R), and ≈ be an equivalence relation on

DS . We denote by [d] the equivalence class of d∈DS . We let S ′=S=≈ be the structure
in S(R) de ned as follows:

DS′ = DS= ≈
rS′([d1]; : : : ; [dn]) holds iG rS(d′

1; : : : ; d
′
n) holds for some d′

1 ≈ d1; : : : ; d′
n ≈ dn:

We call it the quotient structure of S by ≈.

Lemma 2.1. Let be a formula in MS(R; {x; y}) such that, for every S∈S(R) the
relation {(x; y)∈D2

S | S |= (x; y)} is an equivalence relation ≈. The mapping S �→S=≈
is a deterministic noncopying MS-transduction.

Proof. We let p be a parameter. We let �∈MS(R∪{p}) be such that S |=� iG every
equivalence class of ≈ contains one and only one element of pS .
The set pS can be taken as domain for the structure S=≈. Hence there exists a

parameterless noncopying MS-transduction g :L→S(R) such that L={S ′∈S(R∪{p}) |
S ′|=�}, and g(S ′)=�R(S ′)=≈ for S ′∈L, where ≈ is the equivalence relation on �R(S ′)
de ned by . It follows that the mapping S �→S=≈ is an MS-transduction.
For every S there are several possible sets pS that satisfy �, hence several structures

S ′ such that �R(S ′)=S. But the structures g(S ′) are all isomorphic. Although the
transduction S �→S=≈ is deterministic, we need a parameter for de ning it as an MS-
transduction.

2.2. Finite and in:nite terms

We review de nitions and notation from [3,11,12]. We let F be a nite set of
function symbols, each of them, f, given with an arity �(f)∈N. We let X be a nite

182 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

set of variables. We denote by T (F; X) (resp. T∞(F; X)) the set of nite (resp. nite
or in nite) well-formed terms written over F∪X . We let kF=Max{�(f) |f∈F} and
Fk={f∈F | �(f)=k}.
The occurrences in t∈T∞(F; X) of the symbols of F∪X can be formalized as

Dewey words, i.e. as elements of {1; : : : ; kF}∗. A tree-domain is a subset L of {1; : : : ;
kF}∗ such that:
(i) L is pre x-closed,
(ii) if ui∈L with u∈{1; : : : ; kF}∗ and j∈{1; : : : ; kF}; 16j¡i then uj∈L.
A term t∈T∞(F; X) can be formalized by a mapping Symt :Dom(t)→F∪X where

Dom(t)⊆{1; : : : ; kF}∗ is a tree-domain and for each u∈Dom(t); Symt(u) is the sym-
bol occurring at u in t. This mapping is subject to the following condition: for all
u∈Dom(t) and i∈{1; : : : ; kF}, we have ui∈Dom(t) iG i6�(Symt(u)). (For a variable
x∈X , we let �(x)=0.)
Finite terms will be, as usual, denoted by nite words. For an example the term

t=f(x; f(x; g(a))) has the corresponding mapping Symt that associates f with ” and 2,
x with 1 and 21, g with 22 and a with 221.
Two terms t and t′ are equal iG Dom(t)=Dom(t′) and Symt=Symt′ . A term t is

 nite iG Dom(t) is nite. If t∈T∞(F; X) and u∈Dom(t), we denote by t=u the subterm
of t issued from u. It is de ned by:

Dom(t=u) = {v ∈ {1; : : : ; kF}∗|uv ∈ Dom(t)};
Symt=u(v) = Symt(uv) for v ∈ Dom(t=u):

We now recall that T∞(F; X) is a complete partial order. We assume that F contains
a special nullary symbol denoted by +. We de ne a partial order on T∞(F; X) by
letting:

t ≺ t′ iG Dom(t) ⊆ Dom(t′) and for every u ∈ Dom(t);

either Symt(u) = + or Symt(u) = Symt′(u):

Every increasing sequence of terms t0≺ t1≺ t2≺ · · ·≺ tn≺ · · · has a least upper bound
in T∞(F; X) denoted by t= supn¿0(tn). (We have Dom(t)=

⋃
n¿0 Dom(tn).) Finally,

every in nite term t∈T∞(F; X) is the least upper bound of an increasing sequence of
 nite terms (t(n))n¿0 de ned as follows:

Dom(t(n)) = {u ∈ Dom(t) | |u|6 n};

Symt(n) (u) =

{
Symt(u) if |u| ¡ n;

+ if |u| = n:

(Hence t (0)=+.)
We will use this fact in order to extend to in nite terms a k-ary mapping, say

m :T (F; X)k →D where D is a complete partial order and m is monotone, by letting:

m̂(t1; : : : ; tk) = sup
n¿0

(m(t(n)1 ; : : : ; t(n)k)):

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 183

In this way we de ne an !-continuous mapping m̂ :T∞(F; X)k →D that extends m
(“!-continuous” means “monotone and continuous over in nite increasing sequences”,
sometimes also called “!-chains”; see [3,4,5,11]).

2.3. Graphs

All graphs will be directed and at most countable. An edge e of a graph G has
a source srcG(e), a target tgtG(e) and a label in a nite set of edge labels, usually
denoted by A. All graphs will be simple which means that no two edges have same
source, same target and same label.
We denote by VG the set of vertices of a graph G and by EG its set of edges. (An

element of EG is a triple in VG×A×VG). Furthermore, vertices may have labels from
a nite set, say P. A vertex may have several labels or none. Hence, a graph G can
be identi ed with the relational structure:

〈VG; (edgaG)a∈A; (labpG)p∈P〉;

where labpG is the set of vertices labelled by p; edgaG={(srcG(e); tgtG(e)) | e is an edge
labelled by a}.We denote by G(A; P) the class of graphs with A and P as respective
sets of edge and vertex labels.
A walk in G from x to y is a sequence of edges (e1; : : : ; en) such that tgtG(ei)=

srcG(ei+1) for every i=1; : : : ; n− 1; x=srcG(e1) and y= tgtG(en). A walk as above is
a path if tgtG(ei) �=srcG(ej+1) for 16i¡j6n− 1. A circuit is a path from x to x for
some x.
If B⊆A, we say that an edge is a B-edge if its label is in B. A B-walk, a B-path, a

B-circuit is a walk, a path or a circuit, all edges of which are B-edges. If G∈G(A; P),
and u∈VG, we let Acc(G; u) be the set of vertices of G that are the end of a walk
beginning at u. We let GAcc(u) denote the subgraph of G induced by the set of vertices
Acc(G; u):
Let G;H ∈G(A; P). We say that G is a subgraph of H , if G⊆H where G and H

are considered as structures (see Section 2.1). We say that G is an induced subgraph
of H , written G⊆i H , if G⊆H and labpG=labpH ∩VG and edgaG=edgaH ∩(VG×VG)
for all p and a.
A homomorphism h :G→H is a mapping VG→VH such that:

(i) h(labpG)⊆labpH for each p∈P;
(ii) ((h(x); h(y))∈edgaH if (x; y)∈edgaG; a∈A.
It is an isomorphism iG it is bijective, we have = instead of ⊆ in condition (i) and
we have “iG” instead of “if” in condition (ii).
If G∈G(A; P) and ∼ is an equivalence relation on VG, then the quotient graph G=∼

is de ned as a quotient structure (see Section 2.1). In particular we have a canonical
surjective homomorphism: G→G=∼.
For B⊆A we denote by ContrB the mapping from G(A; P) to G(A − B;P) that

contracts all B-edges and removes the resulting loops. Formally, ContrB(G)=H where
H is the graph G=∼ with all its B-edges deleted, and ∼ is the equivalence relation on
VG generated by the union of the relations edgbG for b∈B.

