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Université Bordeaux-I,
33405 Talence, France
Bruno.Courcelle@labri.u-bordeaux.fr

2Department of Computer Science,
Technion – Israel Institute of Technology,
32000 Haifa, Israel
{janos,rotics}@cs.technion.ac.il

Abstract. Hierarchical decompositions of graphs are interesting for algorithmic
purposes. There are several types of hierarchical decompositions. Tree decomposi-
tions are the best known ones. On graphs of tree-width at mostk, i.e., that have tree
decompositions of width at mostk, wherek is fixed, every decision or optimization
problem expressible in monadic second-order logic has a linear algorithm. We prove
that this is also the case for graphs of clique-width at mostk, where this complexity
measure is associated with hierarchical decompositions of another type, and where
logical formulas are no longer allowed to use edge set quantifications. We develop
applications to several classes of graphs that include cographs and are, like cographs,
defined by forbidding subgraphs with “too many” induced paths with four vertices.

1. Introduction

The class ofP4-sparse graphs was introduced by Ho`ang in his doctoral dissertation [Ho`a]
as the class of graphs for which every set of five vertices induces at most oneP4 (by
a P4 we mean a path on four vertices). This class contains the class ofP4-reducible
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graphs introduced by Jamison and Olariu in [JO1], as the class of graphs for which
no vertex belongs to more than one inducedP4. These two classes contain the class of
cographs, and have been studied intensively in recent years. Such a study is motivated
by the practical applications of these classes in areas such as scheduling, clustering, and
computational semantics. In [JO1] and [JO3] a unique tree presentation is proposed for
the classes ofP4-reducible andP4-sparse graphs, respectively. These tree presentations
are used later in [JO4] and [JO2] to developO(|V | + |E|) time recognition algorithms
for these classes. In [JO5]O(|V | + |E|) time algorithms are proposed for solving five
optimization problems on the class ofP4-sparse graphs: maximum size clique, maximum
size stable set, minimum coloring, minimum covering by cliques, and minimum fill-in.
If the tree presentation of theP4-sparse graph is also given as input, then the running
time of these algorithms is justO(|V |) independently of the number of edges in the
graph. Jamison and Olariu conclude their paper with

Problem 1 [JO5]. Find other optimization problems which can be solved in linear time
on the class ofP4-sparse graphs.

Giakoumakis and Vanherpe in [GV] took up this line of research. They used the modular
decomposition of a graph to obtainO(|V | + |E|) time algorithms for the maximum
weight clique and for the maximum weight stable set problems in the case ofP4-sparse
graphs, and for the optimal weighted coloring and for the minimum weight clique cover
problems in the case ofP4-reducible graphs. If the modular decomposition of the graph
is given as input, then the running time of these algorithms is justO(|V |).

Giakoumakis and Vanherpe also introduced in [GV] the classes of extendedP4-
sparse and extendedP4-reducible graphs, and showed how to extend their results to
these two classes of graphs, with minimal additional work.

Babel and Olariu introduced in [BO] the class of(q, t) graphs. A(q, t) graph is a
graph in which no set with at mostq vertices is allowed to induce more thant distinct
P4’s. Clearly, it is assumed thatq ≥ 4. The class of(q,q−4) graphs extends the class of
P4-sparse graphs. In particular(5,1) graphs are exactly theP4-sparse graphs and(4,0)
graphs are exactly the cographs.

Rusu, see [GRT], introduced the class ofP4-tidy graphs which extends the class of
extendedP4-sparse graphs. LetG be a graph and letX be an inducedP4. A vertexv
outsideX is apartner of X if X andv together induce twoP4’s. A graph isP4-tidy if
any inducedP4 has at most one partner.

In Section 3 we show that a wide class of decision and optimization problems on
the class ofP4-sparse graphs is solvable in timeO(|V | + |E|) or in time O(|V |) as-
suming that the modular decomposition of the graph is given as input. These problems
are characterized by their expressibility in certain variations of Monadic Second-Order
Logic, MSOL(τ1,p) (for decision problems) orLinEMSOL(τ1,p) (for optimization prob-
lems), the study of which was initiated by Courcelle and others in a sequence of papers
[Cou1], [Cou2], [Cou4], [Cou5], [Cou6], [CM], [ALS]. Roughly speaking,MSOL(τ1)

is Monadic Second-Order Logic with quantification over subsets of vertices, but not
of edges;MSOL(τ1,p) is the extension ofMSOL(τ1) by unary predicates representing
labels attached to the vertices.LinEMSOL(τ1,p) is the extension ofMSOL(τ1,p) which
allows one to search for sets of vertices which are optimal with respect to some linear
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evaluation function. The precise definitions are given in Section 2. A typicalMSOL(τ1)

decision problem isk-colorability for fixedk. The maximum weight clique and the maxi-
mum weight stable set problems areLinEMSOL(τ1,p) definable. The optimal (weighted)
coloring problem is notLinEMSOL(τ1,p) definable, see [Lau2].

A labeled graphis a graph with labels associated with its vertices, such that each
vertex has exactly one label. Ap-graph is a simple undirected loop-free labeled graph
with vertex labels in{1,2, . . . , p}. An unlabeled graph is considered as a 1-graph. In
Section 3 we show that:

Theorem 2. Let p be a fixed integer. Every LinEMSOL(τ1,p) problem on the class of
P4-sparse p-graphs can be solved in time O(|V | + |E|) and the corresponding algo-
rithm can be derived constructively from its LinEMSOL(τ1,p) definition. If the modular
decomposition of the graph is given as input, then the running time of the algorithm is
O(|V |).

Note that Theorem 2 also holds for any subclass of the class ofP4-sparse graphs, such
as the classes ofP4-reducible graphs and cographs.

For example, in the terminology and numbering of [GJ], all the following problems
areLinEMSOL(τ1,p) definable. So we have:

Corollary 3. The following problems can be solved in linear time on the class of P4-
sparse p-graphs(and any of its subclasses): vertex cover[GT1], dominating set[GT2],
domatic number for fixed k[GT3], k-colorability for fixed k[GT4], partition into cliques
for fixed k[GT15], clique[GT19], independent set[GT20], and induced path[GT23].

In Section 3 we prove Theorem 2 usingMSOL-translation schemes and their induced
transductions. The idea is to present a graphG by a tree built over some of its subgraphs
(and called its modular decomposition) and to transfer the considered optimization prob-
lems onG into optimization problems on its modular decomposition. Since the modular
decompositions ofP4-sparse graphs can be formalized as labeled partial 2-trees and can
be constructed in linear time, and sinceLinEMSOLoptimization problems have linear
algorithms on partial 2-trees (see [ALS] and [CM]), we obtain a proof of Theorem 2. The
basic tool here is theMSOLdefinable translation scheme, permitting a reduction of the
optimization problems from graphs to their modular decompositions, while preserving
theLinEMSOLexpressibility. Using similar arguments Theorem 2 can be extended to
the classes of(q,q − 4) graphs andP4-tidy graphs. It is proved in [EHPR] that the
so-called uniformly nonprimitive 2-structures which are certain directed graphs with
labeled edges, have polynomial decision algorithms for problems expressible inMSOL
without edge set quantifications. Cographs are isomorphic to a subclass of this class.
The proof method is the one we use for Theorem 2.

In Section 4 we extend Theorem 2 to the class of graphs of bounded clique-width,
first introduced by Courcelle et al. [CER]. We recall the notions of graph operations and
clique-width presented in [CO].

We use three types of graph operations onp-graphs denoted⊕, ηi, j , andρi→ j .
Informally, G1 ⊕ G2 is the disjoint union of thep-graphsG1 andG2, ηi, j (G) is the
p-graph obtained by adding toG undirected edges connecting all vertices labeledi to
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all the vertices labeledj in G, andρi→ j (G) is the p-graph obtained by changing all
the i labels to j labels inG. A formal definition of these graph operations is given in
Section 4.1.

