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Every graph generated by a hyperedge replacement graph-grammar can be represented by a tree, 

namely the derivation tree of the derivation sequence that produced it. Certain functions on graphs 

can be computed recursively on the derivation trees of these graphs. By using monadic second-order 

logic and semiring homomorphisms, we describe in a single formalism a large class of such functions. 

Polynomial and even linear algorithms can be constructed for some of these functions. We unify 

similar results obtained by Takamizawa et al. (1982), Bern et al. (1987), Arnborg et al. (1991) and 

Habel et al. (1989). 

0. Introduction 

Many UFP-complete problems become polynomial when restricted to particular 

sets of graphs. A number of such cases are discussed in [22]. More informative 

than isolated results are metaresults, exhibiting classes of sets of graphs, classes of 

problems having polynomial algorithms on the sets of graphs of the corresponding 

classes, and uniform descriptions of these algorithms. Such an approach is that of 

[25, 6, 3, 7, 8, 121. 
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The present paper follows this line of research, where the notion of a problem is 

extended into that of an evaluation. An evaluation is a function that associates with 

every graph a value in some set S, say N, R, N x N. Hence, a decision problem is an 

evaluation where S= {true, false}. However, the value of an evaluation can also be 

a set of vertices, or a set of edges of the given graph. It follows that we can consider 

the problem of evaluating optimal subgraphs of the given graphs, and we can consider 

the problems raised in [6], in particular, that of giving a syntactic characterization of 

the so-called regular properties. See the conclusion of [6]. 

The sets of graphs we deal with are those definable by hyperedge replacement 

grammars. The sets of seriessparallel graphs, Halin graphs and outerplanar graphs 

are examples of such sets. So are, for each k, the set of graphs of tree-width at most 

k and the set of graphs of bandwidth at most k. Since every set of graphs generated by 

a hyperedge replacement grammar has bounded tree-width, the tree-width bounded- 

ness is common to all these cases. These grammars can generate sets of directed as well 

as undirected graphs, with possible labels attached to vertices and/or to edges. They 

can also generate sets of hypergraphs. 

Grammars are essential in that every generated graph can be described by a tree, 

namely the derivation tree of the derivation producing the graph. Graph evaluations 

of the appropriate type (we shall say, following Habel [19], that they are compatible 

with the grammar) can be computed by means of one bottom-up traversal of the 

derivation tree (like in attribute grammars when there are only synthesized attributes.) 

The purpose of this paper is to describe, in a uniform way, a class of compatible 

evaluations that is as large as possible. This will be done in a formalism that associates 

logic and algebra, or, more precisely, monadic second-order logic and semiring 

homomorphisms. 

Let us present briefly and informally the basic ideas. Let cp be a monadic second- 

order formula with set W of free variables. For every graph G (we consider it as 

a logical structure), we denote by sat(cp)(G) the set of W-assignments in G that satisfy 

the formula q. The fundamental result of Courcelle [14] says that sat(q)(G) can be 

evaluated bottom-up on any derivation tree of G. 

Some evaluations c’ can be expressed by u(G)= h(sat(cp)(G)). This expression does 

not give immediately an efficient way of computing v(G), because sat(q)(G) is fre- 

quently a very large, although finite, set. If h is a homomorphism, in an appropriate 

sense, the mapping v(G) can be evaluated directly bottom-up on any derivation tree of 

G, without needing the costly computation of sat(q)(G). Linear algorithms can thus be 

constructed, provided the computations to be done at every node of the tree take 

constant time. 

We obtain in this way a new proof of some results established by Arnborg et al. [3], 

and linear algorithms’ in some cases not covered by the extended monadic second- 

order logic introduced in their paper (for instance, when one wishes to compute the 

sum of cardinalities of all sets satisfying an MS-formula with one free set variable). We 

’ For uniform cost measure, as everywhere else in this paper. 
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obtain a syntactic expression for a large class of compatible evaluations, including the 

special cases considered in [19, 201. We also obtain linear or polynomial algorithms 

for the sample optimization problems considered in [6]. We actually apply the 

method introduced in this paper to a large class of problems, described syntactically in 

a uniform way, and we answer the questions raised in its conclusion. 

However, we do not claim to cover in our formalism all graph problems that are 

polynomial, say, on partial k-trees (for fixed k), i.e. on simple loop-free undirected 

graphs of tree-width at most k. Bodlaender [9] has considered games on graphs. For 

one of them, called VERTEX GENERALIZED GEOGRAPHY, the existence of 

a winning strategy for one of the two players is decidable in linear time on partial 

k-trees, but does not seem to be expressible in our formalism. Similarly, the diameter 

of a partial k-tree or its chromatic index [lo] can be computed in polynomial time, but 

we cannot express them in our syntactic framework. 

Two closely related papers are [12] and [21]. The former uses monadic second- 

order logic to specify decision problems and evaluations (like the one counting the 

number of tuples satisfying a given monadic second-order formula), and to obtain 

linear algorithms. The latter uses semiring homomorphisms for handling evaluations 

and constructing linear or polynomial algorithms; however, decision problems and 

evaluations are specified informally, i.e. outside any syntactic framework like the ones 

used in [3, 121 and in the present paper. 

We also establish that if a graph transformation is specified by monadic second- 

order formulas, i.e. if it is a d@nahle transduction as introduced in Courcelle [15], then 

it is computable in polynomial time for input graphs or hypergraphs of bounded 

tree-width. 

The paper is organized as follows. Section 1 gives a few definitions concerning 

many-sorted algebras, graphs and graph operations. Section 2 introduces monadic 

second-order logic, monadic second-order evaluations on graphs, and establishes the 

central results of this paper (Theorems 2.3 and 2.10). Section 3 discusses the construc- 

tion of efficient algorithms. Section 4 reviews the main evaluation structures and 

contains the applications. Section 5 compares our approach with that of [20] and 

raises a few open questions. 

1. Notations and definitions 

In the following definitions, we let Y be a possibly infinite set of sorts, F an 

.Y-signature, and M = ((M,),,Af, (fM)fEF) an F-algebra. In particular, if f~ F has 

profile s1 x s2 x ... x s,-+s, then& is a total mapping M,, x M,, x ... x Msn+M,. The 

functions fM are called the operations of M. A derived operation of M is a function 

M,, x M,, x ... x Msn+M,, defined by a term t of sort s built with the operation 

symbols from F, variables x1, . . . , x, of respective sorts sr, . , s, and additional 

constants denoting fixed elements of M. We assume that each variable has at most one 

occurrence in t, and that t is not reduced to a single variable (we would obtain in this 
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case the identity). For more details, the reader is referred to [14, 13, 53. If X is a set of 

variables with sorts, we denote by M(F, X) the set of finite well-formed terms written 

with F and X. 

The set of subsets of a set D is denoted by P(D). Its set of finite subsets is denoted by 

PPf (D). 

1.1. Computable evaluutions 

Definition 1.1 (Inductive families of evaluations). Let D be any set. A family of evalu- 

ations on M is a set 8 of unary mappings such that each mapping v in & maps 

M a(L’j into D. The object U(V) belongs to 9 and is called the type of v. 

A family of evaluations B is F-inductive if for every f in F of profile 

s1 x s2 x ... x s,-+s, for every v in & of type s, there exists an operator f3,,, on D and 

asequence(v,., ,..., UI,ml ,..., uz,l, . . . . v~,,,~ ,..., ~,,,~)oflength(m,+m,+~~~+m,)of 

elements of B such that 

(1) ~(Vi,j)‘Si for allj=l, . . . . mi, 

(2) for all d,EM,,, . . ..d.,EM,,,, 

=b,,h,1@1), . ..>vl.,,(dl), vz,l(dz), . . ..vz.m>(dz)r . . ..v.,mn(4,)). 

The sequence (0,. J‘, vl, 1, . . . , o’,. ,,,, ) is called a decomposition of v with respect tof, and 

19,, s its decomposition operator. 

The existence of such a decomposition means that the value of v for any object of 

the form fM(dI, . . . ,d,) can be determined and computed from the values of finitely 

many mappings of B at d, , . . , d,. 

If D = {true, false), then a family of evaluations is a set of predicates and an operator 

8,. s is a Boolean expression. This special case has been considered in [14]. 

Lemma 1.2. If 8 is F-inductive, then it is G-inductive, where G is any set of derived 

operations constructed over F. 

Proof. Let g be a derived operation, defined by a term t written with some symbols of 

F, some variables and some constants. For every v of type o(t), one can construct 

a decomposition of v with respect to g from those of finitely many mappings from 8, 

with respect to the functions of F occurring in t. This construction uses also some 

values of some functions of 8 for the constants occurring in t. The usefulness of 

derived operations is discussed in Section 3.4. q 

Definition 1.3 (Inductively computable evaluations). Let s,,E.Y be a sort of interest. 

A mapping v: M,,+D is F-inductively computable if there exists a family of evaluations 

Q such that 
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(1) EC!?, 

(2) 8 has finitely many functions of each type and 

(3) d is F-inductive, with known decompositions. 

Hence, by Lemma 1.2, if u is F-inductively computable, then it is G-inductively 

computable for every set G of derived operations over F. 

We shall use these definitions in the case where M is the HA-algebra of finite 

hypergraphs defined in [S] and the evaluations are functions on graphs defined in 

monadic second-order logic, as explained below. 

1.2. Graphs and hypergraphs 

Hypergraphs are finite, labeled, directed and are equipped with a sequence of 

distinguished vertices called the sources, as defined in [14, 13,5]. The labels are chosen 

in a ranked alphabet A, i.e. an alphabet given with a mapping s:A+N. We shall call 

r(a) the type of a. The type of the label of a hyperedge must be equal to the length of its 

sequence of vertices. 