184 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

2.4. Terms and rooted graphs

A rooted graph is a graph G (directed as are all our graphs) given with a distin-
guished vertex called the root from which every vertex is accessible by a directed path.
We denote by rootG the root of G. Since graphs may have circuits, several vertices
may be chosen as the root.
We will use a vertex label rt to distinguish the root (labrtG={rootG}). We denote

by D(A; P) the set of rooted graphs with set of edge labels A and set of vertex labels P.
We denote by D′(A; P) the set of those such that labrtG is singleton, but do not satisfy
necessarily the accessibility condition. Hence D(A; P)⊆D′(A; P)⊆G(A; P∪{rt}).
A graph G∈D(A; P) is a tree iG it has no circuit and has at most one path between

any two vertices.
We will handle terms in T∞(F; X) as trees as well as mappings on tree-domains.

Let t belong to T∞(F; X) with Dom(t), and Symt as in Section 2.2. We let G(t) be
the tree in D({1; : : : ; kF};F∪X) de ned by

G = 〈Dom(t); (edgiG)16i6kF ; (labpG)p∈P〉;

where P=(F |{+})∪X ∪{rt}, and:

edgiG = {(u; ui) | u; ui ∈ Dom(t)}; 16 i 6 kF ;

labpG = {u | Symt(u) = p}; if p ∈ F ∪ X;

labrtG = {”}:

Note that G(+) is a single vertex labelled just by rt. In the graph G(f(+;+)) the
vertices corresponding to the two occurrences of + have no label.
From a structure G isomorphic to G(t) for some t∈T∞(F; X), one can determine t

in a unique way, as one can check easily. Hence, in order to prove that t1; t2∈T∞(F; X)
are equal, it is enough to prove that the structures G(t1) and G(t2) are isomorphic.
Let t∈T∞(F; X) and u∈Dom(t); u �=”. Let G(t)Acc(u) be the subgraph of G(t) in-

duced by Acc(G(t); u) according to the de nition given in Section 2.3. Let H=G(t)Accrt (u)
be this graph augmented with a “root label” i.e., we let labrtH ={u}. Then it is not
hard to see that H is isomorphic to G(t=u). The isomorphism h :G(t=u)→H is given
by h(w)=uw (we recall that the sets of vertices of H and G(t=u) are subsets of
{1; : : : ; kF}∗).

Remark 2.2. If t1≺ t2 then G(t1)⊆G(t2).

For expressing properties of terms t in MS logic, we will use the corresponding
structures G(t). In particular, the relation w is an ancestor of u which is exactly w6u,
(w is a pre x of u) is expressible in MS logic in G(t) because the transitive closure
of an MS de nable relation is MS-de nable (see [9, Lemma 1.7]).

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 185

2.5. Operations on graphs

We will use operations on graphs which are very close to those used in [13] for
multilabelled graphs (see pp. 96–97 of that article).
We x A and P as in Section 2.3. The rst operation is disjoint union which is

binary. For G;H ∈G(A; P) we denote by G⊕H their disjoint union. If necessary, we
replace H by a copy disjoint with G and one de nes K=G⊕H as follows:

VK = VG ∪ VH (with VH ∩ VG = ∅);
edgaK = edgaG ∪ edgaH for a∈A;

labpK = labpG ∪ labpH for p∈P:

The next operation is unary. It adds edges as follows. For p; q∈P; a∈A;G∈G(A; P)
we let H=addp;q; a(G) be such that

VH = VG;

labrH = labrG for all r ∈ P;

edgaH = edgaG ∪ (labpG × labqG);

edgbH = edgbG if b ∈ A; b �= a:

The third operation, also unary, modi es vertex labels as follows. For p∈P;Q⊆P;
G ∈G(A; P), we let H=renp→Q(G) be de ned by

VH = VG;

edgaH = edgaG for all a ∈ A;

labrH = labrG ∪ labpG if r �= p; r ∈ Q;

labrH = labrG if r �= p; r =∈ Q;

labpH = ∅ if p =∈ Q;

labpH = labpG if p ∈ Q:

In words, this means that each label p of a vertex of G is replaced by the set of labels
Q. This set Q may be empty; it may contain p.
For each p∈P we let p be a nullary symbol denoting the graph with one vertex

labelled by p and no edge. Finally, we also introduce a nullary symbol + denoting
the empty graph ∅. (It will be useful for dealing with in nite terms denoting countable
graphs.)
We let FA;P denote this set of operations and constant symbols. Every term t in

T (FA;P) de nes a nite graph in G(A; P) that we will denote by val(t). Because of the
need to take disjoint copies in the evaluation of G⊕H , the graph val(t) is only de ned
up to isomorphism. This makes complicated to designate precise vertices of val(t). In

186 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

order to overcome this diCculty we present an alternative, more precise construction
of val(t), where the set Vval(t) is xed in a unique way.

Construction 2.3. We let t∈T (FA;P) and we construct from it a graph G as follows.
The graph G is intended to be isomorphic to val(t). We let VG be the set of “leaves”
of t labelled by an element of P (as opposed to by +). Hence

VG = {u | u ∈ Dom(t); Symt(u) ∈ P}: (2.1)

Our next task is to determine the set LABt(u)={q∈P | q labels u in val(t)} for u∈VG.
Let R be the set of operations of the form renp→Q for p∈P;Q⊆P. We :rst

consider the special case of t∈T (R∪P), i.e. of t∈R∗P (it is convenient to identify
r1(r2(· · · rn(p) · · ·))∈T (R∪P) with the word r1r2 : : : rnp). The graph val(t) has then a
unique vertex say s. (Because of the renaming operations ri, we need not have p in
LABt(s).) The sets of labels of the unique vertex of val(p); val(rnp); : : : ; val(r1r2 : : : rn
p) can be computed by a :nite automaton reading r1r2 : : : rnp from right to left. The
set of the states of such automaton is the powerset ˝(P); ∅ is the initial state, Q is the

:nal state and the transitions are of the form P′ renp′→Q′−→ (P′\{p′})∪Q′ or ∅ p′
−→{p′}.

Hence for every Q⊆P the set of words r1 : : : rnp∈R∗P such that LABr1 ::: rnp(s)=Q is
a regular language. It is written LQ.
We now go back to the general case where t∈T (FA;P) and u∈Dom(t). We let

u=u1u2 : : : un (with ui∈{1; : : : ; kF}) and SYMt(u) be the word in (FA;P)∗ de:ned as

Symt(”)Symt(u1)Symt(u1u2) : : : Symt(u):

(Hence SYMt(u) is the sequence of operations seen on the path from the root to u
in the tree representing t:) Then, if u is a leaf of t having a label in P; we have:

LABt(u) = Q ⊆ P iG y ∈ LQ; (2.2)

where y is the word in R∗P obtained from SYMt(u) by removing all symbols not in
R. Removing from SYMt(u) the symbols not in R corresponds to the fact that only
the operations from R modify the labelling of vertices.
We now determine the existence of edges between two vertices of the graph G

(intended to be val(t)); given as elements of Dom(t).
We extend as follows the function SYMt de:ned above. If u∈VG and w∈Dom(t);

w6u (i.e., w is “above u in t”), we let u = wv1v2 : : : vn (with v1; : : : ; vn∈{1; : : : ; kF};
n61), and SYMt(w; u) be the word:

Symt(w)Symt(wv1)Symt(wv1v2) : : : Symt(wv1 : : : vn) ∈ (FA;P)∗:

Hence SYMt(u)=SYMt(”; u).
Let us consider u; u′∈VG. We put in G an edge from u to u′ labelled by a iB there is

in t an occurrence w of the operation addp;q; a and p∈LABt=w1(v); q∈LABt=w1(v′) where
u=w1v; u′=w1v′. Intuitively, these conditions mean that in the subgraph of G de:ned
by t=w1, the vertex u has label p, the vertex u′ has label q, so that addp;q; a introduces
an edge from u to u′ labelled by a; this edge remains in G. (Since addp;q; a is unary,

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 187

1 follows w in both u and u′:) We denote by C(t; w; u; u′; p; q; a) this condition. Hence,
in G we have, if u; u′∈VG; a∈A: (u; u′)∈edgeaG iB:

there exist w ∈ Dom(t) with w 6 u; w 6 u′; Symt(w) = addp;q;a

for some p; q ∈ P; such that C(t; w; u; u′; p; q; a) holds: (2.3)

Condition C(t; w; u; u′; p; q; a) is written as follows:

There exist Q; Q′ ⊆ P such that p ∈ Q; q ∈ Q′; y ∈ LQ and y′ ∈ LQ′ ;

where y; y′ are the words in R∗P obtained from SYMt(w; u) and SYMt(w; u′)

by removing the symbols not in R:

This ends Construction 2.3.

