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Abstrac t .  It is known that a language is context-free iff it is the set of 
borders of the trees of recognizable set, where the border of a (labelled) 
tree is the word consisting of its leaf labels read from left to right. 
We give a generalization of this result in terms of planar graphs of 
bounded tree-width. Here the border of a planar graph is the word of 
edge labels of a path which borders a face for some planar embedding. 
We prove that a language is context-free iff it is the set of borders of the 
graphs of a set of (labelled) planar graphs of bounded tree-width which 
is definable by a formula of monadic second-order logic. 

Thatcher  and Wright [12] (see also Doner [5]) characterize context-free lan- 
guages as the images of the recognizable sets of finite trees under a mapping 
border that  produces for each given tree the sequence of symbols labeling its 
leaves, read from left to right. 

Our aim is to extend such a characterization to Monadic Second Order defin- 
able sets of graphs. Here, the border mapping concerns special graphs, that have 
a unique path of labeled edges. Such a mapping, whose study is investigated by 
Engelfriet and Heyker [6], associates with every special graph the word read on 
the path. We know that  the language generated by a MS-definable set of graphs 
is in general not context-free (see Example 1). 

Example 1. The noncontext-free language {anbnc n I n >_ 1} is defined by the 
MS-definable set of special graphs {Gn I n > 1} described in Fig. 1. 

Thus, we impose two restrictions. First, we consider special planar graphs, that  
admit a planar embedding in which the labeled path borders a face (see Ex- 
ample 2). The path  is actually made from a circuit by means of a special edge 
marked ~ .  Secondly, we consider sets of graphs of uniformly bounded tree-width. 
The tree-width is a measure of complexity for graphs introduced by Robertson 
and Seymour [11]. 

Example 2. The context-free language {anb n I n >_ 1} is defined by the MS- 
definable set of special-planar graphs {H~ I n > 1} described in Fig. 2. 
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# 

Fig.  1. A special graph G3 that  defines the word a3b3e 3. 

Fig.  2. A special-planar graph H3 that  defines the word a3b 3. 

Our main result is to characterize the context-free languages as the sets of bor- 
ders of MS-definable sets of special-planar graphs of bounded tree-width. 

1 S p e c i a l  G r a p h s  

D e f i n i t i o n  3. A hypergraph G is a tuple (V, E,  f ) ,  denoted by (Vc ,  E c ,  v e r t c ) ,  
where V is the finite set of vertices, where E is the finite set of hyperedges 
which is supposed disjoint with V and where f associates with every e c E the 
sequence of its extremities f(e), supposed pairwise distinct (there is no loop) 
and denoted by ( / (e ,  1 ) , . . . ,  f(e, n)). The initial (resp. termina 0 extremity of e 
is f(e, 1) (resp. f(e, n)). A graph is a hypergraph such that  each hyperedge is an 
edge, that  has two extremities. A vertex x and an edge e are incident if x is an 
extremity of e. 

A path of some graph G is a sequence p -- (o l , . . . ,Om)  C (V c  U E c )  + 
for some m > 1 where o~ and o~+1 are incident for every i E [ m -  1] and 
where Ol (resp. ore) is a vertex, its initial (resp. termina 0 extremity. All vertices 
and edges of a path, except eventually its extremities, are supposed pairwise 
distinct. A path is a cycle if Ol -- Om. It is said oriented if for every arc o~ with 
i e [2, m - 1], we have oi-1 : vertc(o~,  1) and oi+1 = ve r tv (o i ,  2). A circular 
path is an oriented path having identical extremities. To simplify, an oriented 
path is represented by a sequence of edges. The graph G is connected if all two 
vertices are the extremities of some path of G. 

Let H and K be two hypergraphs. H is a subhypergraph of K if VH C_ VK,  
EH C_ EK and v e r t H  G ve r tK .  If ve r tH(d)  = v e r t g ( d )  for each d C EH A EK, 
the union of H and K,  denoted by H U K,  is the hypergraph (VH U VK, EH U 
EK, v e r t g  U ve r tK) .  

D e f i n i t i o n  4. A tree is a connected graph that  contains no cycle. A vertex 
(resp. edge) of a tree T is called a node (resp. arc). Their set is denoted by 
N T  (resp. AT). If T is a tree, if f C AT and s is an extremity of f ,  we let 
T(f ,  s) denote the subtree of T consisting of s and all paths in T containing s 
but  not f .  If a tree T is given with a root r, we direct its arcs from the root 
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towards the leaves. Every node except the root has then a unique father and 
zero, one or several sons. A leaf has no son. If x E NT, we let T/x  = T if x = r, 
T/x  = T(f, x) if f is the edge between x and its father. The root of T/x is x. 