Formally, a k-hypergraph, also called a hypergraph of type k over A, is a quintuple 

G = ( VG, E,, lahc, vertc, srcG ), where 

~ Vc is the finite set of vertices, 

~ E, is the finite set of hyperedges (with VG n&=@), 

~ labc:E,+A is the hyperedge labeling function, 

~ vertc: E,+ VT; associates with every hyperedge the sequence of its vertices; the ith 

element of vert,(e) will be denoted by vertc(e, i), 

~ srcG is a sequence of k vertices called the sources; srcc(i) denotes the ith element of 

this sequence; we shall consider srcG as a mapping [k]- Vc, where [k] denotes 

{1,2 ,..., k) (and CO]=@). 

We denote by Gk (A) the set of all finite hypergraphs of type k over A. If r(a) = 2 for 

each agA, then a hypergraph over A is just a graph. In order to simplify the 

terminology, we shall formulate most of our results and definitions for graphs. 

Nevertheless, the extension to hypergraphs is straightforward. (The reader may also 

consider that we use the term “graph” as an abbreviation for “hypergraph”, and the 

term “edge” as an abbreviation for “hyperedge”.) 

In contrast to what was done in [S, 13-151, we do not consider two isomorphic 

graphs as equal. The reason is that we aim at results concerning graph algorithms, and 

it is convenient to view vertices and edges as concrete objects. We shall consider that 

the sets Vc and E, are subsets of a fixed countable linearly ordered set D. 

1.3. Graph operations 

A graph operation is a mapping that associates a graph with one or several graphs. 

Graph operations are also essential in [6, 12, 251, and in other works dealing with 

graph algorithms (see [2]). The following three basic graph operations have been 

defined in [S, 14, 131. 
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First, if G’ is a k’-graph and G” is a k”-graph disjoint with G’, i.e. such that 

( Vcs u E,,)n( Vo,, u E,,,) = 0, then G’ 0 G” denotes their union, equipped with the 

concatenation of srcG, and srcGCC as a sequence of sources. Hence, @ is a partial 

operation. 

Second, if 1 6 i < j 6 n, we let Bi. j be the mapping such that if G is an n-graph, then 

G’=Hi. ,(G) is obtained by “fising” the ith and the jth sources of G. If src,(i)=srco( j), 

then G’= G. Otherwise, VG, = V,- {srcc( j)}, EG. =I& and the vertex srcG( j) is 

replaced by srcG (i) everywhere in the mapping vert, and in the sequence srcG . 

Finally, if r: [p]+[n] is a total mapping, if G is an n-graph, then o,(G) is the 

p-graph consisting of G equipped with src,(x( I)), src,(a(2)), . ., src,(a(p)) as a se- 

quence of sources, instead of srcG. Note that 8i.j and gz are total. 

The set of nonnegative integers tV is the set of sorts of the signature H consisting of 

OILIn of profile n x m-+n + m, 

fli,j,n of profile n+n and 

0 z,p.n of profile n+p. 

We shall also use a constant a of sort r(a) for each ae.4, the constants 1 and 0 of 

respective sorts 1 and 0. We let 

H,=HuAu(O, 1). 

We say that a term t in M(H,) denotes a graph G if 

l either t = a and G is a s(a)-graph consisting of one edge e with label a and such that 

srcG = vertc(e), 

l or t = 0 and G if the empty O-graph, 

l or t = 1 and G has a unique vertex that is the unique source and no edge, 

0 or t=tl@,,, t2 and G = G1 0 G2, where tI denotes G1 and t2 denotes Gz, of types 

n and in, respectively, 

l or t=Oi,j,n(tl) and G=8i,j(G,), where tl denotes G1 of type n, 

0 or t=oz,p.n (tl) and G =g2(GI ), where tl denotes G1 of type n. 

It follows from this definition that a term t in M(H) denotes several graphs which are 

all isomorphic. We shall write G=val(t) as an abbreviation of “t denotes G”. 

The signature H, is infinite. We shall get effective results and efficient algorithms by 

restricting ourselves to graphs that are denoted by terms over finite subsets of H, with 

finite subsets of N as sets of sorts, and finitely many operations. 

We quote from [S], [Z], and [13] the following results. 

Fact. (1) A set L c G,,(A) is expressible by jinitely many qf the operations of H, iflit 

has bounded tree-width. 

(2) This is the case qf partial k-trees (i.e. qf simple loop-free undirected graphs 

of tree-width at most k), sets of graphs and hypergraphs generated by hyperedge 

replacement grammars, and k-terminul recursive families qf graphs in the sense of 

Wimer [28]. 
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We shall, in general, omit the sort subscripts and denote, slightly ambiguously, the 

above operations by 0, 8i_ j or (T, 

2. Monadic second-order evaluations on graphs 

By considering a graph as a logical structure, we can express graph properties in 

logic. In the present paper, we consider graph properties (and more generally graph 

evaluations) expressible in counting monadic second-order logic. 

Definition 2.1 (Hypergraphs as logical structures). In order to express properties of 

k-hypergraphs over A, we define the following symbols: 

v, the oertex sort, 

e, the edge sort, 

si, a constant of sort V, for each i, 1 <i < k, 
edg,, a predicate symbol of arity evv . . v (with T (a) occurrences of v), for each a, UEA. 

With a k-hypergraph G over A, we associate the logical structure ICI = 

< vc> EG, (%G)iE,kl, (edgaG)ntA ), where VG is the domain of sort v, E, is the domain of 

sort e, sic is the ith source of G, and edg,,(e, ul, . .., un)= true iff lab,(e)=a and 

vertc (e) = (c, , . . , rn). 

Definition 2.2 (Counting monadic second-order logic). To build formulas, we use 

object variables u, x, y, z, u’, . . . of sort v or e, denoting, respectively, vertices or edges, 

and set variables U, X, Y, Z, U’ of sort v ore, denoting, respectively, sets of vertices or 

sets of edges. 

Let $6“ be a finite sorted set of variables {u, u’, . . . , U, U’, . . . }, each of them having 

a sort o(u), I, . . . . a(V), a(U’), . . . in (v, e). We denote by H? the set 

%“u {sl , . . ..sk ). Uppercase letters denote set variables and lowercase letters denote 

object variables or constants. 

The set of atomic formulas consists of 

u=L~‘, with u,u’~$V~, a(u)=a(u’), 

UEU, with u, UE%“~, g(u)=(~(Uj), 
edg,(u, u;, . . . . IA;), with u, u; ,..., u:E%“~, cr(u)=e, o(u;):=~..=o(u~)=v, 

Card,,,(U), with O,<m<p and 26~. 

The last formula has the following meaning: 

Card,,,, J U) = true ifT Card(U) = m mod p (where Card (U) denotes the cardinality 

of U). 

The language of counting monadic second-order logic (CMS) is the set of formulas 

formed with the above atomic formulas together with the Boolean connectives and 

quantifications over object and set variables. The language of monadic second-order 

logic (MS) is the set of such formulas not using the atomic formulas Card,,,(U). It has 

been proved by Courcelle [14] that the former language is more powerful than the 

latter. 
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In what follows, we consider CMS-formulas with set variables only. This is not 

a loss of generality because each CMS-formula can be translated into an equivalent 

CMS-formula using only set variables (see [26] or [14] for details). We denote by 

@2,:( %/) the set of CMS-formulas of height at most h and variables in “/V, where p < 4 

in all subformulas of the form Card,& U). The integer k is a bound on the types of the 

graphs these formulas express properties of, and A is the finite set of edge labels. The 

height of a formula is the depth of nested quantifications. 

To shorten our writing, we will fix YV, h, 4 and A and refer to the previous sets by (Pk. 

We shall work with several types of graphs at the same time; hence, k will have to vary. 

For every graph G, DG will denote the set E,u V,. (We take always Eon Vc=8.) 

Furthermore, we shall let D be a countably infinite set (say the set of integers) such that 

Do c D for all graphs G. 

A formula, say cp, will usually be given as a member of Q,(w), where 

$V={X1,..., X,}. We shall denote it also by q(Xi, . . . . X,) in order to recall what is 

in %“. This does not mean that each variable X i, . . , X, actually occurs free in cp, but 

only that all free variables are in {Xi, . . . , X,}. A w-assignment in G is a mapping 

v associating with every variable X in ?Y a subset of Do such that v(X) c E, if X is of 

sort e and v(X)G Vc if it is of sort v. Such an assignment will be written as 

v=(v, , . . . . v,), with Vi=V(Xi) in the usual case, where w is {Xi, . . . . X,}. 

For each k-graph G, we let sat(G):Qk +P(9(DG)n) be the mapping such that for 

every cp(Xi, . . . . X,) in Qk, sat(G)(cp), also denoted by sat(G, cp), is the set of assign- 

ments v=(v~, . . . . v,)E.Y(D,)” such that (G, v)l=cp. This notation means that cp holds 

in G for v. If no assignment satisfies cp in G, then sat(G, cp)=@. 

Our first result is that the mapping saf can be computed inductively with respect to 

the sets of operations {O,,, 1 n,m>O}, (ei,j,,I 1 bi<jba] and {~~,,,~l~:[n]+[p], 

n, p>O}, recall d S t’ e m ec ion 1. This shows that, given a graph G resulting from the 

composition of some other graphs by these operations, the set of assignments in 

G satisfying a CMS-formula can be computed from those in the composing graphs 

satisfying some CMS-formulas. We state it as follows. 

Theorem 2.3. For every k,for every q in @ kr the mapping s~t(cp):G~(A)-~~(~‘f(D)“) 

such that sat(cp)(G)=sat(G, cp) is H,-inductively computable. 