We claim that the graph G de ned in this way from t is isomorphic to val(t). This
follows actually from the observations we made along with the de nition.
From now on and unless speci ed otherwise val(t) will denote the graph de ned

from t as explained above. We have in particular:

Lemma 2.4. If t; t′∈T (FA;P) and t≺ t′ then val(t) is an induced subgraph of val(t′).

Proof. Every occurrence in t of a symbol p∈P is also one in t′. Hence Vval(t)⊆Vval(t′).
The labelling of u in Vval(t) and the edges from u to u′ for u; u′∈Vval(t) depend only

on the operation symbols in SYMt(w) for the elements w of Dom(t) such that w6u
or w6u′. And SYMt′(w)=SYMt(w) for these w. Hence val(t)⊆i val(t′).

If t∈T∞(FA;P) and t= supn¿0(tn) where tn is an increasing sequence of nite terms,
then we have an increasing sequence of induced subgraphs:

val(t0) ⊆i val(t1) ⊆i · · · ⊆i val(tn) ⊆i · · ·
and we de ne val(t) as its union. Note that for each n∈N; Vval(tn)⊆Dom(t)⊆{1; : : : ;
kF}∗. Hence we take the countable union of an increasing sequence of graphs with
sets of vertices all included in Dom(t). It is not hard to verify that if t= supn¿0(t

′
n)

where t′n is another increasing sequence of nite terms, then the union of the graphs
val(t′n) is the same. Hence val(t) is well-de ned. Furthermore, Construction 2.3 works
for t in nite as well as nite.
We have de ned val as a mapping from T∞(FA;P) to G(A; P). Since a term in

T∞(FA;P) is de ned in a unique way from the rooted graph G(t), we can extend the
notation by letting val(G(t))=val(t).

Proposition 2.5. The mapping that associates val(t) with G(t) for t∈T∞(FA;P) is an
MS-transduction.

Proof. It is straightforward to translate Construction 2.3 into an MS-transduction. By
(2.1), Vval(G(t)) is the set of vertices u of G(t) such that labpG(t)(u) holds for some p∈P.

188 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

An MS-formula Q(u) can be constructed that translates condition (2.2) of
Construction 2.3. This is possible by the following two observations: rst one can
de ne in G(t) the sequence of ancestors of a given u (simply by using the relations
edgiG(t)) so that we can de ne the word SYMt(u); the second observation is that nite
automata on words can be translated into MS formulas [21]. Having thus the formulas
 Q(u) for Q⊆P, we let �p(u) de ned as

∨
p∈Q⊆P Q(u). It expresses that u has label p

in val(t). For the same reasons, condition (2.3) of Construction 2.3 can be translated
into an MS formula �a(u; u′) expressing the existence of an a-edge in val(t) from u
to u′. Hence we obtain a noncopying parameterless de nition scheme:

〈�; ’(u); (�a(u; u′))a∈A; (�p(u))p∈P〉;
where ’(u) is

∨
p∈P labp(u) and � is an MS formula (easy to construct) expressing

that a given structure is of the form G(t) for some t∈T∞(FA;P). This concludes the
proof.

2.6. Interpretations

We have de ned on G(A; P) a structure of FA;P-algebra. If F is a set of function
symbols and for each f∈F of arity k we de ne a term I(f) in T (FA;P′ ; {x1; : : : ; xk})
(where P′ is a nite superset of P) intended to de ne a k-ary total function on G(A; P),
then we make G(A; P) into an F-algebra GI(A; P). Each operation of it is called a
derived operation [3,4] of the FA;P-algebra G(A; P).
In order to simplify the notation, we will not distinguish between the term I(f) in

T (FA;P; {x1; : : : ; xk}) and the total k-ary function on G(A; P) it de nes, namely the func-
tion which maps each tuple (G1; : : : ; Gk) of G(A; P)k to the graph val(I(f))(G1; : : : ;
Gk). We will furthermore use I to de ne for every t∈T∞(F) its interpretation
Int(t)∈G(A; P). We let Int(t):T (F)→G(A; P) be de ned in a natural way by

Int(f) = I(f) if f ∈ F0;

I(+) = ∅ (the empty graph);

Int(f(t1; : : : ; tk)) = I(f)(Int(t1); : : : ;Int(tk));

for f ∈ Fk; k ¿ 1 and t1; : : : ; tk ∈ T (F):

Note that Int(t)=val(t′) where t′ is obtained from t by substituting I(f) for each
f∈F . This substitution, called second-order substitution, will be recalled from [3]
in Section 4.2. Since the operations of FA;P are monotone for graph inclusion we
have

Lemma 2.6. If t; t′∈T (F) and t≺ t′ then Int(t)⊆iInt(t′).

Hence we can de ne Int(t) for t in nite in T∞(F) as the union of the graphs
Int(tn) which form an increasing sequence for inclusion, where (tn)n¿0 is an increasing
sequence of nite terms such that t= supn(tn).

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 189

Lemma 2.7. The mapping t �→Int(t) is an MS-transduction from T∞(F) into G(A; P).

Proof. This mapping is the composition of two MS-transductions. The rst one trans-
forms t into a term over FA;P , and the second one is the mapping val of
Proposition 2.5.

2.7. Coverings and unfoldings

We recall the unfolding operation considered in [14] as well as the notion of cov-
ering. From now on, A; P are xed nite sets of edge and vertex labels.
If G∈G(A;P); x∈VG; we denote by SucaG(x) the set {y∈VG | (x; y)∈edgaG}. Since

graphs are simple, this set is in bijection with the set of a-edges with source x.

De�nition 2.8. Let G;H ∈D(A;P). A homomorphism h :G→H is a covering, if
(i) it is surjective,
(ii) h(labpG)=labpH for all p∈P,
(iii) h(rootG)=rootH ,
(iv) for every a∈A and x∈VG; h is a bijection of SucaG(x) onto SucaH (h(x)).

We also say that G is a covering of H .
If h :G→H is a covering and ? is a walk in H from x to y and h(x′)=x; then there

exists y′∈VG and a walk ?′ in G from x′ to y′ the image of which by h is ?. The
proof is easy by induction on the length of ?.

Proposition 2.9. Every graph H ∈D(A;P) has a covering G that is a tree.

Proof. We let VG be the set of nite walks in H the origin of which is rootH . We
put in VG the empty walk ” from the root to itself; it has no edge.
We let rootG=” and edgaG={(?; ?′)∈V 2

G | ?′ is ? extended by one {a}-edge}. We
let h :G→H map ?∈VG to x; where ? goes from rootH to x: Hence h(”)=rootH and
labpG=h−1(labpH) for each p:
It is straightforward to verify that G is a tree and that h :G→H is a covering.

This tree is denoted by Un(H), and, as in [14], we call it the unfolding of H (Fig. 1).

Proposition 2.10. Let T; G; H ∈D(A;P) such that T is a tree, t :T→H and g :G→H
are coverings. There exists a unique homomorphism k :T→G such that g◦k= t. This
homomorphism is a covering. If G is a tree, it is an isomorphism.