In this article, # denotes a special label. 

D e f i n i t i o n  5 (Spec ia l  g r aphs ) .  Let X be an alphabet that  does not contain 
#. A special graph over X is a graph G with a unique edge labeled ~ ,  denoted 
by ~ c ,  and with a family (Ea)a~X where Ea C EG, the sets Ea are pairwise 
disjoint and Ex -- U{Ea I a E X} U {#G} is the set of edges of a unique 
circular path ~/(G) of G having as last edge # c ;  moreover, we suppose that  no 
two distinct edges having same sequence of extremities and same label (resp. no 
label). We shall say that  e E EG has label a iff e E Ea. Some edges of G may 
have no label. 

For each special graph G, we let bd(G) E X + be the nonempty word al ... an 
where (el, . . . ,  en, #v)  is the circular path ~/(G) and where for each i E In], e~ is 
labeled a~. We call it the border of G. If ~ = (e~, e~+l , . . . ,  e 3) is a path in ~/(G), 
we denote by bd(~r) the word a~a~+l, . . . ,  a~ which is a factor of 7(G). 

Such a graph will be represented by the relational structure IGI2 = <  V c  U 
EG, incc ,  (labaG)~exu{#} > where labac(e) holds iff e E Ea (or e = # e )  and 
inc r  = {(e, x, y) I e E E c ,  e links x to y}. Hence, sets of graphs can be defined 
by formulas in Monadic Second Order logic or in Counting MS logic, a refinement 
of MS logic using special predicate expressing cardinality of sets modulo fixed 
integers; see [2,3,4]. Such sets are said MS-definable (resp. CMS-definable), for 
short. MS logic is the extension of First-Order logic with set variables. For words 
and binary trees, MS-definability equals recognizability. 

D e f i n i t i o n  6 ( T r e e - w i d t h ) .  A tree-decomposition is a pair (T, g) where T is a 
tree and where g associates with every node t of T a graph g(t) such that: 

- Eg(s ) n Eg(t ) = ~, for all distinct nodes s, t of T. 
- for all nodes s, u of T and every node t of the path of T from s to u, we 

have: Vg(s) • Vg(u) c Vg(t). 

The  width of (T,g) is the maximum of c a r d ( V g ( t ) ) - i  taken over all t E NT. 
The tree-width of a hypergraph G, denoted by twd(G), is the minimum width of 
all tree-decompositions (T, g) of G (such that UteNT g(t) -~ G). 

D e f i n i t i o n  7. Let (T, g) be a tree-decomposition of a graph G. If T '  is a subtree 
of T, we denote by G[T',g] the subgraph of G defined as U{g(s) [ s E NT,}. 
Thus (T',g/T') is a tree-decomposition of G[T', g]. Let now G be special. A 
tree-decomposition (T, g) of G is special if: 

1. T has a root r which verifies # c  E Eg(r). 
2. for every s E NT  and incident edge f ,  the set of edges Ex M U{Eg(u) ] u E 

T(f, s)} is either empty, or is Ex or forms a noncircular path, that  we shall 
denote by 7(G, f ,  s). 
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We say that  such a tree-decomposition is compact if for all f and s, 
~(G, f ,  s) is a (nonempty) noncircular path. Let t be a node of some com- 
pact tree-decomposition (T,g), d the eventual edge linking t to its parent. 
Its sons t z , . . . , tn  are linked to t by dl, . . . ,dn.  Clearly, if t is (resp. is 
not) the root, ~(G) (resp. ~/(G, d, t)) admits a unique expression of the form 
w0q'(G, d~(1), tTr(1))Wl... ~/(G, d~(n), t~(n))Wn for some permutation 7r on [n]. We 
denote by t the sequence of words (bd(wo),..., bd(wn)). 

Here is some intuition: a path in a graph given with a tree-decomposition 
yields a traversal of a portion of the tree of the tree-decomposition. Special means 
that  the distinguished path yields a single traversal of each subtree. Compact 
means that  every box of the tree-decompositions contains one edge of the dis- 
tinguished path. 

Example 8. Figures 3 and 4 represents two tree-decompositions (T, g) and (T, h) 
of a same graph G (in the left part of Fig. 4) and having a same tree T (in the 
left part of Fig. 3). The node 1 is the root of T. (T, g) is not special: the graph 
~/(G) n G[T/5, g] consists of two paths with corresponding words bb and dd. 

