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Abstract Given a graph G we consider the problem of preprocessing it so that given
two vertices x, y and a set X of vertices, we can efficiently report the shortest path
(or just its length) between x, y that avoids X. We attach labels to vertices in such a
way that this length can be determined from the labels of x, y and the vertices X. For
a graph with n vertices of tree-width or clique-width k, we construct labels of size
O(k2 log2 n). The constructions extend to directed graphs. The problem is motivated
by routing in networks in case of failures or of routing policies which forbid certain
paths.

Keywords Algorithms · Labelling schemes · Compact routing · Clique-width

1 Introduction

A labelling scheme for a property P(x1, . . . , xk) of vertices of a graph G assigns a
label L(x) to each vertex x in such a way that for any vertices x1, . . . , xk , the validity
of P(x1, . . . , xk) can be checked from their labels. An example of a property we can
handle is P(x1, x2, x3) stating that every path between x1 and x2 goes through x3.
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More generally, labelling schemes can be used in this way to compute functions. An
example can be the function F(x1, x2, x3) giving the length of a shortest path between
x1 and x2 that goes through x3 or a special value, say −1, if there exists no such path.

More precisely, a labelling scheme for a property P(x1, . . . , xk) or a function
F(x1, . . . , xk) on graphs of a class C consists of two algorithms, A and B. Al-
gorithm A takes as input a graph G in C and computes a label LG(x) for each
vertex x of G (labels are bit sequences). This label encodes, among other infor-
mation, the name or the index of x hence determines it in a unique way. Algo-
rithm B takes a k-tuple t of bit sequences as input and reports, either that t is not
(LG(x1), . . . ,LG(xk)) for any graph G in C and any vertices x1, . . . , xk of such
a graph or determines the validity of P(x1, . . . , xk) or the value of F(x1, . . . , xk)

in some graph G belonging to C , for vertices x1, . . . , xk of this graph such that
t = (LG(x1), . . . ,LG(xk)). This algorithm has no other knowledge about G than
the tuple t . The truth value of P(x1, . . . , xk) or the value of F(x1, . . . , xk) must be
the same for all G,x1, . . . , xk with same tuple (LG(x1), . . . ,LG(xk)). Labels are in-
tended to be as short as possible, say of size O(logk n) (sizes are measured in bits)
for fixed k, where n is the number of vertices, and the term compact reflects this. For
checking adjacency in a rooted tree T , it suffices to take for LT (x) the pair consisting
of the identifiers of x and of its father. For a tree with n vertices numbered from 0 to
n − 1 in binary notation (and n ≥ 2), the size of LT (x), i.e., its length is 2.�logn�.

Motivation from Distributed Computing In a communication network handled for-
mally as a graph G, nodes must act according to their local knowledge only. This
knowledge can be updated by message passing. Due to space constraints on the local
memory of nodes, and on the sizes of messages, a distributed task like routing cannot
be performed on the basis of an encoding of the whole graph G in each node or in
each message, but it must rather manipulate compact representations of some rele-
vant aspects of G. Gavoille and Peleg [10] survey many distributed problems that can
be solved by the use of labels attached to vertices.

However, such labels should be usable even when the network has node or link
crashes. This case may be handled by labelling schemes that can check properties
P(x1, . . . , xk) or compute functions F(x1, . . . , xk) in the given graph from which a
set of vertices X and a set of edges F have been deleted (i.e., represent parts of the
network that are dead or forbidden). The set X is given to Algorithm B by the set of
its labels, and the set F by the labels of the end vertices of its edges.

Such sets X and F may arise from failures in the network represented by the
considered graph, or from so-called network routing policies: each node can assign
costs to paths in a way independent of its neighbours’ assignments, so that the shortest
path is not necessarily the most desirable one. Indeed, a policy may specify that node
x wishes to send information to y by using paths avoiding a certain set X ⊂ V , while
some other node z may wishes to use paths avoiding another set Y ⊂ V . Sets X,Y and
F are likely to change frequently, so that we want to avoid recomputation whenever
this happens. In addition to the labels, each node can store some local information
that can be updated by the reception at all surviving nodes of the list of (short) labels
of all defected nodes and links, so that the surviving nodes can update their local
routing tables efficiently.
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One can also obtain answers to queries by using vertex labels hopefully in a
quicker way than by running an algorithm on the considered (presumably large)
graph, because Algorithm A has made in advance a certain amount of computation
that is useful in all cases.

The first concern in this approach is to minimize the sizes of labels. A second rank
one is the time and space taken by the “decoding” algorithm, called B above. Last
comes the time and space taken by the “labelling” algorithm A, because it is used
only once for each graph, whereas B is likely to be used many times. Because of the
intended use in routing protocols where headers of messages must not be too large,
minimizing the sizes of labels is the main objective.

For the problem of exact distance labelling in absence of failures or forbidden
parts, a number of results are known including optimal label sizes for various families
of n-vertex graphs. For general graphs, there is a lower bound of �(n) on label size
(by enumerating all 2�(n2) subgraphs of the complete bipartite graph and noting that
for each subgraph, some vertex pair changes distance, hence �(n2) bits are required
in total, so some vertex must receive �(n) bits) and this is achieved asymptotically
by a scheme in [11]. For trees, there is a distance labelling scheme using an optimal
�(log2 n) bits per label [11] and the same paper shows how to quite easily extend the
scheme to graphs having treewidth at most k, using labels of size O(k log2 n).

Contribution of This Article Our aim is to construct constrained distance labelling
schemes, that is, to define a label L(v) for each vertex v in such a way that for every
set of vertices Z, we can compute from (L(z))z∈Z the distance of a shortest path
between x and y that avoids a given set X of forbidden vertices and a given set F

of broken edges whenever x, y, X and the set ends(F ) of ends of the edges of F are
contained in Z. A constrained connectivity labelling scheme is similar but can only
report whether there exists a path between x and y that avoids X and F as above,
without giving its minimal length. More general types of constraints on paths will be
considered in future articles. Hence, the term constrained-path labelling of the title
refers to a promising research topic and not to a single technical notion.

For graphs having a certain “tree structure”, technically those having tree-width
or clique-width at most k, we show how to construct a constrained distance labelling
scheme using labels of size at most O(k2 log2 n) bits. As by-product, we obtain a
constrained connectivity labelling scheme with labels of size O(k2 logn). This should
be contrasted with the optimal bounds of O(k log2 n) and O(k logn) bits for distance
and connectivity labellings in graphs of treewidth k graphs mentioned above [11];
hence by paying a factor O(k) one can route on arbitrary subgraphs of the given
graph.

Such labelling schemes, for the case where only vertices are deleted, can actu-
ally be obtained from a general construction by Courcelle and Vanicat [6] that we
now recall. For every graph property expressible in monadic second-order logic and
for every integer k they construct labelling schemes for graphs of tree-width and of
clique-width at most k. Labels have sizes f (k). logn but the functions f derived from
the general construction are extremely large. This construction extends to optimiza-
tion functions definable in monadic second-order logic (like distance), and the sizes
of labels are g(k). log2 n. In both cases the properties to check and the functions to
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compute can take set arguments. (Since, for each graph, each vertex label identifies a
single vertex, a set of vertices can be defined without ambiguity by a set of labels.)

In the present case, the graph property P(x, y,X) stating that there exists a path
between x and y with no vertex in X and the function F(x, y,X) that defines the
length of a shortest such path are monadic second-order expressible, so the results of
this article are applicable, but we obtain a better result by means of a direct construc-
tion avoiding logic.

We use however some basic notions from [6], in particular, the description of
a graph by a term over a finite set of binary operation symbols and constants that
is balanced, that is, has height O(logn), where n is the number of vertices. The
construction of balanced terms describing graphs of bounded clique-width motivates
the introduction of m-clique-width, a variant of clique-width that uses graphs with
vertices labelled by sets of colours taken from a finite set.This notion may be of
independent interest.

Results Apart from the definition of m-clique and the construction of balanced
terms the contributions of this article are the following ones:

(a) We replace by k2 the large and unspecified constants depending on k that arise
from the construction of [6].

(b) We give an explicit construction avoiding logic.
(c) Our construction supports edge deletions (a nonempty set F in the above descrip-

tion) and edge additions whereas the construction based on [6] cannot.

What about real networks? Table 1 in [12] shows that the networks of some im-
portant major Internet providers are of small tree-width, between 10 and 20, and
hence dealing with graphs of small tree-width or clique-width is somehow realis-
tic. Furthermore, by using a different technique, we can define an O(logn)-labelling
scheme supporting connectivity queries in planar graphs, and in graphs defined as
planar combinations of graphs of bounded clique-width (see [8]). Hence some of
our results extend to certain graphs that are neither planar nor of bounded clique-
width.

Key Ideas If Z is a set of vertices of a graph G, we denote by G[Z] the subgraph
of G induced by Z and by G+[Z] the graph G[Z] to which we add weighted edges
representing the following information: between any two vertices x and y, we set an
edge with weight d if and only if d is the minimal length of a path between x and
y with no intermediate vertex in Z, and at least one intermediate vertex not in Z.
Such paths have length at least 2 and do not depend on whether x and y are adjacent.
Between two vertices, one may have one edge without weight that is an edge of the
graph G and another one with value at least 2 that represents a path going outside
of Z. See Fig. 1 of Example 2 below.

We will construct a labelling scheme making it possible to build G+[Z] from
the labels of the elements of any set of vertices Z. Algorithm B intended to report
whether two given vertices x and y are linked by a path avoiding a set X of vertices
and a set F of edges and how long must be such a path uses the following two steps
(we assume of course that x and y are not in X):
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(1) By using the labels of the vertices in Z = {x, y} ∪ X ∪ ends(F ), it constructs the
graph G+[Z].

(2) The final answer is then easy to obtain from this graph by a classical shortest path
algorithm applied to the graph (G+[Z] − F)\X.

Answer (2) may be obtained from G+[Z′], where Z′ is any set containing {x, y}∪
X ∪ ends(F ). It follows that after having computed G+[Z′] for a ‘large’ set Z′ of
‘sensible vertices’ we can answer all queries such that {x, y} ∪ X ∪ ends(F ) ⊆ Z′
without having to repeat step (1).

Our main result is the description of such a labelling scheme with labels of size
O(k2 log2 n) where k is a bound on the m-clique-width of the considered graph. Since
graphs with tree-width at most k have m-clique-width O(k), and since graphs of
clique-width at most k have m-clique-width at most k, the results can be used for
graphs of tree-width or clique-width at most k.

Summary of Article Section 2 reviews notations. Section 3 defines clique-width,
m-clique-width and balanced terms. The long proof of a theorem about balanced
terms for m-clique-width is done in the Appendix in order not to break the main
exposition. Section 4 contains the main construction. A preliminary version of this
article [5] was presented at STACS 2007.

2 Definitions, Notation and Basic Facts

2.1 Graphs

All graphs are without loops. Let G = (VG,EG) = (V ,E) be a directed or undirected
graph, X ⊆ V be a set of vertices, and F ⊆ E be a set of edges. We denote by G[X]
the induced subgraph of G with vertex set X, by G\X the graph G[V − X] and by
G − F the graph (V ,E − F). We denote by ends(F ) the set of end vertices of the
edges in F .

An (X,F )-constrained path in G is a path in (G − F)\X, i.e. a path (a directed
path if G is directed) that does not use the edges of F and with no (end or intermedi-
ate) vertex in X. We call it X-constrained if F is empty. In both cases we deal with
a constrained path problem. We denote by dG(x, y,X,F ) the length of a shortest
(X,F )-constrained path from x to y, that is directed or undirected depending on the
type of G.

If Z ⊆ V we denote by G+[Z] the graph consisting of G[Z] to which we add
weighted edges as follows. If G is undirected (directed), if x and y 
= x belong to Z,
we define an undirected (directed) edge with weight d between x and y (from x to y)
if and only if d is the minimal length of a path in G between x and y (from x to y)
with no intermediate vertex in Z, and at least one intermediate vertex not in Z. We
take 1 as weight of an edge of G[Z].