Proof. For every n we let Tn be the subtree of T induced by the set of vertices at
distance at most n from the root. We prove by induction on n that for every n there
is a unique homomorphism kn :Tn→G such that g(kn(x))= t(x) for all x∈VTn :
The case of n=0 is clear since T0 reduces to rootT :
Let us assume that kn is known, and that y is in Tn+1 but not in Tn: We have an

edge x→y in T , labelled by, say, a∈A where x∈Tn. Since t is a bijection of SucaT (x)

190 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

Fig. 1. A graph and its unfolding

onto SucaH (t(x)) and g is one of SucaG(kn(x)) onto SucaH (t(x)) we can de ne kn+1(y)
as g−1(t(y)) for y∈SucaT (x). Of course we take kn+1(z)=kn(z) for every z∈VTn .
Hence we have the desired homomorphism kn+1 :Tn+1→G. For k; we take the common
extension of all the homomorphisms kn; n¿0.
At each level n, we have no choice for de ning kn since we want g◦kn to coincide

with t on Tn. Hence k is the unique homomorphism T→G such that g◦k= t. Moreover,
it is clear from the construction that it is a covering.
If G;G′∈D(A;P), and m :G′→G is a covering where G is a tree, then G′ is a tree

(otherwise G would have circuits or distinct paths between a same pair of vertices) and
m is a bijection (for the same reason) and, moreover, an isomorphism. By applying
this remark to T , we get that k is an isomorphism: T→G. It follows that, up to
isomorphism, Un(H) is the only covering of H that is a tree.

We extend the mapping Un to graphs in D′(A;P) as follows. We let

Un(H) = Un(HAcc
rt (rootH);

i.e., we apply Un to the subgraph of H induced by the vertices accessible from the
root.
Theorem 22 of [14] can be reformulated as follows with the notation of the present

paper:

Theorem 2.11. For all :nite sets A and P, the mapping Un from D′(A; P) to D(A; P)
is MS-compatible.

3. The evaluation of �rst-order substitutions

In this section, we establish our main theorem, saying that the evaluation of rst-
order substitutions is an MS-compatible mapping.

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 191

3.1. First-order substitutions

As in Section 2.2 we let F and X be nite sets of function symbols and of variables,
respectively. For each n-tuple Ox=(x1; : : : ; xn) of pairwise distinct variables in X , we
introduce an (n+ 1)-ary operation sub Ox such that sub Ox(t0; t1; : : : ; tn) is the result of the
simultaneous substitution of ti for xi in t0 for all i=1; : : : ; n. A common notation for
substitution used in [3] is t0[t1=x1; : : : ; tn=xn]. This operation is the textual substitution
for nite terms t0; t1; : : : ; tn (represented by words, say in Polish pre x notation) and is
extended by continuity to in nite terms (because it is monotone in all its arguments
[3, Proposition 3.3.3]). Other characterizations are given in [3].
If t∈T∞(F; X), we let Var(t)={x∈X | Symt(u)=x for some u∈Dom(t)}. We have:

Var(sub Ox(t0; t1; : : : ; tn)) = (Var(t0)− {x1; : : : ; xn})

∪⋃ {Var(ti) | xi ∈ Var(t0); 16 i 6 n}:
We let Sub(X) be the set of operation symbols sub Ox where Ox is a nonempty sequence of
pairwise distinct variables in X and �(sub Ox)= | Ox|+1. Every term t∈T (F∪Sub(X); X)
can be evaluated into a term Eval(t)∈T (F; X) just by performing the substitutions as
prescribed by the operations sub Ox. For t=f(t1; : : : ; tk); f∈F; �(f)=k; ti∈T (F∪Sub(X);
X) we have of course:

Eval(f(t1; : : : ; tk)) = f(Eval(t1); : : : ; Eval(tk))

(hence functions in F are not evaluated).
Since sub Ox :T (F; X)| Ox|+1→T (F; X) is monotone, the mapping Eval :T (F∪Sub(X);

X)→T (F; X) is monotone and extends into an !-continuous mapping T∞(F∪Sub(X);
X)→T∞(F; X) by Eval(t)= supn(Eval(tn)) where (tn)n¿0 is an increasing sequence of
 nite terms with least upper bound t. (We recall that “!-continuous” means “monotone
and continuous over in nite increasing sequences”.)

Example 3.1. Let t be the in nite term over symbols f (binary), x and subx de ned by

t = subx(f(x; x); subx(f(x; x); : : : :) : : :)

i.e., the in nite term such that:

t = subx(f(x; x); t):

Then T=Eval(t) satis es

T = f(T; T)

hence is isomorphic to the complete in nite binary tree.

Remark 3.2. We have sub Ox(+; t1; : : : ; tn)=+.

It follows that Eval(t)=+ if t=sub Ox(sub Oy(sub Oz(· · ·); · · ·) where t, considered as an
in nite tree, has a left-most branch with only symbols in Sub(X). This corresponds to

192 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

the fact that a recursive de nition like w=w[f(x)=x] where w∈T∞(F; X) de nes the
“bottom” element, here + in the case of terms. See also the last example in Section 4.2.
Our next objective is to prove that the mapping Eval :T∞(F∪Sub(X); X)→

T∞(F; X) is MS-compatible, where a term t is represented by the tree G(t) as ex-
plained in Section 2.4.

3.2. Evaluating substitutions

We denote by D1(A; B;P) the set of graphs in D(A;P) such that every vertex has
at most one outgoing B-edge. We denote by D′

1(A; B;P), the corresponding subsets of
D′(A;P) for which we waive the accessibility condition (see Section 2.4).
The main theorem of this section is the following:

Theorem 3.3. Let F; X be :nite.
(1) One can de:ne two :nite sets A; P where ”∈A, and an interpretation Int :T∞

(F∪Sub(X); X)→D1(A; {”};P) such that for every t∈T∞(F∪Sub(X); X) we
have:

G(Eval(t)) = Contr”(Un(Int(t))):

(2) The mapping Eval :T∞(F∪Sub(X); X)→T∞(F; X) is MS-compatible.

Proof. We rst prove (2) assuming (1).
The mappings Int and Contr” are MS-transductions (by Lemmas 2.7 and 2.1) hence

are MS-compatible. The mapping Un is MS-compatible according to Theorem 2.11.
Hence Eval is MS-compatible.
We now start the proof of (1). We rst de ne A and P as follows:

A = {1; : : : ; kF} ∪ {”};
P = F ∪ X ∪ Paux ∪ {rt}:

where Paux is the set

{auxi | 16 i 6 Card(X)} ∪ {rti | 06 i 6 Max{kF ; Card(X)}}
of auxiliary “new” labels. In order to make easily understandable our construction, we
show immediately an example.

Example 3.4. If t=subx;y; z(t0; t1; t2; t3) where

t0 = f(x; g(x; h(z; u)));

t1 = f(x; h(y; u));

t2 = f(a; a);

t3 = x;

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 193

then Int(t) is the following graph:

By Un the subgraph G(t1) is duplicated (because x has two occurrences in t0), and
G(t2) disappears (because it is not linked to G(t), since y has no occurrence in t0).
It is clear that Contr”(Un(G)) is the graph G(Eval(t)) and

Eval(t) = f(f(x; h(y; u)); g(f(x; h(y; u)); h(x; u))):

In order to shorten the de nition of Int we introduce an auxiliary operation built
from the basic ones. If q1; : : : ; qm∈P, we let, for any graph G,

remq1 ;:::;qm(G) = renq1→∅(renq2→∅(: : : (renqm→∅(G)) · · ·)):

This operation removes all labels qi.
We are now ready to specify Int :T (F∪Sub(X); X)→G(A; P). We will see later

that the object graphs are actually in D′
1(A; {”};P).

De�nition 3.5. We de ne I:
(i) I(+)=rt (we do not set I(+)=∅ as in Section 2.6)
(ii) I(w)=renrt→{w; rt}(rt) if w∈X ∪F0,
(iii) For f∈Fk we let

I(f)(G1; : : : ; Gk)

= remrt1 ;:::;rtk (addrt;rt1 ;1(· · · (addrt;rtk ;k [renrt→rt;f(rt)⊕ renrt→rt1 (G1)⊕ · · ·

· · · ⊕ renrt→rtk (Gk)]) · · ·))

Intuitively, the graph denoted by I(f)(G1; : : : ; Gk) is obtained as follows: one takes
the union of disjoint copies of G1; : : : ; Gk , and a new vertex say s that will be the root;
one links by an i-edge s to the root of Gi, for each i=1; : : : ; k. The labels rt1; : : : ; rtk

194 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

Fig. 2.

are “temporary”. They are used for insuring correct connection of s with the roots of
G1; : : : ; Gk by 1-; : : : ; k-edges.
Before going on we can make an observation:

Claim 3.6. For t∈T∞(F − {+}; X) we have Int(t)=G(t).