With everyp-graphG one can associate an algebraic expression built using opera-
tions of the three types mentioned above which definesG. We call such an expression a
k-expression definingG, if all the labels in the expression are in{1, . . . , k}. Clearly,k is
greater than or equal top. Also, for everyp-graphG, there is ann-expression which de-
finesG, wheren is the number of vertices ofG. LetC(k) be the class ofp-graphs which
can be defined byk-expressions. The clique-width of ap-graphG, denotedcwd(G), is
defined bycwd(G) = Min{k: G ∈ C(k)}.

With these definitions we show:

Theorem 4. Let C be a class of p-graphs of clique-width at most k(i.e., C ⊆ C(k))
such that there is a(known) O( f (|E|, |V |)) algorithm, which, for each p-graph G inC,
constructs a k-expression defining it. Then every LinEMSOL(τ1,p) problem onC can be
solved in time O( f (|E|, |V |)). A corresponding algorithm can be effectively constructed
from the logical formula describing the problem, and the parsing algorithm for the class.

In the statement of Theorem 4 we must assume that we know an efficient parsing al-
gorithm, because none is known forC(k) in general (there exist polynomial algorithms
in special cases). Theorem 4 applies to any class of graphs of bounded clique-width for
which an efficient parsing algorithm exists. There are many such classes. For example,
the cliques, the cographs, and any class of graphs of treewidth at mostk. We show
that:

Proposition 5. (q,q− 4) graphs and P4-tidy graphs have clique-width at most q and
4, respectively, and for each(q,q−4) (P4-tidy) graph G, a q-expression(4-expression)
defining it can be constructed in O(|V | + |E|) time.

From Theorem 4 and Proposition 5, we get a second proof of Theorem 2. This proof
is based on graph operations and clique-width, and constructs algorithms for solving
LinEMSOL(τ1,p) problems onP4-sparse graphs, different from those constructed by the
first proof of Theorem 2 mentioned above. Although Theorem 4 subsumes Theorem 2,
we give a specific proof of Theorem 2 because it is more direct, hopefully usable in other
similar situations, and does not use the machinery of the Feferman–Vaught theorem used
in the proof of Theorem 4. Theorem 4 is interesting by its generality. Sections 3 and 4
can be read independently.

Courcelle and Mosbah [CM] also considered the logicsMSOL(τ2) andEMSOL(τ2,p)

(which are similar to the logics mentioned above, but with quantifications over sub-
sets of edges allowed). They showed that Theorem 2 can be extended also for all the
EMSOL(τ2,p)optimization problems on each class of graphs of tree width at mostk. How-
ever, our next result shows that this extension cannot be done forP4-tidy, (q,q−4), P4-
sparse, cographs, and all graph classes which contain the cliques, provided thatP 6= NP.

For (edge-)labeled graphs this is easy to see, since every graph can be presented as
a labeled clique with exactly the original edges labeled with a specific label. However, it
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is also true for unlabeled graphs, provided thatP 6= NP on unary languages. We denote
by P1 (NP1) the class of languages over one letter (also called tally languages), which
are inP (NP). In Section 5 we show that:

Theorem 6. If P1 6= NP1, then there is an MSOL(τ2) definable decision problem over
the class of cliques which is not solvable in polynomial time.

An extended abstract of this paper was presented in [CMR].

2. Background

2.1. Graphs as Logical Structures

In what follows, we use the termgraph for finite nonempty undirected graphs without
self-loops or multiple edges. We use the termlabeled graphfor graphs having labels
which are associated with their vertices such that each vertex has exactly one label. A
p-graphis a labeled graph with (vertex) labels in{1,2, . . . , p}. An unlabeled graphG
is considered as a 1-graph such that all the vertices ofG are labeled by 1.
The following are the two most common (labeled) graph presentations, for logically
oriented work:

Definition 7 (The Vocabulariesτ1 andτ1,p). We denote byτ1 the vocabulary{E} con-
sisting of one binary relation symbolE. For a graphG, we denote byG(τ1) the presen-
tation ofG as a logical structure〈V, E〉, whereV is the domain of the logical structure
which consists of the set of vertices ofG andE is the binary relation corresponding to
the adjacency matrix ofG.

We denote byτ1,p the vocabularyE,U1, . . . ,Up, where p is any fixed integer.
For a p-graphG, we denote byG(τ1,p) the presentation ofG as a logical structure
〈V, E,U1, . . . ,Up〉, whereV and E are the same as above, andU1, . . . ,Up are the
unary predicates corresponding to the labels of the vertices ofG.

Note that we use a vocabularyτ1,p for expressing properties of labeled graphs in general.
Such properties make no reference to labels larger thanp that may exist in the considered
graph.

Remark. Certain structures of typeτ1,p do not representp-graphs, either because the
predicatesUi do not form a partition of the domain, or becauseE is not symmetric
or both. A first-order formula can express that a given structure actually represents a
p-graph. We only considerτ1,p structures representingp-graphs without any further
notice.

Definition 8 (The Vocabulariesτ2 andτ2,p). We denote byτ2 the vocabulary{R, PE,

PV } consisting of one binary relation symbolR, and two unary relation symbolsPE, PV .
For a graphG, we denote byG(τ2) the presentation ofG as a logical structure
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〈V ∪ E, R, PE, PV 〉, where the domain of the logical structure consists of the set of
vertices and edges ofG, R is a binary relation, such that(e, v) is in R if and only if v
is a vertex ofG which is incident with the edgee of G, and PV (resp.PE) is a unary
predicate such thatv (resp.e) is in PV (resp.PE) if and only if v (resp.e) is a vertex
(resp. an edge) ofG.

We denote byτ2,p the vocabulary{R, PE, PV ,U1, . . . ,Up}, wherep is any fixed
integer. For an edge- and vertex-labeled graphG, we denote byG(τ2,p) the presentation of
G as a logical structure〈V ∪E, R, PE, PV ,U1, . . . ,Up〉, whereR, PE, PV are as above,
andU1, . . . ,Up are the unary predicates corresponding to the labels of the vertices and
edges ofG.

2.2. Monadic Second-Order Logic Decision and Optimization Problems

We recall that Second-Order Logic (SOL) is like first-order logic, but also allows variables
and quantification over relation variables of various but fixed arities. Monadic Second-
Order Logic (MSOL) is the sublogic ofSOLwhere relation symbols are restricted to
being unary. More details on the definition ofMSOLcan be found in [Cou7], [EF], and
[Pap]. For a set variableX and a first-order variableu, we denote byX(u) the atomic
formula indicating thatu ∈ X.

Graphs are a special case of finite structures. Therefore, before concentrating on
graphs, we start with the following definitions and facts concerning finite structures. In
what follows we are concerned only with finite structures, therefore whenever we use
the termstructurewe meanfinite structure. Let τ denote any vocabulary consisting of a
finite set of relation symbols, and letK be any class ofτ -structures. We denote byStr(τ )
the class of allτ -structures.

Definition 9 (MSOL(τ ) Decision Problem overK ). We say that a decision problem is
anMSOL(τ ) decision problem over Kif it can be expressed in the following form: given
aτ -structureA ∈ K doesA |= ϕ, whereϕ is a closedMSOLformula overτ , hold? Note
thatϕ andK are not part of the problem instance, which consists just ofA. In the case
where classK consists of allτ -structures,K = Str(τ ), we say that a problem which can
be stated as above is anMSOL(τ ) decision problem.

Example 1. The 3-colorability problem is anMSOL(τ1) problem, since it can be stated
as follows: given a graphG, presented as a logical structureG(τ1), doesG(τ1) |= ϕ,
whereϕ is the closedMSOL(τ1) formula defined by

ϕ≡∃X1, X2, X3(Partition(X1, X2, X3)∧IndSet(X1)∧IndSet(X2)∧IndSet(X3)),

wherePartition(X1, X2, X3) is defined by

Partition(X1, X2, X3) ≡ ∀v(X1(v) ∨ X2(v) ∨ X3(v))

∧ ¬∃u((X1(u) ∧ X2(u)) ∨ (X1(u) ∧ X3(u))

∨ (X2(u) ∧ X3(u))),
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andIndSet(X) is defined by

IndSet(X) ≡ ∀u, v((X(u) ∧ X(v)) −→ ¬E(u, v)),

hold? Let f1, f2, . . . , fm be m function symbols for some fixed integerm. For a set
variableXi and an assignmentz we use|z(Xi )|j as a short notation for

∑
a∈z(Xi )

f j (a).
We denote by|A| the cardinality of a finite setA.

