
Theoretical Computer Science 342 (2005) 173–228
www.elsevier.com/locate/tcs

Fundamental Study

The recognizability of sets of graphs is a robust
property�

Bruno Courcellea,∗, Pascal Weilb
aLaBRI, Université Bordeaux-1, 351 cours de la Libération, 33405 Talence Cedex, France

bLaBRI, CNRS, 351 cours de la Libération, 33405 Talence Cedex, France

Received 18 January 2005; accepted 9 March 2005

Communicated by M. Nielsen

Abstract

Once the set of finite graphs is equipped with an algebra structure (arising from the definition of
operations that generalize the concatenation of words), one can define the notion of a recognizable set
of graphs in terms of finite congruences. Applications to the construction of efficient algorithms and
to the theory of context-free sets of graphs follow naturally. The class of recognizable sets depends
on the signature of graph operations. We consider three signatures related respectively to Hyperedge
Replacement (HR) context-free graph grammars, to Vertex Replacement (VR) context-free graph
grammars, and to modular decompositions of graphs. We compare the corresponding classes of
recognizable sets.We show that they are robust in the sense that many variants of each signature (where
in particular operations are defined by quantifier-free formulas, a quite flexible framework) yield the
same notions of recognizability. We prove that for graphs without large complete bipartite subgraphs,
HR-recognizability andVR-recognizability coincide. The same combinatorial condition equatesHR-
context-free andVR-context-free sets of graphs. Inasmuch as possible, results are formulated in the
more general framework of relational structures.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Recognizable set of graphs; Graph algebra; Hyperedge replacement; Vertex replacement;
Quantifier-free definable operation; Locally finite congruence; Modular decomposition

� This paper was prepared in part while the second author was an invited Professor at the University of Nebraska-
Lincoln. The second author acknowledges partial support from theAS 93of the Département STIC of CNRS, and
theACI Sécurité Informatiqueof the Ministère de la Recherche.
∗ Corresponding author.
E-mail addresses:bruno.courcelle@labri.fr(B. Courcelle),pascal.weil@labri.fr(P. Weil).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.018

http://www.elsevier.com/locate/tcs
mailto:bruno.courcelle@labri.fr
mailto:pascal.weil@labri.fr

174 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

1. Introduction

The notion of a recognizable language is a fundamental concept in Formal Language
Theory, which has been clearly identified since the 1950s. It is important because of its
numerous applications, in particular for the construction of compilers, and also for the
development of the Theory: indeed, these languages can be specified in several very different
ways, by means ofautomata, congruences, regular expressionsandlogical formulas. This
multiplicity of quite different definitions is a clear indication that the notion is central since
one arrives at it in a natural way from different approaches. The equivalence of definitions
is proved in fundamental results by Kleene, Myhill and Nerode, Elgot and Büchi.

The notion of a recognizable set has been extended in the 1960s to trees (actually to trees
representing finite algebraic terms), to infinite words and to infinite trees. In the present
article we discuss its extension to sets of finite graphs.

The recognizability of a set of finite words or trees can be defined in several ways,
as mentioned above, and in particular by finitedeterministicautomata. This definition
(together with the related effective translations from other definitions) provides linear-
time recognition algorithms, which are essential for compiler construction, coding, text
processing, and in other situations. Recognizable sets of words can also be defined in
an algebraic way by finite saturating congruences relative to the monoid structure. These
definitions, by automata and congruences, extend smoothly to the case of finite trees (i.e.,
algebraic terms), using the natural algebra structure. The notion of recognizability in a
general algebra is due to Mezei and Wright[37]. We will not discuss here the extensions to
infinite words and trees, which raise specific problems surveyed by Thomas [43] and Perrin
and Pin [40]. Our aim will be to consider sets of finite graphs.

For finite graphs, there is no automaton model, except in very special cases, and in
particular in the case of graphs representing certainlabelled partially ordered setsandtraces
(a trace is a directed acyclic graph, representing the equivalence class of a word w.r.t. a partial
commutation relation), see the volume edited by Diekert [22] and the papers by Lodaya
and Weil [32,33] and Ésik and Németh [24]. Algebraic definitions via finite congruences
can be given because the set of finite graphs can be equipped with an algebraic structure,
based on graph operations like the concatenation of words. However, many operations on
graphs can be defined, and there is no prominent choice for a standard algebraic structure
like in the case of words where a unique associative binary operation is sufficient. Several
algebraic structures on graphs can be defined, and distinct notions of recognizability follow
from these possible choices. It appears nevertheless that two graph algebras, called the
HR-algebraand theVR-algebra for reasons explained below, emerge and provide robust
notions of recognizability. The main purpose of this paper is to demonstrate the robustness
of these notions. By robustness, we mean that taking variants of the basic definitions does
not modify the corresponding classes of recognizable sets of graphs.

In any algebra, one can define two family of sets, the recognizable sets and the equational
sets. The equational sets are defined as the components of the least solutions of certain
systems of recursive set equations, written with set union and the operations of the algebra,
extended to sets in the standard way. Equational sets can be considered as the natural
extension of context-free languages in a general algebraic framework (Mezei and Wright
[37], Courcelle [13] for a thorough development). The two graph algebras introduced above,

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 175

theHR- and theVR-algebra, are familiar to readers interested in graph grammars, because
their equational sets are the (context-free)Hyperedge Replacement(HR) sets of graphs
on the one hand, and the (context-free)Vertex Replacement(VR) sets on the other. Both
classes of context-free sets of graphs can be defined in alternative, more complicated ways
in terms of graph rewritings, and are robust in the sense that they are closed under certain
transformations expressible in Monadic Second-Order Logic[15].

The main results of this paper, described below in more detail, are:
(1) the robustness of the classes ofVR- andHR-recognizable sets of graphs,
(2) the robustness of the class of recognizable sets of finite relational structures (equivalently

of simple directed ranked hypergraphs), which extends the two previous classes,
(3) the exhibition of structural conditions on sets of graphs implying thatHR-recognizability

andVR-recognizability coincide,
(4) the comparison of the recognizable sets of theVR-algebra and those of a closely related

algebra representingmodular decompositions(modular decomposition is another useful
notion for graph algorithms).

The notion of recognizability of a set of finite graphs is important for several reasons. First,
because recognizability yields linear-time algorithms for the verification of a wide class of
graph properties on graphs belonging to certain finitely generated graph algebras. These
classes consist of graphs of bounded tree-width and of bounded clique-width. These two
notions of graph complexity are important for constructions of polynomial graph algorithms,
see[23,20]. Furthermore, these graph properties are not very difficult to identify because
Monadic second-order (MS) logic can specify them in a formalized and uniform way.
(In many cases, an MS formula can be obtained from the graph theoretical expression
of a property.) More precisely, a central result [8,9,15,20] says that every set of graphs
(or graph property) definable by an MS formula is recognizable (respectively admits such
algorithms), for appropriate graph algebras. This general statement covers actually several
distinct situations.

Another reason comes from the theory of Graph Grammars. The intersection of a context-
free set of graphs and of a recognizable set is context-free (in the appropriate algebraic
framework). This gives immediately many closure properties for context-free sets of graphs,
via the use of MS logic as a specification language for graph properties. Recognizability
also makes it possible to construct terminating and (in a certain sense) confluent graph
rewriting rules by which one can recognize sets of graphs of bounded tree-width by graph
reduction in linear time, see Arnborg et al. [2].

Finally, recognizability is a basic notion for dealing with languages and sets of terms,
and on this ground, its extension to sets of graphs is worth investigating. Logical characteri-
zations of recognizability can be given using MS logic, extending many results in language
theory [16,24,28–30]. Several questions remain open in this research field.

We have noted above that defining recognizability for sets of graphs cannot be done in
terms of finite automata, so that the algebraic definition in terms of finite congruences has
no alternative. Another advantage of the algebraic definition is that it is given at the level
of universal algebra [37], and thus applies to objects other than graphs. However, even in
the case of graphs, the algebraic setting is useful because it hides (temporarily) the com-
plexities of operations on graphs and makes it possible to understand what is going on at a
structural level.

176 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

We now present the main results of this article more in detail. The two main algebraic
structures on graphs calledVR andHR, originate from algebraic descriptions of context-
free graph grammars. Definitions will be given in the body of the text. It is enough for this
introduction to retain that the operations ofVR are more powerful than those ofHR. Hence
everyHR-context-free set of graphs (i.e., defined by a grammar based on the operations
of HR) is VR-context-free, but not vice-versa. For recognizability, the inclusion goes in the
opposite direction: everyVR-recognizable set isHR-recognizable but the converse is not
true. However, if the graphs of a setL have no subgraph of the formKn,n (the complete
bipartite graph onn + n vertices) for somen, thenL is HR-recognizable if and only if it
is VR-recognizable (this is the main theorem of Section6). A similar statement is known
to hold under the same hypothesis for context-free sets: ifL is withoutKn,n (i.e., no graph
in L contains a subgraph isomorphic toKn,n), then it isHR-context-free if and only if it
is VR-context-free [12]. The proofs of the two statements are however different (and both
difficult).

Up to now we have only discussed graphs, but our approach, which extends the approach
developed by Courcelle in [9], also works for hypergraphs and for relational structures.

The operations on graphs, hypergraphs and structures are basically of three types
defined in Section 3: we use only one binary operation, the disjoint union; we use unary
operations defined by quantifier-free first-order formulas; and basic graphs and
structures corresponding to nullary operations. In this way we can generate graphs and
structures by finite algebraic terms. The quantifier-free definable operations can modify
vertex and edge labels, add or delete edges. This notion is thus quite flexible. What is re-
markable is that these numerous operations can be added without altering the notion of
recognizability.

The main result of Section 4 states that the same recognizable sets of graphs are obtained
if one uses the basicVR-algebra (closely connected to the definition ofclique-width), the
same algebra enriched with quantifier-free definable operations, and even the larger algebra
dealing with relational structures. Variants of theVR-algebra which are useful, in particular
for algorithmic applications, are also considered, and they are proved to yield the same class
of recognizable sets.