It remains to de ne I(sub Ox). We illustrate rst the mapping I(subx;y). With rooted
graphs G0; G1; G2; it associates the graph shown in Fig. 2. The ”-edges towards G1

originate from the vertices of G0 labelled by x (the rst variable of Ox), and those to
G2 from the vertices of G0 labelled by y. The labels x; y in G0 are removed. However
G0; G1; G2 may contain vertex labels in X − {x; y} and G1; G2 may contain vertices
labelled by x or y.
We now give the general de nition of I(sub Ox) where Ox=(x1; : : : ; xn). We use aux-

iliary labels rt0; : : : ; rtn and aux1; : : : ; auxn. We de ne

I(sub Ox)(G0; G1; : : : ; Gn)

= remaux1 ; : : : ; auxn ; : : : ; rt0 ; : : : ; rtn (addrt;rt0 ;”(addaux1 ;rt1 ;”(· · · (addauxn;rtn;”[

rt ⊕ renrt→rt0 (renx1→aux1 (· · · renxn→auxn(G0)) · · ·))

⊕ renrt→rt1 (G1)⊕ · · · ⊕ renrt→rtn(Gn)]))) · · ·))):
We recall that we apply the operator Un to directed graphs having a unique vertex
labelled by rt, (still called the root) but such that not necessarily all vertices are
reachable from the root by a directed path.

Lemma 3.7. For every t∈T∞(F∪Sub(X); X) we have

G(Eval(t)) = Contr”(Un(Int(t))):

Before proving this lemma, we show that Int(t) is well-de ned (which does not
follow from Section 2.6) because we let I(+) be rt and not ∅.

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 195

Fact 3.8. For every t∈T (F∪Sub(X); X) we have Int(t)∈D′
1(A; {”};P).

Proof. By induction on the structure of t. This is true for t=+ since we have I(+)=
rt. The other cases follow from the de nition of I(w) for the other symbols in F∪
Sub(X)∪X .

Fact 3.9. If t; t′∈T (F∪Sub(X); X) and t≺ t′ then Int(t)⊆Int(t′).

Proof. By induction on the structure of t using the fact that rt=I(+)⊆G for every
G∈D1(A∪{”};P).

Hence we can de ne Int(t) for t∈T∞(F∪Sub(X); X) as the union of the increas-
ing sequences of graphs Int(tn) where t0≺ t1≺; : : : ;≺ tn≺ : : : ; each tn is nite and
t= supn(tn).

Proof of Lemma 3.7. First part: By induction on t for t :nite. The cases where t∈{+}
∪X ∪F0 are clear. Two cases remain.

Case 1: t=f(t1; : : : ; tk).
We have Eval(t)=f(Eval(t1); : : : ; Eval(tk)) hence, by the de nition of I(f) we

have

G(Eval(t)) = I(f)(G(Eval(t1)); : : : ; G(Eval(tk))): (3.1)

On the other hand:

Un(Int(t)) = Un(I(f)(Int(t1); : : : ;Int(tk))) = I(f)(Int(t1); : : : ;Int(tk))

by the way I(f) is de ned (intuitively, it is a tree-construction operation, hence is
“invariant by unfolding”); similarly, since I(f) introduces no ”-edge, it is invariant
by ”-edge contractions, hence:

Contr”(Un(Int(t))) =Contr”(I(f)(Un(Int(t1)); : : : ; Un(Int(tk))))

=I(f)(Contr”(Un(Int(t1))); : : : ; Contr”(Un(Int(tk)))):

Hence

Contr”(Un(Int(t))) = I(f)(G(Eval(t1)); : : : ; G(Eval(tk)))

by using induction, hence is equal to G(Eval(t)) by (3.1).
Case 2: t = sub Ox(t0; t1; : : : ; tn).
From the de nition of I(sub Ox) it is clear that

G(Eval(t)) = Contr”(Un(I(sub Ox)(G(Eval(t0)); : : : ; G(Eval(tk))))):

196 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

Hence, using induction, we need only prove that for H0; : : : ; Hk ∈D′
1(A; {”};P) we

have

Contr”(Un(I(sub Ox)(H0; H1; : : : ; Hk)))

= Contr”(Un(I(sub Ox)(Contr”(Un(H0)); : : : ; Contr”(Un(Hk))))): (3.2)

We have actually:

Un(I(sub Ox)(H0; : : : ; Hk)) = Un(I(sub Ox)(Un(H0); : : : ; Un(Hk))): (3.3)

(clear from the de nition of I(sub Ox) and the construction of Un used in Proposition
2.9). No more diCcult is to prove that

Contr”(Un(I(sub Ox)(Un(H0); : : : ; Un(Hk))))

= Contr”(Un(I(sub Ox)(Contr”(Un(H0)); : : : ; Contr”(Un(Hk))))): (3.4)

Hence (3.3) and (3.4) yield (3.2), which completes the proof of the rst part.

Second part: Extension to t in:nite. We let t= supn(tn) where tn is an increas-
ing sequence of nite terms, tn∈T (F∪Sub(X); X). By the de nition of Eval we have
Eval(t)= supn(Eval(tn)). The graphs G(Eval(tn)) form an increasing sequence for in-
clusion and G(Eval(t)) is the union of these graphs.
On the other side, we have to check that Contr”(Un(Int(t))) is the least upper bound

of the graphs Contr”(Un(Int(tn))) which also form an increasing sequence since they
are equal respectively to G(Eval(tn)) for each n.
Since for G∈D′

1(A;P); Un(G) has for vertices the nite paths in G with origin rootG,
it is clear that if G⊆G′, then Un(G)⊆Un(G′). Furthermore, if G0⊆G1⊆ · · · ⊆Gn⊆ · · ·
then Un(

⋃
n¿0 Gn)=

⋃
n¿0 Un(Gn). Hence Un(Int(t)) is the union of the increasing

sequence of graphs Un(Int(tn)); n¿0.
It is not true in general that Contr”(G)⊆Contr”(G′) if G⊆G′ (because if G′ is G

augmented with more ”-edges, Contr”(G′) may have less vertices than Contr”(G)).
However this is true for G;G′ if they are trees, as one checks easily. Furthermore,
Contr” is also !-continuous on trees. Hence the least upper bound (for inclusion)
of the increasing sequence Contr”(Un(Int(tn))) is Contr”(Un(Int(t))) as was to be
proved.

4. Regular, algebraic and hyperalgebraic trees

We review the de nitions of regular, algebraic and hyperalgebraic trees, and we
apply the main result of Section 3 to these trees and to the recursive de nitions they
represent.

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 197

4.1. Regular trees

We review results from [3,4]. A regular system of equations over T∞(F; X) is an
n-tuple of the form:

〈ti = sub Ox(si; t1; : : : ; tn); 16 i 6 n〉; (4.1)

where Ox=(x1; : : : ; xn); si∈T (F; X) and each ti is an unknown. It has a least solution
in T∞(F; X). (We assume that +∈F so that T∞(F; X) is partially ordered by ≺ and
!-complete.) Note that here sub Ox is evaluated and handled as a mapping on T∞(F; X).
A regular system of the form (4.1) above has also a least (and actually unique) solution
in T∞(F∪Sub(X); X) where the operations sub Ox are unevaluated and treated as those
in F . We let (t′1; : : : ; t

′
n) be this solution. By a fundamental result of Mezei and Wright

[4, Lemma 5.3], least solutions of regular systems are preserved under !-continuous
mappings. Applying this to Eval we obtain that Eval(t′i)= ti for each i=1; : : : ; n.
A term t∈T∞(F; X) is regular iG it is a component of the solution of such a system.