Lemma 1 For every graph G, if Z ⊆ VG,F ⊆ EG, X ∪ ends(F ) ⊆ Z and x, y ∈
Z − X, the length of a shortest (X,F )-constrained path in G between x and y (or
from x to y) is the minimal weight of a path between them in (G+[Z] − F)\X where
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Fig. 1 A graph G and the graph
G+[{a, b, c, d}]

the weight of a path is the sum of weights of its edges. It can be determined in time
O(|Z − X|2).

Example 2 Figure 1 shows a graph G and the graph G+[Z] for Z = {a, b, c, d}.
From G+[Z] one obtains that:

• dG(a, d,X,F ) = 2 if F = ∅ and X = {c} or, if F = ∅ and X = {b};
• dG(a, d,X,F ) = 3 if X = {c} and F = {ab};
• dG(a, d,X,F ) = ∞ if X = {b, c}.

The graph G+[Z] contains information about separators of G since there is no
edge between x, y in G+[X ∪ {x, y}] if and only if X separates x and y in G. Our
problem comprises that of constructing a compact distributed representation of all
separators of all pairs of vertices. We will do more because our labelling scheme will
give lengths of shortest X-constrained paths, and not only their existence.

2.2 Terms

For a finite set C of constants and a finite set F of function symbols, each given with
a fixed arity, we let T (F,C) be the set of finite terms over these two sets that are
well-formed with respect to arities. Terms will also be handled as labelled trees in the
usual way.

The size |t | of a term t is the number of occurrences of symbols from C ∪ F . Its
height ht(t) is 1 for a constant and 1 + max{ht(t1), . . . , ht (tk)} for t = f (t1, . . . , tk).

We denote by t ↓ u the subterm of t starting from a position u, i.e. an occurrence
of some symbol in F ∪ C. Consider for an example the term t = f (g(a, b), g(a, b)).
If u is any one of the two occurrences of g in this term, then t ↓ u = g(a, b). The
same term g(a, b) corresponds to two different concrete subtrees of the syntactic tree
of t .

If a is a real number, we say that a term t is a-balanced if ht(t) ≤ a. log(|t | + 1).

This definition is meaningful even if t has size 1. (All logarithms are in base 2.) We
now explain how balanced terms of height O(logn) can denote n-vertex graphs.

3 Balanced Terms Denoting Graphs, Clique-Width and m-Clique-Width

3.1 Clique-Width and m-Clique-Width

Let L be a finite set of colours. A coloured graph is a triple G = (VG,EG,γG) con-
sisting of a graph (VG,EG) and a mapping γG associating with each x in VG a colour
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in L. A multicoloured graph is a triple G = (VG,EG, δG) where δG associates with
each x in VG a (possibly empty) subset of L. In both cases, adjacent vertices may have
some colours in common. As set L of colours, we will frequently use [k] defined as
{1, . . . , k}.

Definition 3 (Clique-width) The notion of clique-width defined and studied in [4]
is based on definitions of coloured graphs by means of the following operations: for
a ∈ L we let ca be a constant (a nullary operation) denoting the graph with a single
vertex with colour a. The unique binary operation is disjoint union, denoted by ⊕. It
defines G ⊕ H as the union of G and an isomorphic copy of H disjoint with G.

The other operations are unary: adda,b adds undirected edges and recola→b mod-
ifies colours. For a, b in L, a 
= b:

• adda,b(G) = G′ where VG′ = VG,γG′ = γG and EG′ = EG ∪ {{v,w} : γG(v) = a,
γG(w) = b}.

• recola→b(G) = G′ where VG′ = VG,EG′ = EG and γG′ is defined as follows:
γG′(w) = if γG(w) = a then b else γG(w).

For defining directed graphs we use, instead of adda,b , the operation
−−−→
adda,b:−−−→

adda,b(G) = G′ where VG′ = VG,γG′ = γG,EG′ = EG ∪ {(v,w) : γG(v) =
a, γG(w) = b}.

We let Fc,L be the set of operations consisting of ⊕,adda,b, recola→b, ca for all

a, b ∈ L and a 
= b. If we are to define directed graphs, we replace adda,b by
−−−→
adda,b .

We let T (Fc,L) be the set of terms over Fc,L, called clique-width terms (cwd-terms
in short). Each of them denotes a coloured graph. Every coloured graph G has a cor-
responding term in T (Fc,L) for some L, and its clique-width cwd(G) is the minimal
cardinality of an L such that G is the value of some term in T (Fc,L). It can be seen
that cwd(G) ≤ |VG|. The clique-width of a graph G (without colours) is defined as
that of G with all its vertices coloured by the same colour. The width of a clique-
width term t is |L|, where L is the set of colours that occur in a constant or a unary
operation of L. A cwd-term denoting G is optimal if its width is cwd(G).

The notion of clique-width has proven useful for defining fixed-parameter
tractable algorithms (see [7]) and labelling schemes [6]. The construction of com-
pact labelling schemes needs that graphs are defined by balanced terms. It is proved
in [6] that every graph of clique-width k can be defined by an f (k)-balanced term
using g(k) colours for fixed (but large and unspecified) functions f and g. The vari-
ant of clique-width defined below improves dramatically this situation, as shown by
Theorem 9.

Definition 4 (m-Clique-width) Multicoloured graphs are constructed with the fol-
lowing constants and binary operations, called the m-clique-width operations.
(Slightly different operations based on colourings with several colours as defined
in [4].)

For A ⊆ L we let cA be a constant denoting the graph with a single vertex and set
A of colours for this vertex.
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We now define binary operations. For every binary relation R ⊆ L × L, for every
mappings g,h : L −→ P (L) (P (L) is the powerset of L) and for multicoloured undi-
rected graphs G and H, we define K = G ⊗R,g,h H if G and H are disjoint (if they
are not, we replace G or H by an isomorphic copy disjoint from the other) by letting

VK = VG ∪ VH ,

EK = EG ∪ EH ∪ {{v,w} : v ∈ VG,w ∈ VH ,R ∩ (δG(v) × δH (w)) 
= ∅}
δK(x) = (g ◦ δG)(x) = {a : a ∈ g(b), b ∈ δG(x)} if x ∈ VG,

δK(x) = (h ◦ δH )(x) if x ∈ VH .

The graph G⊗R,g,h H is well-defined only up to isomorphism since we may need
to replace G or H by an (arbitrary) isomorphic copy disjoint from the other graph.

We denote by ∅ the empty graph. The mapping G �−→ G ⊗∅,g,∅ ∅ (or G �−→
G ⊗R,g,h ∅ for any R and h) is a recolouring based on g. However, recolourings
need not be introduced as unary operations because they can be combined with the
constants and with the binary operations. One can also eliminate ∅ from terms defin-
ing graphs, although ∅ may be useful at intermediate stages in some constructions.

For defining directed graphs, instead of subsets R of L × L, we take subsets R of
L × L × {+,−}, and in the definition of K = G ⊗R,g,h H we only modify EK as
follows:

EK = EG ∪ EH ∪ {(v,w) : v ∈ VG,w ∈ VH ,R ∩ (δG(v) × δH (w) × {+}) 
= ∅}
∪ {(w,v) : v ∈ VG,w ∈ VH ,R ∩ (δG(v) × δH (w) × {−}) 
= ∅}.

The width of a term is the number of colours used in this term. Every directed or
undirected graph G is defined by some term, and the m-clique-width of G is the min-
imum width of an m-clique-width term that defines this graph. This number, denoted
by mcwd(G), is at most cwd(G) as we will see. An m-clique-width term denoting G

is optimal if its width is mcwd(G). An example of m-cwd term is given in Example 8
below.

Clique-width, m-clique-width and the operations defining them can be compared
as follows: the operations defining clique-width are simpler than those defining m-
clique-width. The latter operations can be expressed as compositions of the former
ones, and the corresponding terms are smaller: they have size 2n − 1 where n is
the number of vertices. Those using the operations for clique-width have sizes O(n)

where the constant depends on k.
There is another difference between the two sets of operations. The operation

adda,b(G) adds edges to the argument graph G, whereas the operation ⊗R,g,h adds
edges between the two disjoint graphs that are its arguments (as in the operations
defined by Wanke [15]).

The same classes of graphs have bounded clique-width and bounded m-clique-
width (see Proposition 5) and Theorem 9 below motivates the introduction of
m-clique-width.

To make notation precise, for a finite set L of colours, we let FL be the set of
all binary operations ⊗R,g,h with R ⊆ L × L or R ⊆ L × L × {+,−}, and g,h :
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L −→ P (L), and CL be the set of constants {cA : A ⊆ L}. Every term t in T (FL,CL)

denotes a multicoloured graph val(t) with colours in L, and every multicoloured
graph G with colours in L0 is the value of such a term t in T (FL,CL) for large
enough L containing L0.

If G is undirected its m-clique-width is the same as that of the directed graph with
directed opposite edges between any two adjacent vertices.

We do not redefine the well-known tree-width of a graph G (denoted by twd(G)):
see [1] for a thorough survey. We use it only in the following proposition for the
purpose of comparison with m-clique-width.

Proposition 5 For every graph G we have

mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1.

If G is undirected, then mcwd(G) ≤ twd(G) + 3. If G directed, then mcwd(G) ≤
2twd(G) + 4.

Proof sketch For proving mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1, one can use con-
structions similar to those proving Proposition 5.4 and Theorem 5.5 in [4]. The
proof that mcwd(G) ≤ twd(G) + 3 for G undirected is essentially the one of
Theorem 5.5 of [4]. For proving that cwd(G) ≤ 2twd(G)+1 + 1, graphs of tree-
width k are constructed with operations defining m-clique-width that use colours in
{0,1, . . . , k,∗,$}, which gives twd(G) + 3. For directed graphs of tree-width k the
set of colours is {0,1, . . . , k,1′, . . . , k′,∗,$,$′} which gives 2.twd(G) + 4. �

Remark 6 For proving that mcwd(G) ≤ cwd(G), we transform a cwd-term t defin-
ing G into an equivalent m-cwd-term t ′ such that ht(t ′) ≤ ht(t). For proving that
cwd(G) ≤ 2mcwd(G)+1 − 1, we transform an m-cwd-term t defining G of width k into
an equivalent cwd-term t ′ of width at most 2k+1 −1 such that ht(t ′) ≤ f (k) ·ht(t) for
some fixed function f . For proving that mcwd(G) ≤ twd(G) + 3 for G undirected,
we transform a tree-decomposition T of G of width k based on a tree of degree at
most 3 into an m-cwd-term t ′ of width at most k +3 such that ht(t ′) ≤ g(k).Diam(T )

for some fixed function g, where Diam(T ) is the diameter of the tree of T .
It follows, and this is important for us, that if the given term t or tree-

decomposition T is a-balanced, then the obtained term t ′ is b-balanced for some b.

Our main theorem will be shown for graphs of bounded m-clique-width. By
Proposition 5 and the above remark, it holds for graphs of bounded tree-width and
clique-width. The construction of a labelling scheme for graphs of bounded tree-
width is detailed in [5].

Definition 7 (Specification of concrete graphs) Terms in T (FL,CL) define graphs up
to isomorphisms. For defining concrete graphs, it will be convenient to use constants
cA(u) instead of cA. In such a constant, u is the vertex defined by this constant.
We still denote by CL the set of such constants. With this assumption, if a graph G

is the value of a term t , then each vertex is defined by a constant cA(u) having a
unique occurrence in t , and since no constant denotes the empty graph, each leaf of t
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(considered as a tree) corresponds to such a constant and defines a vertex. We let h

denote the bijection of the set of leaves of t onto the vertex set of G. For a node u

of t , val(t ↓ u) is the induced subgraph of G whose vertex set is the image under h of
the set of leaves of t that are below u. The colours of vertices in val(t ↓ u) may not be
the same as in G, because of the recolourings that can be performed in t “above u”.