In Section 5, we discuss similarly theHR-algebra which is very important because of
its relation withtree-widthand with context-free graph grammars. We prove a robustness
result relative to the subclass such that the distinguished vertices denoted by distinct labels
(nullary operations) are different. TheHR-operations are appropriate to handle graphs and
hypergraphs with multiple edges and hyperedges (whereas theVR-operations are not). The
original definitions (see [8]) were given for graphs with multiple edges and hyperedges. In
Section 7, we prove that for a set of simple graphs,HR-recognizability is the same in the
HR-algebra of simple graphs and in the largerHR-algebra of graphs with multiple edges.
Without being extremely difficult, the proof is not just a routine verification.

In Section 8, we consider an algebra arising from the theory of modular decomposition
of graphs. We show that under a natural finiteness condition, the corresponding class of
recognizable sets is equal to that ofVR-recognizable ones.

In an appendix, we clarify the definitions of certain equivalences of logical formulas,
focusing on cases where they are decidable, and we give upper bounds to the cardinalities
of the quotient sets for these equivalences. These results yield upper bounds to the number of

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 177

equivalence classes in logically based congruences.They are thus useful for the investigation
of recognizability in view of the cases where the sets under consideration are defined
by logical formulas. They also provide elements to appreciate (an upper bound of) the
complexity of the algorithms underlying a number of the effective proofs in the main body
of the paper.

This work has been presented in invited lectures by Courcelle[17] and Weil [47].

2. Recognizability

The notion of a recognizable set is due to Mezei and Wright [37]. It was originally defined
for one-sort structures, and we adapt it to many-sorted ones with infinitely many sorts. We
begin with definitions concerning many-sorted algebras.

2.1. Algebras

We follow essentially the notation and definitions from [45], see also [13]. LetS be a set
called the set ofsorts. An S-signatureis a setF given with two mappings�: F −→ seq(S)
(the set of finite sequences of elements ofS), called thearity mapping, and�: F −→ S,
called thesortmapping. We denote by�(f) the length of the sequence�(f), which we call
alsoarity. Thetypeof f in F is the pair(�(f),�(f)) that we shall rather write�(f)→ �(f),
or (s1, s2, . . . , sn) −→ s if �(f) = (s1, . . . , sn) and�(f) = s. The sequence�(f) may be
empty (that is,n = 0), in which casef is called aconstant of type�(f) = s.

An F-algebra is an objectM = 〈(Ms)s∈S, (fM)f∈F 〉, where for eachs ∈ S, Ms is
a non-empty set, called thedomain of sorts of M. For a nonempty sequence of sorts
� = (s1, · · · , sn), we denote byM� the productMs1 ×Ms2 × · · ·×Msn . If �(f) > 0, then
fM is a total mapping fromM�(f) toM�(f). If f is a constant of types, thenfM is an element
of Ms. The objectsfM are called theoperationsof M. We assume thatMs ∩Ms′ = ∅ for
s �= s′. We also letM denote the union of theMs (s ∈ S). Ford ∈ M, we let�(d) denote
the uniques ∈ S such thatd ∈ Ms.

A mappingh:M → M ′ betweenF-algebras is ahomomorphism(or F-homomorphism
if it is useful to specify the signature) if it mapsMs intoM ′

s for each sorts and it commutes
with the operations ofF .

We denote byT (F) the set of finite well-formed terms built withF (we will call them
F-terms), and byT (F)s the set of those terms of sorts (the sort of a term is that of its
leading symbol). IfF has no constant the setT (F) is empty.

There is a standard structure ofF-algebra onT (F). Its domain of sorts is T (F)s, and
T (F) can be characterized as theinitial F-algebra. This means that for everyF-algebraM,
there is a unique homomorphismvalM : T (F) −→ M. If t ∈ T (F)s, the image oft under
valM is an element ofMs, also denoted bytM . It is nothing but the evaluation oft in M,
where the function symbols are interpreted by the corresponding functions ofM. One can
considert as a termdenotingtM , andtM as thevalueof t in M. The set of values inM of
the terms inT (F) is called thesubset generatedby F . We say that a subset ofM is finitely
generatedif it is the set of values of terms inT (F ′) for some finite subsetF ′ of F .

178 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Let F be anS-signature,F ′ be anS′-signature whereS′ ⊆ S. We say thatF ′ is a
subsignatureof F , writtenF ′ ⊆ F , if F ′ is a subset ofF and the types of everyf in F ′ are
the same with respect toF and toF ′. We say then that anF ′-algebraM ′ is asubalgebra
of anF-algebraM if M ′

s ⊆ Ms for everys ∈ S′, and every operation ofM ′ coincides with
the restriction to the domains ofM ′ of the corresponding operation ofM.

We will often encounter the case where anF-algebraM is also the carrier of aG-algebra,
and theG-operations ofM can be expressed asF-terms: in that case, we say that theG-
operations ofM areF-derived, and theG-algebraM is anF-derived algebra(or it isderived
from M).

More formally, anS-sorted set of variablesis a pair(X,�) consisting of a setX and
a sort mapping�:X −→ S (usually denoted simply byX). We letT (F, X) be the set of
(F ∪X)-terms written withF ∪X, where it is understood that the variables are among the
nullary symbols (constants) ofF ∪ X. T (F, X)s denotes the subset of those terms of sort
s. Now if X is a finite sequence of pairwise distinct variables fromX andt ∈ T (F, X)s,
we denote bytM,X the mapping fromM�(X) to Ms associated witht in the obvious way
(�(X) denotes the sequence of sorts of the elements ofX). We calltM,X aderived operation
of the algebra M. If X is known from the context, we writetM instead oftM,X . This is
the case in particular ift is defined as a member ofT (F, {x1, . . . , xk}): the sequenceX is
implicitly (x1, . . . , xk).

2.2. Recognizable subsets

Let F be anS-signature. AnF-algebraM is locally finite if each domainMs is finite. If
M is anF-algebra ands ∈ S is a sort, a subsetL of Ms isM-recognizableif there exists
a locally finiteF-algebraA, a homomorphismh:M −→ A, and a (finite) subsetC of As
such thatL = h−1(C).

We denote byRec(M)s the family ofM-recognizable subsets ofMs. In some cases it will
be useful to stress the relevant signature and we will talk ofF-recognizable sets instead of
M-recognizable sets.

An equivalent definition can be given in terms of finite congruences. Acongruenceon
M is an equivalence relation≈ on M = ⋃

s∈SMs, such that each setMs is a union of
equivalence classes, and which is stable under the operations ofM. It is locally finite if for
each sorts, the restriction≈s of ≈ to Ms has finite index. A congruencesaturates a setif
this set is a union of classes. A subsetL of Ms isM-recognizable if and only if it is saturated
by a locally finite congruence onM.

The following facts are easily verified from the definition of recognizability or its char-
acterization in terms of congruences (see[14]), and will be used freely in the sequel.

Proposition 2.1. Let M be anF-algebra.
• For each sorts, the family Rec(M)s containsMs and the empty set, and it is closed under
union, intersection and difference.

• If h is a unary derived operation of M or a homomorphism ofM ′ into M, (whereM ′ is
anotherF-algebra), then the inverse image under h of an M-recognizable set is recog-
nizable.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 179

• If N is aG-algebra with the same domain as M, and if everyG-congruence of N is anF-
congruence of M(e.g.N is derived fromM,or G is obtained fromF by adding constants),
then every M-recognizable set is N-recognizable. If in additionG containsF , then M and
N have the same recognizable subsets.

• IfM ′ is a subalgebra ofMandL is anM-recognizable set, thenL∩M ′ isM ′-recognizable.
This includes the case whereM ′ has the same domain as M, and is anF ′-algebra for
some subsignatureF ′ ofF .

• Suppose that M is generated byF and let valM be the evaluation homomorphism from
T (F) ontoM.Asubset L ofMs isF-recognizable if and only if val−1

M (L) is a recognizable
subset ofT (F). If in additionF is finite, then this is equivalent to the existence of a finite
tree-automaton recognizing val−1

M (L).

Example 2.2. On the set of all words over a finite alphabetA, let us consider the binary
operation of the concatenation product, and the unary operationu �→ u2, which is derived
from the concatenation product. Then the 3rd statement in Proposition2.1 shows that we
have the same recognizable subsets as if we considered only the concatenation product. It
is interesting to note that, in contrast, adding the operationu �→ u2 to the signature adds
new equational languages, e.g. the set of all squares.

We will see more technical conditions that guarantee the transfer of recognizability be-
tween algebras in Section 2.4 below.

2.3. Remarks on the notion of recognizability

We gather here some observations on the significance of recognizability.
First, we note that iff is an operation of anF-algebraM, with arity k, and ifB1, . . . , Bk

areM-recognizable, thenf (B1, . . . , Bk) is not necessarily recognizable. This is discussed
for instance in [10], where sufficient conditions are given to ensure thatf (B1, . . . , Bk) is
recognizable. It is well-known for instance that the product of two recognizable subsets of
the free monoid (word languages) or of the trace monoid is recognizable; a similar result
holds for recognizable sets of trees.

Now, letM be anF-algebra and letF ′ be a signature which differs fromF only by
the choice of constants and their values. In particular,F ′ may be obtained fromF by the
addition of countably many new constants. Then the congruences onM are the same with
respect toF and toF ′ and it follows that a subset ofM is F-recognizable if and only if it
is F ′-recognizable.

It is customary to assume that theF-algebraM is generated by the signatureF . If M
is a countableF-algebra that is not generated byF , we can enrichF to F ′ by adding to
F one constant of the appropriate sort for each element ofM. ThenF ′ generatesM (in a
trivial way). As noted above,M has the sameF- andF ′-recognizable subsets. IfL is one of
these subsets, the setval−1

M (L) of F ′-terms is recognizable but we cannot do much with it,
because we lack the notion of a finite tree-automaton. See the conclusion of the paper for a
further discussion of this point.