Definition 10 (LinEMSOL(τ ) Optimization Problems overK ). We say that an opti-
mization problemP is a LinEMSOL(τ ) optimization problem over Kif it can be ex-
pressed in the following form: given aτ -structureA ∈ K , andm evaluation functions
f1, . . . , fm associating integer values to the elements ofA, find an assignmentz to the
free variables inθ such that∑

1≤i≤l
1≤ j≤m

ai j |z(Xi )|j = opt
{ ∑

1≤i≤l
1≤ j≤m

ai j |z′(Xi )|j : 〈A, z′〉 |= θ(X1, . . . , Xl )
}
,

whereθ is anMSOL(τ ) formula having free set variablesX1, . . . , Xl , opt is eitherMin
or Max, and{ai j : 1 ≤ i ≤ l , 1 ≤ j ≤ m} are any integers. Since the coefficientsai j

can be negative we only deal withMax: a minimization is obtained from a maximization
with negated coefficients. Note thatθ(X1, . . . , Xl ), K and the constants{ai j } are not
part of the problem instance, which consists just ofA and the evaluation functions
f1, . . . , fm.

For any assignmentz to the free variables ofθ which satisfies the above condition,
we say thatz realizes a solutionto the problemP on A with evaluation functions
f1, . . . , fm.

In the case where the classK consists of all theτ -structures,K = Str(τ ), we
denote aLinEMSOL(τ ) optimization problem overK shortly as aLinEMSOL(τ ) prob-
lem. Note that the syntax of everyLinEMSOL(τ ) problem is completely defined byτ ,
θ(X1, . . . , Xl ), the constants{ai j }, andm.

Example 2. The maximum weight clique problem is to find for a given graphG, with
weights assigned to its vertices, a cliqueC of G such that the total weight of the vertices
of C is maximum. This problem is aLinEMSOL(τ1) problem since it can be expressed as
follows: given a graphG presented as aτ1-structure,G(τ1), and one evaluation function
f1 associating integer weight values to the vertices ofG(τ1), find an assignmentz to the
free set variableX1 in θ such that

|z(X1)|1 = Max{|z′(X1)|1: 〈G(τ1), z
′〉 |= θ(X1)},

whereθ(X1) is defined by

θ(X1) = ∀u, v((X1(v) ∧ X1(u) ∧ u 6= v) −→ E(u, v)).
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Remark. EveryMSOL(τ ) decision problem can be expressed also as aLinEMSOL(τ ))
optimization problem. Thus, in what follows we are concerned only withLinEMSOL(τ )
optimization problems.

2.3. MSOL Translation Schemes and Transductions

In this section we define the notion of a translation scheme. The idea is to define a new
structure over vocabularyσ from a given structure over vocabularyτ by means of a
finite set of logical formulasϕ, ψ1, . . . , ψm overτ . The formulaϕ defines the domain
of the new structure and each relationRi of arity k of the new structure is defined by
the formulaψi with k free variables. This notion is called “interpretation” but we prefer
the word “translation” to focus on the syntactic nature of the definition. The classical
definition for First-Order Logic (see [EF]) is adapted forMSOL.

Definition 11 (Translation scheme8). Let τ and σ be two vocabularies, letσ =
{R1, . . . , Rm}, and letρ(Ri ) be the arity ofRi . Let 8 = 〈ϕ,ψ1, . . . , ψm〉 be MSOL
formulas overτ . We say that8 is well formed forσ over τ if ϕ has one free first-
order variable and no free set variables, and, for 1≤ i ≤ m, eachψi hasρ(Ri ) free
first-order variables and no free set variables. Such a8 = 〈ϕ,ψ1, . . . , ψm〉 is called a
τ -σ -translation scheme. If ϕ is true and eachψi is quantifier free,8 is calledquantifier
free.

In the following text we denote aτ -σ -translation scheme shortly as a translation
scheme ifτ andσ are clear from the context. With a translation scheme8 one can
naturally associate a (partial) function8∗ fromτ -structures toσ -structures. This function
is called a transduction fromτ -structures toσ -structures. For more general cases see
[Cou3], [Cou7], [Mak], and [EO].

Definition 12 (The Induced Transduction8∗). Let A be aτ -structure, let8 be aτ -
σ -translation scheme, and letA be the domain ofA. The structureA8 is defined as
follows:

(i) The domain ofA8 is the setA8 = {a ∈ A: A |= ϕ(a)}.
(ii) The interpretation ofRi in A8 is the set

A8(Ri ) = {ā ∈ Aρ(Ri )
8 : A |= ψi (ā)}.

Note thatA8 is aσ -structure of cardinality at most|A|.
(iii) The partial function8∗: Str(τ ) −→ Str(σ ) is defined by8∗(A) = A8. Note

that8∗(A) is defined if and only ifA |= ∃xϕ(x). In particular, if8 is quantifier
free, then8∗ is a total function.

With a translation scheme8 we can also naturally associate a function8] from
MSOL(σ )-formulas toMSOL(τ )-formulas. This function is called the backwards trans-
lation associated with8.
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Definition 13 (The Backwards Translation8]). Letθ be anMSOL(σ )-formula and let
8 be aτ -σ -translation scheme. The formulaθ8 is defined inductively as follows:

(i) For θ of the formx1 = x2, θ8 is defined asx1 = x2 ∧ ϕ(x1) ∧ ϕ(x2).
(ii) For Ri ∈ σ andθ of the formRi (x1, . . . , xm), θ8 is defined asψi (x1, . . . , xm)∧∧

i ϕ(xi ).
(iii) For a set variableU and a first-order variabley, if θ is U (y), then θ8 is

U (y) ∧ ϕ(y). Note that in our notationU (y) is the same asy ∈ U .
(iv) For the boolean connectives, the translation distributes, i.e., ifθ is of the form

(θ1∨ θ2), thenθ8 is defined as(θ18 ∨ θ28) and ifθ is¬θ1, thenθ8 is¬θ18 , and
similarly for∧.

(v) For the existential quantifier of first-order variables, we use relativization, i.e.,
if θ is of the form∃yθ1, thenθ8 is defined as∃y(ϕ(y) ∧ θ18).

(vi) For the existential quantifier of a set variableU , the translation distributes, i.e.,
if θ is of the form∃Uθ1, thenθ8 is defined as∃U (θ18).

(vii) The function8]: MSOL(σ ) −→ MSOL(τ ) is defined by8](θ) = θ8 ∧ θϕ ,
whereθϕ is the relativization of the free set variables inθ , say X1, . . . , Xl ,
defined by

θϕ =
∧

1≤i≤l

∀y(Xi (y)→ ϕ(y)).

If 8 is quantifier free, then (sinceθϕ is logically equivalent totrue)8](θ) = θ8.

From Definition 13 it follows that:

Observation 14. For each translation scheme8,8](θ) ∈ MSOL providedθ ∈ MSOL.
If 8 is quantifier free, then8](θ) has the same quantifier depth asθ .

The following fundamental property of translation schemes follows from the above
definitions.

Theorem 15[EF]. Let 8 = 〈ϕ,ψ1, . . . , ψm〉 be a τ -σ -translation scheme, let A
be aτ -structure such that8∗(A) is defined, and letθ(v1, . . . , vn, X1, . . . , Xl ) be an
MSOL(σ )-formula having n free first-order variablesv1, . . . , vn and l free set variables
X1, . . . , Xl . Then for every assignment z to the free variables ofθ such that for every
element a= z(vi ),A |= ϕ(a), 1≤ i ≤ n, and for every element b∈ z(Xj ),A |= ϕ(b),
1≤ j ≤ l , we have that

〈A, z〉 |=8](θ)(v1, . . . , vn, X1, . . ., Xl)⇐⇒ 〈8∗(A), z〉 |=θ(v1, . . ., vn, X1, . . ., Xl).

With a translation scheme8 we can also naturally associate a function84 from
LinEMSOL(σ ) problems toLinEMSOL(τ ) problems.