~2 ~ ~ 3 ) 

/ ~ .  - . 

~ 4  } ~ 5  ~ 

:..[0.: < a  �9 <# ,O~_~:- - E..: . . -  - - ^  ", 

: . . . . . . . .  J . . . . . . .  . . . . . . .  

iL..o.., f. - ~ o  _ _ �9 �9 _ _ �9 "i 

~, o . .  I : .o �9 : 

Fig.  3. A non special tree-decomposition. 

(T, h) is special: for example, 7(G) N G[T/5, hi consists of a path with corre- 
sponding word bbcdd. (T, h) is not compact, because ~/(G, e, 4) is empty. 

O < a  O <# O ~------"'--~ a 

�9 

. . . .  a # ,  . . . . . . . . . . .  

'" ...... I i . . . . . . . . . .  ! 

Fig .  4. A special but non compact tree-decomposition. 



620 Bruno Courcelle and Denis Lapoire 

D e f i n i t i o n  9. Let F be a finite signature and T ( F )  be the set of finite terms 
built over F.  Let X be a finite alphabet. For every f E F of arity k, let be given 
a sequence of words f = (u0 , . . . ,  Uk), uo , . . . ,  Uk �9 X*. We define a mapping 
~ :  T ( F )  ~ X* by letting: ~ ( f ( t l , . . . ,  tk)) = uo(~(t l )ul~( t2) . . .  ~(tk)uk where 
(U0,. . . ,Uk) = ], f �9 F, t l , . . . , t k  �9 T(F) .  If k = 0 then ] = (u0) and we let 
a ( f )  = u0. Such a mapping a is called a homomorphism: T ( F )  ~ X*. 

P r o p o s i t i o n  10. I f  K C T ( F )  is a recognizable set of terms and a : T ( F )  --* 
X* is a homomorphism, then (~(K) is a context-free language. 

Proof. One constructs a context-free grammar the derivation trees of which are 
the terms in g .  The result is well known (see [5,12]). [] 

2 Tree-Decompositions as Algebraic Terms  

In this section, k denotes a fixed integer and X a finite alphabet. 

D e f i n i t i o n  11 ( H y p e r e d g e - s u b s t i t u t i o n ) .  We denote by G the set of all hy- 
pergraphs G labeled over X U {#}  equipped with a sequence of pairwise distinct 
vertices, called the sequence of sources and denoted by src G. Let H, K E G with 
EH M EK = 0 and let e be an edge of H such that  ver tG(e)  equals src K and 
contains every vertex of VH (1VK, we denote by H { K / e }  the hypergraph ob- 
tained from H U K by forgetting the edge e and having as sequence of sources 
sre H. It results from the substitution in H of K for e. 

N o t a t i o n  12 We denote by Tk the set of all compact tree-decompositions (T, g) 
of width at most k - 1 such that  every s C NT has maximum degree k. Let < 
be a linear ordering on VG U EG such that el < e2 < e3 < . . .  < ep where 
(el, e 2 , . . . ,  ep, # c )  = ~/(G). For every s in NT, we order its set of sons as a 
sequence ( t l , . . . , t n ) ,  in such a way that  the <-smallest edge in G[T/t~,g] is 
strictly smaller with respect to < than the <-smallest one in G[T/ti+l,g] and 
we make g(s) into a hypergraph with sources, denoted by H(s) ,  as follows: 

a) its sequence of sources is src G if s = r, and, otherwise, consists of Vg(s) N 
Vg(to) in increasing order for -< with to the father of s. 

b) for each i = 1 , . . . ,  n, we add to g(s) a hyperedge h~ with sequence of vertices 
Vg(s ) N Vg(t~) in increasing order for _<. 

For each isomorphism class of hypergraphs of the form H(s)  with n hyperedges 
and for each n + 1-tuple of the form ~ (see Definition 7), we get a function 
f for which ] = ~ and that mapps an n-tuple ( G 1 , . . . , G n )  of graphs with 
sources into a graph with or without sources (If n = 0 then this function takes 
no argument and is a constant denoting a graph with sources). We denote by 
Fk such a signature and by a the homomorphism T(Fk)  --~ X* induced by 

{ ( f , ] ) l  f �9 Fk}. 
It follows that  a tree-decomposition (T, g) of a graph as above can be repre- 

sented by a term t �9 T(Fk).  We shall denote by val  : T(Fk)  --~ (graphs} the 
mapping from terms to isomorphism classes of graphs. 
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With these notations, we have: 

C l a i m  13 For every node s of some (T,g) C Tk, we have G[T/s,g] = 
(g ( s ) {G[T / t l , g ] /h l } . . . ) {G[T / tn ,g ] /hn} ,  where for each i = 1 , . . . , n ,  
G[T/t~,g] is equipped with a sequence of sources consisting of Vg(t~) N Vg(s) 
ordered in increasing way w.r.t <_. 