Proof. Lemmas (2.4))(2.6) prove that the family of evaluations {sat(q) 1 (PE&, k>Oj 

is H-inductive. If cp is in Qk, then the type of sat(q) is k. We note that Qk is finite up to 

tautological equivalence (see [14] for details). We assume that any formula in Qk is 

replaced by a minimal tautologically equivalent one (minimal with respect to some 

fixed lexicographical ordering that need not be specified in detail here). Hence, Qk is 

finite as well as closed under Boolean operations, and this yields the theorem. q 

We need some notations and lemmas from [14]. We let ^Iy={Xr, . . ..X.}. If 

v’ = (V’l , . . . . v;) and v”=(v’i’, . . . . vl) are two assignments in G’ and G”, respectively, 

then the assignment v:= v’uv” in G’OG” is defined as (v~uv~,...,v~uv~), where 
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viuvi’ is a shorthand writing of V’(Xi)uv”(Xi) for Xi in -ty-. We shall keep in mind 

that the sets we handle are sets of n-tuples of sets. 

Let us define some operations on sets of n-tuples. Two sets A and B c 9’r(D)” are 

called separated if 

( U{G!Ii=l,..., n,(Y., ,..., a,)EA} 
> 

f? u{piIi=l,..., 
( 

n,(B1, . . ..P.,)EB} 
) 

=8. 

If A and B are two sets of n-tuples of sets, then we define an extended union u by 

A w B= {CXU~ 1 EEA, BEB}. If, in addition, A and B are separated, then we shall write 

A v B instead of A w B. 

ItisclearthatQ={@,@,...,@)}isth e unit of u (and of u), i.e. for each A, A VJ 0 = A. 

We observe that the empty set 0 is the zero element of U: for each A, A w8= 8. (Note 

that 0 is an element of Pr(D)” whereas 0 denotes the usual empty set.) 

The disjoint set union will be written as ti. That is, if A and B are two sets such that 

An B=@, then A WB is nothing but Au B. We assume that Ati B is undefined if 

An B #@. It is evident that the unit of w is 0. 

Let us assume that AU B is not defined if A and B are not separated. Note, in 

particular, that A ti B is defined if A = 0, and that A v B is defined if A = 8 or A = 8. 

In Lemma 2.4, we will consider the case where a graph is obtained as the disjoint 

sum of two other graphs. 

Lemma 2.4. Let k= k’+ k”. Given cp in Qk, one can construct a finite sequence of 

formulas *;, $;, . . ..*k in QPk8 and a finite sequence of formulas $;‘, $5, . . . , It/z in 

@+ such that for every k’-graph G’, for every k”-graph G”, 

saf(G’O G", cp)= i& sat(G', $j,w sat(G”, $;‘I . 
l<j<m 

Proof. It was proved by Courcelle [14] that, given a formula cp in Qk, one can 

construct a finite sequence of formulas q;, cp;, . , cp;, in Qk,, a finite sequence of 

formulas cp;‘, cp;‘, . . . . cp$ in Qk,, and an (n’+ n”)-place Boolean expression B such that, 

for every k’-graph G’, for every k”-graph G”, for every assignment v’ in G’, for every 

assignment v” in G”, if v = V’ u v” and G = G’ 0 G”, then 

(P~(v)=B[$,~.(v’), . . ..&..(v’), q&=(v”), ...,~;,,G”(~~“)], 

where (Pi denotes the Boolean value true iff (G, v)l= cp and false otherwise; hence, 

cpG(v)= true iff sat(G, cp) # 8. 

This Boolean expression can be put in the form W1 S i<* ,?:c, (v’) A J.;b.. (v”), where 

1.; and ;*I’ are some Boolean combinations of the cpl’s and the cpy’s respectively. The 



58 B. Courcelle, M. Mosbah 

formulas ).I and ;I:’ are, respectively, in Qks and Qkzz, because each set Qk is closed under 

Boolean operations. We then have the following identity: 

sat(G, q)= u sut(G’, i:)wssat(G",~;'). 
1 Qi<r 

(1) 

It is easy to arrive at this statement by proving a double inclusion, i.e. that an 

assignment of any side of (1) belongs to the other side. (Since G’ and G” are disjoint, 

sat(G’, 3.:) and sat(G”, i.;‘) are separated.) 

Now, we shall transform this union into a disjoint one. For each nonempty subset 

I Of [I”], we let J.;=nr\i,rAi A nr\i$I 1j-i and A;‘=nr\i,l?.j’ A nr\i~,l~r’. We assert 

that 

sut(G, cp)= u sut(G’, A;)usut(G”, 1.;‘). (2) 
I.Ji[rl,InJ#0 

We will prove Eq. (2) by proving the two inclusions. 

First, let us show that the left-hand side is included in the right-hand one. If v is an 

assignment belonging to sut(G, cp), then v=v’uv” in a unique way. By identity (l), 

there exists an integer i0 in [r] such that v’~sut(G’, 26) and v”gsut(G”, 2;:). 

It suffices to take Z={i~[r] 1 &(v’)=true} and J={ie[r] 1 ~~~t~(~“)=t~~e}. Since 

i0 belongs to both I and J, In J # (8. Therefore, the left-hand side is included in the 

right-hand one. 

Second, we shall prove the inclusion in the other direction. To do so, consider an 

element v of the right-hand side; there exist two assignments v’ and v” such that 

v= v’uv”, r’~sut(G’, A;), v”~sut(G”, A;‘), where I and J are subsets of [r] such that 

In J # 0. Then, we can find an integer j in In J such that A& (v’) and AyG,. (v”) are true, 

by definition of j-1 and j.;. Hence, v’ belongs to sut(G’, A>) and v” belongs to 

sut(G”, ?_I’). Finally, v belongs to sut(G, rp). 

It remains to show that the union w of Eq. (2) is actually disjoint. Otherwise, there 

exists v in sut(G, cp) that can be written as v=v’uv”, where v’~sut(G’, A;)nsut(G’, A;,) 

and v”~sut(G”, iy)nsut(G”, i;‘,) such that In J #0 and Ii n J1 # 0. If the sets I and 

Ii are distinct, then, for an integer i that belongs to one of these sets and not to the 

other, we will have & and 1 Ai at the same time, which is impossible. Hence, we must 

have Z = Ii and, similarly, J = J1. 

By renumbering the formulas in (2), one gets an equality as stated in the lemma. 0 

In some applications, formula (1) may suffice. That is, one need not always take 

a disjoint union as in the statement (see Example 2.11). 

The lemma below expresses that sat(q) has a decomposition with respect to the 

operation Qi, j. Let the graph G’ = Oi, ,(G) be the result of the fusion of the two vertices 

srcc(i) and srcG( j). Formally, this operation is defined by a surjective mapping 

f: V, + VG9, where f maps srcG (j) to srcc(i), and v to v for VE Vcs. Then for every 

assignment v in G, we define the assignment v’ = ei, j(v) by 

v’(U)=v(U) for U of sort e (since EG8=EG), 

v’(U)=f(v(U)) for U of sort v. 
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The same definition can be written in terms of tuples. That is, if r=(vi, .., v,) is an 

assignment in G, then Oi,j(v) is the assignment defined on fli,j(G) by Oi,j(v)= 

tei, jtvI 12 ...> Oi, jtvn)). 

Lemma 2.5. Given a ,formula cp in Qk and i, j in [k], i < j, one can construct a jinite 

sequence of formulas $1, . . . , $,,, in Qk such that, for every k-graph G, 

sUt(Bi,j(G), C/V)= u $“i, i’ w sat(G, $i,), 
1 <i'<m 

where each ? q,i, is a singleton consisting qf an n-tuple, the elements of which are either 

fsrcc(i)) or 8. 

Proof. It was proved by Courcelle [14] that, given a formula q in Qk and i, j in [k], 

i<j, one can construct a formula $ in Gk such that for every k-graph G, for every 

assignment v in G, if G’=ei,j(G) and V’=Bi.j(V), then c~~,(v’)=$,(v). 

Consider first the case of a formula p having one free variable X. If this variable is of 

sort e, then sat(G’, ~)=sat(G, $). If it is of sort v, then sat(G’, cp) will be computed as 

follows. 

Let pi,j(X) be the formula si=sj v (si$X A sj$X) and pj.j(Y) be the formula 

si # sj A si$ Y A sj+ Y. The former says that the sources src,(i) and srcG( j) are equal 

or both not in X, whereas the latter expresses that they are neither equal nor in Y. 

Note that Pi,j(X) is not the negation of p~.j(X). 

We have sut(G’, q)=Oi,j(sat(G,II/)). The formula $ can be written as 

($ A pi, j) v ($ ~1 pi.j). In other words, two cases are possible. In the first case, 

pi,j holds, which implies that X remains unchanged under the operation Qi,j, i.e. 

f(X)=X. Hence, Ni,j(sUt(G, Ic/ A pi.j)) is s~t(G, $ A pi,j). Consequently, s~t(G’, cp)= 
sut(G, t/i A Pi,j)~,i.j(sut(G, $ A7pi,j)). It is a disjoint union because the two for- 

mulas cannot hold simultaneously. 

NOW, it remains to calculate Hi,j(sUt(G, $ A lpi,j)). In this case, at least srcc(i) 

or srcG( j) belongs to X. Let Y be a new variable and $‘(Y) the formula 

GCsli)(y)l v +Cs{j,(y)lv II/Cs{i,j)(y)l. w e use here a new notation. For I& N, we 

let S,(Y) be a new term denoting in a graph G of interest the set Yu{srcG(i) 1 iE:I}. 

IJ [S,( Y)] denotes the result of the substitution of S,( Y) for X, after some renamings 

have been done to the variables of $, as usual. The special symbols S, can be easily 

eliminated: xcS,( u) will be replaced by XEU A Wier(X=Si). Using them is just 

a tool for denoting complicated formulas. 

We claim that 

We prove this claim in two parts. 