Finally, we can question the interest of the notion of a recognizable set. Is it interesting
in every algebra? The answer is clearly no. Let us explain why.

180 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

If the algebraic structure over the considered setM is poor, for example in the absence of
non-nullary functions, then every setL is recognizable, by a congruence with two classes,
namelyL and its complement. The notion of recognizability becomes void.

Another extreme case is when the algebraic structure is so rich that there are very few
recognizable sets. For an example, consider the setN of natural integers equipped with the
successor and the predecessor functions (predecessor is defined bypred(0) = 0,pred(n+
1) = n). The only recognizable sets areN and the empty set. Indeed, if∼ is a congruence
and ifn ∼ n+p for somen�0,p > 0, then by using the functionpred n+p−1 times, we
find that 0∼ 1. It follows (using the successor function repeatedly) that any two integers
are equivalent.

Intuitively, if one enriches an algebraic structure by adding new operations, one gets
fewer recognizable sets.

For another example, let us consider the monoid{a, b}∗ of words over two letters. Let
us add a unary operation, thecircular shift, defined by:sh(ε) = ε and sh(au) = ua,
sh(bu) = ub, for every wordu. The languagea∗b is no longer recognizable w.r.t. this new
structure, however recognizability does not degenerate completely since every commuta-
tive language that is recognizable in the usual sense remains recognizable in the enriched
algebraic structure.

It is not completely clear yet which algebraic condition makes recognizability
“interesting”.

2.4. Technical results on recognizability

The statements in this section explain how to transfer a locally finite congruence from
one algebra to another, possibly with a different signature, and hence how to transfer rec-
ognizability properties between algebras. Proposition2.1 above contains examples of such
results.

The statements that follow will be used in the proof of some of our main results, in
Section 4. They are, unfortunately, heavily technical in their statements (but not in their
proofs…).

Lemma 2.3. LetF be anS-signature and letG be aT-signature. Let S be anF-algebra
and let T be aG-algebra. Let alsoH be a collection(Ht,s) such that, for eacht ∈ T and
s ∈ S, Ht,s consists of mappings fromTt into Ss with the following property:
for each operationg ∈ G of type(t1, . . . , tr) �→ t and for eachh ∈ Ht,s, there exist
sortss1, . . . , sr ∈ S, mappingshi ∈ Hti ,si (1� i�r) and anF-derived operation f
of type(s1, . . . , sr) �→ s such that, for everyx1 ∈ T1,…, xr ∈ Tr , h(g(x1, . . . , xr)) =
f (h1(x1), . . . , hr (xr)).

Finally, let≡ be anF-congruence on S and let≈ be the equivalence relation defined, on
eachTt, by

x ≈ y if and only if h(x) ≡ h(y) for everyh ∈ Ht,s, s ∈ S.

Then≈ is aG-congruence on T.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 181

Proof. Let g be an operation inG, of type(t1, . . . , tr) �→ t, and letx1, y1 ∈ Tt1, . . . , xr ,

yr ∈ Ttr such thatxi ≈ yi for eachi = 1, . . . , r. Let alsoh ∈ Ht,s with s ∈ S.
By hypothesis, there exist sortss1, . . . , sr ∈ S, mappingshi ∈ Hti ,si (for i = 1, . . . , r)

and anF-derived operationf of type(s1, . . . , sr) �→ s such that

h(g(x1, . . . , xr))= f (h1(x1), . . . , hr (xr))

h(g(y1, . . . , yr))= f (h1(y1), . . . , hr (yr)).

Sincexi ≈ yi for eachi, we havehi(xi) ≡ hi(yi); and since≡ is anF-congruence, it fol-
lows thath(g(x1, . . . , xr)) ≡ h(g(y1, . . . , yr)). Thus we haveg(x1, . . . , xr) ≈ g(y1, . . . ,

yr), which concludes the proof.�

With the notation of Lemma2.3, for each sortt ∈ T, let � t be the quasi-order relation
defined onHt =⋃

s∈S Ht,s by

h � t h
′ if there exists anF-derived unary operationf such thath′ = f ◦ h.

Lemma 2.4.With the notation of Lemma2.3, if for each t the order relation associated
with � t has a finite number of minimal elements, and if theF-congruence≡ on S is locally
finite, then theG-congruence≈ on T is locally finite.

Proof. Let t ∈ T. We want to show that there are only finitely many≈-classes inTt. By
assumption, there exist elementsh1, . . . , hk ∈ Ht such that every mapping ofHt is of the
form f ◦ hi for some 1� i�k and someF-derived operationf.

For eachi, let Ssi be the range ofhi and letni be the number of≡-classes inSsi . It is
immediately verified from the definition of� t that if x, y ∈ Tt, thenx ≈ y if and only if
hi(x) ≡ hi(y) for each 1� i�k. In particular,Tt has at mostn1 · · · nk ≈-classes, which
concludes the proof. �

We will actually need even more technical versions of these lemmas.

Lemma 2.5. Let S, T, F , G andH be as in Lemma2.3,and let� be aG-congruence on T
such that:
for each operationg ∈ G of type(t1, . . . , tr) �→ t, for eachh ∈ Ht,s and for each�z =
(z1, . . . , zr) where eachzi is a�-class ofTti , there exist sortss1,�z, . . . , sr,�z ∈ S,map-
pingshi,�z ∈ Hti ,si,�z (1� i�r) and anF-derived operationf�z of type(s1,�z, . . . , sr,�z)
�→ s such that, in T, h(g(x1, . . . , xr)) = f�z(h1,�z(x1), . . . , hr,�z(xr)) if eachxi is in zi .

Finally, let≡ be anF-congruence on S and let≈ be the equivalence relation defined, on
eachTt, by

x ≈ y if and only if x � y andh(x) ≡ h(y) for every h ∈ Ht,s, s ∈ S.

Then≈ is aG-congruence on T.Moreover, if H satisfies the hypothesis of Lemma2.4and
≡ and� are locally finite, then≈ is locally finite as well.

Proof. The proof is the same as for Lemmas 2.3 and 2.4.�

182 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

3. Algebras of relational structures

Even though we are ultimately interested in studying sets of graphs, it will be convenient
to handle the more general case of relational structures. Furthermore, relational structures
can be identified with simple directed hypergraphs. Such hypergraphs form a natural rep-
resentation of terms. See for instance the chapter on hypergraphs in[15] for applications.

In this paper, all graphs and structures are finite or countable. Our proofs will not usually
depend on cardinality assumptions on the graphs or structures, and hence our results will
hold for finite as well as for infinite graphs or structures. However, recognizability in the
algebraic sense we defined, is really interesting only for dealing with finitely generated
objects, and hence for finite graphs and structures. For dealing with infinite words, trees
and graphs, other tools are necessary, see for instance [40,43,29,30].

3.1. Relational structures

Let R be a finite set of relation symbols, andC be a finite set of nullary symbols. Each
symbolr ∈ R has an associated positive integer called itsrank, denoted by�(r).An (R,C)-
structure is a tupleS = 〈DS, (rS)r∈R, (cS)c∈C〉 such thatDS is a (possibly empty) set called
thedomainof S, eachrS is a�(r)-ary relation onDS , i.e., a subset ofD�(r)

S , and eachcS is
an element ofDS , called thec-sourceof S.

We denote byStS(R,C) the class of (finite or countable)(R,C)-structures, and we
sometimes writeStS(R) for StS(R,∅). By convention, isomorphic structures will be
considered as equal. In the notationStS, St stands forstructures, while the secondS
stands forsources.

A structureS ∈ StS(R,C) is source-separatedif cS �= c′S for c �= c′. We will denote
byStSsep(R,C) the class of source-separated structures inStS(R,C). See Corollary 3.11
and Section 3.5.2.

In order to handle graphs, we will consider particular kinds of structures in the sequel.
We letE = {edge} be the set of relation symbols consisting of a single binary relation
edge, intended to represent directed edges. Thus graphs can be seen as the elements of
StS(E), also writtenGraph. Clearly these graphs are directed, simple (we cannot represent
multiple edges) and they may have loops. For a discussion of graphs with multiple edges,
see Section 7.

We letGS(C) denote the setStS(E,C). These structures are calledgraphs with sources.
We letGSsep(C) denote the intersectionGS(C) ∩ StSsep(R,C).

We will discuss alsographs with ports(Section 4): ifP is a finite set of unary relation
symbols calledport labels, then we denote byEP the set of relational symbolsE∪P and by
GP(P) the classStS(EP). Port labels are useful for studying the clique-width of graphs,
see [18,19] and Remark 4.11.

3.2. The algebraStS

We first define some operations on structures.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 183

Disjoint union. Let C andC′ be disjoint sets of constants and letS ∈ StS(R,C) and
S′ ∈ StS(R′, C′). Let us also assume thatSandS′ have disjoint domains. We denote by
S ⊕ S′ the union ofSandS′, which is naturally a structure inStS(R ∪ R′, C ∪ C′).

If SandS′ are not disjoint, we replaceS′ by a disjoint copy. We need not be very precise
on how to choose this copy because different choices will yield isomorphic⊕-sums, and
we are interested in structures up to isomorphism.

Remark 3.1. It is also possible to define a similar operation, without the restriction thatC
andC′ are disjoint (as in, say,[9,14]). See Section 3.5.1 for a discussion.

Quantifier-free definable operations. Our purpose is now to define functions fromStS(R,

C) to StS(R′, C′) by quantifier-free formulas. We denote byQF(R,C, {x1, . . . , xn}) the
set of quantifier-free formulas on(R,C)-structures with variables in{x1, . . . , xn}.