We denote by REG(F; X) the set of these terms. We will call them regular trees in
order to keep the well-known terminology. Other characterizations of regular trees are
given in [3].
By routine transformations of regular systems, one can de ne regular trees in

REG(F; X) by regular systems in normal form i.e., of the form 〈ti=ei; 16i6n〉, where
for each i,
• either ei∈X ∪F0
• or ei=f(ti1 ; : : : ; tik) for some k, some f∈Fk , some i1; : : : ; ik ∈{1; : : : ; n}.

Example 4.1. The system

t1 = subu;v(f(x; f(u; v)); t1; t2);

t2 = subu;v(g(z; f(u; v)); t1; t2);

can be written more concretely as

t1 = f(x; f(t1; t2));

t2 = g(z; f(t1; t2))

and, can be replaced by the following system in normal form:

t1 = f(t3; t4);

t2 = g(t5; t4);

t3 = x;

t4 = f(t1; t2);

t5 = z:

The monadic second-order theory of a regular tree t is decidable (by Rabin’s theorem,
see [21]). This means that one can decide whether a given MS-formula ’ holds in t.

198 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

Since we represent a term t by the structure G(t), we write G(t) |=’ although G(t) is
not the standard structure for representing t. However, G(t) and the classical structure
with kF successors are de nable in each other by MS-formulas. Hence, our de nition
of “t has a decidable MS theory” is equivalent to the classical one.
Some nonregular in nite trees also have decidable MS theories: see the introduction

for references. Our objective is precisely to de ne such trees.

4.2. Second-order substitution

We recall from [3] the notion of second-order substitution.
We let B be a set of function variables, each of them given with a xed ar-

ity (�(’)∈N for ’∈B). Our intention is to de ne the result of the substitution in
t∈T∞(F∪B; X) of s for ’ where the variables x1; : : : ; xm of s correspond to the
1st; : : : ; mth argument of ’. In order to specify this sequence we will write that we
substitute �x1; : : : ; xm·s for ’ or that we substitute s for 〈’; x1; : : : ; xm〉. We let C be a
sequence 〈〈’1; w1〉; : : : ; 〈’n; wn〉〉 where ’1; : : : ; ’n∈B and are pairwise distinct and for
each i; wi is a sequence of pairwise distinct variables in X of length �(’i). From C
we de ne a second-order substitution operation:

SUBC = T∞(F ∪ B; X)n+1 → T∞(F ∪ B; X)

as follows. To simplify the notation we assume that B={’1; : : : ; ’n}. We rst de ne
SUBC(t; t1; : : : ; tn) for t∈T (F∪B; X); ti∈T∞(F∪B; X) by induction on the structure
of t:

SUBC(a; t1; : : : ; tn) = a if a ∈ {+} ∪ X ∪ F0;

SUBC(f(s1; : : : ; sk); t1; : : : ; tn) = f(SUBC(s1; t1; : : : ; tn); : : : ; SUBC(sk ; t1; : : : ; tn))

if f ∈ Fk; k ¿ 1;

SUBC(’i(s1; : : : ; sm); t1; : : : ; tn)

= subwi(ti; SUBC(s1; t1; : : : ; tn); : : : ; SUBC(sm; t1; : : : ; tn));

where 〈’i; wi〉 is the ith pair in C for 16i6n.

Example 4.2. We let

C = 〈〈’; x; z; u〉; 〈�; y; z; u〉〉;
t = f(’(a; �(a; x; g(x; z)); b));

t1 = h(x; z); and

t2 = k(m(x; y); p(z; u)):

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 199

Then SUBC(t; t1; t2) is the term

t′ =f(subx;z;u(t1; SUBC(a; t1; t2); SUBC(�(a; x; g(x; z)); t1; t2); SUBC(b; t1; t2)))

=f(h(SUBC(a; t1; t2); SUBC(�(a; x; g(x; z)); t1; t2)))

=f(h(a; suby;z;u(t2; SUBC(a; t1; t2); SUBC(x; t1; t2); SUBC(g(x; z); t1; t2)))

=f(h(a; suby;z;u(t2; a; x; g(x; z))))

=f(h(a; k(m(x; a); p(x; g(x; z)))):

We make a few observations. The term t1 that we substitute for ’ has no occurrence
of u. Hence the third argument of ’ in t, namely b disappears. The variable x does not
appear in the argument list of � (in C). Hence it is treated in t2 as a constant, and we
 nd it as rst argument of m, as it is in t2: The other occurrences of x, as arguments
of p and of g “come from” the second and the third argument of � in t.

Lemma 4.3. For each C the mapping SUBC is monotone in its :rst argument, and
!-continuous in the other ones.

Proof. Standard proof by induction on the structure of the rst argument.

It follows that SUBC extends into a continuous mapping: T∞(F∪B; X)n+1→
T∞(F∪B; X) in a standard way.

Remark 4.4. Let ’ be unary, let ’! be the term ’(’(’(· · ·)))∈T∞({’}), let C=
〈〈’; x〉〉. Then SUBC(’!; x)=+. It is easy to check that SUBC(’n(+); x)=+ for every
n whence the observation. Hence, even if + does not appear in any argument of SUBC,
it may appear in the result.

4.3. Algebraic trees

For each m¿1, we denote by Xm the “standard” set of variables Xm={x1; : : : ; xm}.
An algebraic system of equations on T∞(F; Xm) is a system, written with a set
B={’1; : : : ; ’n} of function symbols with �(’i)6m, of the form:

S = 〈’i(x1; : : : ; x�(’i)) = si; 16 i 6 n〉;
where for each i; si∈T (F∪B; X�(’i)). A solution of S is an n-tuple of terms (t1; : : : ; tn),
where ti∈T∞(F; X�(’i)) such that for each i:

ti = SUBC(si; t1; : : : ; tn);

where C=〈〈’1; w1〉; : : : ; 〈’n; wn〉〉 and for each j=1; : : : ; n we have wj=(x1; : : : ; x�(’j)).
Such a system has a least solution in T∞(F; Xn)n. An algebraic tree is a compo-
nent of the least solution of an algebraic system. We denote the corresponding set by
ALG(F; Xm); (it is a subset of T∞(F; Xm)).

200 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

Algebraic systems have been introduced as syntactic base of recursive applicative
program schemes (see [5,11]).

Proposition 4.5. Every algebraic tree t∈ALG(F; X) is Eval(t′) for some regular tree
t′∈REG(F∪Sub(X ′); X ′), with X ′ :nite X ′⊇X . A regular system de:ning t′ can be
constructed from an algebraic system de:ning t.

Proof. Let t∈ALG(F; X) be given as the rst component of the least solution of an
algebraic system. It is also the rst component of the least solution of an algebraic
system of the special “normal” form (that one can construct from the given one)

S = 〈’i(x1; : : : ; x�(’i)) = si; 16 i 6 n〉

such that each si is:
(i) either xj (16j6�(’i)),
(ii) or f(’i1 (x1; : : : ; x�(’i1)

); : : : ; ’ik (x1; : : : ; x�(’ik)
)),

(iii) or ’j(’i1 (x1; : : : ; x�(’i1)
); : : : ; ’ik (x1; : : : ; x�(’ik)

)) with 16j; i1; : : : ; ik6n; k=�(’j).
A solution of S is thus an n-tuple (t1; : : : ; tn) of terms in T∞(F; Xm) (with Var(ti)⊆
X�(’i)) which satis es the equations:

S ′ =




ti = xj (if we are in case (i));

ti = f(ti1 ; : : : ; tik) (if we are in case (ii));

ti = subx1 ;:::;xk (tj; ti1 ; : : : ; tik) (if we are in case (iii)):

Note that the terms t1; : : : ; tn de ned by S ′ belong to T∞(F; Xm), not to T∞(F∪
Sub(Xm); Xm), hence that the operations subx1 ; :::; xk are evaluated.
Let us denote by (t′1; : : : ; t

′
n) the unique solution of S ′ in T∞(F∪Sub(Xm); Xm) (with-

out “evaluating” subx1 ; :::; xk , see Section 4.1). Hence each t′i belongs to REG(F∪Sub(Xm);
Xm) and its image in T∞(F; Xm) under Eval is ti according to the Mezei–Wright
Theorem.

