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1.

Abstract. Hierarchical decompositions of graphs are interesting for algorithmic
purposes. There are several types of hierarchical decompositions. Tree decomposi-
tions are the best known ones. On graphs of tree-width atknast, that have tree
decompositions of width at mokt wherek is fixed, every decision or optimization
problem expressible in monadic second-order logic has a linear algorithm. We prove
that this is also the case for graphs of clique-width at rkpathere this complexity
measure is associated with hierarchical decompositions of another type, and where
logical formulas are no longer allowed to use edge set quantifications. We develop
applications to several classes of graphs that include cographs and are, like cographs,
defined by forbidding subgraphs with “too many” induced paths with four vertices.

Introduction

The class oP,-sparse graphs was introduced byatgin his doctoral dissertation [ldp"
as the class of graphs for which every set of five vertices induces at mo$ydhg
a P, we mean a path on four vertices). This class contains the claBs-&ducible
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graphs introduced by Jamison and Olariu in [JO1], as the class of graphs for which
no vertex belongs to more than one indud¢&d These two classes contain the class of
cographs, and have been studied intensively in recent years. Such a study is motivated
by the practical applications of these classes in areas such as scheduling, clustering, and
computational semantics. In [JO1] and [JO3] a unique tree presentation is proposed for
the classes oP4-reducible andP4-sparse graphs, respectively. These tree presentations
are used later in [JO4] and [JO2] to develog|V | + |E|) time recognition algorithms

for these classes. In [JOR)(|V| + |E|) time algorithms are proposed for solving five
optimization problems on the class®jf-sparse graphs: maximum size cliqgue, maximum
size stable set, minimum coloring, minimum covering by cliques, and minimum fill-in.

If the tree presentation of thi,-sparse graph is also given as input, then the running
time of these algorithms is jusd(|V|) independently of the number of edges in the
graph. Jamison and Olariu conclude their paper with

Problem 1[JO5]. Find other optimization problems which can be solved in linear time
on the class oP,-sparse graphs.

Giakoumakis and Vanherpe in [GV] took up this line of research. They used the modular
decomposition of a graph to obta®(|V| + |E|) time algorithms for the maximum
weight clique and for the maximum weight stable set problems in the caggfarse
graphs, and for the optimal weighted coloring and for the minimum weight clique cover
problems in the case d¢¥;-reducible graphs. If the modular decomposition of the graph
is given as input, then the running time of these algorithms isQu$V |).

Giakoumakis and Vanherpe also introduced in [GV] the classes of extdhgded
sparse and extenddey-reducible graphs, and showed how to extend their results to
these two classes of graphs, with minimal additional work.

Babel and Olariu introduced in [BO] the class(qf t) graphs. A(q, t) graph is a
graph in which no set with at mogtvertices is allowed to induce more thadistinct
P4's. Clearly, itis assumed thgt> 4. The class ofq, g — 4) graphs extends the class of
Ps-sparse graphs. In particulés, 1) graphs are exactly thie,-sparse graphs and, 0)
graphs are exactly the cographs.

Rusu, see [GRT], introduced the classRaftidy graphs which extends the class of
extendedP,-sparse graphs. L& be a graph and leX be an induced,. A vertexv
outsideX is apartner of Xif X andv together induce twd>;’s. A graph isP,-tidy if
any inducedP; has at most one partner.

In Section 3 we show that a wide class of decision and optimization problems on
the class ofP4-sparse graphs is solvable in tin(|V| + |E|) or in time O(|V]) as-
suming that the modular decomposition of the graph is given as input. These problems
are characterized by their expressibility in certain variations of Monadic Second-Order
Logic, MSOL(ry, ) (for decision problems) drinEMSOL(ty ) (for optimization prob-
lems), the study of which was initiated by Courcelle and others in a sequence of papers
[Coul], [Cou2], [Coud], [Cou5], [Cou6], [CM], [ALS]. Roughly speakinglSOL(z1)
is Monadic Second-Order Logic with quantification over subsets of vertices, but not
of edgesMSOL(zy p) is the extension oMSOL(r1) by unary predicates representing
labels attached to the verticdSnEMSOL(ry ) is the extension oMSOL(ty ,) which
allows one to search for sets of vertices which are optimal with respect to some linear
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evaluation function. The precise definitions are given in Section 2. A tyM&DL(z7)
decision problem ik-colorability for fixedk. The maximum weight clique and the maxi-
mum weight stable set problems &iaEMSOIL(t, ;) definable. The optimal (weighted)
coloring problem is noLinEMSOL(z, ) definable, see [Lau2].

A labeled graphis a graph with labels associated with its vertices, such that each
vertex has exactly one label. prgraph is a simple undirected loop-free labeled graph
with vertex labels in(1, 2, ..., p}. An unlabeled graph is considered as a 1-graph. In
Section 3 we show that:

Theorem 2. Let p be a fixed integeEvery LINEMSOlzy ) problem on the class of
Ps-sparse p-graphs can be solved in tim&|®@| + |E|) and the corresponding algo-
rithm can be derived constructively from its LInEMS®@L,,) definition If the modular
decomposition of the graph is given as inghen the running time of the algorithm is
O(VD.

Note that Theorem 2 also holds for any subclass of the claBs-sparse graphs, such
as the classes d¢¥;-reducible graphs and cographs.

For example, in the terminology and numbering of [GJ], all the following problems
areLinEMSOL(ry ) definable. So we have:

Corollary 3. The following problems can be solved in linear time on the classof P
sparse p-graphgand any of its subclasspwertex covefGT1], dominating sefGT2],
domatic number for fixed G T3], k-colorability for fixed i GT4], partition into cliques
for fixed k[GT15], clique[GT19], independent s¢t5T20], and induced pathfiGT23].

In Section 3 we prove Theorem 2 usiMi@OL-translation schemes and their induced
transductions. The idea is to present a gréaby a tree built over some of its subgraphs
(and called its modular decomposition) and to transfer the considered optimization prob-
lems onG into optimization problems on its modular decomposition. Since the modular
decompositions oP4-sparse graphs can be formalized as labeled partial 2-trees and can
be constructed in linear time, and sildeaEMSOLoptimization problems have linear
algorithms on partial 2-trees (see [ALS] and [CM]), we obtain a proof of Theorem 2. The
basic tool here is thMSOLdefinable translation scheme, permitting a reduction of the
optimization problems from graphs to their modular decompositions, while preserving
the LInEMSOLexpressibility. Using similar arguments Theorem 2 can be extended to
the classes ofq, g — 4) graphs andP,-tidy graphs. It is proved in [EHPR] that the
so-called uniformly nonprimitive 2-structures which are certain directed graphs with
labeled edges, have polynomial decision algorithms for problems expressMg0n
without edge set quantifications. Cographs are isomorphic to a subclass of this class.
The proof method is the one we use for Theorem 2.

In Section 4 we extend Theorem 2 to the class of graphs of bounded clique-width,
firstintroduced by Courcelle et al. [CER]. We recall the notions of graph operations and
cligue-width presented in [CO].

We use three types of graph operationsmgraphs denoteeb, n; j, andpi_, j.
Informally, G, @ G is the disjoint union of thep-graphsG; and G, n; ;(G) is the
p-graph obtained by adding 8 undirected edges connecting all vertices labeéléal
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all the vertices labeled in G, andp;_.j (G) is the p-graph obtained by changing all
thei labels toj labels inG. A formal definition of these graph operations is given in
Section 4.1.