Definition 16 (The Backwards Translation84). Let P be aLinEMSOL(σ ) optimiza-
tion problem given byσ , theMSOL(σ ) formulaθ(X1, . . . , Xl ) having free set variables
X1, . . . , Xl , the (possibly negative) constants{ai j }, andm (the number of evaluation
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functions). Let8 be aτ -σ -translation scheme.

(i) The optimization problemP8 is defined by τ , the MSOL(τ ) formula
8](θ(X1, . . . , Xl )) having free set variablesX1, . . . , Xl (the same as ofθ ),
the constants{ai j }, andm (the number of evaluation functions).

(ii) The function84: LinEMSOL(σ ) −→ LinEMSOL(τ ) is defined by84(P) =
P8.

Theorem 17. Let P be a LinEMSOL(σ ) optimization problem, let 8 = 〈ϕ,
ψ1, . . . , ψm〉 be aτ -σ -translation scheme, and letA be aτ -structure such that8∗(A)
is defined. Then an assignment z realizes a solution to the problem84(P) onA with
evaluation functions f1, . . . , fm if and only if z realizes a solution to the problem P on
8∗(A) with evaluation functions f1, . . . , fm restricted to the domain of8∗(A).

Proof. Let θ(X1, . . . , Xl ) be theMSOL(σ ) formula used in the definition ofP, and let
zbe an assignment which realizes a solution to the problem84(P) onAwith evaluation
functions f1, . . . , fm. Then the following condition holds:

∑
1≤i≤l

1≤ j≤m

ai j |z(Xi )|j = Max


∑

1≤i≤l
1≤ j≤m

ai j |z′(Xi )|j : 〈A, z′〉 |= 8](θ)(X1, . . . , Xl )

 .
By the above condition it follows that, for every elementa ∈ z(Xi ), 1≤ i ≤ l ,A |= ϕ(a).
Thus, from Theorem 15:

Max


∑

1≤i≤l
1≤ j≤m

ai j |z′(Xi )|j : 〈A, z′〉 |= 8](θ)(X1, . . . , Xl )


= Max


∑

1≤i≤l
1≤ j≤m

ai j |z′′(Xi )|j : 〈8∗(A), z′′〉 |= θ(X1, . . . , Xl )

 .
Hence,z realizes a solution to the problemP on 8∗(A) with evaluation functions
f1, . . . , fm restricted to the domain of8∗(A). The other direction follows by a similar
argument.

2.4. The Modular Decomposition of P4-Sparse Graphs

A set M of vertices of a graphG is called amoduleof G if every vertex outsideM is
either adjacent to all vertices inM or to none of them. A moduleM is calledstrongif
for any moduleM1 eitherM ∩ M1 = ∅ or one module contains the other. Themodular
decompositionof a graphG is based on a tree denoted byT(G). The nodes ofT(G)
are (in one-to-one correspondence with) the strong modules ofG and a moduleM is a
descendant of moduleM ′ in T(G) iff M ⊆ M ′. Consequently the leaves ofT(G) are the
vertices ofG and the strong module corresponding to a node ofT(G) consists of all leaves
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of T(G) that are descendants of that node. Each internal node is labeled byP, S, or N,
as explained in Proposition 18. It can be shown thatT(G) is unique up to isomorphism.
More details on how the treeT(G) is constructed can be found in [GV], [BM], and [CH].

Let h be an internal node ofT(G). We denote byM(h) the module corresponding
to h which consists of the set of vertices ofG of the subtree ofT(G) rooted ath. Let
{h1, . . . , hr } be the set of sons ofh in T(G). We denote byG(h) = 〈V(h), E(h)〉 the
representative graphof the moduleM(h) defined byV(h) = {h1, . . . , hr } and

E(h) = {(hi , hj ) | ∃u, v(u ∈ M(hi ) ∧ v ∈ M(hj ) ∧ (u, v) ∈ E)}.
Note that by the definition of a module, if a vertex ofM(hi ) is adjacent to a vertex of
M(hj ), then every vertex ofM(hi ) will be adjacent to every vertex ofM(hj ).

The modular decompositionM(G) of G is the pair consisting ofT(G) and the
mapping that associates with each nodeh of T(G) the graphG(h) (which is actually
isomorphic to a subgraph ofG).

It is clear thatG can be reconstructed fromM(G). In particular, the vertices ofG are
the leaves ofT(G) and there is an edge betweenx andy iff x andy have ancestorsh and
h′ which are sons of a same nodek, and such thath andh′ are linked by an edge inE(k).
This definition is expressible by a translation scheme taking as inputT(G) augmented
with the edges ofE(h) for each internal nodeh.

From the construction ofT(G) it follows that:

Proposition 18. Let G be any graph and let h be an internal node of T(G). If G(h) is
a complete graph, then h is labeled S, if G(h) is edgeless, then h is labeled P, otherwise
h is labeled N.

Recall that the neighborhoodNeigh(v) of a vertexv of G is defined as the set of vertices
of G adjacent tov, i.e.,Neigh(v) = {u|(u, v) ∈ E}.

Definition 19 (Prime Spider). A graphG is aprime spiderif the vertex set ofG can
be partitioned into setsD, K , andR such that:

(i) D is a stable set (i.e., no two vertices inD are adjacent),K is a clique and
|D| = |K | ≥ 2.

(ii) R contains at most one vertex, i.e.,|R| ≤ 1, and if R contains one vertex say
r , thenr is adjacent to all the vertices inK and is not adjacent to any of the
vertices inD.

(iii) There exists a bijectionf betweenD andK such that eitherNeigh(x) = { f (x)}
for all verticesx in D or elseNeigh(x) = K − { f (x)} for all verticesx
in D.

The triple(D, K , R) is called thespider partitionof G.

Note that the edge-complement of a prime spider is also a prime spider. The following
proposition is from [GV] based on [JO3]:

Proposition 20. Let G be a P4-sparse graph and let h be an internal N-node of T(G).
Then G(h) is isomorphic to a prime spider.
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The following proposition is from [GRT]:

Proposition 21[GRT]. Let G be a P4-tidy graph and let h be an internal N-node of
T(G). Then G(h) is either isomorphic to a prime spider, to a cycle of five vertices C5,
to a path of five vertices P5, or to the edge-complement of a path of five verticesP5.

The following proposition is from [BO]:

Proposition 22[BO]. Let G be a(q,q− 4) graph and let h be an internal N-node of
T(G). Then G(h) is either isomorphic to a prime spider or to a graph with at most q
vertices.

3. Linear Algorithms for Optimization Problems on P4-Sparse Graphs

Our concern in this section is to reduce an optimization problem on aP4-sparse graph
G to one (of the same logical structure) onM(G), efficiently solvable. We thus need an
efficient presentation of modular decompositions ofP4-sparse graphs. A first obvious
presentation, is to takeT(G) and to add the edges of the setsE(h) (perhaps with a special
marking to distinguish them from those ofT(G)). However, these graphs will have too
many edges. Our objective is to obtain graphs with “few edges”, namely, partialk-trees.
For the notion of partialk-tree see, e.g., [Bod2].

If a nodeh of T(G) is anS-node, we mark it as such, and we omit the edges linking
its sons. The marking will indicate the existence of the missing edges, and will be used
by a translation scheme which translatesM(G) into G. If G(h) is a prime spider, we
present it by some colors and very few edges as indicated in the next definition. We
considerP4-sparsep-graphs, i.e.,P4-sparse graphs with vertices labeled in 1, . . . , p.

Definition 23 (The 2-Tree Modular Decomposition ofG: 2-tree(G)). Let G be aP4-
sparsep-graph. We denote by 2-tree(G) the 2-tree modular decomposition of Gcon-
structed fromT(G) by adding more edges and labels toT(G) according to the following
rule:

— Let h be anN-node ofG, let G(h) be the representative graph ofh which is
isomorphic to a prime spider by Proposition 20, and let(D, K , R) be the spider
partition ofG(h). Then:
• For every vertexx in D add toT(G) the edge(x, f (x)), where f is the

bijection fromD to K defined in Definition 19.
• If Neigh(x) = { f (x)} for all verticesx in D mark theN-nodeh of T(G) as

a redN-node. Otherwise, markh as a blackN-node.
• For every vertexx in D add a yellow label tox. For every vertexy in K add

a blue label toy. For the one vertexr in R (if it exists) add a white label tor .