A qfd operation schemefrom StS(R,C) to StS(R′, C′) is a tuple

(�, (�r)r∈R′ , (�c,d)c∈C,d∈C′),

where� ∈ QF(R,C, {x}), �r ∈ QF(R,C, {x1, . . . , x�(r)}) if r is a �(r)-ary relation
symbol,�c,d ∈ QF(R,C,∅), such that the following formulas are valid in every structure
in StS(R,C), for all c, c′ ∈ C, d ∈ C′ andr ∈ R′ of arity �(r):
• �c,d ∧ �c′,d �⇒ c = c′;
• ∨e∈C �e,d ;
• �c,d �⇒ �(c);

• ∀x1, . . . , x�(r)

(
�r (x1, . . . , x�(r)) �⇒∧�(r)

i=1 �(xi)
)
.

The reason for these conditions becomes apparent with the following definition of theqfd
operationg: StS(R,C) → StS(R′, C′) defined by such a scheme. LetS ∈ StS(R,C).
The domain of the structureg(S) is the subset of the domain ofS defined by formula�
and the relationr (r ∈ R′) on g(S) is described by formula�r . Finally, if d ∈ C′, then
dg(S) = cS if c ∈ C andS satisfies�c,d . The first two conditions imposed above assert that
relative toS, c is uniquely defined for eachd, the third condition asserts thatdg(S) always
lies in the domain ofg(S), and the fourth condition asserts that the relation�r (r ∈ R′) can
only relate elements of the domain ofg(S).

Remark 3.2. Note that in the first condition,c = c′ does not mean thatc andc′ are the
same constant, but that they have the same value in the considered structure.

Remark 3.3. The conditions to be verified by a qfd operation scheme are decidable. It
follows that the notion of a qfd operation scheme is effective. See Appendix A (RemarkA.4
in particular) for a discussion of this decidability result.

Example 3.4. LetR be a finite set of relational symbols,C be a finite set of source labels
and leta, b be source labels. We define the following operations.
• if a ∈ C andb /∈ C, srcrena→b is the unary operation of type(R,C)→ (R,C\{a}∪{b})

which renames thea-source of a structure to ab-source;
• if a ∈ C, srcfga is the unary operation of type(R,C)→ (R,C \ {a}) which forgets the
a-source of a structure;

184 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

• if a �= b ∈ C, fusa,b is the unary operation of type(R,C) → (R,C) which identifies
the a-source and theb-source of a structure (so the resulting domain element is both
the a-source and theb-source), and reorganizes the tuples of the relational structure
accordingly.
Note that the operation namessrcrena→b, srcfga andfusa,b are overloaded: they denote

different operations when the setsR andC are allowed to vary. A completely formal
definition would use operation names such assrcrena→b,R,C , which would be inconvenient.

It is immediately verified that the operations of the formsrcrena→b andsrcfga are qfd. It
is probably worth showing explicitly a qfd operation scheme defining the operationfusa,b.

Let �(x) be the formula(a = b)∨ ((a �= b)∧ (x �= a)). If r ∈ R has arity�(r) = n, let
�r (x1, . . . , xn) be the formula(

(a = b) ∧ r(x1, . . . , xn)
)
∨(

(a �= b) ∧ ∨
I⊆{1,...,n}

(∧
i∈I

(xi = b) ∧ ∧
i /∈I

(xi �= b) ∧ r(y1, . . . , yn)

))
,

where for eachI , yi = a if i ∈ I andyi = xi otherwise. For eachd ∈ C such thatd �= a

and for eachc ∈ C, let �c,d be the formulac = d; let �b,a be the formulatrue, and let
�c,a be the formulac = a for eachc �= b. It is now routine to verify that the scheme
(�, (�r)r∈R, (�c,d)c,d∈C) definesfusa,b.

Remark 3.5. There is no qfd operation fromStS(R) into StS(R′, C)′ if C′ �= ∅, because
in the absence of constants in the input structure, we cannot define constants in the output
structure.

Example 3.6. The natural inclusion ofStS(R,C) into StS(R′, C) whenR′ containsR is
a qfd operation in natural way: the formulas intended to define relations inR′ \R are taken
to be identicallyfalse.

The signatureS. We define the algebraStS of structures with sourcesas follows. First, let
us fix once and for all a countable set of relation symbols containingedge and countably
many relation symbols of each arity, and a countable set of constants. In the sequel, finite
sets of relation symbolsR and finite sets of constantsC will be taken in these fixed sets.
The set of sorts consists of all such pairs(R,C). The set of elements ofStS of sort(R,C)

is StS(R,C).
The signatureS consists of the following operations (interpreted inStS). First, for each

pair of sorts(R,C) and(R′, C′) such thatC ∩C′ = ∅, the disjoint union⊕ is an operation
of type((R,C), (R′, C′))→ (R ∪ R′, C ∪ C′). Note that we overload the symbol⊕, that
is, we denote in the same way an infinite number of operations onStS. Next, every qfd
operation is a (unary) operation inS.

Finally, we observe that the signatureS contains the natural inclusions ofStS(R,C)

into StS(R′, C) whenR′ containsR, which are qfd (Example3.6).
As for constants inS, one can pick a single source labela, and consider a single constant

a, denoting the structure with a single element, which is ana-source, and no relations.
Together with the operations inS, this constant suffices to generate all finite relational

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 185

structures. As noted in Section2.3, the choice of constants does not affect recognizability.
It only affects the generating power of the signature, but this is not our point in this paper.

3.3. Elementary properties ofStS

We first consider the composition of qfd operations.

Proposition 3.7. Qfd operations inStS are closed under composition(whenever types fit
for defining meaningful composition).

Proof. Let g: StS(R,C) −→ StS(R′, C′) and g′: StS(R′, C′) −→ StS(R′′, C′′) be
qfd operations, given respectively by the schemes(�, (r)r∈R′ , (�c,d)c∈C,d∈C′) and (�′,
(′r)r∈R′′ , (�′c,d)c∈C′,d∈C′′).

The compositiong′ ◦ g turns an(R,C)-structure into an(R′′, C′′)-structure.
Let �0, 	0

r (r ∈ R′′) and�0
c,d (c ∈ C′, d ∈ C′′) be obtained from�′, 	′r and�′c,d by

replacing every occurrence ofr(y1, . . . , y�(r)) (r ∈ R′) by 	r (y1, . . . , y�(r)); our formulas
are now in the language of(R,C′)-structures and we need to “translate” the constants
d ∈ C′ into elements ofC. However, this translation, a mapping fromC′ toC, depends on
the structure in which we operate.

To reflect this observation, for each mappingh:C′ → C, we leth(�0) be the conjunction
of the formulas�h(d),d (d ∈ C′) and the formula obtained from�0 by replacing each
occurrence ofd (d ∈ C′) by h(d). Finally, we let�′′ be the disjunction of theh(�0) whenh
runs over all mappings fromC′ toC.

We proceed in the same fashion to define	′′r and�′′c,d for eachr ∈ R′′ and eachc ∈ C′,
d ∈ C′′. Finally, if b ∈ C andd ∈ C′′, we let
b,d =∨

c∈C′(�′b,c ∧ �′′c,d).
It is a routine verification that(�′′, (′′r)r∈R′′ , (
b,d)b∈C,d∈C′′) is a qfd operation scheme,

which defines the operationg′ ◦ g. This completes the proof.�

For eachS ∈ StS(R,C), we define thetype ofS, written�(S), to be the restriction ofS
to its set of sources. That is: the domain of�(S) is the set ofC-sources ofS, and the relations
of �(S) are those tuples ofC-sources that are relations inS. In order to simplify notation,
we also denote by� the equivalence relation onStS given by

S � T if and only if �(S) and�(T) are isomorphic.

Lemma 3.8. Let S, T ∈ StS(R,C). ThenS � T if and only ifS and T satisfy the same
formulas inQF(R,C,∅).

Proof. A formula inQF(R,C,∅) is a Boolean combination of atoms of the formc = d

wherec, d ∈ C, orr(x1, . . . , xn)wherer ∈ R has aritynand thexi are inC. It is immediate
that such an atom is true inS if and only if it is true in�(S). ThusS and�(S) satisfy the same
formulas inQF(R,C,∅): in particular,�-equivalent structures satisfy the same formulas
in QF(R,C,∅). Thus, if we denote byThFO0,R,C(S) the set of formulas inQF(R,C,∅) that

are satisfied byS (see Section3.4), we find thatThFO0,R,C(S) = ThFO0,R,C(�(S)).

186 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Conversely, we observe that ifS is a structure inStS(R,C), which consists only of its
C-sources (that is,S = �(S)), thenS is entirely described by some formula inQF(R,C,∅).
Thus, if�(S) �= �(T), thenThFO0,R,C(S) �= ThFO0,R,C(T). This suffices to conclude the proof.

�

The type relation� has the following important property.

Proposition 3.9. The type relation� is a locally finite congruence onStS.

Proof. The verification that�(S ⊕ S′) = �(S)⊕ �(S′) (S ∈ StS(R,C), S′ ∈ StS(R′, C′)
and C ∩ C′ = ∅) is immediate. Let us now consider a qfd operationg: StS(R,C)

−→ StS(R′, C′), specified by the qfd operation scheme(�, (r)r∈R′ , (�c,d)c∈C,d∈C′). By
Lemma3.8,S and�(S) satisfy the same formulas ofQF(R,C,∅). In particular, for each
c ∈ C andd ∈ C′, S and�(S) both satisfy�c,d , or both satisfy its negation. Thusg(S) and
g(�(S)) have the same sources, and hence�(g(S)) = �(g(�(S))).

We have just shown that the type relation is a congruence.To complete the proof, it suffices
to show that for each sort(R,C), the set of types of sort(R,C), that is, the set�(StS(R,C))

is finite. Note that ifS ∈ StS(R,C), then�(S) has cardinality at mostcard(C) (and also
at mostcard(S)). It follows thatcard(�(StS(R,C)))�card(C)! ∏r∈R 2card(C)

�(r)
. �

Remark 3.10. Proposition3.9 can be seen as a particular case of a result of Feferman and
Vaught [25], Theorem 3.12 below, which will be used in Section 6. The simple formulation
above will be very useful.