With every p-graphG one can associate an algebraic expression built using opera-
tions of the three types mentioned above which defiaed/e call such an expression a
k-expression defining, if all the labels in the expression are{lh . . ., k}. Clearly,k is
greater than or equal fo. Also, for everyp-graphG, there is am-expression which de-
finesG, wheren is the number of vertices @. LetC(k) be the class op-graphs which
can be defined big-expressions. The clique-width ofgraphG, denoteccwd(G), is
defined bycwd(G) = Min{k: G € C(k)}.

With these definitions we show:

Theorem 4. LetC be a class of p-graphs of clique-width at mostile.,, C < C(k))
such that there is gknown O(f (|E|, |V|)) algorithm, which for each p-graph G irt,
constructs a k-expression definingTien every LInEMSQl ) problem orC can be
solvedintime @Qf (|[E[, |V])). A corresponding algorithm can be effectively constructed
from the logical formula describing the probleand the parsing algorithm for the class

In the statement of Theorem 4 we must assume that we know an efficient parsing al-
gorithm, because none is known o¢k) in general (there exist polynomial algorithms

in special cases). Theorem 4 applies to any class of graphs of bounded clique-width for
which an efficient parsing algorithm exists. There are many such classes. For example,
the cliques, the cographs, and any class of graphs of treewidth atkm@és show

that:

Proposition 5. (g, q — 4) graphs and R-tidy graphs have cliqgue-width at most g and
4, respectivelyand for each(q, q — 4) (Ps-tidy) graph G, a g-expressioii-expression
defining it can be constructed in(@@/| + |E|) time

From Theorem 4 and Proposition 5, we get a second proof of Theorem 2. This proof
is based on graph operations and clique-width, and constructs algorithms for solving
LINnEMSOL(ry, ) problems orPs-sparse graphs, different from those constructed by the
first proof of Theorem 2 mentioned above. Although Theorem 4 subsumes Theorem 2,
we give a specific proof of Theorem 2 because it is more direct, hopefully usable in other
similar situations, and does not use the machinery of the Feferman—Vaught theorem used
in the proof of Theorem 4. Theorem 4 is interesting by its generality. Sections 3 and 4
can be read independently.

Courcelle and Mosbah [CM] also considered the lofi&OLr>) andEMSOLx; )
(which are similar to the logics mentioned above, but with quantifications over sub-
sets of edges allowed). They showed that Theorem 2 can be extended also for all the
EMSOL(r; ) optimization problems on each class of graphs of tree width atknblstw-
ever, our next result shows that this extension cannot be dorig iy, (q, g —4), Ps-
sparse, cographs, and all graph classes which contain the cliques, provide 4.

For (edge-)labeled graphs this is easy to see, since every graph can be presented as
a labeled clique with exactly the original edges labeled with a specific label. However, it
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is also true for unlabeled graphs, provided gt NP on unary languages. We denote
by P; (NP;) the class of languages over one letter (also called tally languages), which
are inP (NP). In Section 5 we show that:

Theorem 6. If P; # NPy, then there is an MSQk,) definable decision problem over
the class of cliques which is not solvable in polynomial time

An extended abstract of this paper was presented in [CMR].

2. Background

2.1. Graphs as Logical Structures

In what follows, we use the terigraphfor finite nonempty undirected graphs without
self-loops or multiple edges. We use the tdaheled graphfor graphs having labels
which are associated with their vertices such that each vertex has exactly one label. A
p-graphis a labeled graph with (vertex) labels{ih, 2, ..., p}. An unlabeled grapi®

is considered as a 1-graph such that all the verticé€ affe labeled by 1.

The following are the two most common (labeled) graph presentations, for logically
oriented work:

Definition 7 (The Vocabularies; andry ). We denote by; the vocabularyE} con-
sisting of one binary relation symb@&l. For a graplG, we denote bys(1;) the presen-
tation of G as a logical structurév, E), whereV is the domain of the logical structure
which consists of the set of vertices@fandE is the binary relation corresponding to
the adjacency matrix db.

We denote byr; , the vocabularyE, Uy, ..., Uy, where p is any fixed integer.
For a p-graph G, we denote byG(ry p) the presentation o6 as a logical structure
(V, E,Uq,...,Up), whereV and E are the same as above, adg, ..., U, are the
unary predicates corresponding to the labels of the vertic€s of

Note that we use a vocabulary, for expressing properties of labeled graphs in general.
Such properties make no reference to labels largerptiaat may exist in the considered
graph.

Remark. Certain structures of typa , do not represenp-graphs, either because the
predicatedJ; do not form a partition of the domain, or becauseas not symmetric

or both. A first-order formula can express that a given structure actually represents a
p-graph. We only considery , structures representing-graphs without any further
notice.

Definition 8 (The Vocabularies; andr, ;). We denote by, the vocabularfR, Pg,
Py } consisting of one binary relation symbR| and two unary relation symboR:, Py .
For a graphG, we denote byG(ry) the presentation of5 as a logical structure
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(V UE, R, Pg, Py), where the domain of the logical structure consists of the set of
vertices and edges @, Ris a binary relation, such th&g, v) is in Rif and only if v

is a vertex ofG which is incident with the edge of G, and Py (resp.Pg) is a unary
predicate such that (resp.e) is in Py (resp.Pg) if and only if v (resp.e) is a vertex
(resp. an edge) db.

We denote byr, , the vocabularyR, Pe, Py, Uy, ..., Up}, wherep is any fixed
integer. For an edge- and vertex-labeled gi@pive denote b () the presentation of
Gasalogical structure/ UE, R, Pg, Py, Uy, ..., Up), whereR, Pg, Py are as above,
andUy, ..., U, are the unary predicates corresponding to the labels of the vertices and
edges ofG.

2.2. Monadic Second-Order Logic Decision and Optimization Problems

We recall that Second-Order Log8QL) is like first-order logic, but also allows variables
and quantification over relation variables of various but fixed arities. Monadic Second-
Order Logic MSOL) is the sublogic ofSOLwhere relation symbols are restricted to
being unary. More details on the definitionddSOLcan be found in [Cou7], [EF], and
[Pap]. For a set variablX and a first-order variable, we denote byX (u) the atomic
formula indicating thati € X.

Graphs are a special case of finite structures. Therefore, before concentrating on
graphs, we start with the following definitions and facts concerning finite structures. In
what follows we are concerned only with finite structures, therefore whenever we use
the termstructurewe mearfinite structure Let r denote any vocabulary consisting of a
finite set of relation symbols, and IEtbe any class of-structures. We denote IStr(t)
the class of alk-structures.

Definition 9 (MSOL(t) Decision Problem ovelK). We say that a decision problem is
anMSOL(z) decision problem over K it can be expressed in the following form: given
art-structured € K doesA = ¢, wherey is a closedSOLformula overr, hold? Note
thaty andK are not part of the problem instance, which consists just.dh the case
where clasK consists of alk-structuresK = Str(t), we say that a problem which can
be stated as above is MSOL(t) decision problem.