It is easy to see that:

Fact 24. For every P4-sparse p-graph G, 2-tree(G) is a partial2-tree.
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LetG be ap-graph. Recall that the vocabularyτ1,p consists of a binary relation symbolE
and a finite set of unary predicate symbolsU1, . . . ,Up, used to label the vertices of thep-
graph. In order to present the graph 2-tree(G) as a logical structure we use the vocabulary
τ1,p+10 which hasp+ 10 unary predicate symbolsU1, . . . ,Up+10 such thatU1, . . . ,Up

are used to label the leaves ofT(G) in the same way as the vertices of thep-graphG,
andUp+1, . . . ,Up+10, are denoted byProot, Pleaf, PS, PP, PN, Pred, Pblack, Pblue, Pyellow,
andPwhite, respectively.

The meaning of the last ten unary predicates mentioned above is as follows:

— Proot(x) is true if and only ifx is the root of 2-tree(G). Note that using this
predicate we can express thatu is an ancestor ofv in T(G) or vice versa although
T(G) is presented as an undirected graph over the vocabularyτ1,p+10.

— Pleaf(x) is true if and only ifx is a leaf of the treeT(G).
— PS(x) (resp.PP(x), PN(x)) is true if and only ifx is anS-node (resp.P-node,

N-node) of the treeT(G).
— Pred(x) (resp.Pblack(x), Pblue(x), Pyellow(x), Pwhite(x)) is true if and only ifx is

marked red (resp. black, blue, yellow, white) in 2-tree(G).

Remark. Some vertices may satisfy more than one of the ten unary predicates de-
fined above. Hence, a graph presented overτ1,p+10 may have vertices with more than
one label. Since we require that labeled graphs have at most one label for each vertex,
we can easily extendτ1,p+10 by adding more unary predicates, such that each ver-
tex will have at most one label. For simplicity we do not specify this extension of
τ1,p+10.

Theorem 25. Let p be any integer. There exists a translation scheme81 such that for
every P4-sparse p-graph G we have8∗1(2-tree(G)(τ1,p+10)) ∼= G(τ1,p).

Note that∼= denotes isomorphism of logical structures. Theorem 25 states that there
exists anMSOLtranslation scheme which reconstructs the originalP4-sparse graphG
from its partial 2-tree presentation. The proof follows immediately from the definition
of 2-tree(G).

Proposition 26. Let G = 〈V, E〉 be any P4-sparse p-graph. Then2-tree(G) can be
constructed in O(|V | + |E|) time.

Proof. Let G be aP4-sparsep-graph. In [GV] it is shown how to constructT(G) in
O(|V |+ |E|) time. From Definition 23 it is easy to see that 2-tree(G) can be constructed
from T(G) in time linear in the number of nodes ofT(G). However, since the number
of nodes ofT(G) is O(|V |) (as proved in [Spi]), we get that the total construction of
2-tree(G) takesO(|V | + |E|) time.

The following theorem is from [Cou1], [CM], and [ALS] using the linear time
algorithm (see [Bod1]) for constructing tree-decompositions of partialk-trees.
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Theorem 27. Let p and k be fixed integers. Every LinEMSOL(τ1,p) optimization prob-
lem on the class of partial k-trees can be solved in O(|V |) time and the corresponding
algorithm can be derived constructively from its LinEMSOL(τ1,p) definition.

Theorem 27 holds also for the richer logical languages based onτ2. Note that Theorem
27 has two different proofs, one of [Cou1] and [CM] and the other of [ALS], which
construct different algorithms for solvingLinEMSOL(τ1,p) (and alsoLinEMSOL(τ2,p))
problems on the class of partialk-trees. We will show that:

Theorem 2. Let p be a fixed integer. Every LinEMSOL(τ1,p) problem on the class of
P4-sparse p-graphs can be solved in time O(|V | + |E|) and the corresponding algo-
rithm can be derived constructively from its LinEMSOL(τ1,p) definition. If the modular
decomposition of the graph is given as input, then the running time of the algorithm is
O(|V |).

Proof. Let P be aLinEMSOL(τ1,p) optimization problem on the class ofP4-sparse
p-graphs which is expressed as follows: given aP4-sparsep-graphG presented over
τ1,p, andm evaluation functionsf1, . . . , fm, find an assignmentz to the free variables
in θ such that

∑
1≤i≤l

1≤ j≤m

ai j |z(Xi )|j = Max


∑

1≤i≤l
1≤ j≤m

ai j |z′(Xi )|j : 〈G(τ1,p), z
′〉 |= θ(X1, . . . , Xl )

 ,
whereθ is anMSOL(τ1,p) formula having free set variablesX1, . . . , Xl , and{ai j : 1 ≤
i ≤ l , 1 ≤ j ≤ m} are (possibly negative) integers. Recall that for an assignmentz as
above we say that it realizes a solution to the problemP onG with evaluation functions
f1, . . . , fm.

We solve the problemP in O(|V | + |E|) time by the following algorithm:

(i) Check whether the inputp-graphG is a P4-sparse graph using the algorithm
of [GV]. If G is not aP4-sparse graph stop with a “not legal input” answer.

(ii) Construct 2-tree(G) and present it overτ1,p+10.
(iii) Use the algorithm of [CM] or the algorithm of [ALS] (Theorem 27) to find

an assignmentz to the free variables in8]

1(θ) which realizes a solution to
the problem841 (P) on 2-tree(G) with evaluation functionsf1, . . . , fm. By
Theorem 258∗1(2-tree(G)(τ1,p+10)) ∼= G(τ1,p). Hence, from Theorem 17 it
follows thatz also realizes a solution to the problemP on G with evaluation
functions f1, . . . , fm.

Step (i) can be done inO(|V | + |E|) time as established in [GV], and by Proposition
26 step (ii) can be done inO(|V | + |E|) time. By Fact 24 and Theorem 27 step (iii) can
be done inO(|V |) time, since the number of nodes and edges in 2-tree(G) is O(|V |).
Hence the running time of the algorithm isO(|V | + |E|). If the modular decomposition
T(G) of G is given as an input, then the running time of the algorithm isO(|V |), since
step (i) is given as input and step (ii) can be done inO(|V |) time.
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4. Linear Algorithms for Optimization Problems on Graphs of
Bounded Clique-Width

4.1. Graph Operations and Clique-Width

For p-graphsG, H such thatG = 〈V, E,V1, . . . ,Vp〉 and H = 〈V ′, E′,V ′1, . . . ,V ′p〉
andV ∩ V ′ = ∅ (if this is not the case then replaceH with a disjoint copy ofH ), we
denote byG⊕ H the disjoint union ofG andH such that

G⊕ H = 〈V ∪ V ′, E ∪ E′,V1 ∪ V ′1, . . . ,Vp ∪ V ′p〉.

For a p-graphG as above we denote byηi, j (G), wherei 6= j , the p-graph obtained by
connecting all the vertices labeledi to all the vertices labeledj in G. Formally:

ηi, j (G) = 〈V, E′,V1, . . . ,Vp〉, where E′ = E ∪ {(u, v): u ∈ Vi , v ∈ Vj }.

For a p-graphG as above we denote byρi→ j (G) the renaming ofi into j in G, i 6= j ,
such that

ρi→ j (G) = 〈V, E,V ′1, . . . ,V ′p〉,
where V ′i = ∅, V ′j = Vj ∪ Vi , and V ′q = Vq for q 6= i, j .

These graph operations have been introduced in [CER] for characterizing graph gram-
mars. For every vertexv of a graphG andi ∈ {1, . . . , p}, we denote byi (v) the p-graph
consisting of one vertexv labeled byi .

Example 3. A clique with four verticesu, v, w, x can be expressed as

ρ2→1(η1,2(2(u)⊕ ρ2→1(η1,2(2(v)⊕ ρ2→1(η1,2(1(w)⊕ 2(x))))))).

Note the “temporary use” of the label 2.