Note that the knowledge of�(S) is sufficient to determine whetherS is a source-separated
structure. This observation is used to prove the following corollary.

Corollary 3.11. Let (R,C) be a sort inStS. ThenStSsep(R,C) is a recognizable subset
of StS(R,C).

Proof. Whether a structureS is source-separated depends only on its type�(S): in particular,
the type congruence� saturatesStSsep(R,C). By Proposition3.9, this relation is a locally
finite congruence, and henceStSsep(R,C) is recognizable. �

3.4. A result of Feferman and Vaught

If (R,C) is a sort ofStS, we denote byFO(R,C) the set of closed first-order formulas
overR andC. For each integerd, we denote byFOd(R,C) the set of those formulas of
quantifier-depth at mostd. Up to a decidable syntactic equivalence (taking into account
Boolean laws, properties of equality, renaming of quantified variables, see Appendix A),
there are only finitely many formulas in each setFOd(R,C). Thus, we can reason as if
FOd(R,C) was actually finite.

For an(R,C)-structureS, we let itsFOd -theorybe the setThFOd,R,C(S) of formulas in
FOd(R,C) that are valid inS. It is finite since it is a subset of the finite setFOd(R,C).

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 187

Theorem 3.12.Letd�0.
(1) For every qfd operationf of type(R,C)→ (R′, C′), there exists a mappingf #

d such
that, for every(R,C)-structureS

ThFOd,R′,C′(f (S)) = f #
d (Th

FO
d,R,C(S)).

(2) For every (R,C) and (R′, C′), whereC and C′ are disjoint, there exists a binary
function⊕#

d such that, for every(R,C)-structureS, and every(R′, C′)-structureS′,

ThFOd,R∪R′,C∪C′(S ⊕ S′) = ThFOd,R,C(S)⊕#
d Th

FO
d,R′,C′(S

′).

Remark 3.13. The second assertion was proved in[25] for first-order logic, and extended
by Shelah to monadic second-order logic [42]. The importance of this result is discussed
by Makowsky in [34].

Remark 3.14. The functionsf #
d and⊕#

d have finite domains and codomains. However
these sets are quite large. These functions can be (at least in principle) effectively determined
for given(R,C), (R′, C′), andd.

3.5. Variants of the algebra of relational structures

In the literature on recognizable and equational sets of graphs, several variants of the
signatureS and the algebraStS are considered, notably a variant where the definition of
the disjoint union is replaced by a more general parallel product, and a variant where all
structures are assumed to be source-separated. We verify in this section that these variants
do not yield different notions of recognizability.

3.5.1. Parallel composition vs. disjoint union
In the literature (e.g.[9,14]), the operation of disjoint union⊕ is sometimes replaced by

the so-calledparallel composition(orproduct), written‖, an operation of type((R,C), (R′,
C′)) → (R ∪ R′, C ∪ C′) for which we do not assume thatC andC′ are disjoint. IfS ∈
StS(R,C) andS′ ∈ StS(R′, C′), the parallel compositionS ‖ S′ is obtained by taking the
(set-theoretic) disjoint union ofS andS′ and then identifying thec-sources ofS andS′ for
eachc ∈ C ∩ C′. Let S‖ denote the signature obtained fromS by substituting‖ for ⊕.

Proposition 3.15. LetL be a subset ofStS. ThenL is S-recognizable if and only if it is
S‖-recognizable.

Proof. We first observe that the operation⊕ is a particular case of‖. ThereforeS is a
sub-signature ofS‖ and hence, everyS‖-recognizable set isS-recognizable.

To prove the converse, it suffices to verify that‖ is anS-derived operation by Proposi-
tion 2.1. Indeed, ifS ∈ StS(R,C) andS′ ∈ StS(R′, C′), the parallel compositionS ‖ S′
can be obtained by the following sequence ofS-operations (see Example 3.4 for their
definition):
• for eachc ∈ C ∩ C′, apply the qfd operationsrcrenc→c̄ which renames thec-source in

S′ with a new source label, saȳc, not inC; let S̄′ be the resulting structure;

188 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

• take the disjoint unionS ⊕ S̄′;
• for eachc ∈ C ∩ C′, apply the operationfusc,c̄ which identifies thec-source and the
c̄-source inS ⊕ S̄′;

• apply the source-forgetting operationsrcfgc̄ for eachc ∈ C ∩ C′. �

3.5.2. Source-separated structures
The property thatcS �= c′S for c �= c′ is calledsource separation. This property makes

it easier to work with operations on structures and graphs, and hence we discuss a variant
of the S-algebraStS, which handles source-separated structures. We will also use it in
Section6.

Recall thatStSsep(R,C) denotes the set of source-separated structures inStS(R,C).
We now define a subsignatureSsep of S such thatStSsep is a sub-algebra ofStS.

Disjoint union⊕ clearly preserves source separation, and is part ofSsep. Next we include
in Ssep the operations specified by qfd operation schemes such that, for eachc ∈ C and
d �= d ′ ∈ C′ (see the notation in Section 3.2),

�c,d �⇒ ¬�c,d ′ , (1)

which guarantees that the operation preserves source separation.

Example 3.16.The operationssrcrena→b andsrcfga defined in Example3.4 are inSsep.
The operationfusa,b defined in the same example is not.

In contrast, the operation writtenfusa→b, which identifies thea-source and theb-source
of a structure as infusa,b, and makes the resulting element of the domain ab-source but not
ana-source, preserves source separation. It can be written asfusa→b = srcfga ◦ fusa,b.

The operation which, given a graph with source labelsa andb, exchanges the source labels
a andb if the corresponding vertices are linked by an edge and does nothing otherwise, is
another example of a qfd operation inSsep.

Regarding the effectiveness of the definition ofSsep, we observe the following.

Proposition 3.17.Given a qfd operation scheme, one can decide whether the correspond-
ing qfd operation preserves source separation.

Proof. Let g be the qfd operation specified by the given qfd operation scheme, and let
StS(R,C) be the domain ofg. One can effectively construct the images underg of every
type inStS(R,C), since there are only finitely many of them, and they can all be enumer-
ated. One can then verify whether the operation preserves source-separation on types.

Now it follows from the proof of Proposition3.9 that for eachS ∈ StS(R,C), we
have�(g(�(S))) = �(g(S)). In particular,g preserves source separation if and only if it
preserves it for the structures of the form�(S). Thus one can effectively decide whether
g ∈ Ssep. �

We now show that the restriction to source-separated structures does not change the notion
of recognizability.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 189

Theorem 3.18.LetL be a subset ofStSsep. ThenL is S-recognizable if and only if it is
Ssep-recognizable.

Proof. By definition, Ssep is a subsignature ofS, so everyS-recognizable set isSsep-
recognizable.

To prove the converse, we first define a mappingh, which maps a structureS ∈ StS(R,C)

to a source-separated structureh(S) ∈ StSsep(R,C) by splitting sources that were identi-
fied inS.

We assume that the countable set of constant symbols (from whichC is taken, see
Section3.2) is linearly ordered. LethS0:C → C be given by

hS0(c) = min{d ∈ C | cS = dS}.
We letCS

0 = hS0(C) andCS
1 = C \ CS

0 . The structureh(S) has domain set the disjoint
union ofS andCS

1 . For eachc ∈ CS
0 , thec-source ofh(S) is thec-source ofS, and for each

c ∈ CS
1 , thec-source ofh(S) is the elementc ∈ CS

1 . Finally, for eachr ∈ R, the relation
rh(S) equals the relationrS (so it does not involve the elements ofCS

1). Observe thath is
not a qfd operation, and thathS0, CS

0 andCS
1 depend only on�(S).

Now let L be anSsep-recognizable subset ofStSsep and let≡ be a locally finiteSsep-
congruence recognizing it. We need to construct a locally finiteS-congruence∼ on StS
which recognizesL.

The relation∼ onStS is defined as follows. IfS, T ∈ StS(R,C), we say thatS ∼ T if
�(S) = �(T) andh(S) ≡ h(T). It is immediately verified that∼ is an equivalence relation.
Moreover, the∼-class of a structureS is determined by its�-class, and by the≡-class of
h(S). Since both� and≡ are locally finite,∼ also is locally finite.

Let us now prove that∼ is anS-congruence. LetS ∼ T ∈ StS(R,C) andS′ ∼ T ′ ∈
StS(R′, C′), withC∩C′ = ∅. By Proposition3.9,�(S⊕S′) = �(T ⊕T ′). It is not difficult
to verify that

h(S ⊕ S′) = h(S)⊕ h(S′).

It follows thath(S⊕S′) ≡ h(T ⊕T ′) since⊕ is an operation inSsep. ThusS⊕S′ ∼ T ⊕T ′.
Next letg be a qfd operation fromStS(R,C) to StS(Q,B), given by the qfd operation

scheme(�, (q)q∈Q, (�c,b)c∈C,b∈B). LetS andT be∼-equivalent elements ofStS(R,C),
which will remain fixed for the rest of this proof. We need to show thatg(S) ∼ g(T). We
already know from Proposition3.9 that ifS ∼ T ∈ StS(R,C), then�(g(S)) = �(g(T)),
and we want to show thath(g(S)) ≡ h(g(T)).

Since�(g(S)) = �(g(T)), the mappingshg(S)0 andhg(T)0 , from B to B, coincide. Let

B0 = h
g(S)
0 (B) andB1 = B \B0. Without loss of generality, we may assume thatB1∩C =

∅. The domain set ofh(g(S)) (resp.h(g(T))) is the disjoint union of the domain ofg(S)
(resp.g(T)) andB1.