Example 8 Let L = [3] and t be the term

⊗D

(⊗B

[⊗A(c1(u), c1(v)),⊗A(c1(w), c1(x))
]
,⊗C(c2(y), c12(z))

)

where A = ({(1,1), (1,2)}, {1 �→ 2,2 �→ 1}, {1 �→ 3}), which means:

A = (R,g,h) with R = {(1,1), (1,2)},
g(1) = {2}, g(2) = {1}, g(3) = ∅,

h(1) = {3}, h(2) = h(3) = ∅,

and similarly:

B = ({(3,2), (2,1), (1,2)}, {2 �→ 1}, {3 �→ {1,3}}),
C = ({(2,1)}, {2 �→ 3}, {2 �→ 3}),
D = ({(1,3), (3,3)}, {1 �→ 1}, {3 �→ 2}).

The graph val(t) defined by this term is the cycle u1 − v − w − x1 − y2 − z2 − u1

with additional edges between u and y, and between x and z. The subscripts 1 and 2
indicate the colours of the vertices.

3.2 The Balancing Theorem for m-cwd Terms

The long proof of the following theorem is in the Appendix.

Theorem 9 Every undirected (resp. directed) graph of clique-width or m-clique-
width k with n vertices (n > 1) is the value of an m-cwd term t of width at most
2k (resp. 3k) and of height at most 3.(log(n − 1) + 1). The time taken to build t from
a given term s of width k is O(n. logn), where n is the size of s.

Since the size of an m-cwd-term t that defines a graph with n vertices is 2n − 1,
this theorem defines 3-balanced terms. It proof constructs a 3-balanced m-cwd term
from a cwd- or an m-cwd-term. A balanced m-cwd term can be converted into an
equivalent balanced cwd-term at the cost of an exponential increase of the number of
colours (see Remark 36 in the Appendix). Such an increase would affect significantly
the sizes of labels to be constructed. This is why we will base our constructions on
m-cwd terms.

A similar result for tree-decompositions has been obtained by Bodlaender [1].
Courcelle and Kanté [3] give a general framework for establishing such results.



Theory Comput Syst (2010) 47: 531–567 541

4 Constructions of Labelling Schemes

We first give constructions for undirected graphs. The extension to directed graphs is
straightforward.

4.1 Adjacency Labelling for m-Clique-Width Bounded Graphs

Definition 10 (An adjacency labelling) Without loss of generality, we let L = [k].
We let G be a graph that is the value of a term t in T (FL,CL) with constants of the
form cA(x) indicating the vertices they define. From now on by using Definition 7,
we identify the leaves of t to the corresponding vertices of G. We assume that the n

vertices are numbered from 0 to n−1 in an arbitrary (random) way. (Our construction
will not use a particular numbering.) For a vertex x of G, we let Path(x) be the path
(um,um−1, . . . , u0) from leaf x = um of t to the root u0. We have m + 1 ≤ ht(t).

We now describe an adjacency labelling I (x), i.e. a labelling encoding x and
intended to indicate whether vertices given by their labels are adjacent. We define

I (x) = (x, k,Lm, em−1,Dm−1,Lm−1, em−2,Dm−2, . . . , e0,D0,L0)

where:

(1) Lm = A and cA(x) is the constant at leaf x in t ;
(2) for each i = 0, . . . ,m, Li is the set of colours of the vertex x in the graph

val(t ↓ ui);
(3) for each i = 0, . . . ,m−1, if ⊗R,g,h is the operation that occurs at node ui , then:

(3.1) ei = 1 if ui+1 is the left son of ui and Di is the set of colours j ′ such that
(j, j ′) ∈ R for some j in Li+1;

(3.2) ei = 2 if ui+1 is the right son of ui and Di is the set of colours j ′ such that
(j ′, j) ∈ R for some j in Li+1.

Let us be very concrete. A label I (x) can be encoded as a word of length �logn�+
�logk� + (2k + 1).m + 2 over the alphabet {0,1,#}:

bin(x)#bin(k)#[Lm]e′
m−1[Dm−1][Lm−1]e′

m−2[Dm−2] . . . e′
0[D0][L0]

where bin(x) denotes the binary writing of an integer x (or of the index number of
a vertex x), [L] is the bit sequence of length k that represents in the obvious way a
subset L of {1, . . . , k}, and e′

i = ei −1 for each i. The decoding algorithm must know
k in order to analyse correctly the sequence [Lm]e′

m−1[Dm−1] . . . e′
0[D0][L0]. This

word can be encoded on {0,1} by a twice longer sequence.
We obtain thus a bit sequence of length O(k.m + logn) computable from t in

time O(k2.ht (t)). Computing the entire labelling takes time O(k2.n.ht (t)). For a
balanced term t , we get labels of length O(k. logn) and the global computation time
is O(k2.n. logn).

Lemma 11 One can determine in time O(k.ht (t) + logn) whether two vertices x

and y are adjacent in G from the sequences I (x) and I (y).
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Proof From the integers em−1, . . . , e0, e
′
m′−1, . . . , e

′
0 in the sequences

I (x) = (Lm, em−1,Dm−1,Lm−1, em−2,Dm−2, . . . , e0,D0,L0),

I (y) = (L′
m′ , e′

m′−1,D
′
m′−1,L

′
m′−1, . . . , e

′
0,D

′
0,L

′
0),

one can determine the position i in Path(x) and Path(y) of the least common ancestor
ui of x and y. Without loss of generality we assume that x is below (or equal to) the
left son of ui . Then x and y are adjacent in G if and only if Di ∩ L′

i+1 
= ∅. This is
equivalent to D′

i ∩ Li+1 
= ∅. �

Proposition 12 From (I (x))x∈Z for a set Z ⊆ V , one can determine the graph G[Z]
in time O(|Z|2.(k.ht (t)+ logn) ), or O(|Z|2.k. logn) if t is balanced, i.e. has height
O(logn).

We have thus defined an implicit representation in the sense of Kannan et al. [13]
for graphs of mcwd at most k, using labels of size O(k logn), with the help of Theo-
rem 9.

4.2 Construction of a Distance Labelling for Constrained Paths

We recall that we denote by G+[Z] the induced subgraph G[Z] augmented with di-
rected or undirected edges (according to the case) that have an integer value at least 2
indicating the length of a shortest path between two vertices with no intermediate
vertex in Z and at least one not in Z. We show how to enrich I (x) in order to be
able to construct G+[Z] from the labels of Z. The main construction of this article
establishes the following proposition:

Proposition 13 For every k, for every directed or undirected graph G = (V ,E) de-
fined by a term t in T (F[k],C[k]), one can build a labelling J such that, from the
labels J (x) of the vertices x in Z where Z ⊆ V , one can determine G+[Z] in time
O(k3.|Z|2.ht (t)). The labels have size O(k2. log2 n).

Here is the idea. From (I (x))x∈Z for any Z ⊆ V , one can reconstruct G[Z], but
for determining the graph G+[Z] we need to know about paths going out of Z, in
particular, we need to know the lengths of shortest such paths.

As in Sect. 4.1, we assume the graph G defined as the value of a term t in
T (F[k],C[k]). If u is a node of a path Path(x) for some x in Z, and w is a son of
u not on Path(y) for any y in Z, then we will extract from the label of x the lengths
of at most k2 shortest paths running through the subgraph of G induced on the leaves
of t below w (such leaves are not in Z). These values are precomputed and stored in
a matrix of integers MIN(w) inserted at the position corresponding to u in the label
J (x). The matrices of lengths of paths in the graphs val(t ↓ w) for all nodes w of t

will be computed bottom-up by means of a rule of the form

MIN(u) = F(MIN(u1),MIN(u2), (R,g,h))

where u1 and u2 are the two sons of u and ⊗R,g,h is the operation at node u.
We introduce an important notion and state some lemmas.
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Definition 14 (Graph representations of m-clique-width terms) With every term t in
T (F[k],C[k]), we associate a graph denoted by Rep(t) called its graph representation.
This graph is, roughly, the syntactic tree of t augmented with directed and undirected
edges in such a way that the paths in the graph val(t) can be described as paths of
Rep(t) obeying certain constraints on edge directions. We recall that we consider
terms t defining undirected graphs val(t). The extension to directed graphs will be
easy.

The vertices of Rep(t) are the leaves of t and the pairs (u, i) for nodes u of t and
colours i ∈ [k] that colour at least one vertex in val(t ↓ u). This graph has edges of
two types: vertical directed and horizontal undirected edges.

The horizontal edges link (u1, i) and (u2, j) whenever u1, u2 are respectively the
left and right sons of a node u that is an occurrence of an operation ⊗R,g,h such that
(i, j) ∈ R.

The vertical edges are of three types:

1. u −→ (u, i) for u a leaf with associated constant cA(u) and each i ∈ A.
2. (u1, i) −→ (u, j) whenever u1 is the left son of a node u that is an occurrence of

⊗R,g,h and j ∈ g(i).
3. (u2, i) −→ (u, j) whenever u2 is the right son of a node u that is an occurrence

of ⊗R,g,h and j ∈ h(i).

Figure 2 shows t and the graph Rep(t) for the term t of Example 8. On this figure,
we denote the constant c1(u) by 1(u) and similarly for the others. The relation R of
the operation ⊗A = ⊗R,g,h contains the pair (1,2). This pair yields no horizontal
edge in Fig. 2 because, in the term t used as example, the arguments of ⊗A do not
define vertices with the colours that would make this pair useful.

Fig. 2 A graph Rep(t)
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Analyzing Graph Representations of m-cwd-Terms The graph Rep(t) contains all
necessary information to build the graph val(t). We first examine how colours of
vertices can be determined. We will use w −→∗ w′ (equivalently w′ ←−∗ w) to
denote a directed path from w to w′.

Lemma 15 A vertex u of G below or equal to a node w of t has colour i in val(t ↓ w)

if and only if u −→∗ (w, i) in Rep(t).

This is clear from the definitions. We will denote by S(w) the set of colours i of
some vertex of val(t ↓ w), by Rep(t)(u) the set of all vertices (w, i) as in Lemma 15,
and by Rep(t)(Z) the union of these sets for all u in Z, where Z is any subset of V .

We illustrate this lemma with help of the graph of Fig. 2 defined by the term of
Example 8. Vertex u initially coloured by 1 gets colour 2 by ⊗A, then colour 1 by ⊗B

and keeps colour 1 in val(t). Vertex v initially coloured by 1 gets colour 3 by ⊗A and
looses its colour after ⊗B is applied.

We have S(b) = {1,3} where b is the occurrence of ⊗B and S(d) = {1,2} where
d is the root. Figure 2 shows only the colours of S(n) at each node n, because a pair
like (b,2) is, by Definition 14, not a vertex of Rep(t).

By the definitions, for every (w, i) in Rep(t), there is a path u −→∗ (w, i) for
some vertex u of val(t). We may have u −→∗ (w, i) and u −→∗ (w, j) with i 
= j

because a vertex u may have several colours in val(t ↓ w). This is the case of vertex z

in Rep(t) of Fig. 2. We have z −→ (z,1) and z −→ (z,2). We also have x −→∗ (b,1)

and x −→∗ (b,3) where b is the occurrence of ⊗B . Note that val(t ↓ b) is the path
u − v − w − x where u has colour 1 and x has colours 1 and 3.

Next we examine in a similar way how the adjacency of two vertices of val(t) can
be determined from the graph Rep(t).

Lemma 16 Two distinct vertices u,v of G are adjacent if and only if we have a
mixed (directed/undirected) path u −→∗ (w, i) − (w′, j) ←−∗ v in Rep(t) for some
w,w′, i, j .

We call such a path an elementary path of Rep(t). In the example of Fig. 2,
the adjacency of u and y in val(t) is witnessed by the elementary path: u −→
(u,1) −→ (a,2) −→ (b,1) − (c,3) ←− (y,2) ←− y where a, b, c denote occur-
rences of ⊗A,⊗B,⊗C respectively. The adjacency of x and y is witnessed by two
distinct elementary paths.

We now describe the paths of the graph val(t), and more generally its walks.
(A walk in a graph is a path where vertices may be visited several times.) A good
walk in Rep(t) is a walk that is a concatenation of elementary paths. Its length is the
number of undirected edges it contains (hence, the number of elementary paths of
which it is the concatenation).