Example 1. The 3-colorability problem is aMSOL(t;) problem, since it can be stated
as follows: given a grapks, presented as a logical structuggz;), doesG(r;) & ¢,
whereg is the closedMSOL(t;) formula defined by

e =3Xq, Xz, Xz(Partition(X1, Xz, X3) AlndSetX;) AlndSet X,) AlndSet X3)),
wherePartition(X1, Xz, X3) is defined by

Partition(Xl, X, X3) = VU(X]_(U) \ Xz(l)) \4 Xg(v))
A =FU((Xg(U) A Xa(U)) V (Xa(U) A Xz(U))
v (Xz(u) A X3(w))),
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andIndSetX) is defined by
IndSetX) = Vu, v((X(u) A X(v)) — —E(u, v)),

hold? Let fy, fo, ..., fy be m function symbols for some fixed integer. For a set
variableX; and an assignmeuatwe use|z(X;)|j as a short notation fozaez(m fij(@).
We denote byA| the cardinality of a finite sef.

Definition 10 (LInEMSOL(r) Optimization Problems ovef). We say that an opti-
mization problemP is a LINEMSOL(r) optimization problem over Kf it can be ex-

pressed in the following form: given@astructure4 € K, andm evaluation functions
f1, ..., fm associating integer values to the elementslpfind an assignmertto the

free variables i such that

> ajlzOnl =opt Y &Iz (Xl (A Z) E 0K, ... X))

1<i<l 1<i<l
1<j<m 1<j<m
wheref is anMSOL(t) formula having free set variableg, . .., X, optis eitherMin

or Max, and{g;: 1 <i <I, 1 < j < mj} are any integers. Since the coefficieais
can be negative we only deal wilhax: a minimization is obtained from a maximization
with negated coefficients. Note th@¢X, ..., X), K and the constantg;} are not
part of the problem instance, which consists justbfind the evaluation functions
fi, ..., fm.

For any assignmerztto the free variables af which satisfies the above condition,
we say thatz realizes a solutiorio the problemP on A with evaluation functions
fi, ..., fm.

In the case where the cla$s consists of all ther-structures,K = Str(z), we
denote &LinEMSOL(r) optimization problem oveK shortly as & inEMSOL(t) prob-
lem. Note that the syntax of evehnEMSOL(t) problem is completely defined hy,
0(X1, ..., X)), the constantga;; }, andm.

Example 2. The maximum weight clique problem is to find for a given gr&ptwith
weights assigned to its vertices, a cliqo®f G such that the total weight of the vertices
of C is maximum. This problem islanEMSOL(z;) problem since it can be expressed as
follows: given a grapl@ presented asa-structureG(t1), and one evaluation function
f1 associating integer weight values to the vertice& 6f;), find an assignmerzto the
free set variableXy in 6 such that

12(Xp) |1 = MaxX{|Z (Xp1: (G(t1), Z) = 0(X1)},
wheref (X,) is defined by

0(X1) = VU, v((X1(v) A X1(U) AU # v) — E(U, v)).
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Remark. EveryMSOL(t) decision problem can be expressed alsolasBMSOL(t))
optimization problem. Thus, in what follows we are concerned only Wit EMSOL(t)
optimization problems.

2.3. MSOL Translation Schemes and Transductions

In this section we define the notion of a translation scheme. The idea is to define a new
structure over vocabulary from a given structure over vocabularyby means of a

finite set of logical formula®, vy, ..., ¥ overt. The formulap defines the domain

of the new structure and each relatiBn of arity k of the new structure is defined by

the formulay; with k free variables. This notion is called “interpretation” but we prefer
the word “translation” to focus on the syntactic nature of the definition. The classical
definition for First-Order Logic (see [EF]) is adapted MEOL

Definition 11 (Translation scheme). Let r and o be two vocabularies, let =
{R1, ..., Ry}, and letp(R) be the arity ofR,. Let ® = (¢, ¥1, ..., ¥m) be MSOL
formulas overr. We say thatd is well formed foro over t if ¢ has one free first-
order variable and no free set variables, and, for 1 < m, eachy; hasp(R) free
first-order variables and no free set variables. Sudh==a (¢, ¥, ..., ¥ny) is called a
T-o-translation schemdf ¢ istrue and eachy; is quantifier freeg is calledquantifier
free

In the following text we denote a-o-translation scheme shortly as a translation
scheme ift ando are clear from the context. With a translation scheinene can
naturally associate a (partial) functidri from z-structures te -structures. This function
is called a transduction from-structures tar-structures. For more general cases see
[Cou3], [CouT7], [Mak], and [EQ].

Definition 12 (The Induced Transductiob*). Let.4 be ar-structure, letd be az-
o-translation scheme, and lét be the domain ofd. The structureds is defined as
follows:

(i) The domain ofd4 isthe setA, = {a e A: A = ¢(@)}.
(ii) The interpretation ofR; in Ag is the set

Ao(R) ={ae AR A=y @)

Note thatAg is ao-structure of cardinality at mos$A|.

(iii) The partial function®*: Str(r) — Str(o) is defined byd*(A) = A¢. Note
that®*(A) is defined if and only if4 = Ix¢(X). In particular, if® is quantifier
free, thend* is a total function.

With a translation schemé we can also naturally associate a functi® from
MSOL(o)-formulas toMSOL(t)-formulas. This function is called the backwards trans-
lation associated witkb.
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Definition 13 (The Backwards Translatioh?). Letd be alMSOL(c)-formulaand let
® be ar-o-translation scheme. The formulg is defined inductively as follows:

(i) For6 of the formx; = Xp, 04 is defined ax; = X2 A @(X1) A @(X2).

(i) For R € o andd ofthe formR; (X, ..., Xm), 0 isdefined ag; (Xq, . .., Xm) A
Ni (%)

(iii) For a set variableU and a first-order variablg, if 6 is U(y), thenf8y is
U (y) A ¢(y). Note that in our notatiobl (y) is the same ag € U.

(iv) For the boolean connectives, the translation distributes, i@isibf the form
(61 V 02), thenby, is defined aghy, V 02,) and if6 is —6;, thendy, is —64,,, and
similarly for A.

(v) For the existential quantifier of first-order variables, we use relativization, i.e.,
if 6 is of the form3y6, thenby, is defined asdly(¢(y) A 01,).

(vi) Forthe existential quantifier of a set variaklethe translation distributes, i.e.,
if 6 is of the form3U 6, thendy, is defined agU (6,,,).

(vii) The function®*: MSOL(c) —> MSOL(7) is defined by®*(©) = 0¢ A 6,,
whered, is the relativization of the free set variableséinsay X, ..., X,
defined by

0, = /\ YYXi(y) = o).

1<i<l

If & is quantifier free, then (singg is logically equivalent térue) ®(0) = 0.
From Definition 13 it follows that:

Observation 14. Foreachtranslation schemk, ®*(9) € MSOL provided € MSOL
If ® is quantifier freethen®?(9) has the same quantifier depth@s

The following fundamental property of translation schemes follows from the above
definitions.

Theorem 15[EF]. Let ® = (¢, ¥1,..., ¥m) be art-o-translation schemelet A

be at-structure such thatb*(A) is definedand letd(vy, ..., vn, X1, ..., X)) be an
MSOL(c)-formula having n free first-order variablasg, ..., v, and| free set variables
X1, ..., X;. Then for every assignment z to the free variableg sfich that for every

element a= z(v), A = ¢(@), 1 <i < n, and for every element & z(X;), A = ¢(b),
1< j =<I,we have that

(A, 2 EP*O)@1, ..., vn, X1,..., X)) <= @*(A), 2 =0@1, ..., vn, X1, ..., X).

With a translation schemé we can also naturally associate a functid® from
LINEMSOL(o) problems tdLinEMSOL(z) problems.