It suffices to show that there exists a qfd operationk ∈ Ssep, depending ong and�(S),
such thath(g(S)) = k(h(S)⊕ B1) andh(g(T)) = k(h(T)⊕ B1) (whereB1 is the source-
only element ofStSsep(∅, B1)). Indeed, the fact that≡ is anSsep-congruence will then
imply thath(g(S)) ≡ h(g(T)).

190 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Let �′ be obtained from� by replacing every occurrence ofc ∈ C by hS0(c). For each
q ∈ Q, c ∈ C andb ∈ B, let	′q be obtained from	q and�′c,b be obtained from�c,b in the
same fashion.

Let nowk′: StS(R,C ∪ B1)→ StS(Q,B) be defined by the scheme

(�′, (�′q)q∈Q, (

′
c,b)c∈C∪B1,b∈B) defined as follows:

�′(x) =
�′(x) ∧ ∧

c∈CS
1

¬(x = c)

 ∨ ∨
b∈B1

(x = b)

�′q = 	′q for eachq ∈ Q

′b,b = true if b ∈ B1

′c,b = false if b ∈ B1 andc �= b

′c,b = false if b ∈ B0 andc ∈ CS
1

′c,b =
∨

h
g(S)
0 (a)=b, hS0(d)=c

�′d,a if b ∈ B0 andc ∈ CS
0 .

It is now a routine verification that (for our fixed structureS) k′(h(S)⊕ B1) = h(g(S)).
Since all our definitions depend only on�(S), we also havek′(h(T)⊕ B1) = h(g(T)).

One last step is required in this proof as the qfd operationk′ may not preserve source
separation for all structures, that is,k′ may not lie inSsep. It does for the particular structures
h(S) ⊕ B1 andh(T) ⊕ B1, but perhaps not for others. Actually, structuresU such that
�(U) �= �(h(S) ⊕ B1) = �(h(T) ⊕ B1) do not matter in this context, so we can replace
k′ by the operationk, with the same domain and range ask′, which maps a structureU
to k′(U) if �(U) = �(h(S) ⊕ B1), and to the source-only source-separated structureB ∈
StS(Q,B) where all relations are empty. This new operationk preserves source separation
by construction, and it is easily verified to be qfd. This completes (at last) the proof.�

4. The algebraGP of graphs with ports

Graphs with ports were introduced in Section3.1. Recall that ifP is a set of unary relation
symbols, thenEP denotes the setEP = {edge}∪P and the class of graphs with ports inP ,
written GP(P) can be identified withStS(EP). We observe that a vertex of a graph with
ports inP can be ap-port for one or several port labelsp ∈ P , or for none at all.

For convenience, we will consider thatP is a finite subset of the setN of natural integers.

4.1. The signatureVR on graphs with ports

We define the set of sorts of the algebraGP to be the set of finite subsets ofN. For each
such subsetP , the set of elements ofGP of sortP is the setGP(P) of graphs with ports
in P .

The signatureVR consists of constants, unary operations and binary operations. These
operations (interpreted inGP) are as follows.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 191

First, ifP,Q are finite subsets ofN, then⊕ is as inStS, and is thus a binary operation of
type(EP ,EQ)→ EP∪Q. In GP, we consider⊕ as an operation of type(P,Q)→ P ∪Q.

Next, the unary operations ofVR are the following (clearly qfd) operations:
• if p, q are distinct integers,addp,q is an operation of typeP → P for each sortP such

thatp, q ∈ P : it modifies neither the domain (the set of vertices) nor the unary relations
p (p ∈ P); the new edge relation has the existing edges,plusevery edge from ap-port
to aq-port: it is given by

edge (x, y) ∨ (p(x) ∧ q(y));
• if D is a finite subset ofN ×N, mdfD is an operation of typeP → Q whereP is any

finite set containing the domain of the relationD andQ is any finite set containing the
range ofD; it modifies neither the domain (set of vertices) nor the edge relation; for each
q ∈ Q, theq-ports of the output structure are the vertices of the input structure that are
p-ports for somep such that(p, q) ∈ D; that is,q(x) is given by

∨
(p,q)∈D p(x).

Finally, for each integerp, we letp be the constant of type{p} denoting the graph with a
single vertex, no edges, and whose vertex is ap-port. We also letploop be the same graph,
with a single loop.

Remark 4.1. The following operations on graphs with ports occur in the literature, and are
particular cases ofVR-operations.

Let p �= q be integers,P be a subset ofN containingp andQ = P \ {p} ∪ {q}. The
operationrenp→q , of typeP → Q which renameseveryp-port to aq-port, is an operation
of VR: it is equal tomdfD whereD = {(r, r) | r ∈ P \ {p}} ∪ {(p, q)}. Observe that this
operation fuses the sets of vertices defined byp andq.

Let p be an integer, and letP be a subset ofN containingp. The operationfgp, of type
P → P \ {p}, which forgetsp-ports is an operation ofVR: it is equal tomdfD where
D = {(r, r) | r ∈ P \ {p}}.

Remark 4.2. In our definition of graph with ports, an element ofGP(Q) does not need
to haveq-ports for eachq ∈ Q. Thus, ifP ⊆ Q, every graph with ports inP can also be
viewed as a graph with ports inQ. The natural inclusion ofGP(P) into GP(Q) is part of
the signatureVR: it is equal tomdfD whereD = {(p, p) | p ∈ P }.

Remark 4.3. Again (as in Example3.4), the operations introduced in this section are de-
noted by overloaded symbols. A formal definition should specify the type of the operation,
and would read something likeaddp,q,P ormdfD,P,Q. We prefer the more concise notation
introduced here.

4.2. A technical result

The following result describes the action of a qfd operation on a disjoint union of struc-
tures. It is the key to the main results of this section, described in Section 4.3 below.

Proposition 4.4. Let � be the type congruence(see Section3.3). Let h be a unary qfd
operation onStS, fromStS(R,C) to StS(EQ,∅) = GP(Q), let (R1, C1) and (R2, C2)

192 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

be sorts ofStS such thatR = R1∪R2,C1∩C2 = ∅ andC = C1∪C2, and let�z = (z1, z2)

with z1 a �-class inStS(R1, C1) andz2 a �-class inStS(R2, C2).
Then there exist quantifier-free definable operationsg1,�z: StS(R1, C1) → GP(Q1,�z),

g2,�z: StS(R2, C2)→ GP(Q2,�z), andf�z: GP(Q1,�z ∪Q2,�z)→ GP(Q), such that
• f�z is a composition of unary operations inVR;
• for eachx1 ∈ StS(R1, C1) in classz1 and eachx2 ∈ StS(R2, C2) in classz2, h(x1 ⊕
x2) = f�z(g1,�z(x1)⊕ g2,�z(x2)).

Proof. Let (�,	edge, (q)q∈Q) be the qfd operation scheme defining the operationh: here
	edge defines theedge relation,	q defines theq-ports (q ∈ Q), and there is no formula of
the form�c,d since the range ofh is in GP(Q) = StS(EQ,∅). The formulas�, 	edge and
	q , for q ∈ Q, are in the language of(R,C)-structures.

The atoms of�(v) are either of the formr(y1, . . . , y�(r)) (r ∈ R), or v = c, or c1 = c2

(c, c1, c2 ∈ C). Let�1 be the formula obtained from�(v) by substituting the Boolean value
0 (false) for the following atoms, which are certainly false in a disjoint sumx1 ⊕ x2, with
x1 ∈ StS(R1, C1), x2 ∈ StS(R2, C2) and the variablev interpreted inx1:
• eachr-atom such thatr /∈ R1 and an argument ofr is v or a constant inC1;
• eachr-atom such thatr /∈ R2 and an argument ofr is a constant inC2;
• eachr-atom such thatr ∈ R1 ∩ R2, an argument ofr is a constant inC2, and another

argument ofr is v or a constant inC1;
• each atom of the formy = c such thatc ∈ C2 andy is equal tov or to a constant inC1.
The remaining atoms in�1 are either inQF(R1, C1, {v}) or inQF(R2, C2,∅). Note that the
�-class of an element ofStS(R2, C2) determines entirely which formulas inQF(R2, C2,∅)
it satisfies. For each�z as in the statement of the proposition, we let�1,�z be the formula in
QF(R1, C1, {v})obtained from�1 by replacing each atom inQF(R2, C2,∅)by the Boolean
value 0 or 1 according to the�-classz2. We observe that ifv is a vertex ofx1 ⊕ x2 which
happens to be inx1, then

�(v) ⇐⇒ �1,�z(v) whenever the�-class ofx2 is z2.

For eachq ∈ Q, let	1,�z
q be defined similarly. Then we also have, ifv is a vertex ofx1⊕ x2

in x1,

	q(v) ⇐⇒ 	1,�z
q (v) whenever the�-class ofx2 is z2.

Let also�2,�z and	2,�z
q be defined dually. And again, ifi, j ∈ {1,2}, we let	i,j

edge(v,w) be
the formula obtained from	edge by substituting the Boolean value 0 for the atoms that are
certainly false in a disjoint sumx1⊕ x2 for the variablev interpreted inxi and the variable
w interpreted inxj :
• eachr-atom such thatr �∈ Ri andv is an argument ofr;
• eachr-atom such thatr �∈ Rj andw is an argument ofr;
• eachr-atom such thatr �∈ R1 and a constant inC1 is an argument ofr;
• eachr-atom such thatr �∈ R2 and a constant inC2 is an argument ofr;
• eachr-atom such thatr ∈ R1 ∩ R2, an argument ofr is a constant inC2, and another

argument ofr is a constant inC1;

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 193

• eachr-atom such thatr ∈ R1∩R2, an argument ofr is v (resp.w) and another argument
of r is a constant inC3−i (resp.C3−j);

• each atom of the formv = c with c ∈ C3−i , w = c with c ∈ C3−j , or c1 = c2 with
c1 ∈ C1 andc2 ∈ C2;

• if i �= j , eachr-atom such thatr ∈ R1 ∩ R2, andv andw are arguments ofr.
As above, the remaining atoms in	1,1

edge are inQF(R1, C1, {v,w}) ∪QF(R2, C2,∅), and

for each�z, we let	1,1,�z
edge be obtained from	1,1

edge by substituting the Boolean values 0 or 1
for the atoms inQF(R2, C2,∅) according to the�-classz2. If v,w are vertices ofx1 ⊕ x2
in x1, and if the�-class ofx2 is z2, then

	edge(v,w) ⇐⇒ 	1,1,�z
edge(v,w).