As a corollary we obtain another proof of Theorem 5.2 of [8].

Theorem 4.6. The monadic second-order theory of an algebraic tree is decidable.

Proof. Let t1∈ALG(F; X) be de ned by an algebraic system. We have t1=Eval(t′1)
where t′1∈REG(F∪Sub(X); X) is de ned by a regular system that one can construct
from the one de ning t1. The MS theory of t′1 is thus decidable. Since Eval is MS-
compatible by Theorem 3.3, the MS theory of t1 reduces to that of t′1 hence is decidable.

Example 4.7. Consider the equation

’1(x1; x2) = f(x1; ’1(g(x2); ’1(x1; x2))):

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 201

We rst transform it into a system of the appropriate “normal form”:

’1(x1; x2) = f(’2(x1); ’3(x1; x2));

’2(x1) = x1;

’3(x1; x2) = ’1(’4(x1; x2); ’1(x1; x2));

’4(x1; x2) = g(’5(x1; x2));

’5(x1; x2) = x2:

The corresponding regular system over T∞(F∪Sub(X2); X2) is thus:

t′1 = f(t′2; t
′
3);

t′2 = x1;

t′3 = subx1 ;x2 (t
′
1; t

′
4; t

′
1);

t′4 = g(t′5);

t′5 = x2:

Of course the regular tree t′1∈REG(F∪Sub(X2); X2) could be de ned directly by:

t′1 = f(x1; subx1 ;x2 (t
′
1; g(x2); t

′
1)):

The notion of a system in normal form has been used to simplify the formal con-
struction. Here is another example.

Example 4.8. Consider the following equation:

’1(x1) = ’1(f(x1)):

Any term t∈T (F; X) without an occurrence of x1 is a solution. The least solution is +.
The above equation can be translated into the regular equation:

t′1 = subx1 (t
′
1; f(x1)):

The regular tree t′1 corresponding to its unique solution in T∞(F∪{subx1}; X) has a
left-most in nite branch with only the symbol subx1 . Hence t′1 evaluates by Eval into +.

We now state the following proposition which is the converse of Proposition 4.5.

Proposition 4.9. For every :nite set X of variables, we have

Eval(REG(F ∪ Sub(X); X)) ⊆ ALG(F; X):

Proof. Let r∈REG(F∪Sub(X); X), where X ={x1; : : : ; xn}. As a regular tree, r is a
component of the unique solution in T∞(F∪Sub(X); X) of a nite system of equations

〈ti = ei; 16 i 6 m〉; (4.2)

202 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

where for each i,
• either ei∈X;
• or ei∈F0,
• or ei=f(ti1 ; : : : ; tik) for some k¿1, some f∈Fk , some i1; : : : ; ik ∈{1; : : : ; n},
• or ei=sub Ox(tj; ti1 ; : : : ; tik) for some sequence Ox of pairwise distinct elements of X ,
some j; i1; : : : ; ik ∈{1; : : : ; n}.

Without loss of generality we can assume that Ox is an increasing subsequence of
(x1; : : : ; xn), because if necessary, we can permute the sequence (i1; : : : ; ik) in order to
replace Ox by an increasing sequence. Moreover, we can also assume that Ox=(x1; : : : ; xn).
Indeed, if a variable xj is missing, we add it and we let xj to be the term that should
be substituted to it. We illustrate this construction on the following example.
Let n=5. An equation of the form t=subx5 ; x1 ; x3 (t0; t1; t2; t3) is replaced by the
equation t=subx1 ; x2 ; x3 ; x4 ; x5 (t0; t2; x2; t3; x4; t1).

Once we agreed on this transformation, the last case of the de nition a system of
equations is ei=sub Ox(tj; ti1 ; : : : ; tin) and Ox=(x1; : : : ; xn).
For each i=1; : : : ; m, we introduce a function variable ’i of arity n and we de ne

the algebraic system

〈’i(x1; : : : ; xn) = s′i ; 16 i 6 m〉; (4.3)

where in the above four cases we have now, respectively,
• s′i=ei if ei∈X;
• s′i=ei if ei∈F0;
• s′i=f(’i1 (Ox); : : : ; ’ik (Ox)) if ei=f(ti1 ; : : : ; tik);
• s′i=’j(’i1 (Ox); : : : ; ’ik (Ox)) if ei = sub Ox(tj; ti1 ; : : : ; tik);
where Ox is xed as (x1; : : : ; xn) by the above agreement.
Let (r1; : : : ; rm) (resp. (r′1; : : : ; r

′
m)) be the unique solution of (4.2) (resp. (4.3)) in

T∞(F∪Sub(X); X) (resp. T∞(F; X)). It is clear that Eval(ri)=r′i . It follows in par-
ticular that t is an algebraic tree.

4.4. Damm’s hierarchy

We have seen that Eval(REG)=ALG (leaving functions and variables unspeci ed).
Provided suitable alphabets are used, we can de ne the family of level-n hyperalgebraic
(called n-rational in [15]) trees roughly as

ALGn = Evaln(REG):

More precisely, we have already, for a nite set F of function symbols and a nite
set X of variables:

ALG(F; X) =


 ⋃

Y⊇X
Y nite

Eval(REG(F ∪ Sub(Y); Y))


 ∩ T∞(F; X):

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 203

(In function de nitions we must allow for sets Y of “parameters” that are larger than
X but still nite.) We de ne

ALG0(F; X) = REG(F; X);

ALGn(F; X) = T∞(F; X) ∩


 ⋃

Y⊇X
 nite

Eval(ALGn−1(F ∪ Sub(Y); Y))


 ;

so that ALG1(F; X)=ALG(F; X).

Theorem 4.10. Every tree in ALGn has a decidable MS theory.

Proof. This is straightforward since Eval is MS-compatible. One uses an induction
on n.

These trees have been considered by Damm in [15] where it is established that ALGn

forms a strict hierarchy.
The next question is to understand which types of recursive de nitions these trees

represent. To this end, we consider explicit composition of functions of arbitrary arity.
This is an extension of the usual composition of unary functions “◦”. For each n¿1 we
denote by compn the overloaded functional operator such that h=compn(f; g1; : : : ; gn)
is well-de ned iG

f : Bn → A and

gi : C → B for each i = 1; : : : ; n

are total functions and A; B; C are sets. The term compn(f; g1; : : : ; gn) denotes the func-
tion �x·f(g1(x); : : : ; gn(x)). It should be clear that if t∈T∞(F; {x1; : : : ; xn}); si∈T∞(F;
{x1; : : : ; xk}) and A; B; D are appropriate domains such that val(t) :Bn →A and val(si):
Dk →B, then

val(sub(x1 ;:::;xn)(t; s1; : : : ; sn)) = compn(val(t); val(s1); : : : ; val(sn)):

Hence compn is the semantical meaning of the substitution operation sub Ox if Ox has
length n.
Having this in mind, we can consider recursive de nitions as follows. We let b

denote a “base” type (typically integers). We consider symbols of the following types:

c : b v; u; x; y : b

f : b× b→ b ’; : b→ b

g; h : b→ b H : (b→ b)× (b→ b)× b× b→ b

204 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

We let H be de ned by the following recursive de nition

H (’; ; x; y) = f(x; ’(H (�u:’((u)); �v:f(’(v); (h(v))); g(y); ’(c)))): (4.4)

It involves parameters of two types: b and b→b. Hence it is not an algebraic system.
Let us introduce a new symbol H ′ : (b→b)×(b→b)→(b×b→b) de ning a func-

tional such that

H ′(’;) = comp2(f; ?1; comp1(’; comp2(H ′(comp1(’;);

comp2(f;’; comp1(’; h))); comp1(g; ?2); comp1(’; c2)))) (4.5)

where
?1 :b×b→b is the rst projection,
?2 :b×b→b is the second projection,
c2 :b×b→b is the constant function �xy·c.