Definition 16 (The Backwards Translatioh”). Let P be aLinEMSOL(o') optimiza-
tion problem given by, theMSOL(o) formulad (Xy, ..., X;) having free set variables
X1, ..., X, the (possibly negative) constar{es; }, andm (the number of evaluation
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functions). Let® be ar-o-translation scheme.

(i) The optimization problemPy is defined by, the MSOL(r) formula
®*(B(X4q, ..., X)) having free set variableXy, ..., X| (the same as of),
the constantga;; }, andm (the number of evaluation functions).

(i) The function®?: LINEMSOL(c) — LINEMSOL(7) is defined byd% (P) =
Po .

Theorem 17. Let P be a LINEMSOlos) optimization problemlet ® = (g,
Y1, ..., ¥m) be ar-o-translation schemend let.A be az-structure such tha®*(A)

is defined Then an assignment z realizes a solution to the probiéiP) on A with
evaluation functionsf ..., f, if and only if z realizes a solution to the problem P on
®*(A) with evaluation functions;f ..., f restricted to the domain ab*(A).

Proof. Letd(Xy,..., X)) be theMSOL(c) formula used in the definition d?, and let
zbe an assignment which realizes a solution to the proldérP) on.A with evaluation
functionsfy, ..., fn. Then the following condition holds:

Y ajlzXnl =Maxi Y ajlZ(Xlj: (4, 2) E PO (X, ..., X)
1<i<l 1<i<l
lgjlgm 1§j|§m

By the above conditionitfollows that, for every elemant z(X;),1<i <|,A4 &= ¢(a).
Thus, from Theorem 15:

Maxy > aZ(X)lj: (A.Z) S (O)(X1..... X))

1<i<l
1<j<m

=Max{ > a;|Z/ (X))l (@*(A).2') EO(Xe. ... X)

1<i<l

l<j<m
Hence,z realizes a solution to the problef on ®*(A) with evaluation functions
f1, ..., fm restricted to the domain ab*(A). The other direction follows by a similar
argument. O

2.4. The Modular Decomposition of;fSparse Graphs

A setM of vertices of a graplt is called amoduleof G if every vertex outsideM is
either adjacent to all vertices M or to none of them. A modul# is calledstrongif
for any moduleM; eitherM N M; = @ or one module contains the other. Tiedular
decompositiorof a graphG is based on a tree denoted ByG). The nodes off (G)
are (in one-to-one correspondence with) the strong modul&sasfd a moduleM is a
descendant of modul’ in T (G) iff M € M’. Consequently the leavesBfG) are the
vertices ofG and the strong module corresponding to a node(@) consists of all leaves
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of T(G) that are descendants of that node. Each internal node is labeledS®)or N,
as explained in Proposition 18. It can be shown Th@g) is unique up to isomorphism.
More details on how the tréB(G) is constructed can be found in [GV], [BM], and [CH].
Let h be an internal node of (G). We denote byM (h) the module corresponding
to h which consists of the set of vertices Gf of the subtree o (G) rooted ath. Let
{hy, ..., h'} be the set of sons df in T(G). We denote byG(h) = (V(h), E(h)) the
representative grapbf the moduleM (h) defined byV (h) = {hy, ..., h.} and

E(h) = {(hi, hj) | Fu, v(u € M(hi) Av e M(h;) A (U, v) € E)}.

Note that by the definition of a module, if a vertex Mf(h;) is adjacent to a vertex of
M (h;j), then every vertex oM (h;) will be adjacent to every vertex &fl (h;).

The modular decompositioM (G) of G is the pair consisting off (G) and the
mapping that associates with each nddef T (G) the graphG(h) (which is actually
isomorphic to a subgraph @&).

Itis clear thaiG can be reconstructed froM (G). In particular, the vertices @ are
the leaves off (G) and there is an edge betweeandy iff x andy have ancestosand
h” which are sons of a same nddeand such that andh’ are linked by an edge iB (k).
This definition is expressible by a translation scheme taking as ihglj augmented
with the edges oE (h) for each internal nodk.

From the construction of (G) it follows that:

Proposition 18. Let G be any graph and let h be an internal node @¢6J). If G (h) is
a complete graphthen h is labeled 3f G (h) is edgelesghen h is labeled Potherwise
h is labeled N

Recall that the neighborhodtkigh(v) of a vertexv of G is defined as the set of vertices
of G adjacent ta, i.e.,Neightv) = {u|(u, v) € E}.

Definition 19 (Prime Spider). A graple is aprime spiderif the vertex set ofc can
be partitioned into setB, K, andR such that:

(i) D is a stable set (i.e., no two vertices Ihare adjacent)K is a clique and
IDI=IK|=2.

(i) R contains at most one vertex, i.eR| < 1, and if R contains one vertex say
r, thenr is adjacent to all the vertices iI§ and is not adjacent to any of the
vertices inD.

(iii) There exists abijectiorf betweerD andK such that eitheleighx) = { f (x)}
for all verticesx in D or elseNeighx) = K — {f(x)} for all verticesx
in D.

The triple(D, K, R) is called thespider partitionof G.

Note that the edge-complement of a prime spider is also a prime spider. The following
proposition is from [GV] based on [JO3]:

Proposition 20. Let G be a R-sparse graph and let h be an internal N-node ¢G).
Then Qh) is isomorphic to a prime spider
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The following proposition is from [GRT]:

Proposition 21[GRT]. Let G be a R-tidy graph and let h be an internal N-node of
T(G). Then Gh) is either isomorphic to a prime spideo a cycle of five verticessC
to a path of five verticessPor to the edge-complement of a path of five vertiegs

The following proposition is from [BO]:

Proposition 22[BO]. Let G be a(q, q — 4) graph and let h be an internal N -node of
T(G). Then Gh) is either isomorphic to a prime spider or to a graph with at most g
vertices

3. Linear Algorithms for Optimization Problems on P4-Sparse Graphs

Our concern in this section is to reduce an optimization problem Bpgparse graph
G to one (of the same logical structure) bh(G), efficiently solvable. We thus need an
efficient presentation of modular decompositionsPefsparse graphs. A first obvious
presentation, is to take(G) and to add the edges of the sEté) (perhaps with a special
marking to distinguish them from those ©{G)). However, these graphs will have too
many edges. Our objective is to obtain graphs with “few edges”, namely, gattieds.
For the notion of partigk-tree see, e.g., [Bod2].

If a nodeh of T (G) is anS-node, we mark it as such, and we omit the edges linking
its sons. The marking will indicate the existence of the missing edges, and will be used
by a translation scheme which translatd$G) into G. If G(h) is a prime spider, we
present it by some colors and very few edges as indicated in the next definition. We
considerP,-sparsep-graphs, i.e.Ps-sparse graphs with vertices labeled in 1, p.

Definition 23 (The 2-Tree Modular Decomposition &f: 2-treeG)). Let G be aPs-
sparsep-graph. We denote by 2-tré8f the 2tree modular decomposition of &on-
structed fronT (G) by adding more edges and labeldt@5) according to the following
rule:

— Let h be anN-node ofG, let G(h) be the representative graph lofwhich is
isomorphic to a prime spider by Proposition 20, and 2{ K, R) be the spider
partition of G(h). Then:

e For every vertexx in D add toT (G) the edge(x, f(x)), where f is the
bijection fromD to K defined in Definition 19.

o If Neighix) = {f(x)} for all verticesx in D mark theN-nodeh of T(G) as
a redN-node. Otherwise, mark as a blackN-node.

e For every vertex in D add a yellow label tox. For every vertey in K add
a blue label toy. For the one vertex in R (if it exists) add a white label to.