Proof. Obvious from Definition 11 and the above construction. 

Since X is finite, since multiple edges of any graph have distinct labels, and 
by the limitations given by the bound k, there are finitely many isomorphism 
classes of hypergraphs H(s). Hence, Fk is finite. 

The following result will allow us to represent compact tree-decompositions 
by terms in T(Fk). 

L e m m a  14. The degree of a compact tree-decomposition of width at most k - 1 
is at most k. 

Proof. Easy. [] 

P r o p o s i t i o n  15. Let L be a CMS-definable set of special graphs, let L ~ be the 
set of graphs in L having a compact tree-decomposition of width at most k - 1. 
Then bd(L') is a context-free language. 

Proof. Let (T, g) be a compact tree-decomposition of some graph G and let < be 
the total order on VG UEG defined in Notation 12. A term t E T(Fk) represents 
(T, g) if it is constructed from (T, g) as in Notation 12 and if for every occurrence 
t of a symbol f C Fk associated with a node u of T, we have: ] = ~. For every 
arc e from s to u in T, we have (~(t/u) -~ bd(~(G, e, u)). This is straightforward 
by induction on the depth of f l u  from the definitions of ] and ~. It follows that  
c~( t ) = bd( 7( G) ) = bd( G). 

Let L be a CMS-definable set of special graphs, L' be the subset of those 
having a compact tree-decomposition of width at most k - 1. Let K C_ T(Fk) 
be the set of terms representing all these tree-decompositions. Thus, every term 
t E T(Fk) belongs to K iff 

1. val(t) E L. 
2. t actually specifies a compact tree-decomposition of width at most k - 1 

(some terms may specify tree-decompositions that  are even not special or 
define graphs that  are not special). 

Condition (1) is CMS-definable (because va1-1 preserves CMS-definability, see 
Courcelle [3]); condition(2) is easy to express in MS-logic. It follows that  K 
is CMS-definable, hence, recognizable by the theorem of Doner et al. [5,2]. As 
a consequence of Lemma 14, each compact (T, g) is represented by some term 
t e W(Fk) which verifies ~(t) -- bd(~/(G)). It follows that  bd(n') = bd(val(t)) 
c~(K), hence is a context-free language by Proposition 10. [] 
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Our aim is now to extend Proposition 15 to sets of graphs having special 
tree-decompositions of bounded width (as opposed to compact ones). We need 
some preliminary results from Courcelle (see [2] or the survey [4]). 

N o t a t i o n  16 ( P a r a l l e l - c o m p o s i t i o n )  Let n E IN, let H and K be two edge- 
disjoint graphs having the same sequence of n sources. If every common vertex 
of H and K is a source, then we denote by H D n K  the graph with no source 
obtained from the union H LJ K by forgetting the sources. We denote by ~ the 
isomorphism of graphs with and without sources (the isomorphism must preserve 
the sequence of sources in an obvious way). 

Let L be a CMS-definable set of graphs. It is recognizable (see [2]), hence we 
have the following: 

Fac t  17 For every n, there exists a finite set { K 1 , . . . , K p }  of graphs with a 
sequence of n sources such that for every graph K with n sources, there exists i 
such that for every graph G if G = H D n K  then: 

G E L ~=~ H[~nK: E L for some K~ ~ Ki  

(This means that  in a graph G, a "factor" K can be replaced by one of bounded 
size, which is "syntactically" equivalent w.r.t. L). For later reference, we let 
~;(L, n) denote ma x{ca rd (Vt~ )  - n  l i = 1 , . . .  ,p}. 

P r o p o s i t i o n  18. Let m E IN and L be a CMS-definable set of special graphs, 
each of them having a special tree-decomposition of width at most m. There exists 
an integer k and a subset L' of L such that bd(L') ~- bd(L) and every graph in 
L ~ has a compact tree-decomposition of width at most k. 

Proof. Let G E L and (T, g) be a special tree-decomposition of G of width at 
most m which is not compact. We let No C NT be the set of nodes s of T such 
that  g(s) contains at least one edge of v(G). We let T'  be the subgraph of T 
consisting of the (undirected) paths in T linking two nodes of No. It is clear 
by the properties of tree-decompositions that  T ~ is connected hence is a tree. 
Note that  r E T'. We shall define G'  E L such that  b dd(G') = bd(G) and having 
a compact tree-decomposition of width at most k, where k is large enough, but 
fixed and defined from m and the CMS-formula ~ which characterizes L. 