Lemma 17 There is a walk P = x − z1 − · · · − zp − y in G = val(t) if and only if
there is in Rep(t) a good walk of the form:

W = x −→∗ − ←−∗ z1 −→∗ − ←−∗ · · · −→∗ − ←−∗ zp −→∗ − ←−∗ y
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We say in this case that W represents the walk P . In the example of Fig. 2, there
is a path of length 3: u − v − w − x in val(t) represented by the good walk:

u −→ (u,1) − (v,1) ←− v −→ (v,1) −→ (a,3) − (a′,2)

←− (w,1) ←− w −→ (w,1) − (x,1) ←− x

where a and a′ are the two occurrences of ⊗A.
The surgery of good walks will use the following notion. For a nonleaf node u of

the term t , a u-downwalk in Rep(t) is a walk that is formed of consecutive steps of a
good walk W and is of the form

(u, i) ←−∗ z −→∗ − ←−∗ · · · − ←−∗ z′ −→∗ (u, j) (4.1)

where all vertices except the end vertices (u, i), (u, j) are either u (if u is a leaf)
or of the form w or (w, l) for w strictly below u in t . It goes through at least one
leaf. We may have z = z′ in (4.1). Its length is defined as the number of undirected
edges. It is minimal if there is no u-downwalk of smaller length with same ends. If we
have u −→∗ (w, i) and u −→∗ (w, j) (possibly with i = j) then (w, i) ←−∗ u −→∗
(w, j) is a u-downwalk of length 0.

Lemma 18 A u-downwalk as defined by (4.1) represents a walk from z to z′ in the
graph val(t ↓ u), that may be empty, i.e. reduced to z. Conversely, every (possibly
empty) walk in val(t ↓ u) from z to z′ such that z has colour i and z′ has colour j (in
val(t ↓ u)) is represented by a u-downwalk of the form (4.1) from (u, i) to (u, j).

This is clear from the definitions. If in a good walk we replace a downwalk from
(u, i) to (u, j) by a shorter one also from (u, i) to (u, j) (shorter w.r.t. the particular
notion of length defined above) we obtain a shorter good walk. Again with the exam-
ple of Fig. 2 and the same designation of occurrences of function symbols, we have
the following b-downwalk of length 3:

(b,1) ←− (a,2) ←− (u,1) ←− u −→ (u,1) − (v,1) ←− v −→ (v,1)

−→ (a,3) − (a′,2) ←− (w,1) ←− w −→ (w,1) − (x,1) ←− x −→ (x,1)

−→ (a,3) −→ (b,3).

Is it not minimal because the following b-downwalk is shorter:

(b,1) ←− (a,3) ←− (x,1) ←− x −→ (x,1) −→ (a,3) −→ (b,3).

Definition 19 (The matrices MIN(u) of shortest paths; truncated elementary paths)
For vertices (u, i) and (u, j) of Rep(t), we let Min(u, i, j) be the length of a min-
imal u-downwalk from (u, i) to (u, j), or ∞ if no such downwalk exists. Clearly
Min(u, i, i) = 0 ((u, i) is a vertex of Rep(t), so Lemma 15 applies), and we may
have Min(u, i, j) = 0 for i 
= j . We have Min(u, i, j) = Min(u, j, i). Note that
Min(u, i, j) = Min(u, j, �) = 0 does not imply Min(u, i, �) = 0, and similarly we
may have Min(u, i, �) = ∞ whereas Min(u, i, j) < ∞ and Min(u, j, �) < ∞.
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In our current example Min(b,1,3) = 0 and Min(d,1,2) = 1, where d is the root.
We define MIN(u) as the symmetric S(u) × S(u) matrix of all such integers

Min(u, i, j) (“integer” means here nonnegative integer or ∞). We recall that S(u)

is the set of colours p such that (u,p) is a vertex of Rep(t). We will see later how
these matrices can be computed.

Yet another technical notion. A truncated elementary path in Rep(t) is obtained
from an elementary path by removing initial and/or final vertical edges. It is a path of
the form

q −→∗ (w, j) − (w′, j ′) ←−∗ q ′ (4.2)

where q is a leaf or a pair (u, i) and q ′ is a leaf or a pair (v, i′), and w and w′ are the
two distinct sons of some w′′.

Computation of G+[Z] from Information Attached to the Vertices of Z Our objec-
tive is to determine G+[Z] from information attached to the paths in t between the
root and the leaves belonging to Z, like in the adjacency labelling I (x) of Sect. 4.1.

Notation 20 We let a(Z) denote the set of vertices (u, i) in VRep(t) for nodes u on
paths Path(x) from the root to each x in Z. Hence a(Z) ⊇ Rep(t)(Z).

We let n(Z) denote the set of vertices in VRep(t) −a(Z) of the form (w, i) for some
w that is a son of some u on a path Path(x) for x in Z.

Clearly, if (w, i) ∈ n(Z) and w′ is strictly below w in t, then (w′, j) /∈ n(Z)∪a(Z)

for any j .

Example 8 (Continued) In our example of Fig. 2, if we take Z = {u,y}, then

Rep(t)(Z) = {u, (u,1), (a,2), (b,1), (d,1), y, (y,2), (c,3), (d,2)},
a(Z) = Rep(t)(Z) ∪ {(a,3), (b,3)},
n(Z) = {(v,1), (a′,2), (a′,3), (z,1), (z,2)}.

We have also:

a({u}) = {u, (u,1), (a,2), (a,3), (b,1), (b,3), (d,1), (d,2)},
n({u}) = {(v,1), (a′,2), (a′,3), (c,3)}.

Since the vertices of Z ∪ n(Z) ∪ a(Z) are on, or are “close to the paths in t”
between the root and the leaves in Z, the edges between them, i.e. those of the induced
subgraph Rep(t)[Z ∪ a(Z)∪n(Z)] of Rep(t) can be determined from (I (z))z∈Z , and
so can be G[Z].

Definition 21 (Z-external paths) A Z-external path in G is a path of the form:

P = x − v1 − v2 − · · · − vm − y,

with x, y ∈ Z, v1, v2, . . . , vm /∈ Z, m ≥ 1.
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Let W be a good walk representing P (by Lemma 17). We consider it as
a sequence of edges that we factorize into W = H1W1H2W2 . . .WpHp+1where
H1,H2, . . . ,Hp+1 are truncated elementary paths with edges in Rep(t)[Z ∪ a(Z) ∪
n(Z)] and W1,W2, . . . ,Wp are downwalks. Each of these downwalks has ends
(w, i), (w, j) in n(Z), no intermediate vertex in Z ∪ a(Z) ∪ n(Z) and no edge in
Rep(t)[Z ∪ a(Z) ∪ n(Z)].

Example 8 (Continued) We take again the example of Fig. 2, with Z = {u,y} and
P = u − v − w − x − y with representing good walk:

W = u −→ (u,1) − (v,1) ←− v −→ (v,1) −→ (a,3) − (a′,2)

←− (w,1) ←− w −→ (w,1) − (x,1) ←− x −→ (x,1) −→ (a′,3)

−→ (b,3) − (c,3) ←− (y,2) ←− y.

It can be factorized into H1W1H2W2H3 where:

W1 = (v,1) ←− v −→ (v,1) and

W2 = (a′,2) ←− (w,1) ←− w −→ (w,1) − (x,1) ←− x −→ (x,1) −→ (a′,3)

H1 = u −→ (u,1) − (v,1)

H2 = (v,1) −→ (a,3) − (a′,2)

H3 = (a′,3) −→ (b,3) − (c,3) ←− (y,2) ←− y.

In a factorization W = H1W1H2W2 . . .WpHp+1 a downwalk W� with ends
(w, i), (w, j) represents a walk of G[V − Z]. A truncated elementary path H� repre-
sents a family of edges, created in the same way by an operation ⊗R,g,h with occur-
rence w′′ (cf. Definition 19 in Sect. 4.2). One can replace in W a downwalk W� by
another one with same ends. One still gets a good walk W ′ of Rep(t) that represents
a walk in G from x to y. It follows that if P is a shortest Z-external path between x

and y all downwalks of the factorization of W representing it are minimal.
Conversely, one can determine the lengths of the shortest Z-external paths be-

tween x and y by examining all truncated elementary paths in Rep(t)[Z ∪ a(Z) ∪
n(Z)] and by using the values Min(w, i, j) for all (w, i), (w, j) in n(Z). These re-
marks prove the following lemma.

Lemma 22 One can determine G+[Z] from the graph Rep(t)[Z ∪ a(Z)∪n(Z)] and
the values Min(w, i, j) for all (w, i), (w, j) in n(Z).

Lemma 26 will establish the time complexity of this computation.

Example 8 (Continued) Figure 3 shows Rep+(t)[Z ∪ a(Z) ∪ n(Z)] where Z =
{u,y}, using the term t as in Fig. 2. It shows also that Min(z,1,2) = 0 and that
Min(a′,2,3) = 1.
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Fig. 3 The graph
Rep(t)({u,y}) with some edges
valued by lengths of shortest
special {u,y}-walks

Definition 23 (The labelling J (x)) We are now ready to define the label J (x) for
each vertex x of G. We recall that S(u) is the set of colours p such that (u,p) is a
vertex of Rep(t) and that MIN(u) be the symmetric S(u) × S(u) matrix of integers
Min(u, i, j). This matrix can be stored using space O(k2. logn) since n bounds the
lengths of shortest u-downwalks in Rep(t). (This is so because a factor of the form
z −→∗ − ←−∗ · · · −→∗ − ←−∗ z in a u-downwalk can be deleted and one obtains
a shorter u-downwalk with same ends.)

For a leaf x of t , i.e., a vertex of G, the path Path(x) is of the form (um,um−1,

. . . , u0), with u0 the root and um = x, we recall from Sect. 4.1 that

I (x) = (x, k,Lm, em−1,Dm−1,Lm−1, em−2,Dm−2, . . . , e0,D0,L0).

We let then

J (x) = (x, k,Lm, em−1,Dm−1,Lm−1,Mm−1, fm−1, em−2,

Dm−2, . . . , e0,D0,L0,M0, f0)

where fi is the binary function symbol (some ⊗R,g,h) occurring at node ui , Mi =
MIN(RightSon(ui)) if ei = 1 and Mi = MIN(LeftSon(ui)) if ei = 2 for each i =
0, . . . ,m − 1.

In J (x) we can delete Dm−1,Lm−1,Dm−2, . . . ,D0,L0 because the corresponding
data can be computed from em−1,Mm−1, fm−1, em−2,Mm−2, fm−2, . . . , e0, M0, f0.
Even if we keep this redundant data in J (x) we have the following fact (we omit a
detailed description of the encoding of J (x) as a bit sequence).

Lemma 24 Each label J (x) has size O(k2.ht (t). logn).
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These constructions and lemmas are easily adapted to directed graphs. In the graph
Rep(t), the horizontal edges are directed, and the integers Min(u, i, j) represent di-
rected paths in val(t ↓ u). Of course, we need not have Min(u, i, j) = Min(u, j, i).

4.3 The Labelling Algorithm

We now examine the time taken to construct the labels J (x) for all vertices x, hence
by Algorithm A of the labelling scheme.

Lemma 25 Assuming t being given, the computation of all labels J (x) for all ver-
tices x takes time O(k3.|t |).

Proof From a term t as in Definitions 14, 19, 21 and 23, the construction of Rep(t) is
straightforward and takes time O(k2.|t |). The construction of labels extends what was
done in Sect.4.1 for I (x): we only need to know the matrices MIN(u) for all nodes u

of t . This can be done by means of a bottom-up traversal of t . We now describe this
computation.

Case 1. If u is a leaf, hence an occurrence of a constant cA(u) for a set of colours
A, then S(u) = A, the set of all colours of the unique vertex u of the graph defined
by cA(u). We have Min(u, i, j) = 0 for all i, j in S(u).

Case 2. Otherwise u is an occurrence of some operation ⊗R,g,h with sons u1 and
u2. We will compute MIN(u) from MIN(u1) and MIN(u2).