It is easy to see that:

Fact 24. For every R-sparse p-graph G2-tree() is a partial 2-tree
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Let G be ap-graph. Recall that the vocabulaty, consists of a binary relation symbil
and afinite set of unary predicate symbdls . . ., U, used to label the vertices of tie
graph. In order to present the graph 2-tf@gds a logical structure we use the vocabulary
71, p+10 Which hasp + 10 unary predicate symbals;, . .., Up;io such that)y, ..., U,
are used to label the leavesB{G) in the same way as the vertices of theyraphG,
andUerla e Up+10: are denoted bProot» PIeafa PSa PP’ PN» Pred» Pblack» Pblue» Pye”OW!
and Pyhite, respectively.

The meaning of the last ten unary predicates mentioned above is as follows:

— Poot(X) is true if and only ifx is the root of 2-tregg). Note that using this
predicate we can express thids an ancestor af in T (G) or vice versa although
T(G) is presented as an undirected graph over the vocabtilatyio.

— Pear(X) is true if and only ifx is a leaf of the tred (G).

— Ps(x) (resp.Pp(x), Pn(X)) is true if and only ifx is anS-node (respP-node,
N-node) of the tred (G).

— Pred(X) (resp.Poiack(X), Poiue(X), Pyellow(X), Punite(X)) is true if and only ifx is
marked red (resp. black, blue, yellow, white) in 2-ti@(

Remark. Some vertices may satisfy more than one of the ten unary predicates de-
fined above. Hence, a graph presented aygr.1o may have vertices with more than

one label. Since we require that labeled graphs have at most one label for each vertex,
we can easily extend; ;10 by adding more unary predicates, such that each ver-
tex will have at most one label. For simplicity we do not specify this extension of

T4, p+10-

Theorem 25. Let p be any integeflhere exists a translation schenbe such that for
every RB-sparse p-graph G we hav®] (2-tre€(G) (11, p+10)) = G(t1,p).

Note that= denotes isomorphism of logical structures. Theorem 25 states that there
exists anMSOL translation scheme which reconstructs the origirabparse grapls

from its partial 2-tree presentation. The proof follows immediately from the definition
of 2-tregG).

Proposition 26. Let G = (V, E) be any R-sparse p-graphThen2-treeG) can be
constructed in Q|V| + |E|) time

Proof. Let G be aP4-sparsep-graph. In [GV] it is shown how to constru@i(G) in
O(IV|+ |E|) time. From Definition 23 it is easy to see that 2-t@g¢an be constructed
from T(G) in time linear in the number of nodes ®fG). However, since the number
of nodes ofT (G) is O(|V]) (as proved in [Spi]), we get that the total construction of
2-treeG) takesO(|V| + |E|) time. O

The following theorem is from [Coul], [CM], and [ALS] using the linear time
algorithm (see [Bod1]) for constructing tree-decompositions of pdeitetes.
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Theorem 27. Let p and k be fixed integerSvery LInEMSONr1 ) optimization prob-
lem on the class of partial k-trees can be solved i\Q) time and the corresponding
algorithm can be derived constructively from its LInEMS@L,) definition

Theorem 27 holds also for the richer logical languages basegl. diote that Theorem
27 has two different proofs, one of [Coul] and [CM] and the other of [ALS], which
construct different algorithms for solvirgnEMSOL(r1 ) (and alsdLinEMSOL(t3 ))
problems on the class of partiaitrees. We will show that:

Theorem 2. Let p be a fixed integeEvery LINEMSOlzy, ) problem on the class of
Ps-sparse p-graphs can be solved in tim&|®@| + |E|) and the corresponding algo-
rithm can be derived constructively from its LInEMS®@L,,) definition If the modular
decomposition of the graph is given as inghen the running time of the algorithm is
O(VD.

Proof. Let P be aLinEMSOL(r; ) optimization problem on the class &%-sparse
p-graphs which is expressed as follows: giveRsasparsep-graphG presented over
71, p, @andm evaluation functionsfy, ..., fm, find an assignmerz to the free variables
in 6 such that

Y ajlzXly =Maxi Y ajlZ(Xlj: (G(rap). Z) E (X, ..., X)

1<i<l 1<i<l
1<j=m 1<j=m
whered is anMSOL(t, ) formula having free set variables,, ..., X|, and{ajj: 1 <

i <I, 1< j < mjare (possibly negative) integers. Recall that for an assignmasit
above we say that it realizes a solution to the probReom G with evaluation functions
fl, ey fm.

We solve the problen® in O(|V| + | E|) time by the following algorithm:

(i) Check whether the inpyp-graphG is a Ps-sparse graph using the algorithm
of [GV]. If G is not aP4-sparse graph stop with a “not legal input” answer.

(if) Construct 2-treeG) and present it over; p1o.

(iif) Use the algorithm of [CM] or the algorithm of [ALS] (Theorem 27) to find
an assignment to the free variables irtbi(e) which realizes a solution to
the problem@f(P) on 2-tree(z) with evaluation functionsfy, ..., fn. By
Theorem 2505 (2-tregG)(t1,p+10)) = G(r1,p). Hence, from Theorem 17 it
follows thatz also realizes a solution to the probléPnon G with evaluation
functionsfq, ..., .

Step (i) can be done iI®(|V| + |E|) time as established in [GV], and by Proposition
26 step (ii) can be done i@ (|V| + |E|) time. By Fact 24 and Theorem 27 step (iii) can
be done inO(|V ) time, since the number of nodes and edges in 2@g& O(|V]).
Hence the running time of the algorithm@(|V | + |E|). If the modular decomposition
T(G) of G is given as an input, then the running time of the algorith®{$V ), since
step (i) is given as input and step (ii) can be don®i@V|) time. O
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4. Linear Algorithms for Optimization Problems on Graphs of
Bounded Clique-Width

4.1. Graph Operations and Clique-Width

For p-graphsG, H such thatG = (V, E, V1, ..., V,) andH = (V' E', V], ...,V,;)
andV NV’ = ¢ (if this is not the case then replatk with a disjoint copy ofH), we

denote byG @ H the disjoint union ofG andH such that
GOoH=(VUV,EUE,V1UV},...,\VpUV,).

For ap-graphG as above we denote by j (G), wherei # j, the p-graph obtained by
connecting all the vertices labeléedo all the vertices labeleflin G. Formally:

ni,j(G) = (V,E', Vq, ..., Vp), where E'=EU{(u,v): ue Vi, veV}

For ap-graphG as above we denote by_, ; (G) the renaming of into j in G,i # j,
such that

pl—)j(G) = (Va E7 Vjia M) V';>’

where V=@, V/=VjUVi, and V;=Vq for q#i,j.

These graph operations have been introduced in [CER] for characterizing graph gram-
mars. For every vertexof a graphG andi € {1, ..., p}, we denote by(v) the p-graph
consisting of one vertex labeled byi.

Example 3. A clique with four verticesu, v, w, X can be expressed as

p2-1(11.2(2(U) ® p2-1(11.2(2(V) B p2-1(1N1.2(1(w) B 2(X))))))).
Note the “temporary use” of the label 2.

With every p-graphG one can associate an algebraic expression built using opera-
tions of the three types mentioned above which defiae®ve call such an expression
a k-expression defining, if all the labels in the expression arefih, ..., k}. Clearly
k > p. Also, for everyp-graphG, there is am-expression which defings, wheren is
the number of vertices db.