Let u E NT, which has neighbors in T which do not belong to T~; we call 
them s l , . . . , s l  (since r E NT,, the father of u in T is also in T').  We let 
K = G[T/s l ,  g] U . . .  U G[T/sl,  g] and H be the unique subgraph of G such that  
G = HICK. Note that  S = VH N VK C Vg(u) hence has cardinality n at most 
m + 1. The circular path 7(G) is included in H.  

Let K t be the graph with n sources "syntactically equivalent" to K w.r.t. 
L obtained by Fact 17. Consider now G I = H[2nKI; it belongs to L, hence is 
a special graph; the circular path 7(G) being in H is also in G t. We obtain a 
tree-decomposition for G ~ from (T,g) by deleting T / s l , . . . ,  T/sz  and replacing 
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g(u) by g(u)DnK'. We repeat this step for each node u of T '  having neighbors in 
T tha t  are not in NT,,  and we eliminate these neighbors. Doing this, we reduce 
the size of G, we restrict T to T ~ but we increase by the constant additive factor 
max{~(L,  n) I n < m + 1} (see Fact 17). Hence, we get at the end a graph 
G '  E L such tha t  bd(G') = bd(G), G' has a compact  tree-decomposition of width 
at most  k = m + max{~(L ,n )  I n < m + 1}. [] 

T h e o r e m  19. Let m C IN and L be a CMS-definable set of special graphs, each 
of them having a special tree-decomposition of width at most m. Then, bd(L) is 
a context-free language. 

Proof. Immedia te  consequence of Propositions 15 and 18. [] 

3 S p e c i a l - P l a n a r  G r a p h s  

A special graph G is special-planar if it is planar and if ~(G) borders a face in 
some planar embedding of G. Such graphs verify the following property, which 
is a consequence of a more general result of [8] or [7]. We have not enough space 
to include the proof. 

P r o p o s i t i o n  20. Every special-planar graph G admits a special tree- 
decomposition of width twd(G). 

P r o p o s i t i o n  21. Every context free language L c X + is bd(K) for some MS- 
definable set K of special-planar graphs of twd < 2. 

Proof. The proof is available in a more complete version at 
URL http ://dept - info.labri.u - bordeaux.fr/~courcell/ActSci.html. 

Now, we can establish our main theorem. 

T h e o r e m  22. A language L c X + is context-free if and only if it is bd(K) for 
some CMS-definable set K of special-planar graphs of bounded tree-width. 

Proof. As a consequence of Proposit ions 20, 21 and Theorem 19. [] 

As an immediate  consequence of Theorem 22, a very simple proof of a well- 
known result on context-free languages (see [1]). Two words v, w are said to be 
conjugates if there exist words t, u such that  v = t �9 u and w -- u �9 t. If  L is a 
language, its conjugacy closure, denoted by L ~, is the set L augmented with all 
conjugates of all its words. 

C o r o l l a r y  23. The class of context-free languages is closed under conjugacy 
closure. 

Proof. Let L be a context-free language. By Theorem 22, there is a CMS- 
definable set K of special-planar graphs of bounded tree-width such that  
L = bd(K). Two special graphs G and H are said conjugate if there is p E In] 
such tha t  H is obtained from G by relabelling every e~ with the label of el(i) 
with ~(G) = ( e l , . . . ,  en) and where f is defined by f( i)  = i (resp. = n, = i - 1) 
for each i �9 [ p -  1] (resp. i = p, i e ~v+ 1, HI). Let K ~ be the conjugate closure of 
K.  Clearly, K ~ is CMS-definable, hence, verifies the conditions of Theorem 22 
and bd(K ~) = L ~. Then, L ~ is context-free. [] 
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Discuss ion:  
In Theorems 19 and 22, one can replace "CMS-definable" by "recognizable" 

since it is proved in [9] tha t  CMS-definability equals recognizability for sets of 
graphs of bounded tree-width (see [2] or [a] or [4] for recognizable sets of graphs). 

The limitation to "bounded tree-width" cannot be eliminated since it is 
proved in [10] that  context-sensitive languages can be defined similarly as borders 
of grids. 

With  the limitation of ~/(G) to border a face, one can obtain noncontext-free 
languages as shown in Example  1. 

One may  ask about  a similar characterization of linear languages in terms of 
special-planar graphs of bounded path-with.  
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