With everyp-graphG one can associate an algebraic expression built using opera-
tions of the three types mentioned above which definesG. We call such an expression
a k-expression definingG, if all the labels in the expression are in{1, . . . , k}. Clearly
k ≥ p. Also, for everyp-graphG, there is ann-expression which definesG, wheren is
the number of vertices ofG.

Definition 28 (Clique-Width). LetC(k) be the class ofp-graphs which can be defined
by k-expressions. Theclique-widthof a p-graphG, denotedcwd(G), is defined by
cwd(G) = Min{k: G ∈ C(k)}.

The clique-width is a complexity measure on graphs somewhat similar to treewidth,
which yields efficient graph algorithms provided the graph is given with itsk-expression
(for fixed k). A related notion has been introduced by Wanke [Wan] in connection with
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graph grammars.C(1) is the class of edgeless graphs. The graphs inC(2) are exactly the
cographs, see [CO]. They are definable from isolated vertices by⊕, and the product⊗
defined as

G⊗ H = ρ2→1(η1,2(G⊕ ρ1→2(H))).

Trees have clique-width at most 3 (see [CO]).

Problem 29. Find a characterization of graphs of clique-width at mostk, k ≥ 3.
Do there exist polynomial time algorithms for recognizing the classesC(k), k ≥ 4?

A polynomial time algorithm for recognizing the classC(3) is presented in [CHL+].

Lemma 30. A p-graph with an underlying unlabeled graph of clique-width at most k
has clique-width at most p∗ k.

Proof. (Sketch). Lett be ak-expression for the underlying unlabeled graph. Letc(v)
denote the label in{1, . . . , p} of vertexv. A label i used in the subexpressioni (v) of t
is replaced by(i, c(v)). Of course pairs(i, j ) can be coded as integer labels between 1
and p ∗ k in such a way that labels 1, . . . , p correspond to pairs(1,1), . . . , (1, p). The
additional informationc(v) can be maintained in the edge creations (i.e.,η operations)
and label renamings (i.e.,ρ operations). Thus an edge creation will be replaced byp∗ p
edge creations, in order to handle the additional labels.

4.2. P4-Tidy Graphs are of cwd≤ 4 and(q,q − 4) Graphs are of cwd≤ q

Let G andH be two disjoint graphs and letv be a vertex ofG. We denote byG[H/v]
the graphK obtained by the substitution inG of H for v. Formally,V(K ) = V(G) ∪
V(H)− {v} and

E(K ) = E(H) ∪ {e: e∈ E(G) ande is not incident withv}
∪ {(u, w): u ∈ V(H), w ∈ V(G) andw is adjacent tov in G}.

Proposition 31. For all disjoint graphs G, H , and for every vertexv of G,
cwd(G[H/v]) = Max{cwd(G), cwd(H)}.

Proof. Let q = Max{cwd(G), cwd(H)} and leth andg beq-expressions definingH
andG, respectively. SinceH is an unlabeled graph, it can be considered as a 1-graph
such that all vertices ofH are labeled by 1. Hence theq-expressionh finally renames
all labels into 1. Theq-expressiong must contain a unique subexpression of the form
i (v) corresponding to the initial label ofv in the construction ofG. By induction on
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the structure ofg, it can be shown that theq-expression obtained by replacing ing the
subexpressioni (v) by theq-expressionρ1→i (h) definesG[H/v]. We have shown that
cwd(G[H/v]) ≤ q.

If cwd(G[H/v]) < q, then there is aq1-expressionf defining G[H/v], where
q1 < q. From f we can extract aq1-expression forG by taking all the vertices of
V(G) − {v} in f and taking one vertex off corresponding to a vertex ofH (chosen
arbitrarily) and omitting all the other vertices occurring inf . Here by omitting a vertex
u from an expressiont we mean: replacei (u) in t with ∅ then replace everyρ(∅) and
everyη(∅) subexpression oft with ∅, and finally replace a subexpression oft of the form
∅ ⊕ t1 or t1⊕ ∅ with t1.

Likewise we can extract fromf a q1-expression forH by taking only the vertices
of f corresponding to vertices ofH and omitting all the other vertices. It follows that
Max{cwd(G), cwd(H)} = q1 < q, a contradiction.

Recall that for any graphG we denote byT(G) the tree obtained by the modular
decomposition ofG and for each internal nodeh of T(G) we denote byG(h) the
representative graph ofh defined in Section 2.4.

Proposition 32. For every graph G, cwd(G) = Max{cwd(H): H is a representative
graph of an internal node h in the modular decomposition of G}.

Proof. Using vertex substitutions we can build an expression which definesG, by the
following procedure. Letr be the root ofT(G) and letR denote the singleton having
one vertexr . Start by the expressionR[G(r )/r ], substituting the representative graph
G(r ) for the single vertexr of R. Then scanT(G) in pre-order and whenever an internal
nodeh is reached substituteK [G(h)/h], i.e., substituteG(h) for h, whereK is the graph
defined by the sequence of substitutions made so far. From the definitions of modular
decomposition and representative graphs, it follows that the expression constructed by
the above procedure defines the graphG, as a sequence of substitutions starting from
the singletonR. The claim follows from Proposition 31, sincecwd(R) = 1 and all
the graphs substituted in the expression constructed above are representative graphs of
internal nodes appearing inT(G).

Proposition 33. For every prime spider G, cwd(G) ≤ 4.

Proof. Let G be a prime spider and let(D, K , R) be the spider partition ofG. Let
D = {d1, . . . ,dm}, let K = {k1, . . . , km} and letR = {r }. By the definition of a prime
spider eitherNeigh(di ) = ki or Neigh(di ) = K − {ki }, for 1≤ i ≤ m. In what follows
we assume thatNeigh(di ) = K − {ki }, for 1 ≤ i ≤ m (the other case can be handled
similarly). For 1≤ i ≤ m, let ti be the expression defined by the following inductive
definition:

(i) t1 = 2(k1)⊕ 1(d1),

(ii) ti = ρ3→1(ρ4→2(η2,4(η1,4(η2,3(3(di )⊕ 4(ki )⊕ ti−1))))).
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Let 2≤ i ≤ m, let Di = {d1, . . . ,di }, and letKi = {k1, . . . , ki }. We show by induction
on i that the expressionti defines the 2-graph which is the subgraph ofG induced by
Di ∪ Ki , such that all the vertices inDi are labeled by 1 and all the vertices inKi

are labeled by 2. The claim trivially holds fori = 2. Assume that the claim holds for
i = j −1, tj is constructed fromtj−1 by adding the two verticesdj andkj , labeling them
by 3 and 4, respectively, and then adding edges as follows:

— Add edges between all the vertices labeled 3 to all the vertices labeled 2. This
will add edges connectingdj to all the vertices inKj−1, which by the inductive
hypothesis all have label 2.

— Add edges between all the vertices labeled 4 to all the vertices labeled 1. This
will add edges connectingkj to all the vertices inDj−1, which by the inductive
hypothesis all have label 1.

— Add edges between all the vertices labeled 4 to all the vertices labeled 2. This
will add edges connectingkj to all the vertices inKj−1, which by the inductive
hypothesis all have label 2.

Then as a last step all the vertices labeled by 4 (i.e.,kj ) are relabeled with 2 and all the
vertices labeled by 3 (i.e.,dj ) are relabeled with 1. Clearly, all the vertices ofDj are
labeled with 1 and all the vertices ofKj are labeled with 2. By the inductive hypothesis
tj−1 defines the subgraph ofG induced byDj−1∪Kj−1. Since the subgraph ofG induced
by Dj ∪ Kj can be obtained from the subgraph ofG induced byDj−1∪ Kj−1, by adding
edges according to the above rules, we conclude that the claim holds also fori = j .
Hence the expressiontm defines the subgraph ofG induced byD∪K . G can be obtained
from its subgraph induced byD ∪ K by adding the vertexr and connecting it to all the
vertices inK . This can be done by the following expressiong:

g = ρ2→1(ρ3→1(η2,3(3(r )⊕ tm))).

The claim of the proposition follows sinceg is a 4-expression which definesG.