Definition 28 (Clique-Width). LetC(k) be the class op-graphs which can be defined
by k-expressions. Thelique-widthof a p-graphG, denotedcwd(G), is defined by
cwd(G) = Min{k: G € C(k)}.

The clique-width is a complexity measure on graphs somewhat similar to treewidth,
which yields efficient graph algorithms provided the graph is given witk-&gpression
(for fixed k). A related notion has been introduced by Wanke [Wan] in connection with
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graph grammarg:(1) is the class of edgeless graphs. The grapldg2 are exactly the
cographs, see [CQ]. They are definable from isolated vertices, land the produa®
defined as

G ®H = p2.1(11,2(G & p1-2(H))).
Trees have clique-width at most 3 (see [CO]).

Problem 29. Find a characterization of graphs of clique-width at modt > 3.
Do there exist polynomial time algorithms for recognizing the clagsks k > 4?

A polynomial time algorithm for recognizing the claS&3) is presented in [CHE].

Lemma 30. A p-graph with an underlying unlabeled graph of clique-width at most k
has clique-width at most pk.

Proof. (Sketch). Let be ak-expression for the underlying unlabeled graph. @
denote the label if1, ..., p} of vertexv. A labeli used in the subexpressiofv) of t

is replaced byi, c(v)). Of course pairsi, j) can be coded as integer labels between 1
andp * k in such a way that labels 1. ., p correspond to pairél, 1), ..., (1, p). The
additional informatiorc(v) can be maintained in the edge creations (p@perations)
and label renamings (i.eo,0perations). Thus an edge creation will be replaceg by
edge creations, in order to handle the additional labels. O

4.2. P4-Tidy Graphs are of cwek 4 and(q, g — 4) Graphs are of cwd< q

Let G andH be two disjoint graphs and letbe a vertex ofc. We denote byG[H /v]
the graphK obtained by the substitution i@ of H for v. Formally,V(K) = V(G) U
V(H) — {v} and

E(K) = E(H) U {e: e e E(G) andeis not incident withv}
U{(u, w): ue V(H), w e V(G) andw is adjacent taw in G}.

Proposition 31. For all disjoint graphs G H, and for every vertexv of G,
cwd(G[H /v]) = Max{cwd(G), cwd(H)}.

Proof. Letq = Max{cwd(G), cwd(H)} and leth andg be g-expressions definingl
andG, respectively. Sincél is an unlabeled graph, it can be considered as a 1-graph
such that all vertices ofl are labeled by 1. Hence thipexpressiorh finally renames

all labels into 1. They-expressiorg must contain a unique subexpression of the form

i (v) corresponding to the initial label af in the construction of5. By induction on
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the structure ofj, it can be shown that thg-expression obtained by replacinggrthe
subexpression(v) by theg-expressiorp; . (h) definesG[H /v]. We have shown that
cwd(G[H/v]) <q.

If cwd(G[H/v]) < q, then there is ay;-expressionf defining G[H/v], where
01 < g. From f we can extract aj;-expression foiG by taking all the vertices of
V(G) — {v} in f and taking one vertex of corresponding to a vertex ¢ (chosen
arbitrarily) and omitting all the other vertices occurringfinHere by omitting a vertex
u from an expressioh we mean: replacg(u) in t with ¢ then replace every (%) and
everyn(¥) subexpression dfwith @, and finally replace a subexpression of the form
? @ty orty @ 0 with ty.

Likewise we can extract fronfi a g;-expression foH by taking only the vertices
of f corresponding to vertices ¢1 and omitting all the other vertices. It follows that
Max{cwd(G), cwd(H)} = q; < g, a contradiction. O

Recall that for any graplc we denote byT (G) the tree obtained by the modular
decomposition ofG and for each internal node of T(G) we denote byG(h) the
representative graph afdefined in Section 2.4.

Proposition 32. For every graph Gecwd(G) = Max{cwd(H): H is a representative
graph of an internal node h in the modular decomposition ¢f G

Proof. Using vertex substitutions we can build an expression which de@inéy the
following procedure. Let be the root ofT (G) and letR denote the singleton having

one vertex . Start by the expressioR[G(r)/r], substituting the representative graph
G(r) for the single vertex of R. Then scarm (G) in pre-order and whenever an internal
nodeh is reached substitut€[G(h)/ h], i.e., substitutés (h) for h, whereK is the graph
defined by the sequence of substitutions made so far. From the definitions of modular
decomposition and representative graphs, it follows that the expression constructed by
the above procedure defines the graphas a sequence of substitutions starting from
the singletonR. The claim follows from Proposition 31, sinasvd(R) = 1 and all

the graphs substituted in the expression constructed above are representative graphs of
internal nodes appearing T(G). O

Proposition 33. For every prime spider Gewd(G) < 4.

Proof. Let G be a prime spider and l€D, K, R) be the spider partition 0&. Let

D ={dy,...,dn}, letK = {kq, ..., kn} and letR = {r}. By the definition of a prime
spider eitheNeighid;) = ki or Neightd;) = K — {ki}, for 1 < i < m. In what follows
we assume thatleighd;) = K — {kj}, for 1 < i < m (the other case can be handled
similarly). For 1< i < m, lett; be the expression defined by the following inductive
definition:

(i) t1 = 2(k1) @ 1(dy),
(i) t = p3-1(0a-2(12,4(N1,4(12,3(3(dh) © 4(k) Dti_1))))).
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Let2<i <m,letDj ={dy,...,d},andletK; = {kq, ..., k}. We show by induction
oni that the expression defines the 2-graph which is the subgraphGoinduced by
D; U K;j, such that all the vertices iD; are labeled by 1 and all the vertices kq
are labeled by 2. The claim trivially holds for= 2. Assume that the claim holds for
i = j —1,t is constructed frony_; by adding the two verticedj andk;, labeling them
by 3 and 4, respectively, and then adding edges as follows:

— Add edges between all the vertices labeled 3 to all the vertices labeled 2. This
will add edges connecting to all the vertices irK;_1, which by the inductive
hypothesis all have label 2.

— Add edges between all the vertices labeled 4 to all the vertices labeled 1. This
will add edges connecting to all the vertices irD;_;, which by the inductive
hypothesis all have label 1.

— Add edges between all the vertices labeled 4 to all the vertices labeled 2. This
will add edges connectinlg to all the vertices irK;_1, which by the inductive
hypothesis all have label 2.

Then as a last step all the vertices labeled by 4 ;¢ are relabeled with 2 and all the
vertices labeled by 3 (i.ed;) are relabeled with 1. Clearly, all the vertices Df are
labeled with 1 and all the vertices &f; are labeled with 2. By the inductive hypothesis
t;_, defines the subgraph &finduced byD; _; UK;_;. Since the subgraph & induced
by Dj U K; can be obtained from the subgraph@®fnduced byD;_1 U Kj_1, by adding
edges according to the above rules, we conclude that the claim holds alse=fgr
Hence the expressidp defines the subgraph & induced byD UK. G can be obtained
from its subgraph induced by U K by adding the vertek and connecting it to all the
vertices inK. This can be done by the following expressigin

0 = p2—1(p3-1(12,3(3(r) @ tm))).