We define	2,2,�z
edge similarly, and get the analogous equivalence.

If i �= j , the atoms of	i,j
edge are inQF(Ri, Ci, {v})and inQF(Rj , Cj , {w})—which may

include atoms inQF(R1, C1,∅) and inQF(R2, C2,∅). Again, we let	i,j,�z
edge be obtained

from 	i,j
edge by substituting the Boolean values 0 or 1 for the atoms without free variables

according to the�-classesz1 andz2. And we observe that ifv,w are vertices ofx1 ⊕ x2,
v is in xi and in the�-classzi , w is in xj and in the�-classzj , then

	edge(v,w) ⇐⇒ 	i,j,�z
edge(v,w).

Now let k = 1 + max(Q), let Xk+1, . . . , X0 be an enumeration of the subsets of
QF(R1, C1, {y}), and letY0+1, . . . , Ym be an enumeration of the subsets ofQF(R2, C2,

{y}). Let us denote byQ1 the setQ∪{k+1, . . . , 0} and byQ2 the setQ∪{0+1, . . . , m}.
We define the qfd operationg1,�z: StS(R1, C1) → GP(Q1) defined by the following

operation scheme:

�1,�z, 	1,1,�z
edge, 	1,�z

q (q ∈ Q),
n (k + 1�n�0),

where for eachk+1�n�0,
n(v) holds if the set of quantifier-free formulas inQF(R1, C1,
{y}) satisfied byv is exactlyXn.

Similarly, the qfd operationg2,�z: StS(R2, C2) → GP(Q2) is defined by the operation
scheme

�2,�z, 	2,2,�z
edge, 	2,�z

q (q ∈ Q),
n (0+ 1�n�m),

where for each0+1�n�m,
n(v)holds if the set of quantifier-free formulas inQF(R2, C2,
{y}) satisfied byv is exactlyXn.

Finally, we consider structuresx1 ∈ StS(R1, C1) andx2 ∈ StS(R2, C2), with �-classes
respectivelyz1 and z2, and we compare the graphs with portsg1,�z(x1) ⊕ g2,�z(x2) and
h(x1 ⊕ x2). The above remarks show that these two graphs have the same set of vertices,
the sameq-ports (q ∈ Q), and the same edges between two vertices ofx1 or two vertices
of x2. On the other hand,g1,�z(x1)⊕ g2,�z(x2) misses the edges ofh(x1⊕ x2) that connect a
vertex ofx1 with a vertex ofx2.

These edges are captured by the formulas	1,2,�z
edge and	2,1,�z

edge. Now, if v is a vertex of

x1 andw is a vertex ofx2, we already observed that the truth values of	1,2,�z
edge(v,w) and

194 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

	2,1,�z
edge(w, v) are entirely determined by the quantifier-free formulas with one free variable

satisfied byv in x1 and byw in x2: that is, they are entirely determined by the (unique)
indexk+1�n�0 such that
n(v) and by the (unique) index0+1�n�m such that
n(w).
In other words,	1,2,�z

edge(a, b) and	2,1,�z
edge(b, a) are equivalent to disjunctions of conjunctions

of the form

n(a) ∧
u(b) for somek + 1�n�0 and0+ 1�u�m.

Thus the edges inh(x1 ⊕ x2) from a vertex ofx1 to a vertex ofx2 can be created from
g1,�z(x1)⊕ g2,�z(x2) by applying repeatedly the operations (inVR) of the formaddn,u such

thatn ∈ [k + 1, 0],
n ∧
u is a disjunct of	1,2,�z
edge.

Similarly, the edges inh(x1 ⊕ x2) from a vertex ofx2 to a vertex ofx1 can be created
fromg1,�z(x1)⊕g2,�z(x2) by applying the appropriate operations of the formaddu,n. The last
operation consists in forgetting the auxiliary ports numberedk+1 tom, that is, in applying
the operationmdfD, with D = {(q, q) | q ∈ Q}. �

4.3. Recognizable sets of graphs with ports

In this section, we consider different notions of recognizability that can be used for sets
of graphs with ports. LetL ⊆ GP(P). ThenL can beVR-recognizable, as a subset of
theVR-algebraGP. It can also beS-recognizable, as a subset of theS-algebraStS since
GP(P) = StS(EP). Finally, we introduce another signature, writtenVR+, on GP: it is
obtained fromVR by adding all the qfd operations between the sorts ofGP.

Theorem 4.5. Let P be a finite subset ofN and let L be a subset ofGP(P). The following
properties are equivalent:
1. L is S-recognizable;
2. L is VR+-recognizable;
3. L is VR-recognizable;

Proof. Since the operations ofVR are operations ofVR+, and the operations ofVR+ are
operations ofS, it follows from Proposition2.1 that (1) implies (2), and (2) implies (3).
Thus, we only need to verify that (3) implies (1).

We use Lemma 2.5, withF = VR,S = GP, G = S,T = StS, and� the type congruence
(see Section 3.3), which relates structures with sources of the same sort, provided they satisfy
the same quantifier-free formulas. We use the collectionH of setsH(R,C),P of unary qfd
operations fromStS(R,C) to GP(P).

LetL be aVR-recognizable subset ofGP(P) and let≡ be a locally finiteVR-congruence
on GP such thatL is a union of≡-classes. Since� is a locally finiteS-congruence on
StS (Proposition 3.9), its restriction toGP is also a locally finiteVR-congruence; and
the intersection of≡ and� is a locally finiteVR-congruence onGP which saturatesL.
Thus we can assume, without loss of generality, that≡-equivalent elements ofGP are also
�-equivalent.

Next we consider the equivalence relation≈ onStS defined as in Lemma 2.5. Note that
the identity ofGP(P) belongs toH(EP ,∅),P , so that≈-equivalent elements ofGP(P) =
StS(EP ,∅) are also≡-equivalent. In particular,≈ saturatesL and it suffices to show that

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 195

≈ is locally finite and is aS-congruence. In view of Lemma2.5, it is enough to verify that
H satisfies the assumptions of Lemmas 2.3 and 2.4.

We first verify the hypothesis of Lemma 2.3. Letg be an operation ofS: eitherg is a
unary qfd operation org = ⊕. In the latter case, Proposition 4.4 states precisely that the
required property holds.

If g is a qfd operation of type(R1, C1)→ (R,C), andh ∈ H(R,C),P , thenh ◦ g is a qfd
operation (Lemma 3.7) and hence,h1 = h ◦ g ∈ H(R1,C1),P . Now lettingf be the identity
mapping ofGP(P), we find thath(g(x)) = f (h1(x)) as required. In this case,h1 and f
do not depend on the�-class ofx.

Next, we turn to the verification of the hypothesis of Lemma 2.4. Let�1, . . . ,�k be an
enumeration of the elements ofQF(R,C, {x}) and let�1, . . . , �0 be an enumeration of the
elements ofQF(R,C, {x, y}).

Thus, a qfd operation scheme fromStS(R,C) into GP(Q) consists in the choice of a
formula � = �i0

(1� i0�k), a formula	edge = �j (1�j�0), a sequence of formulas
�i1

, . . . ,�ir
(1� i1 < · · · < ir �k), and a partition ofQasQ = Q1∪ · · · ∪Qr : if q ∈ Qj ,

then	q = �ij
. (If Q = ∅, thenr = 0.)

Let us now consider two unary qfd operationsg: StS(R,C)→ GP(Q) andg′: StS(R,

C) → GP(Q′), associated with the same choice of valuesi0, j and i1 < · · · < ir . Let
Q = Q1 ∪ · · · ∪ Qr andQ′ = Q′

1 ∪ · · · ∪ Q′
r be the corresponding partitions ofQ and

Q′. Finally let �,�0,�1, . . . ,�r be the following operations in the signatureVR. These
operations have the common particularity to not alter the graph structure, and to modify
only the port predicates.

The mapping�0 shifts every port index of an element ofGP(Q) by m = max(Q′), to
yield a graph with ports inQ+m, whose port names do not intersectQ′.We letRh = Qh+m

for 1�h�r.
For 1�h�r, �h = mdfDh

, where

Dh =
{
(a, a) | a ∈ ⋃

i<h

Q′
i ∪

⋃
i>h

Ri

}
∪ (Rh ×Q′

h).

Thus�h turns a graph with ports inQ′
1+· · ·+Q′

h−1+Rh+Rh+1+· · ·Rr into a graph with
ports inQ′

1+ · · · +Q′
h−1+Q′

h +Rh+1+ · · ·Rr , with the same vertex set, the same edge
relation, the sameq-ports for eachq ∈ ⋃i<hQ

′
i ∪

⋃
i>hRi , and with eachr-port (r ∈ Rh)

turned into aq-port for eachq ∈ Q′
h.

It is now an easy verification that, if� = �r ◦ · · · ◦ �1 ◦ �0, theng′(x) = �(g(x)) for
eachx ∈ StS(R,C). Thus the quasi-order� (R,C) defined in Lemma2.4 is in fact a finite
index equivalence relation, and this concludes the proof.�

Remark 4.6. This actually proves also that we get the same recognizable sets of graphs
with ports, if we considerGP(Q) as a domain of sortQ in the algebra of structureswithout
sources—which consists of the domainsStS(R,∅) equipped with the operations ofS
between them. If we were only interested in the equivalence of this recognizability withVR-
andVR+-recognizability (or just the equivalence betweenVR- andVR+-recognizability),
we could do with Lemmas2.3 and 2.4 instead of Lemma 2.5, and with a simpler version of
Proposition 4.4, making no reference to�.