(i) Let UEei,j(sUt(G, I// A 1 pi, j)). Then, one can find a set U’ in sut(G, I) A 1 pi. j) 

such that u=,f( u’). Since the mappingf‘transforms the sources srcG(i) and srcG( j) 
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into srcc(i), f(U’) is of the form {srcG(i)}uU”, where U” is the set U’- 

{srcG(i), srcG( j)). Thus, three cases are possible: src,(i)~ U’; srcG( j)~ U’; and srcc(i) 

and srcG(j) are both in U’. It follows that U” belongs to sat(G, II/’ A p;,j). 

(ii) Conversely, let U” belong to sat(G, rj’ A pi, j). If U’ is one of the sets 

U”u {srcG(i)}, U”u {srcG(j)} or U”u{srcc(i), srcG( j)}, then it does satisfy 

$ A1pi.j. Hence, U=f(U’)=U”u{~cc(i)} belongs to ei,j(sat(G,$ Alpi,j)). This 

completes the proof of the claim. 

Finally, by collecting all these results, we have 

Or, more concisely, we can write this equality as follows: 

sat(G’, cp)= i$ %';~kwsut(G, ;Ik), 
ldkS2 

with $‘;,2={(@)}, 'K,l={({srcG(~)))), &=$A&~ and ,!l=$‘~p;,j. We obtain, 

then, the desired equality, as stated in Lemma 2.5. 

The generalization to formulas with more than one variable is straightforward. 

Consider, for example, the case where a formula cp has two variables X1 and X2. As 

far as pi, j and pi, j are concerned, they shall be extended to two variables. That is, 

pi,j(X,, X2) will be the formula Si=Sj v (Si4X1 A Sj$Xl A Si$Xz A Sj~X,) and 

pi.j(X,, X2) the formula Si # ~j A Si~X, A Sj4X, A Si$X2 A Sj$X2. Simikirly, if pi,j iS 

true, then Qi, j does not affect X1 and X2. We let Go0 be the formula $ A pi,j. When 

pi, j is false, then srcG(i) or srcG( j) belongs to XI or to X2 or to both. This can be 

written, respectively, by the following formulas: 

(3) ~~II(YI> Y2)= W rc/(SI~(Y1)~SI,(Y2))API,j(Y1, Y2), 
II. I2 C ii, j), 

Il.12 #0 

where Y, and Y2 are new variables. To simplify our writing, we define sr, by 

sr,=(srcG(i)} if c(= 1 and 

sr,=@ if a=O. 

Then, we have 
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The subscripts of these formulas are words c(~ a2 such that a1 (g2) is 0 if the variable Xi 

(X,) contains neither x,(i) nor src,(j) and 1 otherwise. More generally, if the 

formula has II free variables, then the subscript will be in {0, 1)” and, consequently, 

there will be 2” formulas. The proof of the lemma is achieved. 0 

Lemma 2.6 deals with the source redefinition operation. 

Lemma 2.6. Given cp in Qk, and c(: [k]-[p], one can construct aformula cp’ in QP such 

that, for every p-graph G, 

sar(o,(G), q)=sat(G, cp’). 

Proof. This is just another form of Lemma 4.7 of [14]. 0 

The purpose of the following definition is to unify the results of Lemmas 2.4-2.6 and 

to extend them to derived operations. 

Definition 2.7. A ( W, v)-polynomial is an expression of the form 8, a monomial or 

a sum of the form m, tim2 ti ... tirnk, where each term m,, . . ,mk is a monomial. 

A monomial is an expression of the form 8, t 1 or t 1 v t2 v ... FJ t,, where each ti is either 

a variable or a constant, denoting a fixed element of 9r(Yp,(D)“). Similarly, one gets 

the notion of a (u, u)-polynomial, a (u, w)-polynomial and a (w, u)-polynomial. 

The decomposition operators constructed in Lemmas 2.442.6 are (w, v)- 

polynomials. 

In the structure S = ( Ppf(9,(D)“), u, CZJ, 0,0), a (u, Irl)-polynomial p denotes 

a total function ~P,(~P,(D)“)m~~P,(~Pf(D)“), where m is the number of variables of p. 

A polynomial of the three other types denotes a partial function since ti and w are 

partial operations. 

A semiring is a structure .%J = (S, u, LLI, I, E), where 

- S is a nonempty set, 
_ u and u are two binary total operations on S, 

- (S, u, I ) is a commutative monoid, 

~ (S, q E) is a monoid with zero element I (i.e. a u I = I u a = _L for all a in S) and 
_ w distributes over u, that is, 

au(buc)=(aub)u(auc) 

and 

(buc)Ma=(bwa)u(cua). 

These laws can be put in the form of equations and they make it possible to transform 

every derived operation written with u, u and constants into a (u, N)-polynomial 

denoting the same function. The structure (.Pr( Pr(D)“), u, VJ, &0) is a semiring. 
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Since w and v are partial operations, the case of functions written with them is not 

so straightforward. The structure 9 = ( Pp,( Pr(D)“), w, v, 8, 8) satisfies the follow- 

ing identities: 

(Si) xwy --yw,x, 

(s.2) xti(ytiz) = (XWiy)@Z, 

(Sj) x?J0=0tix=x, 

(sq) xv(yuz)=(xGYy)vz, 

(sg) xu8=0ux=8, 

(se) xEJ(y~z)~(xuy)~(xwz), 

(ST) (x*y)uz 2 (XVZ)~((yVZ). 

In these identities, = means that both sides are always defined and equal, whereas 

2 means that whenever one side is defined, so is the other and they are equal. We shall 

use them as rewriting rules in both directions for (si), (sz) and (s4), and from left to 

right for the others. 

In this way, every term t(xi, .., x,) over w’, v can be transformed into a (ti,, v)- 

polynomial p(xl, . . . . x,) such that, whenever t(xi, . . ..x.) is defined, then so is 

p(.xI,...,.xn) and their values are equal. (The example of (x,tixl)uO reducing to 

0 shows that p is, in general, more defined than t.) 

It follows, in particular, that the function obtained by substituting a polynomial for 

a variable in a polynomial can be transformed into a polynomial. For example, 

Hence, we have the following corollary 

Corollary 2.8. Let F be a derived signature of HA. For every k and cp in Qk, the mapping 

sat(q) is F-inductively computable. Moreover, the corresponding decomposition oper- 

ators are (ti, w)-polynomials. 

Now, we shall define a class of evaluations on graphs that can be computed 

inductively, in some sense “directly”. 

Definition 2.9 (MS-evaluation). An evaluation structure is a structure 9?= (S, u, 

M, I, E). In many cases, it will be a semiring, but we do not require this in general. 

The notion of a homomorphism h: ( 9f(P,(D)“), u, U, 0,0 )+9 is standard. (Note 

the correspondence of u with u, u with M, 0 with I and 0 with E.) 

The following weaker notions will be useful. A (w, u)-homomorphism 

h: ( 9Pr(9P,(D)“), ti, v, f&0) into 3’ is a mapping such that 
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h(AtiB)=h(A)uh(B) if AnB=0, 

k(AuB)=k(A)wk(B) if A and B are separated. 

Similarly, we define (u, u)-homomorphisms and ( w’, u))-homomorphisms. As we 

shall see later in more detail, the cardinality mapping (Card:gPf( 9Pf(D)n)+N) is 

a (w, v)-homomorphism but not a homomorphism. 

Let us recall that for dealing with graphs, we let D be a countable set such that 

DG = VG u EG is a finite subset of D for every graph G. (In a concrete implementation, 

D is the set of memory locations that one considers, as usual, to be infinite.) 

An MS-evaluation is a mapping u:Gk(A)-+S where .%J= (S, u, N, I, E) is an 

evaluation structure, that is of the form u= hosat( where cp is a CMS-formula with 

free variables in {Xi,,.., X,}, and k is a (ti, w)-homomorphism (Pf(gf(D)n), 

ti’, w, 0,8)-92. We must remember that, as defined in Section 2, sat(q) is a mapping 

G,(A)+.??,(P,(D)“). Hence, hosat is a mapping G,(A)-+S. 

In words, an MS-evaluation is defined by a homomorphism which takes as input 

the tuples computed by the mapping sat. Thus, its value for a graph G can be actually 

determined from those for the subgraphs composing G. Moreover, its values for the 

basic graphs (the empty graph, or graphs reduced to single edges or vertices) must be 

known since these graphs are the leaves of the parse tree of graphs. 

Theorem 2.10. Every MS-evaluation is HA-inductively computable. 

Proof. This is a consequence of Theorem 2.3. In fact, it suffices to compose k and sat 

in the three lemmas. We have, with the same notations as in Lemma 2.4, 

k(sut(G’@ G”, cp))=k &j sut(G’, t,h;)wsat(G”, $7) 
ldj<m > 

cl<! m k(sat(G’, $;)usut(G”> $:)) 
. d 

= u k(sut(G’, $;))tik(sut(G”, $j’)). 
l<j<m 

Hence, 

u,(G’OG”)= u u~/;(G’)uu~~(G”), 
lGj<m 

where, for (PE&, uV(G) denotes k(sut(G, cp)). 

Similarly, we get from the other lemmas, 

k(sat(oi,j(G), CP))= u k(+‘i,i,)uJh(sat(G, $i,)) 
l<i’Cm 
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and 

h(sat(o,(G), c~))=h(sar(G, cp’)). 

Finally, 

uq(ei,j(G))= u h(*‘i,i,)~~~~,(G) 
lSi'Qf73 

and 

r,(a,(G))=r,,(G). 

Hence, this proves that B = {hosar(cp) I q E Ok} is HA-inductive. 