The claim of the proposition follows singgis a 4-expression which defin€s O

Proposition 5. (g, g — 4) graphs and R-tidy graphs have cliqgue-width at most g and
4, respectivelyand for each(q, q — 4) (P4-tidy) graph G, a g-expressioii4-expression
defining it can be constructed in@@/| + |E|) time

Proof. We prove the proposition fdP,-tidy graphs. The proof fo(q, g — 4) graphs

is along the same lines using Proposition 22 instead of Proposition 2G betaP;-
tidy graph and lefl (G) be the tree obtained by the modular decompositio® 0By
Proposition 32, in order to show thatvd(G) < 4 it suffices to show that, for each
internal nodeh of T (G), cwd(G(h)) < 4, whereG(h) is the representative graph lof

in T(G). If his aP-node §&node), therG(h) is an edgeless graph (a clique), and has
cligue-width equal to 1 (2). Ih is anN-node, then by Proposition 2&(h) is either a
prime spider, a cycle of five vertic&s, a path of five vertice®s, or its complemenPs.
SinceCs, Ps, andPs havecwd < 4, and prime spiders hawsvd < 4 by Proposition 33,
we have shown thatwd(G) < 4. A 4-expression defininG can be constructed in linear
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time as follows:

(i) Construct the modular decomposition @f T(G) in time O(|V| + |E|) as
shown in [GV].

(i) From the modular decompositioh(G) construct an expression consisting of
a sequence of vertex substitutions which defiGeas follows from the proof
of Proposition 32. Since the number of verticeSi(G) is O(|V|) (as proved
in [Spi]), this step can be done in tin@(|V| + |E]).

(iii) Convert the expression of vertex substitutions obtained in the previous step, to
a 4-expression foG as follows from the proof of Proposition 31. This step can
be done in timeO(|V| + |E|), since each graph used in the substitutions
is either an edgeless graph, a cliqueCscycle, aPs path, its complement
Ps, or a prime spider for which a 4-expression can be constructed in time
O(IV(H)| + |[E(H)]) as can be shown easily for the first five cases and as
shown in the proof of Proposition 33 for the case of prime spiders. O

4.3. The Feferman—Vaught Theorem

In the proof of Theorem 4 we use a version of the Feferman—Vaught theorem [FV]
adapted taMSOL It is not clear who observed first that this adaptatiotMBOL is
true, but it is already in [AU1] and [She] and follows from [Fef] and [Ehr]. For a good
exposition, see [Gurl] and [Gur2].

We review some notation from [CM].

Definition 34. Let A be ar-structure, letA be the domain of4, and lety be an
MSOL(r)-formula with free set variableXy, ..., X,. We denote bysat(A4, ¢) the set
of n-tuples of subsets oA for which ¢ holds in.A. Formally:

Sat(As (p) - {(Dl7 AL ) Dn) DI g Aﬂ (Av Dla LICICN ) Dn) ': QD(Xl» LECIO ) Xn)}.

The following is a special case of a classical result, for example, see [EF].
Lemma 35. Let p, h, and n be fixed nonnegative integerien there are finitely many

MSOL(t1, p)-formulas with free variables ifiXy, . .., Xn} of quantifier depth< h in the
language expressing properties of p-grapig to tautological equivalence

Lemma 36. For each p each operation fe {pi_j,nij:i,j € {1,...,p}hLi # j}

over p-graphs can be expressed by a quantifier free translation scieime, ®* = f.

Hence for every MSOLr, ) formulag, and for every p-graph G presented owgry,
sat( f (G), 0) = sat(G, ®°(0)).

Proof. Immediate from the definitions @f_,;, andn; ; and Theorem 15. O

For any setD we denote byP(D) the power set oD, i.e., the set of all subsets &f.
Let E, F be two subsets dD suchthaENF =@, let A C P(E)", and letB € P(F)"
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(we call suchA andB separatell We defineA X B by
AXB={(D,UDj,...,DpUD)): (Dy,...,Dn) € A, (D},..., D)) € B)}.

Theorem 37(Feferman—Vaught foMSOL). For each p and for every MSQ@t; )
formulad with free variables X, ..., Xn, two lists of MSOlzy ) formulasgs, . . ., ¢m
andv, ..., ¥m can be constructed such that all the formulas have the same free vari-
ables a® and have quantifier depth no larger than the quantifier depth, @nd, for
every two p-graphs G and H presented ovgp such that MG) NV (H) = 4,

satG @ H.0) = | ] saliG, ¢) Ksat(H, ).

1<i<m

Proof. Immediate reformulation of the result by Feferman—Vaught as discussed in
[Gur2]. The result can also be proved directly using pebble gameéd$aL O

A more sophisticated construction where the union is disjoint can be derived asin Lemma
2.4 of [CM] but is not needed here.

4.4. The Linear Time Algorithms
The main ideas for proving Theorem 4 are as follows:

() If G is a graph defined by k-expressiorng, then the sesat(G, ¢) can be
computed by induction on the structure ggfwith the help of auxiliary sets
sat(G’, ), for finitely many formulagy, and finitely many graph&’ where
the graph<s’ are defined by subexpressionsggoHere we use the Feferman—
Vaught theorem (see Theorem 37) and Lemma 36.

(i) Avalue h(sat(G, ¢)) can be computed by the same inductiorgowhereh is
a homomorphism (in some sense as defined below).

(i) LinEMSOLl(ry, ) problems fall in the framework of computirtysat(G, ¢))
for well-chosen functionk.

LetG be agraph, lef, ..., f,, bemevaluation functions associating integer values
to the vertices 065, let D4, ..., D} € V(G), and let

h(Dy,..., D) = Z aj|Dilj,

1<i<l
1<j<m

where{a;: 1 <i <I, 1 < j < m} are any integers, and; |; (see Section 2.2) is a
short notation foiy_, _p, fj(a). ForA < P(V(G))', let

Max_h(A) = Max{th(D4, ..., D)): (Dq,..., D)) € AL
Itis clear that, for separatetl and B,

Max h(AX B) = Max h(A) + Max h(B) (1)
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and, for general andB,
Max h(AU B) = Max{Max_h(A), Maxh(B)}. 2

From Definition 10 it follows that &inEMSOIL(t; ) optimization problem over a class
of graphsK can be formulated as the computatiodMzx_h(sat(G, 0)) for a given graph
G e K presented overy p, for fixed p, whered is a fixedMSOL(ry ) formula.

For eachk-expressiorg we denote byTreqg) the labeled tree corresponding to
g. The leaves offreqg) are the singletons iy (the basic graphs) labeled by their
initial label from {1, ..., k}, and the internal nodes direg(g) correspond to the op-
erations appearing ig. For each internal node of Treg(g), we denote byGraph(x)
thek-graph defined by thk-expression corresponding to the subtredrel(g) rooted
atx.

We are now ready to prove Theorem 4, which we restate for convenience.