The de nition of H ′ involves the following types:

b′ = b→ b

b′′ = b× b→ b

so that

H ′ : b′ × b′ → b′′ f : b′′

comp1 : b′ × b′ → b′ g; h : b′

comp2 : b′′ × b′ × b′ → b′ ?1; ?2; c2 : b′′

and clearly H ′ is de ned by an algebraic equation over basic functions f; g; h; comp1;
comp2; ?1; ?2; c2.
The tree T (H)∈T∞({f; g; h; ’; }; {x; y; c}) is thus Eval(T (H ′)) where in addition

• Eval(?1)=x and Eval(?2)=y,
• Eval treats comp2 as sub Ox with Ox=(x; y) and comp1 similarly with Ox=(x). 1

Hence T (H)∈ALG2({f; g; h; ’; }; {x; y; c}).
It is not yet completely clear if any recursive de nition like (4.4) can be translated

into an algebraic equation like (4.5). The problem comes with �-schemes. Here is an
example from [19] (called “unsafe” there).

H (’; x) = f(x; ’(H (�u · f(’(u); x); x))): (4.6)

The underlined occurrence of x is free in the �-subterm and this raises a problem with
the translation. In the present example one can observe that (4.6) is equivalent to

H (’; x) = H1(�uv · ’(u); x);

H1(; x) = f(x; (H1(�uv · f((u; v); v); x); x)); (4.7)

1 We write the de nition with comp in order to stress semantics.

B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206 205

because H1 (with :b×b→b) is such that

H1(; x) = H (�u · (u; x); x):
(This latter fact can be proved from (4.6) and (4.7) by the standard “Scott’s induction
method”.) It follows that the tree associated with H de ned by (4.6) is in ALG:1 How-
ever, we leave as an open question whether a similar transformation can be applied for
all “�-schemes” with free variables in �-terms. This question concerns level-2 schemes.
What about higher levels?

5. Monadic second-order logic and program schemes

Our initial motivation was to decide properties of program schemes expressible in
MS logic.
Consider a program scheme the semantics of which is represented by an in nite

term T in T∞(F; X). It may be the case that a variable x does not occur in T . This
corresponds to the fact that the function de ned by the scheme does not actually depend
on the argument corresponding to x. A simpli cation of the writing of the scheme may
be obtained from this observation. Such transformations are considered in [17]. Whether
or not x occurs in T is not necessarily easy to decide if the program scheme consists of
several mutually recursive de nitions using parameters of function or functional type.
Hence, even if the existence of an occurrence of x in T is a rst-order property over
the relational structure representing T , its expression in terms of the syntax of the
scheme is not necessarily easy. However, our result states that it is decidable for the
schemes corresponding to level-n hyperalgebraic trees.
Here is an example of a related monadic second-order but non rst-order property.

We consider the niteness of the number of occurrences in T of a variable x (or of a
function symbol). That this property is monadic second-order can be seen as follows.
Let us say that a set of nodes W in an in nite tree is a cut if no two nodes of W are
on a same branch and every maximal branch contains one (and thus only one) node of
W . Since the trees corresponding to terms have nodes of nite (even bounded) degree,
every cut in such a tree is nite (by Koenig’s Lemma). Hence a set of nodes U is
 nite iG there is a cut W such that every node of U is between the root and an element
of W . This latter condition is expressible in MS logic.
Hence, as an application of our result that is relevant to the static analysis of recursive

de nitions, we get that, for every level-n hyperalgebraic tree, the niteness of the
number of occurrences of a given symbol is decidable.

References

[1] A. Asperti, V. Danos, C. Laneve, L. Regnier, Paths in the lambda-calculus, in: Proc. 9th IEEE Symp.
on Logic in Comput. Sci., 1994, pp. 426–436.

[2] A. Asperti, S. Guerrini, The optimal implementation of functional programming languages, in:
Cambridge Tracts in Theoretical Computer Science, Vol. 45, Cambridge University Press, Cambridge,
1998.

206 B. Courcelle, T. Knapik / Theoretical Computer Science 281 (2002) 177–206

[3] B. Courcelle, Fundamental properties of in nite trees, Theoretical Comput. Sci. 25 (1983) 95–169.
[4] B. Courcelle, Equivalence and transformations of regular systems—applications to recursive program

schemes and grammars, Theoretical Comput. Sci. 42 (1) (1986) 1–122.
[5] B. Courcelle, Recursive applicative program schemes, in: J. van Leeuwen (Ed.), Formal Models and

Semantics, Handbook of Theoretical Computer Science, Vol. B, Elsevier, 1990, pp. 459–492.
[6] B. Courcelle, The monadic second-order logic of graphs, VII: Graphs as relational structures Theoretical

Comput. Sci. 101 (1992) 3–33.
[7] B. Courcelle, Monadic second-order de nable graph transductions: a survey. Theoretical Comput. Sci.

126 (1994) 53–75.
[8] B. Courcelle, The monadic second-order theory of graphs IX: Machines and their behaviours. Theoretical

Comput. Sci. 151 (1995) 125–162.
[9] B. Courcelle, The expression of graph properties and graph transformations in monadic second-order

logic, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformation,
vol. 1, World Scienti c, 1997, pp. 313–400.

[10] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. Syst. Sci.
46 (2) (1993) 218–270.

[11] B. Courcelle, M. Nivat, Algebraic families of interpretations, in: IEEE Annual Symposium on
Foundations of Computer Science, Houston, 1976, pp. 137–146.

[12] B. Courcelle, M. Nivat, The algebraic semantics of recursive program schemes, in: J. Winkowski (Ed.),
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 64, Zakopane,
1978, pp. 16–30.

[13] B. Courcelle, S. Olariu, Upper bounds to clique width of graphs, Discrete Applied Mathematics 101
(1999) 77–114.

[14] B. Courcelle, I. Walukiewicz, Monadic second-order logic, graph coverings and unfoldings of transition
systems, Annals of Pure and Applied Logic 92 (1998) 35–62.

[15] W. Damm, The IO- and OI-hierarchies, Theoretical Comput. Sci. 20 (2) (1982) 95–208.
[16] J. Engelfriet, Graph grammars and tree transducers, in: S. Tison (Ed), Trees in Algebra and

Programming—CAAP’94, Edinburgh, Apr. 1994, Vol. 787, pp. 15–36.
[17] I. Guessarian, Program transformations and algebraic semantics, Theoretical Comput. Sci. 9 (1979)

39–65.
[18] I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science, Vol. 99, Springer, Berlin, 1991.
[19] T. Knapik, D. NiwiWnski, P. Urzyczyn, Deciding monadic theories of hyperalgebraic trees, in: S.

Abramsky (Ed.), 5th Internat. Conf. on Typed Lambda Calculi and Applications, Lecture Notes in
Computer Science, vol. 2044, KrakWow, May 2001, pp. 253–267.

[20] M.O. Rabin, Decidability of second-order theories and automata on in nite trees, Transactions of the
American Mathematical Society 141 (1969) 1–35.

[21] W. Thomas, Languages, automata and logic, in: G. Rozenberg, A. Salomaa (Eds.), Beyond Words,
Handbook of Formal Languages, Vol. 3, Springer, Berlin, 1997, pp. 389–455.

	The evaluation of first-order substitutionis monadic second-order compatible
	Introduction
	Graphs, terms, monadic second-order logic: basic definitions
	Structures and monadic second-order logic
	MS-transductions
	MS-transductions with parameters

	Finite and infinite terms
	Graphs
	Terms and rooted graphs
	Operations on graphs
	Interpretations
	Coverings and unfoldings

	The evaluation of first-order substitutions
	First-order substitutions
	Evaluating substitutions

	Regular, algebraic and hyperalgebraic trees
	Regular trees
	Second-order substitution
	Algebraic trees
	Damm's hierarchy

	Monadic second-order logic and program schemes
	References