Example 2.11. We give a list of evaluations. Some of them are MS-evaluations, others 

are not. (We shall discuss in Section 3 the appropriate data structures for computing 

them.) We let A consist of symbols of type 2. Hence, we consider directed graphs, and 

not hypergraphs. We also let k = 2 and cp (X) be the MS-formula stating that X is the 

set of edges of a simple path (i.e. a path without cycles) linking the first source to the 

second one. (Such a formula has been constructed in [14].) Let GEG~(A). We shall 

consider the following evaluations expressed in terms ofsat( described in Fig. 1. 

Evaluation Definition Description 

Max{Card(X)IXesat(cp)(G)} 

Min(Card(X)(Xmzt(cp)(G)} 

Z{ Card(X)jXmxr(cp)(G)} 

Average(sat(cp)(G)) 

DifW(~)(G)) 

- 

Fig. I. Some evaluations. 

The set of all simple paths from 

src,(l) to srce(2). 

The number of simple paths from 

SK,(l) to s&.(2). 

This evaluation has the value true if 

s&(q)(G) # 0 and false otherwise. 

It indicates the existence of a simple 

path from SK,(~) and srce(2). 

The maximal length of a simple path 

from srce(1) to XC,(~). 

(If cl(G)=@, then rq(G)= -CC.) 

The length of a shortest path from 

SK,(~) to m,(2) 
(= +m if r,(G)=@). 

The sum of the lengths of all simple 

paths from src,(l) to srce(2). 

The average length of a simple path 

from X,(I) to SK,(~) 

(=r6(G)/rz(G)). 
The difference between the maximum 

and the minimum lengths of simple 

paths from SK,(~) to m,(2). That 

is, tk(G)-us(G) 
(=-CC ifr,(G)=0). 
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MS-evaluation S U LL I E 

1’2 N + x 0 1 

L’3 [true, false} ” A false true 

C’a NW{-m} Max + -cc 0 

1’5 NU[+‘Z) Min + +cO 0 

Fig. 2. Evaluation structures. 

The evaluations v2, L’~, v4, v5 are MS-evaluations. The corresponding evaluation 

structures are listed in Fig. 2. The others, u6, v7, u8, are not, but they are computable 

in terms of auxiliary MS-evaluations so that they are HA-inductively computable. The 

complexities of the corresponding algorithms will be discussed in Section 3. Let us 

check that u2 is really an MS-evaluation. If A and B are two elements of Yr(Y,(D)) 

(two finite sets of finite subsets of D), then 

Card(A wll)=Card(A)+Card(B). 

We also have 

Card(AwB)=Card({ocu/3I@EA, BEB}) 

= Card(A) x Card(B) 

because A and B are separated, i.e. are such that (u{rxJi= 1, . . . . it, (a,, . . . . E~)E 

A})n(UBili=l,..., n, (/?i , . . . . /&,)EB})=@. Finally, 

Card(@)=O, 

Card(B)= 1. 

Note the difference between 0 and @ in the current example. In fact, sat(q)(G) = 8 

means that there is no path between the first and the second source, whereas 

o~sat(cp)(G) means that the empty path links them (i.e. they are equal). 

Hence, Card is a (w, w)-homomorphism of (Pr( Yr(D)), w’, w, 0,0) into 

( N, +, x , 0, 1) and u2 is an MS-evaluation. Similarly, we can prove that u4 and u5 

are MS-evaluations. Other interesting evaluation structures will be presented in 

Section 3. 

3. Building algorithms 

We now explain how algorithms can be constructed to compute inductive evalu- 

ations on graphs given by terms defining them. We first specify carefully the problem. 

Let F be a finite derived signature of HA (its set of sorts is a finite subset Y’(F) of N). 

Let kEY(F) and L: be an evaluation G,(A)+S for some set S. 
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3.1. The basic algorithm 

A (u, k, F)-algorithm is an algorithm that takes as input a term t in M(F),, denoting 

a graph G in G,(A), and produces the value v(G). Letting the size of a graph G be 

size(G)=Card( VG)+Card(E,), we have size(G)bm. ItI for some constant m, where 

tgM(F) and G=val(t). Conversely, 1 t /<m’.size(G)+ 1 for some constant m’. More 

precisely, every term t denoting G can be reduced into one, t’, denoting G, such that 

It’ ( d m’. size(G)+ 1 by deleting some redundant parts of t. We do not wish to detail 

this small technical point. It follows that if an algorithm decides a graph property in 

time 0( I t Ik), where t denotes G, then one can also say that its time complexity is 

O(size(G)k). 

Proposition 3.1. If v is F-inductively computable, then there exists a (u, k, F)-algorithm 

with time complexity 0( I t I q), where ‘1 is an upper bound on the complexity of the 

computation of each right-hand side of an equation, as in Definition 1.1. 

Proof. We first present a basic algorithm and we shall describe later how to improve 

it. 

Let (6?s)s.,Y,F, be the finite set of evaluations that we have by the definition of an 

inductively computable evaluation. 

Let t E M (F), denote G and be considered, as usual, as a finite tree. Each node u of 

t has a labelfin F. The sort offwill be called the sort ofu, and is actually the common 

type of the graphs defined by the term t/u, namely the subtree issued from node u oft. 

With each node u oft, we associate attribute occurrences w(u), for each WE&~, where 

s is the sort of u. The intended value of an attribute occurrence w(u) is w(G,), where G, 

is denoted by t/u. We now explain how it can be computed from the values of other 

attributes at the successor nodes of U. 

Let u be a node, w(u) an attribute at U, andfthe symbol of F that labels U. Then, by 

Definition 1.1, 

W(U)=~,,,(W1,1(U1),...,Wl,ml(~1),W2,1(~2),...,W2,ml(~2),...,W,,,~(~,)), 

(1) 

where(O,,~,~~,,,...,w,,,” ) is the decomposition of w relative toA and ur , . . . , u, is the 

sequence of successors of U. (This assumes that the rank off is n; if n =O, then 8,. / is 

a constant value.) 

It is, thus, clear that one can compute bottom-up on the tree t all the attributes 

associated with all its nodes. We are actually in the case of a purely synthesized 

attribute grammar. See [17] for a survey of attribute grammars and their evaluation 

algorithms. Among the attributes of the root, one finds U(E) = v (G), namely the value 

to be returned as output of the algorithm. 

The time complexity can be evaluated as 

u), (2) 
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where ~(w, U) is the time complexity for the evaluation of w(u) by Eq. (1). An upper 

bound can be given as follows: 

ItI.Max{Card(b,)Is~~(F)}.~?, (3) 

where n (w, u)Q y for all w and u. 0 

3.2. An improved algorithm 

Rather than computing all attributes at all nodes oft, one can compute only those 

that are useful for the final result, namely for V(E). 

To do so, one can use a preliminary top-down pass on the tree that determines the 

necessary attributes. The only necessary attribute at the root is V(E). Assuming that 

W is the set of necessary attributes at a node CL labeled by f; then the necessary 

attributes at Ui (the ith successor of U) are those of the form w’(ui), where w’= Wi,j and 

(0 w,f, w1,1,...) wi,j )...) is the deco mposition of some w in W relative to f: 

It is not possible to decide at this abstract level of presentation when this optimiza- 

tion is actually interesting. Our subsequent considerations relative to complexity will 

be based on formula (2) and its approximation (3). Any improvement obtained from 

them, say by limiting the sizes of the sets & or the values ~(w, u), will apply both to the 

basic algorithm and to its improved version. 

Remark. For A sPr(D)S we let p(A) be the least set of subsets of Pp,(D)” such that 

(i) AEP(A), 
(ii) if B=C&D and BEG, then C, DEB and 

(iii) if B=CwD and Bep(A), then C, DEB. 

It is clear that, when we use the improved algorithm for evaluating sat(G, q) for some 

formula cp, the auxiliary sets sat(G’, $) that are needed are all in p(sat(G, cp)). 

3.3. Issues for the construction of &icient (v, k, F)-algorithms 

The usability of this technique depends on the following facts: 

(1) For each w,J one needs to define a subroutine implementing 9,. f. Clearly, good 

data structures for storing and computing the values of attributes must be designed. 

(2) It is clear that the use of as few sorts as possible, and as small sets 8, as possible, 

improves time and space complexity. 

We first comment on fact (2) and propose two methods that help reduce the number 

of sorts and the sizes of sets 8,. The basic ideas are to use derived operations and to 

avoid logic. 

3.4. Using derived operations 

We first consider the example of the set L of “two-terminal” directed series-parallel 

graphs. We let e denote the graph of the form 1 l --+@2, with two sources linked by 
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a directed edge from the first source to the second one. We let 11 be the parallel 
composition of 2-graphs, defined by 

G II G’=o,(~,,,(%,(GO G’))), 

where ~(1) = 1 and 2(2)=2. This operation glues G and G’ by fusing their ith sources, 

for i = 1,2. We let l be the series composition of 2-graphs, defined by 

where fl( 1) = 1 and /I(2) = 4. This operation glues G and G’ by fusing the second source 

of G with the first source of G’, and keeping as new sources the first of G and the 

second of G’. 

Then L is the least subset of G2 (A) containing e and closed by 11 and 0. Hence, every 

graph in L can be expressed in terms of two operations (with a single sort, namely 2) 

and one constant. For expressing them in terms of the basic operations, one would 

need to use the following operations: 

@ of profile 2 x 2-4, 

0 1.32 13~~ 3, Q,, 4 of profile 4-4, 

ca, cp of profile 4-+2 and 

the constant e of sort 2. 

Hence, we would use six operations instead of two, and two sorts instead of one. The 

improvement is fairly clear. 