First we note that S(u) = g(S(u1)) ∪ h(S(u2)).
Let W be a u-downwalk from (u, i) to (u, j). It can be factorized as W =

e1W1e2W2 . . .Wpep+1 where e1, e2, . . . , ep+1 are edges and W1,W2, . . . ,Wp are u1-
and u2-downwalks of the following forms:

e1 is a vertical edge (u, i) ←− (uα1 , iα1),

W1 is a downwalk from (uα1 , iα1) to (uα1 , jα1),

e2 is a horizontal edge (uα1 , jα1) − (uα2 , iα2),

W2 is a downwalk from (uα2 , iα2) to (uα2 , jα2),

...

Wp is a downwalk from (uαp , iαp ) to (uαp , jαp ),

ep+1 is a vertical edge (uαp , jαp ) −→ (u, j),

where α1, α2, . . . , αp ∈ {1,2}, αi+1 = 3 − αi for each i = 1, . . . , p − 1, and iαk
and

jαk
belong to S(uαk

) for each k = 1, . . . , p.
If W is of minimal length from (u, i) to (u, j), then so is each Wp among those

from (uαp , iαp ) to (uαp , jαp ). There lengths are given by the matrices MIN(u1) and
MIN(u2).

In a factorization e1W1e2W2 . . .Wpep+1 of W , all edges e1, e2, . . . , ep+1 are from
a set determined by the triple (R,g,h). Hence the minimal length of a downwalk
W from (u, i) to (u, j) can be obtained by an all-pairs shortest path algorithm in
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a weighted graph with O(k) vertices. (Each edge has a weight and the length of a
path is the sum of weights of its edges.) Hence, this computation takes time O(k3)

at each u. We omit routine details. Hence, for all nodes the total computation time is
O(k3.|t |).

The case of directed graphs is very similar. �

Example 8 (Continued) Figure 4 illustrates the computation at a node u of MIN(u)

from MIN(u1) and MIN(u2) in a case where S(u) = S(u2) = {1,2,3,4} and S(u1) =
{1,2,3}. The operation at u is ⊗R,g,h where:

R = {(1,4), (2,2), (3,1)},
g(1) = {1}, g(2) = {2,3}, g(3) = {4} and

h(1) = {3}, h(2) = {4}, h(3) = ∅, h(4) = {4}.
We assume that, for some integers a, b, . . . we have:

Min(u1,1,2) = a, Min(u1,2,3) = b and Min(u1,1,3) = ∞
(the absence of an edge between 1 and 3 below S(u1) indicates this last value). We
also have:

Min(u2,1,2) = c, Min(u2,2,3) = d, Min(u2,3,4) = e,

Min(u2,2,4) = f, Min(u2,1,4) = g, Min(u2,1,3) = ∞.

In Fig. 4 the arrows to the left from 1 to 1, from 2 to 2 and 3, and from 3 to 4
represent the mapping g (they are vertical edges of Rep(t)), and those to the right
represent h.

The thick horizontal edges between S(u1) and S(u2) represent the pairs in R.
The curves marked a, b, c, . . . , f, g represent entries of the matrices MIN(u1) and
MIN(u2) assumed to be known and from which one wants to compute MIN(u). By
looking at all possible paths one gets:

Fig. 4 Computation of MIN(u) from MIN(u1) and MIN(u2)
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Min(u,1,2) = min{a,2 + f,2 + b + g},
Min(u,1,3) = min{a,2 + f,1 + g},
Min(u,1,4) = 1,

Min(u,2,3) = 0,

Min(u,2,4) = min{1, b}, and

Min(u,3,4) = min{1, b, c, g}.

For instance, depending on the relative values of a, f and g, a shortest path
in val(t ↓ u) from some vertex coloured 1 to some vertex coloured 3 may be one
in val(t ↓ u1) from a vertex coloured 1 to a vertex coloured 2 or a path going
through val(t ↓ u2) via a vertex coloured 4 and a vertex coloured 2 (with a portion
of length f ), or via a vertex coloured 4 and a vertex coloured 1 (with a portion of
length g).

4.4 The Decoding Algorithm

Lemma 26 One can determine G+[Z] from the graph Rep(t)[Z ∪ a(Z)∪n(Z)] and
the matrices MIN(w) for w such that (w, i), (w, j) belong to n(Z) in time O(k3 +
k.|Z| + |Z|2).

Proof The algorithm is similar to that of Lemma 25 that computes the matrices
MIN(u). We assume that Z ∪ a(Z) ∪ n(Z) is known. We construct the tree t ′ de-
fined as the union of the paths Path(x) for x that belongs to Z or is a son of a node on
Path(z) for some z ∈ Z. The computation will be bottom-up on the tree t ′ (this tree
is a subgraph of t but not a term because some subterms are missing).

The following proof deals with undirected graphs.
For each node u of t ′ we define two tables T 1(u) and T 2(u) with values in

N ∪ {∞}.
Table T 1(u) indicates for every two vertices in Z∩Vval(t↓u) the length of a shortest

path in val(t ↓ u) between them.
Table T 2(u) indicates for every vertex x in Z∩Vval(t↓u) and every colour i in S(u)

the length of a shortest path in val(t ↓ u) between x and some vertex having colour i

(among possibly other colours). In both cases ∞ means “no path”. These two tables
are empty if u is not on Path(z) for any z ∈ Z.

Case 1. If u is a leaf all entries of these matrices will be 0.
Case 2. Otherwise u is an occurrence of ⊗R,g,h with sons u1 and u2. We will

compute T 1(u) from T 1(u1), T 2(u1), T 1(u2) and T 2(u2), and we will compute
T 2(u) from T 2(u1) and T 2(u2).

We consider the computation of T 1(u). For any two vertices x, y in Z ∩ Vval(t↓u)

we do as follows.
Subcase 2.1. x is in Z∩Vval(t↓u1) and y is in Z∩Vval(t↓u2). A shortest path between

x and y in val(t ↓ u) is represented by a walk W in Rep(t) that can be decomposed
as W = W1e1W2e2 . . .WpepWp+1 where:
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W1 represents in Rep(t) a shortest path in val(t ↓ u1) between x and some vertex
coloured by i1, e1 is a horizontal edge (u1, i1) − (u2, j2),
W2 is a downwalk from (u2, j2) to (u2, i2),

e2 is (u2, i2) − (u1, j3),

W3 is a downwalk from (u1, j3) to (u1, i3),
...

Wp is a downwalk from (uαp , iαp ) to (uαp , jαp ),

ep is (u1, ip) − (u2, jp),

Wp+1 represents in Rep(t) a shortest path in val(t ↓ u2) between some vertex
coloured by jp and y.
In this description i1, j1, . . . , ip, jp are colours in the sets S(u1) (for p odd) or

S(u2) for p even and p is odd. The lengths of W1 and Wp+1 are obtained from
T 2(u1) and T 2(u2); those of W2, . . . ,Wp are obtained from MIN(u1) and MIN(u2).
The edges e1, e2, . . . , ep are obtained from the relation R.

Subcase 2.2. x and y are in Z ∩ Vval(t↓u1). The length of a shortest path in val(t ↓
u1) is obtained from T 1(u1). This length must be compared with those of paths
that go through vertices of val(t ↓ u2). For knowing their lengths, we use a similar
decomposition as in Subcase 2.1 with p even and at least 2. The shortest length of
such a path is obtained from T 2(u1), MIN(u1) and MIN(u2). We obtain the desired
value by taking a minimum over several possible values. See Fig. 5.

The cases where x is in Z ∩ Vval(t↓u2) and y is in Z ∩ Vval(t↓u1), and where x and
y are in Z ∩ Vval(t↓u2) are of course similar.

The time taken to determine T 1(u) and T 2(u), is O(k3 + k. | Z | + | Z |2). The
final results are in T 1(roott ).

For directed graphs, we need T 1(u) which will not be symmetric and two tables
T 2+(u) and T 2−(u). Table T 2+(u) (resp. T 2−(u)) indicates for every vertex x

in Z ∩ Vval(t↓u) and every colour i in S(u) the length of a shortest directed path in
val(t ↓ u) from x to some vertex coloured by i (resp. from some vertex coloured by i

to x). The computation time is the same. �

Example 27 (Continued) Figure 5 extends the example of Fig. 4. It indicates the
following (finite) values of the tables for u1and u2 (absent edges stand for entries
equal to ∞):

T 1(u1)[x, y] = δ,

T 2(u1)[x,1] = α, T 2(u1)[x,2] = γ, T 2(u1)[y,1] = ε,

T 2(u1)[y,2] = β, T 2(u2)[z,1] = μ, T 2(u2)[z,2] = ν.

From these definitions and those of MIN(u1) and MIN(u2) that are visible in
Fig. 5, we have:

α ≤ δ + ε, ε ≤ δ + α,

β ≤ δ + γ, γ ≤ δ + β,

a ≤ α + γ, a ≤ β + ε.
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Fig. 5 Computation of lengths of shortest Z-external paths for obtaining G+[Z]

We also have that Min(u,1,3) ≤ ε + T 2(u1)[y,3], hence T 2(u1)[y,3] = ∞ be-
cause ε is assumed to be finite.

Analyzing the possible paths gives the following:

T 1(u)[x, y] = min{δ,α + ε + 2, β + γ + 2, α + β + f + 2, γ + ε + f + 2},
T 2(u)[x,1] = α,

T 2(u)[x,2] = T 2(u)[x,3] = γ,

T 2(u)[x,4] = min{α + 1, γ + 1},
T 2(u)[y,1] = ε,

T 2(u)[y,2] = T 2(u)[y,3] = β,

T 2(u)[y,4] = min{β + 1, ε + 1},
and so on.

We can now prove the crucial Proposition 13.

Proof of Proposition 13 Let G be an undirected graph defined by a term t . Assume
that J has been constructed by Lemma 25. Lemmas 22 and 26 show how to construct
G+[Z]. This gives a global time bound of O(|Z|2.k3.ht (t)).

We now review the modifications to be done for handling directed graphs. In
the construction of the graph representation Rep(t), an horizontal edge is directed
(u1, i) −→ (u2, j) if u1, u2 are respectively the left and the right son of a node u that
is an occurrence of an operation ⊗R,g,h such that (i, j,+) ∈ R. It is directed in the
other direction if (i, j,−) ∈ R.

Lemma 16 is modified as follows: for distinct vertices u,v we have u −→ v in G if
and only if there is an elementary path of the form u −→∗ (w, i) −→ (w′, j) ←−∗ v
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in Rep(t) for some w,w′, i, j . The modified versions of Lemmas 16–18, 25 and 26
follow easily. For this, we use directed u-downwalks from (u, i) to (u, j), of the
form: (u, i) ←−∗ z −→∗ · · · ←−∗ z′ −→∗ (u, j), where all horizontal edges are from
left to right, all other conditions being as for u-downwalks. We let Min(u, i, j) be
the smallest length of a directed u-downwalk from (u, i) to (u, j), or ∞ if no such
downwalk exists.

The matrices MIN(u) are no longer symmetric. The graph G+[Z] is built with
integer valued directed edges. This completes the proof of Proposition 13. �

Theorem 9 and Proposition 13 yield the following main theorem.

Theorem 27 For a directed or undirected graph G of m-clique-width at most k on n

vertices, one can assign to vertices labels J (x) of size O(k2. log2 n) such that from
the family (J (x))x∈Z for any set Z ⊆ V , one can determine the graph G+[Z] in
time O(|Z|2.k3. logn). The length of a shortest (X,F )-constrained path such that
X ∪ ends(F ) ⊆ Z can be determined in time O(|Z − X|2) from G+[Z] and in time
O(|Z|2.k3. logn) from (J (x))x∈Z .

Proof This follows from Proposition 13 and Lemma 1 by using Dijkstra’s shortest
path algorithm. �

Example 8 (Continued) From Fig. 3 one can see that u and y are adjacent but that, if
the edge u − y is broken, they are at distance 4. Figure 6 shows that vertices v and x

are at distance 2 in val(t), but if the vertex w is forbidden they are at distance 3, by a
path going through y. The two edges with their endpoints in the ellipse are no longer
usable if w is forbidden.