Proposition 5. (q,q− 4) graphs and P4-tidy graphs have clique-width at most q and
4, respectively, and for each(q,q−4) (P4-tidy) graph G, a q-expression(4-expression)
defining it can be constructed in O(|V | + |E|) time.

Proof. We prove the proposition forP4-tidy graphs. The proof for(q,q − 4) graphs
is along the same lines using Proposition 22 instead of Proposition 21. LetG be aP4-
tidy graph and letT(G) be the tree obtained by the modular decomposition ofG. By
Proposition 32, in order to show thatcwd(G) ≤ 4 it suffices to show that, for each
internal nodeh of T(G), cwd(G(h)) ≤ 4, whereG(h) is the representative graph ofh
in T(G). If h is a P-node (S-node), thenG(h) is an edgeless graph (a clique), and has
clique-width equal to 1 (2). Ifh is anN-node, then by Proposition 21G(h) is either a
prime spider, a cycle of five verticesC5, a path of five verticesP5, or its complementP5.
SinceC5, P5, andP5 havecwd≤ 4, and prime spiders havecwd≤ 4 by Proposition 33,
we have shown thatcwd(G) ≤ 4. A 4-expression definingG can be constructed in linear
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time as follows:

(i) Construct the modular decomposition ofG, T(G) in time O(|V | + |E|) as
shown in [GV].

(ii) From the modular decompositionT(G) construct an expression consisting of
a sequence of vertex substitutions which definesG, as follows from the proof
of Proposition 32. Since the number of vertices inT(G) is O(|V |) (as proved
in [Spi]), this step can be done in timeO(|V | + |E|).

(iii) Convert the expression of vertex substitutions obtained in the previous step, to
a 4-expression forG as follows from the proof of Proposition 31. This step can
be done in timeO(|V | + |E|), since each graphH used in the substitutions
is either an edgeless graph, a clique, aC5 cycle, aP5 path, its complement
P5, or a prime spider for which a 4-expression can be constructed in time
O(|V(H)| + |E(H)|) as can be shown easily for the first five cases and as
shown in the proof of Proposition 33 for the case of prime spiders.

4.3. The Feferman–Vaught Theorem

In the proof of Theorem 4 we use a version of the Feferman–Vaught theorem [FV]
adapted toMSOL. It is not clear who observed first that this adaptation toMSOL is
true, but it is already in [L¨au1] and [She] and follows from [Fef] and [Ehr]. For a good
exposition, see [Gur1] and [Gur2].

We review some notation from [CM].

Definition 34. Let A be aτ -structure, letA be the domain ofA, and letϕ be an
MSOL(τ )-formula with free set variablesX1, . . . , Xn. We denote bysat(A, ϕ) the set
of n-tuples of subsets ofA for whichϕ holds inA. Formally:

sat(A, ϕ) = {(D1, . . . , Dn): Di ⊆ A, (A, D1, . . . , Dn) |= ϕ(X1, . . . , Xn)}.

The following is a special case of a classical result, for example, see [EF].

Lemma 35. Let p, h, and n be fixed nonnegative integers. Then there are finitely many
MSOL(τ1,p)-formulas with free variables in{X1, . . . , Xn} of quantifier depth≤ h in the
language expressing properties of p-graphs, up to tautological equivalence.

Lemma 36. For each p, each operation f∈ {ρi→ j , ηi, j : i, j ∈ {1, . . . , p}, i 6= j }
over p-graphs can be expressed by a quantifier free translation scheme8, i.e.,8∗ = f .
Hence, for every MSOL(τ1,p) formulaθ , and for every p-graph G presented overτ1,p,

sat( f (G), θ) = sat(G,8](θ)).

Proof. Immediate from the definitions ofρi→ j , andηi, j and Theorem 15.

For any setD we denote byP(D) the power set ofD, i.e., the set of all subsets ofD.
Let E, F be two subsets ofD such thatE ∩ F = ∅, let A ⊆ P(E)n, and letB ⊆ P(F)n
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(we call suchA andB separated). We defineA£ B by

A£ B = {(D1 ∪ D′1, . . . , Dn ∪ D′n): (D1, . . . , Dn) ∈ A, (D′1, . . . , D′n) ∈ B)}.

Theorem 37(Feferman–Vaught forMSOL). For each p and for every MSOL(τ1,p)

formulaθ with free variables X1, . . . , Xn, two lists of MSOL(τ1,p) formulasϕ1, . . . , ϕm

andψ1, . . . , ψm can be constructed such that all the formulas have the same free vari-
ables asθ and have quantifier depth no larger than the quantifier depth ofθ , and, for
every two p-graphs G and H presented overτ1,p such that V(G) ∩ V(H) = ∅,

sat(G⊕ H, θ) =
⋃

1≤i≤m

sat(G, ϕi )£ sat(H, ψi ).

Proof. Immediate reformulation of the result by Feferman–Vaught as discussed in
[Gur2]. The result can also be proved directly using pebble games forMSOL.

A more sophisticated construction where the union is disjoint can be derived as in Lemma
2.4 of [CM] but is not needed here.

4.4. The Linear Time Algorithms

The main ideas for proving Theorem 4 are as follows:

(i) If G is a graph defined by ak-expressiong, then the setsat(G, ϕ) can be
computed by induction on the structure ofg, with the help of auxiliary sets
sat(G′, ψ), for finitely many formulasψ , and finitely many graphsG′ where
the graphsG′ are defined by subexpressions ofg. Here we use the Feferman–
Vaught theorem (see Theorem 37) and Lemma 36.

(ii) A value h(sat(G, ϕ)) can be computed by the same induction ong, whereh is
a homomorphism (in some sense as defined below).

(iii) LinEMSOL(τ1,p) problems fall in the framework of computingh(sat(G, ϕ))
for well-chosen functionsh.

LetG be a graph, letf1, . . . , fm bemevaluation functions associating integer values
to the vertices ofG, let D1, . . . , Dl ⊆ V(G), and let

h(D1, . . . , Dl ) =
∑

1≤i≤l
1≤ j≤m

ai j |Di |j ,

where{ai j : 1 ≤ i ≤ l , 1 ≤ j ≤ m} are any integers, and|Di |j (see Section 2.2) is a
short notation for

∑
a∈Di

f j (a). For A ⊆ P(V(G))l , let

Max h(A) = Max{h(D1, . . . , Dl ): (D1, . . . , Dl ) ∈ A}.

It is clear that, for separatedA andB,

Max h(A£ B) = Max h(A)+Max h(B) (1)
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and, for generalA andB,

Max h(A∪ B) = Max{Max h(A), Max h(B)}. (2)

From Definition 10 it follows that aLinEMSOL(τ1,p) optimization problem over a class
of graphsK can be formulated as the computation ofMax h(sat(G, θ)) for a given graph
G ∈ K presented overτ1,p, for fixed p, whereθ is a fixedMSOL(τ1,p) formula.

For eachk-expressiong we denote byTree(g) the labeled tree corresponding to
g. The leaves ofTree(g) are the singletons ing (the basic graphs) labeled by their
initial label from {1, . . . , k}, and the internal nodes ofTree(g) correspond to the op-
erations appearing ing. For each internal nodex of Tree(g), we denote byGraph(x)
thek-graph defined by thek-expression corresponding to the subtree ofTree(g) rooted
at x.

We are now ready to prove Theorem 4, which we restate for convenience.

Theorem 4. Let C be a class of p-graphs of clique-width at most k, C ⊆ C(k), such
that there is a(known) O( f (|E|, |V |)) algorithm, which, for each p-graph G inC,
constructs a k-expression defining it. Then every LinEMSOL(τ1,p) problem onC can be
solved in time O( f (|E|, |V |)). A corresponding algorithm can be effectively constructed
from the logical formula describing the problem, and the parsing algorithm for the
class.

Proof. Let P be aLinEMSOL(τ1,p) optimization problem over a class ofp-graphsC ⊆
C(k). As mentioned aboveP can be formulated as the computation ofMax h(sat(G, θ))
for a givenp-graphG ∈ C presented overτ1,p. SinceG ∈ C there is ak-expressiong
which definesG. By Lemma 36 and Theorem 37, the computation ofMax h(sat(G, θ))
can be done as follows:

(i) TraverseTree(g) from top to bottom starting from the root assigning formulas
to the internal nodes of the tree according to the following rules:
(a) Assign to the root the formulaθ .
(b) Letϕ1, . . . , ϕl be the formulas assigned to an internal nodex by this process.