Theorem 4. LetC be a class of p-graphs of cligue-width at mostCkc C(k), such
that there is atknown O(f(|E|, |V|)) algorithm, which for each p-graph G irC,
constructs a k-expression definingTien every LINEMSQ(z;, ;) problem orC can be
solvedintime @f (|E|, |V])). A corresponding algorithm can be effectively constructed
from the logical formula describing the problerand the parsing algorithm for the
class

Proof. LetP be aLinEMSOL(r; ) optimization problem over a class pfgraphsC <
C (k). As mentioned above can be formulated as the computatioMzdx h(sat(G, 6))
for a givenp-graphG e C presented ovet, . SinceG € C there is &k-expressiorg
which definess. By Lemma 36 and Theorem 37, the computatioMaik_h(sat(G, 6))
can be done as follows:

(i) TraverseTregg) from top to bottom starting from the root assigning formulas
to the internal nodes of the tree according to the following rules:
(a) Assign to the root the formula
(b) Letyy, ..., ¢ betheformulas assignedto aninternal netg this process.
If x corresponds to a unary operation of the fosm ; or #; j, then use
Lemma 36 to obtain formulag,, . . ., ¢, such that, for i< i <I,

sat(Graph(x), ¢i) = sat(Graph(y), ¢/),

wherey is the son o in Treqg). Assign all these formulas tp

Otherwisex corresponds to the binary operatign In this case use
Theorem 37 to obtain 2sts of formulasy| ;, ..., ¢/ . andyy 1, ..., ¥/ .,
forl1 <i <, such that

satGraph(x), i) = |_J satiGraphu), ¢/ ;) IsatGraphv), ¥ ), (3)

1<j<m

whereu andv are the two sons of in Tree(g). Assign all they| ; formulas
tou and all they; ; formulas tov.
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(i) TraverseTreqg) from bottom to top and, at each nodend for each formula
¢ assigned to by the previous step, compubdax_h(sat(Graph(x), ¢)) as
follows:

— If x is a leaf computdax_h(sat(Graph(x), ¢)) directly.

— If x corresponds to a unary operation, 8&x h(satGraph(x), ¢)) =
Max_h(sat(Graph(y), ¢)), wherey is the son ofx, and¢’ is the formula
assigned tqy by the previous step.

— If x corresponds to the binary operatignthen using (1)—(3) compute
Max_h(sat(Graph(x), ¢)) fromthe two lists of valuedax h(sat(Graph(u),
(p]-/)), Max_h(sat(Graph(v), 1/;1-’)),for1 < j < m,whereuandv are the sons
of x in Tree(Q) and<pj/ andwj’ are the lists of formulas assignedu@ndv
by the previous step, respectively.

Also at each node and each formulg assigned tax keep one tuple of

sat(Graph(x), ¢) having the valudax_h(sat(Graph(x), ¢)).

The correctness of the above procedure follows from Lemma 36 and Theorem 37.

For the complexity, the total time for handling the input grapks O(f (|V|, |E))
for constructing th&-expressiom plus the total time for applying the above procedure.
First note that the size of the trdeee(g) is O(f (|V], |E|)). In step (i) of the above
process the number of formulas assigned to each node is bounded by a constant (which
does not depend on the size of the input gr&)lsince by Lemma 36, Theorem 37, and
Observation 14 all these formulas are of quantifier depth no larger than the quantifier
depth of9, and by Lemma 35 the number of such formulas is bounded (up to tautological
equivalence) by a constant which depends just on the sizeaofd p. Hence, in step
(i) the computation done at each node by the above procedure is bounded by a constant
(with the uniform cost measure), and the total time of the above procedure is bounded by
O(f V|, |E])). Note that ifx is a leaf, therGraph(x) is a singleton, which implies that
Max_h(sat(Graph(x), ¢)) can be computed in a time that does not depend on the size
of the input graphs, i.e., in constant time. Therefore the total complexity of handling
the input graptG is O(f (|V|, |[E|)) + O(f (V. |E) = O(f (IV[, |E]). O

Remark. Everyk-expression for a grap& = (V, E) can be transformed into la
expression defining of size O(]V]). This transformation can be done in linear time

by a tree transducer. Typically it will remove some redundancies or useless operation
symbols (like a renaming;_,; operation when there is no vertex label@d(In these
complexity considerationg,is fixed.) Thus we could assume in the above proof that the
size of Treg(g) is O(|V)).

5. Results That Do Not Extend toMSOL(1>)

In this section we show that Theorems 2 and 4 do not hold WieEMSOL(ty ) is
replaced byMSOL(t,). Clearly, if these theorems do not hold #dSOL(z;), then they

do not hold either for its extensiongSOL(t> ), LINEMSOL(t2), andLinEMSOL(t3 ;).

We prove Theorem 6 but to do that we need the following definitions and theorem due
to [Fag]. We denote by, the empty vocabulary, and we denote BT the class of
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finite structures ovety. We denote bysOL? the formulas irSOLin which there are no
function symbols, and the relation symbols are restricted to being either unary or binary.
Recall thatP; (NP;) denotes the class of languages over one letter (also called tally
languages), which are iR (NP). Note thatP = NP implies P, = NPy, but the other
direction is not known. Note also thRf = NP, iff EXPTIME = NEXPTIME (see

[Boo] and [Har]).

Definition 38 (SpectrumpBIN).

(i) Let Sbe a set of structures ovey. Sis aspectrumf there exists a formula
of the form3aXy, Xs, ..., Xjo, such that is first order, Xy, X, ..., X| are the
only free variables of, and, for every finite structurd overzy, A € Sif and
only if ¢ holds inA. In this case we say that the spectr&is definable by the
formulag.

(i) We denote byBIN the set of all spectra definable by formulas using only one
binary predicate symbol which presents a graph relation, i.e., a relation which
is irreflexive and symmetric. In other words a spectr8is in BIN if it can be
defined by a formulg of the form3Qo, whereo is first order, such thaf
is the only free variable ia, andQ is a binary predicate symbol presenting a
graph relation.

(iii) We observe thaBIN is included inP; iff for every spectrumSin BIN there
exists a polynomial time deterministic Turing machide such that given an
integern presented as a string in unary notation as an input (i.e., the length of
the input isn and not logn)), M accepts if and only if the structure IrSET
havingn elements is irS.

The following theorem is due to [Fag]:
Theorem 39. R = NP, ifand only if BINC P;.
We are now ready to prove Theorem 6 which we restate here for convenience.

Theorem 6. If P; # NPy, then there is an MSQk,) definable decision problem over
the class of cliques which is not solvable in polynomial time

Proof. Let.A be a structure iB8ET. We denote by 4 the clique corresponding td,
such that the number of elements in the domaitdafquals the number of vertices of
the cliqueK 4.

Recall (see Definition 8) thaR(t, x) holds if and only if the vertex is incident
with the edge. Lety be anSOL?(ty) sentence. We denote by theMSOL(t,) sentence
which is constructed froma by replacing every subformuld(x, y) whereU is a binary
relation symbol by the formula

U @) A R, X) AR, Y)).
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Sinceinaclique allthe edges between all pairs of vertices exist, each pair of vertiggs

can be identified by the unique edgéncident to bothx andy. Therefore, quantification

over pairs of vertices in cliques can be replaced by quantification over edges, as indicated
by the above formula which replaces the binary relation syroki@l y). Therefore, for

every structured in SETand evenySOI?(zy) sentence,

AE¢ < Ku) E= o

Assuming that, over the class of cliques, evBt8OL(t,)-definable decision problem
can be solved in polynomial time, we get tliBdN C P;. For, letSbe a spectrum iBIN,
then there is aB0L?(ty) sentence which definesS. By our assumption on the cliques,
there is a Turing machin®! which given an integen in unary presentation decides, in
time bounded by a polynomial im whetherK,,(z2) = ¢*. Hence, by the above equality,
the machineM decides in polynomial time in whetherA = ¢, wheren is the number
of elements inA. It follows thatS € P, and hence th&IN C P;. By Theorem 39 this
implies thatP; = NPy, a contradiction. O

Question 40. Can we still prove Theorem 6 if we replace the conditRin# NP; by
the conditionP # NP?
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