Fig. 6 The graph
Rep(t)+({v,w,x, y})
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Handling Edge Additions If for fixed Z, in addition to (X,F ) such that X ∪
ends(F ) ⊆ Z, we are given a set H of pairs of vertices of Z representing new di-
rected or undirected edges, one may ask about the length of a shortest path from x

to y (belonging to Z − X) in ((G − F) ∪ H)\X. We call this handling constrained
paths with edge additions.

Corollary 28 With the labelling of Theorem 27, one can handle constrained paths
with edge additions, with same time for answering queries.

For the simpler problem of checking connectivity (possibly with edge additions)
we have a more compact labelling scheme.

Corollary 29 For a directed or undirected graph G of m-clique-width at most k on
n vertices, one can assign to vertices labels C(x) of size O(k2. logn) such that from
the family (C(x))x∈Z for any set Z ⊆ V , one can determine the (X,F )-constrained
connectivity (or the (X,F )-constrained directed connectivity in case of a directed
graph) possibly with edge additions.

Proof In the matrices MIN(u), we only have to store values “∞” or “not ∞”. This
gives two results: directed connectivity for directed graphs, i.e., the existence of a
directed (X,F )-constrained path from x to y, and connectivity for undirected graphs,
i.e., the existence of an (X,F )-constrained path between x to y. �

4.5 Overview of Algorithms

Let us review the steps needed to apply these results. We first consider Algorithm A
that constructs labels.

Step 1. First, we need a tree-decomposition or an mcwd- term of the given graph, of
width at most k. This can be done in linear time for obtaining a tree-decomposition
(for details, see [1]). The problem of determining the m-clique-width of a graph and
the corresponding optimal term is likely to be NP-hard because the corresponding
one for clique-width is NP-complete [9]. The cubic algorithm given by Oum [14]
that constructs non-optimal clique-width terms for undirected graphs can be used.

The obtained tree-decomposition or clique-width term can easily be transformed
into an mcwd-term of width k or k + 3 or 2k + 4, depending on the case, by Propo-
sition 5.

Step 2. The term must be turned into a 3-balanced one of width O(k) in time
O(n. logn), denoted by t .

Step 3. We then construct the graph Rep(t), which can be done in time O(k2.|t |) =
O(k2.n).

Step 4. The next step consists in computing the matrices MIN(u). This can be done
bottom-up in the term t by Lemma 25. Since at each step we need time O(k3), we
need in total time O(k3.n).

Step 5. The final step consisting in building the labels J (x) for all vertices takes time
O(k3.ht (t)) = O(k3. logn + k2.n. logn).
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The decoding algorithm B uses two steps:

Step 1. Construction of G+[Z] in time O(k3 + k.|Z| + |Z|2).
Step 2. Answers to queries in time O(|Z − X|2). This time does not depend on k.

These constructions apply to directed graphs in a straightforward manner except
the cubic algorithm of [14] which is designed for undirected graphs. However there
exists a bijective encoding of directed graphs G as bipartite undirected graphs B(G)

(defined in [2]). There exist strictly increasing functions f and g such that for every
directed graph G:

f (cwd(B(G))) ≤ cwd(G) ≤ g(cwd(B(G))).

Hence the cubic algorithm for undirected graphs can be used for directed graphs.
Another extension can be done for shortest constrained paths in directed graphs

with edges having nonnegative integer lengths. However, all edges created by a sin-
gle pair of colours (a, b) in R in an operation ⊗R,g,h must have the same length.
Otherwise the notion of graph representation of a term, where one horizontal edge
represents all edges created from one pair (a, b) by an operation ⊗R,g,h cannot be
used. The above methods and results are easy to adapt to this extension.

4.6 A Compact Routing Scheme

We now describe how to use a modification of the labelling J to build a compact
routing scheme.

The construction of J is based on matrices that give for each position u in a term
t the length of a shortest u-downwalk in Rep(t) from (u, i) to (u, j). Storing the
sequence of vertices of the corresponding path in G = val(t) uses space O(n logn)

instead of O(logn) for each entry (assuming there are n vertices numbered from 1
to n, so that a path of length p uses space (p + 1).�logn�). The corresponding labels
J ′(x) have size O(k2.n. log2 n) for each x. This labelling yields for every pair of
vertices x, y a shortest (X,F )-constrained path and not only its length. This path is
obtained by piecing together some edges (the edges ei of the proof of Lemma 26)
and some of the paths stored in the labels J ′(z) for vertices z in the set {x, y} ∪ X ∪
ends(F ).

We now give a more economical construction. For having a compact routing
scheme (as opposed to a distance labelling scheme), it suffices to be able to con-
struct the path in an incremental manner, by finding the next hop at each node, then
forwarding the relevant data to that node. Here is a construction permitting this.

We only store at each entry (i, i) of the matrix MIN(u) one vertex x such that
(u, i) ∈ Rep(t)(x) instead of the value 0 = Min(u, i, i). If Min(u, i, j) = 0, we store
the same vertex at entries (i, i) and (j, j). This uses slightly more space than for
MIN(u) as in Sect. 4.2 but still O(k2. logn) and the corresponding labels J ′′(x) have
size O(k2. log2 n) for all x.

From the labels J ′′(x) for all x in Z, one can build an edge-labelled graph G++[Z]
defined by adding new labels to those of G+[Z]. For each edge between x and y in
G+[Z] having weight 2, we add to the label of this edge the intermediate vertex z

of one of the shortest paths it represents. For each edge between x and y in G+[Z]
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having weight at least 3, we add two intermediate vertices z and z′ of one of the
shortest paths it represents, such that z is next to x and z′ is next to y. It is easy to
adapt the algorithm of Lemma 26 so as to construct G++[Z] from (J ′′(x))x∈Z . And
from G++[Z] for Z ⊇ {x, y} ∪ X ∪ ends(F ), one can determine, not only the length
of shortest (X,F )-constrained path from x to y, but the vertex z following x on such
a path. This vertex may not be in Z. If it is not, and to continue the construction one
must compute G++[Z ∪{z}] in order to determine the vertex following z is a shortest
path from x to y.

These definitions and observations yield the following result.

Theorem 30 Let G be a graph of m-clique-width at most k, each vertex u of which
has an associated set of vertices Forb(u) of size at most r . This graph has a compact
forbidden-set routing scheme using routing tables of size O(r.k2. log2 n) and message
headers of size O(r.k2. log2 n) that permits to route on shortest paths in G \ Forb(x)

from every vertex x.

Proof Let G = (V ,E) be given by a balanced mcwd-term of width at most 2k (or 3k

if G is directed), let J ′′(x) be constructed as explained above. Let a set Forb(u) ⊆ V

such that |Forb(u)| ≤ r be defined for each vertex u. We store at each u the labels
J ′′(w) for all w in Forb(u). The algorithm intended to route a message from x to y

in G \ Forb(x) works as follows.
By using J ′′(x), J ′′(y) and {J ′′(w) : w ∈ Forb(x)}, it determines a vertex z1 on

some shortest path x − z1 −· · ·−y in G\Forb(x). The message together with J ′′(y)

and the set {J ′′(w) : w ∈ Forb(x)} is sent to z1. Then some z2 on a shortest path
z1 − z2 − · · · − y in G \ Forb(x) is determined by using J ′′(z1), J ′′(y) and the set
{J ′′(w) : w ∈ Forb(x)}. The message with the same set of labels is sent to z2, and
the procedure is repeated until y is reached. Since exact distances are computed and
since the set of forbidden vertices is not changed on the way, the message gets closer
to y at each step and reaches it. �

This method constructs a path from x to y in G \ Forb(x) that may go through
some z and then through some u such that u ∈ Forb(z). If at each step we increase
the set of forbidden vertices in order to prevent such a situation, we may build a path
that is not shortest or we may find no path at all whereas there exists one.

5 Open Problems

A major open problem is to get good bounds for constrained distance labelling on pla-
nar graphs. Since they have balanced separators of size �(

√
n) they have tree-width

O(
√

n), hence our results can be applied with k = O(
√

n). This gives a labelling
scheme with labels of size O(n log2 n), but we think that it is possible to do much
better.

Recently, Courcelle et al. [8] presented an O(logn)-bit labelling scheme for con-
strained connectivity in planar graphs, but the problem of constrained distance la-
belling is still open.
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Appendix: Balanced Terms Defining Graphs

We prove Theorem 9 that we restate for the reader’s convenience.

Theorem 9 Every undirected (resp. directed) graph of clique-width or m-clique-
width k with n vertices (n > 1) is the value of an m-cwd term t of width at most
2k (resp. 3k) and of height at most 3.(log(n − 1) + 1). The time taken to build t from
a given term s of width k is O(n. logn), where n is the size of s.

A similar result for graphs of bounded tree-width has been proved by Bodlaender
[1]: every graph with n vertices of tree-width k has a tree-decomposition of width
3k + 2 with underlying tree of height at most 2 log5/4(2n).

We first prove that every m-cwd term can be transformed into a balanced term
using new binary operations that express substitutions of terms for variables with
unique occurrences. These new operations are not among the operations defining
m-clique-width but they can be simulated by m-clique-width operations using more
labels than those of the original term.

A.1 Contexts and Special Terms

Let F is a set of function symbols, and C be a set of constants. A context is a term
in T (F,C ∪ {u}) having a single occurrence of the variable u (nullary symbol). We
denote by Ctxt(F,C) the set of contexts, and by Id (for identity) the particular con-
text u. We define two binary operations ◦ and • on terms and contexts for which we
use infix notation:

s ◦ s′ = s[s′/u], belongs to Ctxt(F,C) for s, s′ in Ctxt(F,C),

s • t = s[t/u], belongs to T (F,C) for s in Ctxt(F,C), t in T (F,C),

where s[w/u] denotes the substitution in s of a term or context w for u at its unique
occurrence.

Clearly s ◦ Id = Id ◦ s = s; Id • t = t.The operation ◦ is associative and we have
s • (s′ • t) = (s ◦ s′) • t.

We will consider terms in T (F ∪ {◦,•},C ∪ {Id}) that evaluate to terms or con-
texts according to the above definitions. The evaluation of these terms consists in
eliminating ◦ and • by performing the substitutions they stand for.

Example 31 The term f (Id, b) ◦ (g(a, Id) ◦ f (Id, c)) evaluates to the context
f (g(a,f (u, c)), b). The term f (Id, b) ◦ (g(a, Id) • f (d, c)) evaluates to the term
f (g(a,f (d, c)), b).

From now on we only consider sets F of binary operation symbols.
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Definition 32 The sets of special terms and contexts SPEt (F,C) and SPEc(F,C).
We let Sc and St be the least subsets of T (F ∪ {◦,•},C ∪ {Id}) such that:

St = Sc • St ∪ f (St , St ) ∪ b ∪ · · ·
Sc = Sc ◦ Sc ∪ f (St , Sc) · · · ∪ f (Sc, St ) · · · ∪ f (St , Id) · · · ∪ f (Id, St ) · · ·

where the unions extend to all f in F and b in C.
We denote these sets by SPEt (F,C) and SPEc(F,C) if we need to specify F

and C. Note that Id /∈ St ∪ Sc.
Every term t in SPEt (F,C) evaluates into a term Eval(t) in T (F,C) and every

term c in SPEc(F,C) evaluates into a context Eval(c) in Ctxt(F,C) − {Id}. The
evaluation rules are as follows:

Eval(c ◦ c′) = Eval(c)[Eval(c′)/u],
Eval(c • t) = Eval(c)[Eval(t)/u],

Eval(Id) = u,

Eval(b) = b, and

Eval(f (w,w′)) = f (Eval(w),Eval(w′))

for terms or contexts c, c′, t,w,w′, functions f and constants b.