If x corresponds to a unary operation of the formρi→ j or ηi, j , then use
Lemma 36 to obtain formulasϕ′1, . . . , ϕ

′
l , such that, for 1≤ i ≤ l ,

sat(Graph(x), ϕi ) = sat(Graph(y), ϕ′i ),

wherey is the son ofx in Tree(g). Assign all these formulas toy.
Otherwisex corresponds to the binary operation⊕. In this case use

Theorem 37 to obtain 2l lists of formulasϕ′i,1, . . . , ϕ
′
i,mi

, andψ ′i,1, . . . , ψ
′
i,mi

,
for 1≤ i ≤ l , such that

sat(Graph(x), ϕi ) =
⋃

1≤ j≤mi

sat(Graph(u), ϕ′i, j )£sat(Graph(v), ψ ′i, j ), (3)

whereu andv are the two sons ofx in Tree(g). Assign all theϕ′i, j formulas
to u and all theψ ′i, j formulas tov.
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(ii) TraverseTree(g) from bottom to top and, at each nodex and for each formula
ϕ assigned tox by the previous step, computeMax h(sat(Graph(x), ϕ)) as
follows:
— If x is a leaf computeMax h(sat(Graph(x), ϕ)) directly.
— If x corresponds to a unary operation, setMax h(sat(Graph(x), ϕ)) =

Max h(sat(Graph(y), ϕ′)), wherey is the son ofx, andϕ′ is the formula
assigned toy by the previous step.

— If x corresponds to the binary operation⊕ then using (1)–(3) compute
Max h(sat(Graph(x), ϕ)) from the two lists of values:Max h(sat(Graph(u),
ϕ′j )),Max h(sat(Graph(v), ψ ′j )), for 1≤ j ≤ m, whereu andv are the sons
of x in Tree(g) andϕ′j andψ ′j are the lists of formulas assigned tou andv
by the previous step, respectively.

Also at each nodex and each formulaϕ assigned tox keep one tuple of
sat(Graph(x), ϕ) having the valueMax h(sat(Graph(x), ϕ)).

The correctness of the above procedure follows from Lemma 36 and Theorem 37.
For the complexity, the total time for handling the input graphG is O( f (|V |, |E|))

for constructing thek-expressiong plus the total time for applying the above procedure.
First note that the size of the treeTree(g) is O( f (|V |, |E|)). In step (i) of the above
process the number of formulas assigned to each node is bounded by a constant (which
does not depend on the size of the input graphG) since by Lemma 36, Theorem 37, and
Observation 14 all these formulas are of quantifier depth no larger than the quantifier
depth ofθ , and by Lemma 35 the number of such formulas is bounded (up to tautological
equivalence) by a constant which depends just on the size ofθ and p. Hence, in step
(ii) the computation done at each node by the above procedure is bounded by a constant
(with the uniform cost measure), and the total time of the above procedure is bounded by
O( f (|V |, |E|)). Note that ifx is a leaf, thenGraph(x) is a singleton, which implies that
Max h(sat(Graph(x), ϕ)) can be computed in a time that does not depend on the size
of the input graphG, i.e., in constant time. Therefore the total complexity of handling
the input graphG is O( f (|V |, |E|)) + O( f (|V |, |E|)) = O( f (|V |, |E|)).

Remark. Everyk-expression for a graphG = 〈V, E〉 can be transformed into ak-
expression definingG of size O(|V |). This transformation can be done in linear time
by a tree transducer. Typically it will remove some redundancies or useless operation
symbols (like a renamingρi→ j operation when there is no vertex labeledi ). (In these
complexity considerations,k is fixed.) Thus we could assume in the above proof that the
size ofTree(g) is O(|V |).

5. Results That Do Not Extend toMSOL(τ2)

In this section we show that Theorems 2 and 4 do not hold whenLinEMSOL(τ1,p) is
replaced byMSOL(τ2). Clearly, if these theorems do not hold forMSOL(τ2), then they
do not hold either for its extensions:MSOL(τ2,p), LinEMSOL(τ2), andLinEMSOL(τ2,p).
We prove Theorem 6 but to do that we need the following definitions and theorem due
to [Fag]. We denote byτ∅ the empty vocabulary, and we denote bySET the class of
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finite structures overτ∅. We denote bySOL2 the formulas inSOLin which there are no
function symbols, and the relation symbols are restricted to being either unary or binary.
Recall thatP1 (NP1) denotes the class of languages over one letter (also called tally
languages), which are inP (NP). Note thatP = NP implies P1 = NP1, but the other
direction is not known. Note also thatP1 = NP1 iff EXPTIME = NEXPTIME (see
[Boo] and [Har]).

Definition 38 (Spectrum,BIN).

(i) Let S be a set of structures overτ∅. S is aspectrumif there exists a formulaϕ
of the form∃X1, X2, . . . , Xlσ , such thatσ is first order,X1, X2, . . . , Xl are the
only free variables ofσ , and, for every finite structureA overτ∅,A ∈ S if and
only if ϕ holds inA. In this case we say that the spectrumS is definable by the
formulaϕ.

(ii) We denote byBIN the set of all spectra definable by formulas using only one
binary predicate symbol which presents a graph relation, i.e., a relation which
is irreflexive and symmetric. In other words a spectrumS is in BIN if it can be
defined by a formulaϕ of the form∃Qσ , whereσ is first order, such thatQ
is the only free variable inσ , andQ is a binary predicate symbol presenting a
graph relation.

(iii) We observe thatBIN is included inP1 iff for every spectrumS in BIN there
exists a polynomial time deterministic Turing machineM , such that given an
integern presented as a string in unary notation as an input (i.e., the length of
the input isn and not log(n)), M acceptsn if and only if the structure inSET
havingn elements is inS.

The following theorem is due to [Fag]:

Theorem 39. P1 = NP1 if and only if BIN⊆ P1.

We are now ready to prove Theorem 6 which we restate here for convenience.

Theorem 6. If P1 6= NP1, then there is an MSOL(τ2) definable decision problem over
the class of cliques which is not solvable in polynomial time.

Proof. LetA be a structure inSET. We denote byKA the clique corresponding toA,
such that the number of elements in the domain ofA equals the number of vertices of
the cliqueKA.

Recall (see Definition 8) thatR(t, x) holds if and only if the vertexx is incident
with the edget . Letϕ be anSOL2(τ∅) sentence. We denote byϕ] theMSOL(τ2) sentence
which is constructed fromϕ by replacing every subformulaU (x, y)whereU is a binary
relation symbol by the formula

∃t (U (t) ∧ R(t, x) ∧ R(t, y)).
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Since in a clique all the edges between all pairs of vertices exist, each pair of vertices(x, y)
can be identified by the unique edget , incident to bothx andy. Therefore, quantification
over pairs of vertices in cliques can be replaced by quantification over edges, as indicated
by the above formula which replaces the binary relation symbolU (x, y). Therefore, for
every structureA in SETand everySOL2(τ∅) sentenceϕ,

A |= ϕ ⇐⇒ KA(τ2) |= ϕ].

Assuming that, over the class of cliques, everyMSOL(τ2)-definable decision problem
can be solved in polynomial time, we get thatBIN ⊆ P1. For, letSbe a spectrum inBIN,
then there is anSOL2(τ∅) sentenceϕ which definesS. By our assumption on the cliques,
there is a Turing machineM which given an integern in unary presentation decides, in
time bounded by a polynomial inn, whetherKn(τ2) |= ϕ]. Hence, by the above equality,
the machineM decides in polynomial time inn whetherA |= ϕ, wheren is the number
of elements inA. It follows thatS∈ P1, and hence thatBIN ⊆ P1. By Theorem 39 this
implies thatP1 = NP1, a contradiction.

Question 40. Can we still prove Theorem 6 if we replace the conditionP1 6= NP1 by
the conditionP 6= NP?
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