Another example can be found in [2]. Derived operations of sorts 0, . . . , k are used 

to generate the graphs of tree-width at most k, whereas the use of the basic operations 

would need the use of sorts up to 2k. 
Note that when choosing a set F of operations generating a set of graphs of interest 

K, one should also consider the existence of a pursing algorithm that, given GEK, 

produces as efficiently as possible a term tEhrl(F) defining G. One should do this 

because the (u, k, F)-algorithm applies to a term t defining the graph of interest G. The 

construction of t is linear in the cases of series-parallel graphs (see [27]) and 

polynomial in that of partial k-trees (for fixed k> 3; see [l, 43). Efficient algorithms 

have been given by Lagergren [23], Bodlaender and Kloks [ 111, and Hohberg and 

Reischuk [21]. 

3.5. Avoiding logic 

Theorems 2.3 and 2.10 are stated in terms of logical formulas. However, it seems 

intractable to use them in the way they are established, because the proofs involve 

very large sets of auxiliary formulas. 

In concrete cases, one should rather work in terms of graph properties, knowing 

what they mean, and forgetting the logical formulas. One can enrich the logic with 

auxiliary predicates, that do not increase the power but shorten the writings, as done 

in [12]. 
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We illustrate this with an example, namely the construction of all 3-vertex colorings 
of seriessparallel graphs. Series-parallel graphs will, of course, be expressed in terms 

of /I, l and e, as explained above. There exists a monadic second-order formula 

cp(Xi , X,) expressing that, in a given graph, X1, X2 and V, -(Xi u X,) are sets of 

vertices defining a 3-vertex coloring of G (where XEX~ iff x has color i for i = 1,2, and 

XE V,-(X, uX,) iff x has color 3). 

Hence, we wish to express 

3-col(G)=sat(cp)(G)E~P,(9P,( Vc)2) 

as an inductively computable mapping over ( G2 (A), //, 0, e). 

We shall give two constructions. The first one uses (ti’, u)-polynomials. For every 

graph G of type 2, with distinct sources, we let, for i, jc { 1,2, 3}, 

Ci,j(G)=((X,,X,)lX,,X,S v,-{src,(l),svc,(2)$, and(X1,X2,X3) 
defines a 3-coloring of G, where srcG( 1) gets color i and srcc(2) 

gets color j and every xcXi gets color i}. 

In this definition, we let 

x,:= v,-({src,(l),src,(2)}uX,uX2). 

We then get the following inductive definitions: 

(1) If G=e, then 

Ci,i(G):=@ for i= 1, 2, 3, 

Ci,j(G):={(&@)}=8 for l<:i#j63. 

(2) If G = G1 11 G2, then 

Ci,j(G):=Ci,j(G,)~Ci,j(G,). 

(3) If G=G1 0 G2, then 

Ci.j(G):= Is, Ci.k(Gl)VSk~Ck,j(GZ), 
lSk63 

where 

(Recall that when constructing G from Gi and G,, one deletes the first source of G2, so 

that the “middle” vertex of G is ,srcG, (2).) 

Finally, the desired set is 
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where 

s;, I:= {({s%(l), S%(2)1, S)>, 

s;, *:= i({srcc(l))> {s%(2)))), 

s;,3:={({s%(l)s, (b)), 

s;, I:= {(l9CG(2))> ImA~)~)~~ 

&2:= {CS, (.w?U), ~%O>,}, 

G,,:=(CS, {.m(l)))), 

&.l:=(((~w(2))~ 0))? 

6. ,:=(CS, (~~%(2)))), 

sj, 3:= ((0, S,}. 

We give a second definition using (ti’, I;r)-polynomials. We let 

Di,j(G)={(Y,, Yz)lY,, Y~E VG, and (Y,, Y,, Yj) defines a 3-coloring of 

G, where srcc(l)E Yi, srcG(2)E Yj, Y3 = Vc-( Y1 u Y,) and x gets 

color i iff XE Yi >. 

We then have the following: 

(1) If G=e, then 

oi,i(G):=Q) for i=l, 2, 3, 

ol.z(G):=((jsrc,(l)), (src,(2)})j, 

D1,3(G):=(((src~(l)},~)f, 

02,1(G):={({srcG(2)}, {src&l)})}, 

&.3(G):={@, {src(;(l)j)), 

D3,1(G):={((srcc(2)},0)j, 

&,2(G):={@, (srcG(2)))). 

(2) If G=G1 11 Gz, then 

Oi,j(G):=Oi,j(Gl)~,i,j(G,). 

(3) If G=G1 0 Gz, then 
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4. A catalogue of evaluation structures 

We review the evaluation structures already presented in Example 2.11, indicate the 

relevant data structures, and discuss briefly the complexity. They are presented in the 

order of increasing complexity. We also indicate some extensions to weighted graphs 

and to linearly ordered ones. 

4.1. Boolean values 

The evaluation structure is 8 = ({true, false}, v, A , false, true). Each attribute has 

a Boolean value. 

Let p map A to true iff A # 8. Then p is a homomorphism of ( Pf(Ppf(D)“), 

u, U, 8,8) into g. We have p(sal(G, cp))= true iff sat(G, cp) # 8, iff cp is satisfiable in 

G for some assignment. 

The complexity parameter v](w, U) is bounded by a constant depending linearly on 

the length of the decomposition operator 8,,,, f, where f labels u. The corresponding 

(u, k, F)-algorithm is linear in 1 t 1, where t is the input term. 

4.2. Curdinality 

WeconsiderhereCard:(~,(~pf(D)“),u,~,~,Q)~(N,+,x,O,1).Itisa(~,v)- 

homomorphism. If cp has one free variable, then Card(sat(G, cp)) is the number of sets 

X satisfying cp in G. 

Integers can represent the values of the corresponding attributes. As before, ~(w, U) 

is bounded by a constant depending linearly on the length of Q,, s, wheref labels U. 

By using this structure, one can count, e.g., the number of Hamiltonian circuits or 

the number of perfect matchings in a graph. (A perfect matching is a set of pairwise 

nonadjacent edges X such that every vertex belongs to some edge in X.) 

4.3. Maximum and minimum curdinulities 

We let here n= 1, and we only consider the maximum. The function Max- 

Card:PP(Ppl(D))-+Nu{-co}, defined by MaxCard(A)=Max({Card(a)(ccEA}), is 

a (w, u)-homomorphism in ( RJ u ( - a ), Max, +, - m, 0) (with Max(@) = - GO). 

Note that here one can deal with u instead of w, since 

MaxCard (A u B) = Max (Max Card (A ), Max Card(B) 1 even if A n B # 0. Actually, 

MaxCard is a (u, v)-homomorphism. As before, q depends linearly on the sizes of the 

operators 0,, /. 

With this structure and the dual one for the minimum, one can express some 

J’q-complete problems (numbered as in [lS]) such as 

~ Vertex cover [GTl], 

~ Minimum maximal matching [GTlO], 

- Clique [GT19], 
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~ Independent set [GT20], 

- Induced subgraph with property rr [GT21] (for a monadic second-order property 

7~) and 

- Planar subgraph [GT27]. 

To be more precise, we obtain that the following functions are MS-evaluations: 

f,(G)=Min{Card(X)IXcV,, every edge of G has at least one vertex in X}. 

fr 0 (G) = Min (Card(X) 1 X E EG, no two edges have a common vertex and 

every vertex of an edge not in X belongs to some edge in X}. 

fi9(G)=Max {Card(X) 1 X c_ V,, every two vertices of X are adjacent). 

f,,(G)=Max{Card(X)IX c V,, no two vertices of X are adjacent}. 

fil (G) = Max { Card(X) 1 X 5 V,, the induced subgraph of G with a set of 

vertices X satisfies z}, where 7t is any monadic second- 

order graph property. 

fZ7(G)=Max{Card(X)/Xc_E, such that X defines a planar subgraph of G}. 

For id{ 1, lo}, the problem [GTi] consists in deciding whether J(G)< k for a given 

G and k. For in{ 19,20,21,27}, the problem [GTi] consists in deciding whether 

J(G) 3 k for a given G and k. One obtains linear algorithms 

Bern et al. [6] show how the irredundance number of a tree can be computed in 

linear time. By our technique, we can compute this number in linear time for every 

graph given by a term. (A subset X of VG is redundant if there is a proper subset X’ of 

X such that X’u {the set of vertices adjacent to some vertex of X’} =X u {the set of 

vertices adjacent to some vertex of X}. It is maximal irredundant if it is not redundant 

and if every set of vertices of the form X u {u}, where v$X, is redundant. It is clear that 

an MS-formula q(X) can be constructed to express that X is maximal irredundant. 

The irredundance number of G is then the minimum cardinality of a maximal 

irredundant subset of VG. This number is of the form MinCard(sat(G, cp)).) 

4.4 Sum of cardinalities 

We also let n = 1. We consider 1 Card (A) = 2 {Card(a) I AXE A 1, so that 1 Card maps 

?r(Yr(D)) into N. It is clear that 

xCard(AwB)=xCard(A)+CCard(B). 

The definition of 1 Card (A v B) needs the auxiliary use of Card(A) and Card(B): 

xCard(A v B)=Card(B).xCard(A)+Card(A).xCard(B). 

(The verification is easy.) It follows that an evaluation of the form 1 Card(sat(G, cp)) is 

not an MS-evaluation, but is nevertheless H,-inductively computable, with the help of 



Monadic second-order ecraluations on tree-decomposable graphs 13 

the auxiliary evaluations Card(sat(G, cp)). The corresponding algorithm is again 

linear with uniform cost measure. 

An application of this result is the computation of the average cardinality of a set 

X satisfying a formula cp in G (assuming there is at least one) defined by 

Note that the cost of computing AverageCard(sat(G, cp)) is the same as that of 

computing CCard(sat(G, cp)) since, for the latter, one need also to determine 

Card(sat(G, cp)). Note, also, that AverageCard is HA-inductively computable without 

(apparently) being an MS-evaluation. 

As examples of applications, one can compute the average cardinality of a maximal 

independent set of G or a maximal clique of G. 