For a term t in SPEt (F,C) ∪ SPEc(F,C) we denote by |t |FC the number of oc-
currences of symbols from F ∪ C, by |t |0 the number of occurrences of ◦ and •, and,
by |t |Id the number of occurrences of Id. Since F is a set of binary function symbols,
each such term has an odd size |t | defined as |t |FC + |t |0 + |t |Id and it is clear from
the recursive equations defining special terms that |t |Id = |t |0 if t ∈ SPEt (F,C) and
|c|Id = |c|0 + 1 if c ∈ SPEc(F,C).

The following proposition shows how a term or a context can be split into two or
three terms or contexts of less than half size.

Proposition 33 (Lemmas 1, 2 in [6])

1. Every term t ∈ T (F,C) of size n = 2p +1, p ≥ 1 can be written t = c1 •f (t1, t2)

where c1 ∈ Ctxt(F,C), t1, t2 ∈ T (F,C), |c1| ≤ p, c1 is of maximal size with this
property, and then |ti | ≤ p + 1 for each i = 1,2.

2. Every context c ∈ Ctxt(F,C) of size n = 2p + 1, p ≥ 1 can be written c = c1 ◦
f (c2, t1) or c = c1 ◦ f (t1, c2) for c1, c2 ∈ Ctxt(F,C), t1 ∈ T (F,C) and |c1| ≤ p,
c1 is of maximal size with this property, and then |c2| ≤ p + 1, |t1| ≤ 2p − 1.

Proof See [6]. We only consider some particular cases. Let t = f (s1, s2) with p =
(|t | − 1)/2 = (|s1| + |s2|)/2.

If |s1| − 2 ≤ |s2| ≤ |s1| + 2 then in Case 1 of Proposition 33, we must take c1 = u.
If |s1| = |s2| + 2 then the “larger context” c′

1 = f (u, s2) has size 2 + |s2| ≥ p + 1
since p + 1 = (|s1| + |s2|)/2 + 1 = |s2| + 2, hence c1 is maximal of size ≤ p. If
|s1| = |s2| or if |s2| = |s1| + 2 the same argument works.
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Similarly if c = f (c′, s2) and |c′| ≤ |s2| + 2 (in particular if c′ = u) we must
take c1 = u to satisfy (2). Taking the “larger context”c′

1 = f (u, s2) would necessitate
|c′

1| ≤ p that is 2 + |s2| ≤ (|c′| + |s2|)/2, i.e., |c′| ≥ |s2| + 4. �

A more careful proof than the one of [6] gives the following result.

Proposition 34 For every term t in T (F,C) − C, one can construct a term tb in
SPEt (F,C) such that |tb|FC = |t |FC = |t |, Eval(tb) = t , ht(tb) ≤ 3. log(|t | − 1) and
|tb| ≤ 2.|t | − 1. This term can be constructed in time O(n. logn) where n = |t |.

Proof We will use an induction to construct tb for each t ∈ T (F,C) and to construct
also a context cb in SPEc(F,C) such that Eval(cb) = c for each c ∈ Ctxt(F,C). The
construction will ensure the following properties (note that |c| = |c|FC + 1):

|cb|FC = |c|FC, ht (cb) ≤ 3. log(|c| − 1) + 2 and |cb| ≤ 2.|c| − 1.

Case 1. Let t ∈ T (F,C) have size |t | = 2p + 1.

Subcase 1.1. If |t | = 3 we let tb = t , then ht(tb) = 2 < 3. log(|t | − 1) and |tb| = |t | ≤
2.|t | − 1.

Subcase 1.2. If |t | = 2p + 1 > 3. We use Proposition 33 and write t = c1 • f (t1, t2).

Subcase 1.2.1. c1 = u. This means that ||t1| − |t2|| ≤ 2: assume on the contrary that
|t1| ≥ |t2|+4, then |f (u, t2)| = 2+|t2| ≤ p = (|t1|+ |t2|)/2 and c1 is not of maximal
size such that case 1 of Proposition 33 holds, because it can be replaced by a “larger
context”, e.g., f (u, t2). In this case we let tb = f (tb1 , tb2 ). We have |t1| = 2p1 + 1,
|t2| = 2p2 + 1, |p1 − p2| ≤ 1. We first assume t1, t2 /∈ C. By inductive hypothesis:

ht(tbi ) ≤ 3. log(2pi) = 3. log(pi) + 3.

We note that |t | − 1 = 2.p1 + 2.p2 + 2. Since |p1 − p2| ≤ 1, we have 2pi ≤
(|t | − 1)/2 for each i = 1,2. Hence,

1 + ht(tbi ) ≤ 1 + 3. log(2pi)

≤ 1 + 3. log((|t | − 1)/2)

= −2 + 3. log(|t | − 1)

< 3. log(|t | − 1)

and ht(tb) = max{1 + ht(tb1 ),1 + ht(tb2 )} < 3. log(|t | − 1).
The size of tb is |tb| = |tb1 | + |tb2 | + 1 ≤ 2.(|t1| + |t2|) − 1 < 2.|t | − 1 by using

induction.
If t1 ∈ T (F,C), then |t1| = 1 which implies |t2| = 3, |t | = 5 and tb = t , ht(t) =

3 ≤ 3 log(4) = 6. The case t2 ∈ T (F,C) is similar.

Subcase 1.2.2. c1 
= u. We let tb = cb
1 • f (tb1 , tb2 ). We have |c1| ≤ p, |ti | ≤ p + 1. We

must prove that 1 + ht(cb
1) ≤ 3. log(2p) and that

2 + ht(tbi ) ≤ 3. log(2p) for i = 1,2.
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By induction: ht(cb
1) ≤ 3. log(p − 1) + 2 ≤ 3. log(p) + 2 Hence, 1 + ht(cb

1) ≤ 3 +
3. log(p) = 3. log(2p) = 3. log(|t | − 1). We have also: 2 + ht(tbi ) ≤ 2 + 3. log(p) <

3. log(2p). This proves the desired assertion.

Case 2. We now consider the case where c ∈ Ctxt(F,C) is of size n = 2p + 1.

Subcase 2.1. If n = 3 then cb = c and the result holds as in Subcase 1.1.

Subcase 2.2. We consider the case where |c| = 2p+1 > 3. We write c = c1 ◦f (c2, t1)

or c = c1 ◦f (t1, c2) with c1 of maximal size with |c1| ≤ p. We only consider the first
case.

Subcase 2.2.1. c1 = u. This means that c = f (c2, t1), |c2| ≤ |t1|+2, because if |c2| ≥
|t1| + 4 then c1 = u could be replaced by a “larger context”, e.g., f (u, t1).

We take cb = f (cb
2, tb1 ). We have |c2| = 2p2 + 1, |t1| = 2p1 + 1, p2 ≤ p1 + 1. The

proof is similar to that of Subcase 1.2.1. We must prove that

1 + ht(tb1 ) ≤ 3 log(2p) + 2 and 1 + ht(cb
2) ≤ 3 log(2p) + 2.

We have

1 + ht(tb1 ) ≤ 1 + 3 log(|t1| − 1) ≤ 1 + 3 log(|c| − 1) < 3 log(|c| − 1) + 2.

We also have 1 + ht(cb
2) ≤ 1 + 3 log(2p2) + 2. We have

4.p2 ≤ 2.p2 + 2.(p1 + 1) = |c| − 1.

Hence,

1 + ht(cb
2) ≤ 3 + 3 log((|c| − 1)/2) = 3 log(|c| − 1) < 3 log(|c| − 1) + 2.

We also have |cb| = |tb1 | + |cb
2 | + 1 ≤ 2.(|t1| + |c2|) − 1 < 2.|c| − 1 by using

induction, as in Subcase 1.2.2.

Subcase 2.2.2 c1 
= u. Then we let cb = cb
1 ◦f (cb

2, tb1 ). We have |c1| ≤ p, |c2| ≤ p+1
and |t1| ≤ 2p − 1. We must prove:

1 + ht(cb
1) ≤ 3 log(2p) + 2, (A.1)

2 + ht(cb
2) ≤ 3 log(2p) + 2, (A.2)

2 + ht(tb1 ) ≤ 3 log(2p) + 2. (A.3)

For (A.1) we have using induction

1 + ht(cb
1) ≤ 1 + 3 log(p − 1) + 2 < 3 + 3 log(p) = 3 log(2p).

For (A.2) we have using induction

2 + ht(cb
2) ≤ 2 + 3 log(p) + 2 = 3 log(2p) + 1.
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For (A.3) we have

2 + ht(tb1 ) ≤ 2 + 3 log(2p − 2) < 3 log(2p) + 2.

We have |cb| = |tb1 | + |cb
1 | + |cb

2| + 2 ≤ 2.(|t1| + |c1| + |c2|) − 1 < 2.|c| − 1 by
using induction.

In all these cases and subcases, we get |tb|FC = |t |FC and |cb|FC = |c|FC by
induction. �

The decomposition of Proposition 33 can be found in time O(|t |). For a term t

the recursive decomposition procedure (cf. Subcase 1.2) is called for c1, t1, t2 each of
size at most (|t | + 1)/2. For a context t the decomposition procedure (cf. Subcase 2)
is called for c1, c2, each of size at most (|t | + 1)/2 and t2 of size at most |t |. The
decomposition of t2 calls the procedure for at most three terms and contexts of size
at most (|t | + 1)/2. Hence, the procedure applied to a context t uses recursive calls
to at most five terms and contexts of size at most (|t | + 1)/2. So the total time is
O(|t |. log(|t |).

Example 35 A term of the form f (a,f (a,f (a, . . . , f (a, b)) . . .)) with 2n occur-
rences of f, hence of height 2n + 1 and size 2n+1 + 1 is Eval(t) for a term t in St of
height n + 2 and size 2n+2 − 1. For n = 3, we obtain the following term

t = [(f (a, Id) ◦ f (a, Id)) ◦ (f (a, Id) ◦ f (a, Id))]
• [(f (a, Id) ◦ f (a, Id)) • (f (a, Id) • f (a, b))].

A.2 Balanced m-cwd Terms

We now prove Theorem 9 by using Propositions 33 and 34 for m-cwd terms. We will
write Fk and Ck instead of F[k] and C[k]. The operations and constants of these sets
transform and define multicoloured graphs with colours in [k]. We first consider the
case of undirected graphs.

The idea of the proof is as follows. Let G be a graph defined by a term in
T (Fk,Ck); by Proposition 34 there exists a 3-balanced special term evaluating to G

but this term uses the operations ◦ and • which are not allowed in the definition of
m-clique-width. We will eliminate them at the cost of using k more colours: a special
term s • t will be rewritten into an equivalent term Gs ⊗R,g,h t . That is, the action of
s on arbitrary terms t is simulated by a graph Gs “representing s” and an appropriate
operation ⊗R,g,h depending on s.

The transformation of s into Gs is compositional, that is: Gs◦s′ = Gs ⊗R,g,h Gs′
for some ⊗R,g,h depending on s and s′. We can thus eliminate ◦ and • without in-
creasing the size and height of the given term. The graphs Gs have colours in the set
[k] ∪ [k]′ where [k]′ := {i′ | i ∈ [k]}. We can of course replace i′ by k + i so that we
obtain terms in T (F2k,C2k).

Proof The sets of special terms St and contexts Sc are here SPEt (Fk,Ck) and
SPEc(Fk,Ck). For a context defined by a special term s, we denote by s̃ the associ-
ated unary graph operation that transforms H into G = s̃(H) (that is, G = val(s • t)
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if H is the value of a term t). Our aim is to express G as Gs ⊗R,g,h H where Gs is
a multicoloured graph over the set of colours L := {1, . . . , k,1′, . . . , k′} and R,g,h

are chosen adequately. When we write G = s̃(H) we will assume, without loss of
generality that the vertices of H are vertices of G, because when one builds a graph
K = M ⊗R,g,h N from graphs M and N , one can choose to keep any of M or N

untouched and to make a disjoint copy of the other. Hence, in the construction of
G = s̃(H) the graph H need not be copied. However, s̃ may add new vertices to H .

We let I be the graph c1(w1) ⊕ · · · ⊕ ck(wk) with vertex set {w1, . . . ,wk} and
we will use the graph s̃(I); this graph contains s̃(∅) as an induced subgraph. The
following fact is clear from the definitions.

Claim 1 A vertex y of s̃(∅) is linked to a vertex x of H in s̃(H) if and only if y is
linked to wi in s̃(I) for some i in δH (x) (i.e., i is one of the colours of x in H ).

The graph G = s̃(H) is obtained from H as follows:

1. Add to H the vertices and edges of s̃(∅), all created by the operations and con-
stants of s independently of H .

2. Add edges between the vertices x of H and these new vertices y, on the basis of
δH (x). These edges are defined by the binary operations of s.

3. Recolour the vertices of H according to the operations of s. This recolouring is
defined by the mapping hs : [k] −→ P ([k]) such that hs(i) is the set of colours of
wi in s̃(I).

The graph Gs representing the context s is defined as the graph s̃(∅) modified as
follows: we add to the list of colours of each vertex y the colours i′ such that y − wi

in s̃(I). (Recall that u − v indicates that u and v are adjacent vertices.) Hence Gs

has multiple colours in L. In the particular case where s = Id, this gives Gs = ∅,
hs(i) = {i} for every i in [k].The following is clear from this construction and
Claim 1.

Claim 2 For every graph H multicoloured in [k], we have s̃(H) = Gs ⊗R,g,hsH

where R = {(i′, i) | i ∈ [k]} and g(i) = {i}, g(i′) = ∅ for i in [k].
The relevant information associated with a context s is the pair (Gs,hs). Con-

texts are defined inductively; we now show that this information is also computable
inductively.

Claim 3 For any two contexts s, s′, we have:

1. hs◦s′ = hs ◦ hs′ and
2. Gs◦s′ = Gs ⊗R,g,h Gs′ , where R = {(i′, i) | i ∈ [k]} and g(i) = {i}, g(i′) = {j ′ |

i ∈ hs′(j)}, h(i) = hs(i), h(i′) = {i′}, for all i in [k].
Proof The first condition is clear from the definitions. We now prove the second
condition. The particular cases where s or s′ is Id can be checked directly.

Otherwise, by using Claim 2 we have s̃ ◦ s′(∅) = s̃(s̃′(∅)) = Gs ⊗R,m,hs s̃′(∅),
m(i) = {i}, m(i′) = ∅ for i in [k] and Gs◦s′ is obtained by adding new colours to this
graph.
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We first compare the vertices and edges of Gs ⊗R,m,hs s̃′(∅) and Gs ⊗R,g,h Gs′ .
From the definitions, the vertices are the same.

Let x − y be an edge of Gs ⊗R,m,hs s̃′(∅). If x and y are both in Gs or both in
s̃′(∅) then x − y is also an edge of Gs ⊗R,g,h Gs′ (because Gs′ is s̃′(∅) with some
new colours added).

If x is in Gs and y is in s̃′(∅), then x has colour i′ and y has colour i for some i, but
y has also colour i in Gs′ hence x −y is also an edge in Gs ⊗R,g,h Gs′ . The argument
is the same in the other direction. Hence Gs ⊗R,m,hs s̃′(∅) and Gs ⊗R,g,h Gs′ have
the same vertices and edges. We now compare the colours of a vertex x in these two
graphs.
Case 1. x is in Gs . Its colours belonging to [k] are as in s̃(∅) and are not modified
either by m or by g. They are the same in the two graphs we compare.

The vertex x has colour j ′ in Gs◦s′ if and only if x − wj in s̃ ◦ s′(I) = s̃ (̃s′(I)) if
and only if x has colour i′ in Gs for some i in hs′(j). Hence, the set of colours j ′ of
x in Gs◦s′ is the union of the sets g(i′) for i′ colour of x in Gs.

From the definitions of the mappings m and g (note how g depends on s′), we get
that x has the same colours in Gs◦s′ and in Gs ⊗R,g,h Gs′ .
Case 2. x is in Gs′ . The vertex x has colour i in Gs◦s′ if and only if i ∈ hs(j) and x

has colour j in s̃′(∅) equivalently colour j in Gs′ . Since h(j) = hs(j), the vertex x

has the same colours belonging to [k] in Gs◦s′ and in Gs ⊗R,g,h Gs′ .
The vertex x has colour i′ in Gs◦s′ if and only if x − wi is an edge of s̃ (̃s′(I)) if

and only if x − wi is an edge of s̃′(I) if and only if x has colour i′ in Gs′ if and only
if it has colour i′ in Gs ⊗R,g,h Gs′ because h(i′) = {i′} for all i in [k].

This completes the proof of Claim 3. �

Next we consider the basic contexts f (t, Id) or f (Id, t), but we need only con-
sider the first case because f (Id, t) = f ′(t, Id), for some f ′.

Claim 4 For s = t ⊗T ,m,p Id, we have hs = p and Gs = val(t) ⊗∅,m,∅ ∅, where
m(i) = m(i) ∪ {j ′ | (i, j) ∈ T }, and m(i′) = ∅, for i in [k].

Proof Easy verification from the definitions. We have specified m(i′) = ∅, for i in
[k] but actually, no vertex of val(t) has a colour i′, hence we could take any set for
m(i′). �

Next we consider the contexts of the form f (t, c) or f (c, t), but again we need
only consider the first case.

Claim 5 For s = t ⊗T ,m,p c, we have hs = p ◦ hc , Gs = val(t) ⊗T ,g◦m,h Gc , where
m is as in Claim 4, g(i) = {i}, g(i′) = {j ′ | i ∈ hc(j)}, h(i) = p(i), h(i′) = {i′} for
all i in [k].

Proof We observe that s is equivalent to d ◦ c where d = t ⊗T ,m,p Id, hence, we can
use Claims 3 and 4. These two claims give Gs = Gd ⊗R,g,h Gc where R = {(i′, i) |
i ∈ [k]} and g(i) = {i}, g(i′) = {j ′ | i ∈ hc(j)}, h(i) = hd(i) = p(i), h(i′) = {i′}, for
all i in [k], and Gd = val(t) ⊗∅,m,∅ ∅, where m(i) = m(i) ∪ {j ′ | (i, j) ∈ T }, and
m(i′) = ∅, for i in [k].
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But for all graphs H and K we have

(H ⊗∅,m,∅ ∅) ⊗R,g,h K = H ⊗T ,g◦m,h K. (A.4)

Hence we have the desired equality by taking H = val(t) and K = Gc . �

These claims yield the following one:

Claim 6 Let us fix k. Every term t in SPEt (Fk,Ck) can be transformed in linear time
into a term t̂ in T (F2k,C2k) that defines the same graph as Eval(t) and has no larger
height and no larger size than t .

Proof The proof is an induction on the structure of t . This induction constructs for
every term in SPEc(Fk,Ck) a term ĉ in T (F2k,C2k) that defines the representing
graph Gc and the mapping hc: [k] −→ P ([k]). The term ĉ has no larger height and
size than c.

1. Definition of t̂ in T (F2k,C2k) for t in SPEt (Fk,Ck):

If t = b ∈ Ck then t̂ = b.
If t = f (t1, t2) then t̂ = f (t̂1, t̂2).
If t = c • t1, then t̂ = ĉ ⊗R,g,hc t̂1, where R and g are defined in Claim 2.

2. Definition of ĉ in T (F2k,C2k) and of hc for c in SPEc(Fk,Ck):

If c = s ◦ s′ we let hs◦s′ = hs ◦ hs′ and ĉ = ŝ ⊗R,g,h ŝ′, where R,g,h are as in
Claim 3.
If c = t ⊗T ,m,p Id, let hc = p and ĉ = t̂ ⊗∅,m,∅ ∅, where m is as in Claim 4.
If c = t ⊗R,g,h c, we let hs = p ◦ hc, Gs = val(t) ⊗T ,g◦m,h Gc where m,g,h is as
in Claim 5.

The size and height of t̂ are exactly those of t , and the same for c. However, one
can still decrease them: the constant ∅ can be eliminated by using equalities like (A.4)
used in Claim 5. The size and height can only decrease.

This transformation of terms can be done in linear time. �

End of proof of Theorem 9 Let G be a graph with n vertices, n > 1, given by an m-cwd
term of width k in T (Fk,Ck). This term has size 2n − 1. It can be transformed into
a special term of height at most 3. log(2n − 2). This term can be transformed into an
equivalent one in T (F2k,C2k) of height at most 3. log(2n − 2) = 3.(log(n − 1) + 1).
This completes the proof for the case of undirected graphs.

For directed graphs, instead of one auxiliary set [k]′ we will use two: [k]′ and
[k]′′ := {i′′ | i ∈ [k]}. The proof is similar, we only indicate the modifications to be
done. For constructing Gs , we modify the graph s̃(∅) as follows: we add to the list
of colours of each vertex y the colours i′ such that y −→ wi and the colours i′′ such
that y ←− wi in s̃(I). (We write u −→ v to indicate an edge from u to v.) Then
Claim 2 holds with R := {(i′, i,+) | i ∈ [k]} ∪ {(i′′, i,−) | i ∈ [k]} and g(i) = {i},
g(i′) = g(i′′) = ∅ for i in [k].

For Claim 3, we let R be the same and g(i) = {i}, g(i′) = {j ′ | i ∈ hs′(j)},g(i′′) =
{j ′′ | i ∈ hs′(j)}, h(i) = hs(i), h(i′) = {i′}, h(i′′) = {i′′} for all i in [k].
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For Claim 4 we let m(i) = m(i) ∪ {j ′ | (i, j,+) ∈ T } ∪ {j ′′ | (i, j,−) ∈ T }, and
m(i′) = m(i′′) = ∅, for i in [k].

For Claim 5 we let m be as above and g(i) = {i}, g(i′) = {j ′ | i ∈ hc(j)}, g(i′′) =
{j ′′ | i ∈ hc(j)}, h(i) = p(i), h(i′) = {i′}, h(i′′) = {i′′} for all i in [k].

Finally for Claim 6 we transform a term t in SPEt (Fk,Ck) into a term t̂ in
T (F3k,C3k) where i′ is encoded into i + k and i′′ into i + 2k, which explains the
use of (F3k,C3k) in place of (F2k,C2k).

By Proposition 5, one can apply this result to graphs given by clique-width terms
of width at most k and produce balanced m-clique-width terms denoting them of
width 2k or 3k. �

Remark 36 For a graph given by a cwd-term of width k, if one insists on obtaining
a clique-width term, one can get one of width k.2k for undirected graphs (and k.22k

for directed graphs) with height a. logn where a varies with k and is not bounded by
a constant.

We think that k.2k cannot be replaced by a polynomial in k, however, we have no
proof.

The following example indicates why the construction of a clique-width term
needs exponential number of colours.

Example 37 Let I1, . . . , Ih enumerate the nonempty subsets of [k]. Let S be the edge-
less graph with vertices v1, . . . , vh all coloured by k + 1. For each [k]-coloured graph
H , we let f (H) be the graph H ⊕ S augmented with undirected edges linking vj

to the vertices of H with a colour belonging to Ij for all j = 1, . . . , h. It is easy
to write a context s with cwd-operations using only colors in [k + 2] and such that
s̃(H) = f (H) for every [k]-coloured graph H . For some colouring S′ of S with
colours in a set L, and some fixed composition ADD of recolouring and edge ad-
dition operations (among cwd-operations), we can have f (H) = ADD(H ⊕ S′) for
every [k]-coloured graph H , but this implies that L has at least h = 2k − 1 colours.
This is so because no two elements of S are linked in f (H) to the same vertices of
H in the case where each element of [k] colours some vertex of H .

The result in terms of m-clique-width avoids the exponential jump on the number
of colours and the constant a is the same for all k.

However, in view of a concrete implementation, a binary operation in Fk for defin-
ing graphs of m-clique-width at most k may need 3k2 bits to be encoded, whereas,
if we use clique-width operations, one bit is enough for disjoint union and 2�logk�
bits make it possible to encode unary operation symbols that use k colours. It remains
open to design efficient data structures for both types of operations.
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