4.5. Set of cardinalities 

Here, we consider Setcard( {Card(a) 1 WA}. Hence, Setcard maps PPf(gr(D))+ 

Pp,(PV). It is a (u, v)-homomorphism (Pp,(P,,(D)), u, V_J, 8,8)-(.9,(N), u, +, 

S,(O)), where for N,MsKJ, N+M={n+mln~N,rn~M}. 

In a computation relative to a graph G, each attribute (see Section 3.1) is a set of 

integers c_ (0, 1 , . . . , Card (DC)}. It can be represented by a Boolean vector of length at 

most Card(D,). It follows that q is bounded by O(Card(D,)‘). The corresponding 

algorithms are of time complexity 0(lt13), where t is the input tree. 

4.6. The universal evaluation 

For completeness sake, we consider now the evaluation structure 9= 

( Pf( Pf(D)“), u, QJ, 8,8) and the computation of the whole set sat(G, q). We take 

n= 1 in order to simplify the presentation. The attributes range over yf(yf(DG)), and 

can be implemented by 2-dimensional Boolean arrays of size m x 2”, where 

m=Card(D,). This gives for q an upper bound of order O(2”‘). The corresponding 

algorithm is of time complexity O(2”‘). 

In certain cases, the computation of sat(G, cp) is tractable and useful, as we now 

explain by an example. For each graph G, let fc: DG-+DG be a partial function such 

that there is an MS-formula cp(X, Y) satisfying: 

(G,X, Y)(=q iff X=(x} and Y={fc(x)} for some XED~. 

The computation of sat(G, cp) yields a table defining fG. 

Let us say that a set of pairs A c 9”f(Dc)2 is functional if the following conditions 

hold: 

(i) if (c(, &A, then Card(a), Card@)< 1, 

(ii) if (a, /?) and ((x, P))EA, then p=fi’. 
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It is clear that p(sat(G, cp)) (where p is defined in Section 3.2) is a set of functional sets 

of pairs; hence, the data structure will have to store functional sets of pairs only if we 

use the improved algorithm of Section 3.2 (see the remark made there). 

Clearly, a functional set of pairs A can be represented by a vector with index set 

DG u {@} and values in DGu (0, I } (where I stands for undefined; the value of x is I if 

(Ix}, 8) belongs to A for no fl). 

The operations A ti B and A v B can be performed in time O(Card (DG)). It follows 

that sat (G, cp), i.e. the table forfc, can be computed in time 0 (1 t 12), where t defines G. 

In many cases of practical interest, one need not compute the whole set sat(G, q) 

but only one tuple (cur, . , a,) of it. One may require that this tuple is optimal in 

a certain sense, say be such that Card(ai) is maximum or minimum (for some fixed i), 

over all tuples in sat(G, cp ). 
We now explain how a choice function, associating such a tuple with a given graph 

G, can be efficiently computed. Let G be given by a term t. At every node u oft labeled 

by f; we have 

W,(U)=Of.~(W~,,,(Ul), . ..?.“,,“(U> (1) 

where w,(u) is the attribute occurrence evaluating to sat(val(t/u), cp) and 8,, V is 

the corresponding decomposition operator, namely a (w, v)-polynomial by 

Corollary 2.8. 

If for each u and q, we assume w;(u) to satisfy 

w;D(U)~Bf.m(W;l.I(U1),...‘W~“.“,”((U,)), 

as opposed to (1). One then gets 

(2) 

w;(u) G sat(val(t/u), q) (3) 

by bottom-up induction on u in t and by using the monotonocity of (ti, w)- 

polynomials for set inclusion. 

Each time we use (2), we can choose w&(u) to be a singleton; then one obtains at the 

end W;(E), a singleton reduced to a tuple in sut(G, cp), as desired. 

If in each case we choose 

(ml, . ..>GW.,,( W~,,,h)> . ..&J%)) (4) 

such that Card(ai) is maximal (or minimal) to form w;(u)= { (ai,. ., cc,,)}, then we 

obtain at the end in w;(u) a tuple in sut(G, cp) with an ith component of maximal 

(minimal) cardinality. 

This shows that optimal sets in the sense of [6], satisfying an MS-property, can be 

constructed in time 0( ) t 12) (and even in time 0(/t I) by the variant presented in [6], 

Theorem 1). 

This construction of optimal sets extends easily to the case of weighted graphs, that 

we now discuss. 
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4.7. Weighted graphs 

Many graph problems involve weighted graphs. Routing and network design are 

examples of such problems (see [lS]). Formally, a weighted graph G is a graph 

equipped with a function w: D, + R associating a weight w(x) with each edge or vertex 

x. The mapping w is called a weight function. To take a few examples, a weight may be 

a capacity, a distance, a cost or a probability. 

We shall assume that w is a mapping from D to [w, where D is the countable set of 

which all sets V, and E, are subsets. If G=Gi @G2 or G=o,(Gi), then G1 and Gz 

inherit the weights of G in a natural way. In the case of G = Hi, j(G1 ), we shall use the 

convention made just before Lemma 2.5: V, E V,, , srcG(i)=srcG, (i) and srcG, (j)$ V, 

whenever SYC~, (i) # srcc, (j). It follows that all elements of D,, have their weight as in 

DG, except possibly srcG( j), the weight of which may be arbitrarily chosen or taken 

conventionally to be 0. 

For every finite set X g D, we let 

Other evaluations can be defined in terms of weights, notably 

MaxWeight(A)=Max{w(X)/XEA}, 

MinWeight(A)=Min{w(X)IXEAj, 

where AEP~(~~(D)). 

These mappings are nothing but generalizations of the ones used in Case 4.3. The 

relevant evaluation structures are ( [w u { - x }, Max, + , - a, 0) and ( Iw u { + x }, 

Min, +, + c~, 0), and the corresponding algorithms are linear (for uniform cost 

measure). They make it possible to express the following evaluations: 

1. Length of a minimal Hamiltonian circuit in a graph (where each edge has 

a positive length; the length of a path is the sum of the lengths of its edges; the result is 

+ a if the graph is not Hamiltonian). This makes it possible to express the traveling 

salesman problem ([ND22]). 

2. Length of a longest or a shortest simple path linking the first source to the 

second. 

Another useful evaluation structure is ( [w, u { + a}, Max, Min, + cc, 0), by which 

one can formalize the evaluation of the maximal capacity of a path from the first to the 

second source, namely 

Cap(G)=Max{Min(w(e)Ie~X}IX~sat(G, cp)}, 

where q(X) is the formula already used in Example 2.11. In fact, if we let, for 

A c Pf(D), 

MM(A)=Max{Min{w(x)Ixccc}IaEA), 
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we have 

and 

MM(AuB)=Max(MM(A), MM(B)) 

MM(AwB)=Min(MM(A), MM(B)). 

The following A ^P-complete problems can also be expressed: 

~ Steiner tree in graphs [ND12]. (Is there a subtree T of G including all vertices of 

a given set R E VG such that the sum of the weights of all edges of T is at most a given 

value m?) 

4.8. Evaluation fomulas 

We now assume that, instead of one weight function w: D + IL!, we have n of them, 

1~~: D -+ [w, not necessarily all different. We let Wi(X)=C { WI(X) 1 XEX} for X finite, 

X c D. 

Let cp(X1, . . . . X,) be a formula. Let G be a graph. For every (X1,. . ., Xn)~Pf(DG)n, 

we let 

0(X 1, . . ..Xn)=c.wl(X,)+ .” +c,w,(X,), 

where ci, . . . . c, are real numbers. Hence, ~9 is a linear evaluation term in the sense of 

[3]. For every set of tuples A, we let 

@(A)={Q(X,, . . ..Xn)l(Xl. . . ..X.)gA} 

and 

@(G, cp)={QX,, . ..rXn)l(Xl. . . ..Xnksat(G. 4n)) 

= 0 (sat(G, 9)). 

Since 

@(AuB)=O(A)uO(B), 

O(AVB)=O(A)+O(B):= {m+m’~m~O(A), m’&(B)}, 

O(8)=@, @(0)=(O), 

we get that 0: (~Pf(~Pf(D)“),u,~,(D,~)~(~f(lW),u,+,~,{O}) is a (u,v)- 

homomorphism. 

Hence, one can compute O(G, cp) from t such that G=val(t) in time 0(2”lfl). (One 

does not have here polynomial time because one must, in general, record the values of 

O(A) for an exponential number of tuples of A.) 
Let us now consider the special case where cl, . . . , C,E R + and wi : D + [w. We let 

MaxO(A)=Max{B(cr)lccEA}, 

MinO(A)=Min{B(cc)/ccEA}. 
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Then, we have 

MaxO(AuB)=Max(MaxO(A), Max O(B)), 

MinO(AuB)=Min(Min@(A), MinO(B)) 

and 

MaxO(AuB)=MaxO(A)+MaxO(B), 

MinO(AuB)=MinO(A)+MinO(B), 

from which it follows that Max @(G, cp) and Min O(G, cp) are computable in time 

0( Itl) if REM defines G (where F is fixed and finite). The computation of 

Max O(G, cp) or Min O(G, cp) is called a linear EMS extremum problem in [3]. Hence, 

we obtain another proof of the result of [3], stating that a linear EMS extremum 

problem can be solved in linear time (with uniform cost measure) for graphs of 

tree-width at most some fixed k (given by their tree-decompositions of width at 

most k). 

4.9. Ordered graphs 

Let us recall that we assume that D is linearly ordered by d D. (If D is a set of 

memory locations, it is linearly ordered in a natural way.) Given an MS-formula q(X) 

and a graph G (with DG G D), one may consider the problem of computing the 

lexicographically jrst maximal set X such that q(X) holds in G, i.e. the unique set 

X g DG such that 

(1) Gl= V(X)> 
(2) if Y 2 X (and Y # X), then G I= 1 cp ( Y) (maximality of X) and 

(3) if X’ also satisfies (1) and (2), then X <,,, X’ (since X and X’ are subsets of 

a totally ordered set, one can order them in increasing order and compare them by the 

lexicographic order associated with < D). 

Such a set X will be denoted by LFM(G, cp). 

The complexity of finding lexicographically first maximal sets satisfying certain 

properties has been investigated by Miyano [24]. We consider the mapping 

Ifm:Bl(,Ppf(D))+P~(D)u { I} such that Ifm(A) is the lexicographically first maximal 

element of A, namely, 

(1) lfm(A)cr for no CI in A and 

(2) Lfm(A) < rex CI for every c -maximal element !I of A. 

If A =@, then Ifm(A)= I (undefined). 

We have the following two facts, holding for all nonempty sets A and B in 

Pf(Yp,(D)) such that A w B and A v B are defined: 

Fact 4.1. Ifm(A tiB)=lfmax(lfm(A), Ifm(B)). 

Fact 4.2. Ifm(AuB)=lfm(A)ulfm(B). 
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The operation lfmax is defined as follows: 

lfmax(x,y)=x ifycx or y=l 

=y ifxcyorx-I 

= the first element of {x, y} with respect to the order Glex if 

x, y are both # I and are incomparable for G. 

Letting X u I = I UX = I, Facts 4.1 and 4.2 also hold when A or B (or both) 

are empty. Note that Ifm( { 0})=0. H ence, Ifm is a (w, w))-homomorphism 

(.Yr(gr(DY), ti, u,O,O>-(~f(D)u{l},Ifmax,u, L0>. 
It follows that, for every monadic second-order formula cp (X), the evaluation LFM 

is inductively computable. Each attribute has a value G DG (or I) which can be 

represented by a Boolean vector of length Card(DG). The basic operations can be 

performed in time 0 (Card( DG)). Hence, one obtains a global time complexity 0 (I t* I). 

4.10. A deterministic choice function 

By using a linear ordering GD on D, we now construct a choice function 

Ch,:8,(~f(D)“)-+9f(D)“u{ I>, that is a (u, u)-homomorphism from 5’ into an 

appropriate evaluation structure. 

From < D we deduce an ordering of Ppf(D), denoted by eD, such that 

M <Dr’ iff Card(a)<Card(a’) 

or 

Card(cc)=Card(cc’) and g <iex~‘, 

where d,,, is as in Section 4.9. We let then, for A c Yp,(D), 

prem(A)= the unique 4.-minimal element of A 

= l_ (undefined) if A = 8. 

We have 

prem(AuB)=prem(A)uprem(B) 

(with srul=lucc=l for all a~Y~(D)u(l}) and 

prem(AuB)=p(prem(A), prem(B)), 

where 

p(l, a)=p(x, I)=& 

p(cr, fi)=prem({x, P}) if 3, P f 1. 

This function is the desired choice function for n= 1. For n> 1, we let 

Ch,(A)= I if A=0 
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where 

cc,=prem({cc/(a, P2, . . ..!&@A for some P2, . . ../&I) 

and 

(~~,...,CI,)=C~,-~(((P~,...,B~)I(C(~,/~~,...,P~)EA)). 

It is easy to establish that 

Ch,(AuB)=c,(Ch,(A), C%(B)), 

where c,(-L, c()=c,,(r, I)=@ and c,(tl, fl)=Ch,,({cc, fi}) if r, p # 1. 

We also have 

Ch,(AuB)=Ch,(A)uCh,(B) 

=(%uPI,...,&uPn), 

where Ch,(A)=(cc,, . . . . CY,) and Ch,(B)=(/?,, . . . . /I,,). 

It follows that Ch,(sat(G, cp)) can be computed in time 0( I t I*), where t defines G. 

4.1 I. The evaluation of dejnable graph transductions 

A graph transduction is a multivalued mapping from L to L’, where L and L’ are two 

sets of graphs. Courcelle has shown in [15, 161 that MS-formulas can be used to 

specify such transductions, called monadic second-order dejinable graph transductions. 

There are numerous examples of interesting transductions: the mapping val from 

a tree t in M(H,) to the graphs denoted by t, and the “parsing” mapping, that 

associates with a graph G its derivation trees relative to a fixed “regular” hyperedge 

replacement grammar (as defined in [15-J). See [ 161 for other examples and a survey of 

MS-definable transductions. 

We now recall the definition. It is simpler to formulate it in terms of logical 

structures. Let R be a finite ranked set of relation symbols. The rank of a symbol r in 

R is denoted by p(r). An R-(relational) structure is a tuple S = (Ds, (rs)rER ), where Ds 

is a finite set, called the domain of S, and rs is a subset of Dg”’ for each r in R. We 

denote by Y(R) the class of R-structures. Let W be a set of set variables, called here 

the set of parameters. (It is not a loss of generality to assume that all parameters are set 

variables.) We denote by Y(R, W) the set of all MS-formulas that have their free 

variables in W. 

Let R and R’ be two ranked sets of relation symbols. An (R’, R)-dejnition scheme is 

a tuple of formulas of the form 

d =(4& $1, . . ..$!X. (&)wER’*k)> 

where 

k>O, R’*k:= {(r,j)lr~R’,j~[k]P”‘), 

cp~y(R> W), 
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$iEsptR, w” {x1 }I for i = 1, , k, 

B,E_Y(R, WU{X~,...,X~~~~}) for w=(r,j)ER’*k. 

Let SEY(R) and let ?/ be a W-assignment in S. An R’-structure S’ with domain 

Dsz G Ds x [k] is dejined by A in (S, y) if 

(S, ?)I= cp> 

&,={(d, i)ldEDs, iECk1, (&Y, d)l= tii}, 

for each r in R’ 

rs,=(((d,, iI),..., (d,,i,))l(S,y,d,,...,d,)I=8,,,j,}, 

wherej=(i,,...,i,) and t=p(r). 

Note that S’ is associated in a unique way with S, y and A if it is defined, i.e. if 

(S, y) i= cp. Hence, we can use the functional notation 

S’=def,(S, y). 

The transduction defined by A is the relation def,:= {(S, S’) I S’ =def,(S, y) for 

some W-assignment 1/, in S} & Y(R) x 9’( R’). A transduction fs Y(R) x 9 (R’) is 

dejinable if it is equal to def, for some (R’, R)-definition scheme A. In the case where 

W=@ we say that fis definable without parameters (it is functional). 

A binary relation on graphs f~ G,(A) x G,(A) is a dejinable transduction iff the 

relation on structures {(I Cl, I G’I)I(G, G’)E~} is definable (by some definition scheme 

A of appropriate type). 

Proposition 4.1. Let f c G,(A) x G,,,(A) be a definable transduction, and F be a jinite 

subset of HA. If t in M(F) denotes GE G, (A), then one can do the following in polynomial 

time: 
(1) decide whether f(G) = 8; 

(2) iff(G) # 0, construct a graph G’ in f(G). 

Proof. (1) It follows from [14] that one can decide in polynomial time whether 

G I= 3 Y1 , . . . , Y,,,cp. (We let Y, , .., Y, be the parameters.) 

(2) If G + 3 Yi, .., Y,,, cp, then one can construct in polynomial time a sequence 

of sets (Yi,..., Yb) satisfying cp. From these sets, the object structure 

def,(IGI,,(Y;,..., YM)) can be constructed in polynomial time by the results of the 

preceding sections. El 

5. Hyperedge replacement graph grammars and compatible functions 

In the present section, we compare our results with those of [20]. 

Let I- be a hyperedge replacement grammar, and f be a function from graphs to 

values. This function is r-compatible [20] if there exists a finite sequence of functions 
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fo=“u1> . . ..fn such that, for every i and for every G, if G is obtained by a derivation 

sequence 

where H has nonterminals ui , , u,, then 

.L=h(h,(Gj; ), . . ..fj.,,(Gjk)), 

where Ui:rrGi and G=H[Gl/u, , . . . , G,/u,] (and h is a fixed mapping associated 

with H). 

In our words, this means that f is inductively computable with respect to the 

graph operations associated with the right-hand sides of the grammar. (In the 

above definition, the graph operation associated with H maps (G,, . . . . G,) to 

H [G, /ul, . , Cm/u,], the result of the simultaneous substitution of Gi for each ui in 

H. See [S, 131 for more details.) 

It follows that every inductively computable evaluation and, in particular, every 

MS-evaluation is r-compatible for every hyperedge replacement grammar r. 

The following compatible functions are considered in [20]: 
_ number of nodes and number of hyperedges, 
_ number of simple paths from one source to another, 

- maximal and minimal length of a simple path, 
_ number of simple cycles, 

~ maximal and minimal length of a simple cycle and 
_ maximal and minimal degree. 

All these functions are MS-evaluations as we have seen above (the case of cycles is an 

easy extension of that of paths). 

Iffis an evaluation, from graphs to integers, then one can consider the following 

“boundedness” decision problems, where ~EFV and r is a hyperedge replacement 

grammar, both given as inputs: 

(1) Does there exist GEL(T) such that f(G)<n (or >n or = n)? More difficult 

seems to be: 

(2) Does there exist m such thatf(G)dm for all GEL(T)? 

It is proved in [20] that problems of form 1 are decidable for evaluations such that 

all the decomposition operators can be written with +, x , max, min, and that 

problems of form 2 are decidable too for those using only +, x , max. 

It follows that problems of forms 1 and 2 are decidable for evaluations of the forms 

Card( sat( ., q)), Max Card(sat( ., q)) and C Card(sat( ., cp)), and that problems of 

form 1 are also solvable for those of the form Min Card(sar( ., cp)), where, of course, 

cp is an MS-formula. 
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