196 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

4.4. Variants of the algebra of graphs with ports

The first variant considered here replaces the signatureVR by a smaller signature, which
we will see is equivalent toVR in terms of recognizability. The second one concerns a
certain class of graphs with ports, and is central in the definition of the clique-width of
a finite graph.

4.4.1. A variant ofVR onGP
In Section4.3, we exhibited signatures larger thanVR, for which all theVR-recognizable

sets of graphs with ports are recognizable: namely the signatureVR+ onGP and the signature
S on the wider algebraStS. In contrast, we exhibit in this section a smaller signature (in fact,
a signature consisting ofVR-derived operations) which does not create new recognizable
subsets.

The basic idea behind the definition of this new signature is the following: when we
evaluate aVR-termt of the formaddp,q(t ′), then we add edges from eachp-port ofG′, the
value oft ′, to each of itsq-ports. It may happen that some edges from ap-port to aq-port
already exist inG′. In this case, we do not add a parallel edge since we are dealing with
simple graphs. Thus the termt presents a form of redundancy, since some of its edges may
be, in some sense, defined twice.

For disjoint sets of port labelsP andQ, we denote byJ (P,Q) the set ofVR-derived
unary operations defined by terms of the formf1(f2(. . . (fn(x)) . . .)), where thefi are of
the formsaddp,q oraddq,p for p inPandq inQ. Since the operationsaddp,q are idempotent
and commute with one another, an operation inJ (P,Q) is completely described by a subset
of (P × Q) ∪ (Q × P). ThusJ (P,Q) is finite, although one can write infinitely many
terms specifying its elements. For each elementJ ∈ J (P,Q), we let⊗J denote the binary
operation defined, forG ∈ GP(P) andH ∈ GP(Q), byG⊗J H = J (G⊕H).

We observe that in the evaluation of a term of the formt⊗J t
′, the application of⊗J does

not recreate edges that already exist inG, the value oft, or inG′, the value oft ′ since the
addp,q operations forming⊗J add edges between the disjoint graphsG andG′ (becausep
andq are not port labels of the same argument graphs).

Now the signatureNLC consists of the operations⊗J as above, the unary qfd operations
of the formfgp andrenp→q as defined in Remark 4.1, and the constantsp andploop as in
VR. We denote byGPNLC theNLC-algebra of graphs with ports.

Remark 4.7. The notationNLC refers to a very similar algebra used by Wanke[44].

Example 4.8.We have in fact already encounteredNLC-operations andNLC-derived
operations.

TheVR-derived operationf�z whose existence is proved in Proposition4.4 is actuallyNLC-
derived. Consider indeed the last paragraphs of the proof of that proposition: the operation
f�z is obtained by first composing operations of the formaddn,u andaddu,n, where the pairs
(n, u) lie in a certain subset of[k + 1, 0] × [0 + 1,m] and the pairs(u, n) lie in another
subset of[0+ 1,m] × [k + 1, 0], and then composing operations of the formfgp.

One can also check that the operations�0, . . . ,�r at the end of the proof of Theorem 4.5
areNLC-derived.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 197

Proposition 4.9. Let P be a finite subset ofN and let L be a subset ofGP(P). Then L is
VR-recognizable if and only if L isNLC-recognizable.

Proof. The proof is a simple extension of the proof of Theorem4.5.
Since the operations ofNLC areVR-derived, everyVR-recognizable subset ofGP isNLC-

recognizable. For the converse, we observe that the proof that (1) implies (3) in Theorem 4.5
can be modified to show that anNLC-recognizable set ofGP is S-recognizable.

Again, we rely on Lemma 2.5, but now withF = NLC, S = GP, andG, T, � andH as
in Theorem 4.5.

In order to justify the fact that the arguments used in the proof of Theorem 4.5 are also
valid with these assumptions, we refer to Example 4.8. Indeed this example shows two
things: on the one hand, the operationf�z in Proposition 4.4 is in factNLC-derived, so
that the first hypothesis of Lemma 2.5 is satisfied by this new choice ofF andS. On the
other hand, the finiteness hypothesis of Lemma 2.4 is also satisfied with this new value of
F = NLC. This completes the proof.�

4.4.2. Graphs whose port labels partition the vertex set
In certain contexts, and in particular in the definition of the clique-width of a graph (see

Remark 4.11), one needs to consider graphs with ports where port labels partition the vertex
set. More precisely, for each set of port labelsP, letGP�(P) be the set of elements ofGP(P)

such that each vertex is a port, and no vertex is both ap-port and aq-port forp �= q. Let
alsoGP� = (GP�(P)).

Note thatGP� is preserved by the operations of the form⊕, addp,q andrenp→q . These
operations form the signatureVR�, andGP� is aVR�-algebra.

Remark 4.10. The operationaddp,q is written�p,q in [19].

Remark 4.11. Theclique-widthof a finite graphG, denoted bycwd(G), is defined as the
smallest cardinality of a setP such thatG is the value of a (finite)VR�-term using a setP
of port labels, see[19,7].

For algorithmic applications [20], it is useful to have efficient recognition algorithms for
classes of graphs of clique-width at mostk. At the moment we only know that this problem
isNP. It is polynomial fork�3, see [7].

Proposition 4.12. Let L be a subset ofGP�(P). Then L isVR�-recognizable if and only if
L is VR-recognizable.

Proof. SinceVR� consists of operations inVR, every locally finiteVR-congruence onGP
induces a locally finiteVR�-congruence onGP�. In particular, ifL isVR-recognizable, and
hence is saturated by a locally finiteVR-congruence onGP, thenL is saturated by a locally
finite VR�-congruence onGP�, and henceL is VR�-recognizable.

To prove the converse, we first introduce the mapping�: GP → GP� defined as follows.
If G ∈ GP(P), then�(G) is the graph inGP�(2P) with the same set of vertices and the
same edge relation asG, and such that for each vertexv and eachX ⊆ P , v is anX-port
in �(G) if and only if X is the set ofp ∈ P such thatv is ap-port inG. We say that a port
labelp is void in G if there are nop-ports inG.

198 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Now let us assume thatL is VR�-recognizable, and let≡ be a locally finite congruence
on GP� saturating it. IfG,H ∈ GP(P), we letG ∼ H if �(G) and�(H) have the same
non-void port labels, and�(G) ≡ �(H). It is immediately verified that∼ is a locally finite
equivalence relation.

We now verify that∼ is aVR-congruence. IfG ∈ GP(P) andH ∈ GP(Q), it is easily
seen that�(G⊕H) = �(G)⊕ �(H). If p, q ∈ P , then�(addp,q(G)) = f (�(G)) wheref
is the composition of the operationsaddX,Y for eachX, Y ⊆ P such thatp ∈ X andq ∈ Y .
Finally, one can verify that ifD ⊆ P ×Q, then�(mdfD(G)) = g(�(G)) whereg is the
composition of the operationsrenX→Y , whereX ⊆ P , Y ⊆ Q andY = D−1(X) = {q ∈
Q | (p, q) ∈ D for somep ∈ P }.

It is a routine task to derive from these observations the fact that∼ is aVR-congruence.
We now need to verify that∼ saturatesL. LetG ∈ L andG ∼ H . In particular,G ∈ GP�,
so that the non-void port labels of�(G) are exactly the sets{p} wherep is a non-void
port label ofG. Since�(G) and�(H) have the same non-void port labels,H is also in
GP�. Moreover, ifh is the composition of the operationsren{p}→p (p non-void inG), then
G = h(�(G)) andH = h(�(H)). Sinceh is VR�-derived, it follows thatG ≡ H , and
henceH ∈ L. This concludes the proof.�

5. The algebra of graphs with sources

Recall that we callgraphs with sourcesthe elements ofStS of sort(E,C), whereE =
{edge} andC is some finite set of source labels, and that we writeGS(C) for StS(E,C)

(see Section3.1).

5.1. The signatureHR

The disjoint union⊕and the operations of the formsrcrena→b,srcfga andfusa,b (defined
in Example 3.4) preserve graphs with sources. We denote byHR the signature consisting of
all these operations, soGS is anHR-algebra.

We note the following properties ofHR-recognizability.

Proposition 5.1. Let C be a finite set of source labels. EveryS-recognizable subset of
StS(E,C) isHR-recognizable.

Proof. This is a simple consequence of Proposition2.1 and of the observation given above
that the operations ofHR are also operations ofS. �

Note that the classGraph of graphs, defined in Section 3.1, is equal toGP(∅) as well
as toGS(∅) = StS(E). ThusVR-recognizability andHR-recognizability are properties of
subsets ofGraph.

Corollary 5.2. Let L be a set of graphs(a subset ofGraph). If L is VR-recognizable, then
it is HR-recognizable.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 199

Proof. This follows immediately from Proposition5.1 and Theorem 4.5.�

Remark 5.3. Intuitively, the VR-operations are more powerful than theHR-operations
(everyHR-context-free set of simple graphs isVR-context-free but the converse is not
true, [12]), but theHR-operations are not among theVR-operations, nor are they derived
from them.

We will see in Sections 6.1 and 6.2 sufficient conditions forHR-recognizable sets to
beVR-recognizable, and in Section 6.3, examples ofHR-recognizable sets which are not
VR-recognizable.

5.2. Variants of the algebra of graphs with sources

We find in the literature a number of variants of the signatureHR or of the algebraGS.
We now discuss these different variants, to verify that they do not introduce artefacts from
the point of view of recognizability.

5.2.1. The signatureHR‖
Let HR‖ denote the signature onGS obtained by substituting the parallel composition‖

for ⊕ (see Section 3.5.1). With the same proof as Proposition 3.15, we get the following
result.

Proposition 5.4. Let L be a subset ofGS. Then L isHR-recognizable if and only if it is
HR‖-recognizable.

5.2.2. Source-separated graphs
As in Section3.5.2, we now discuss the classGSsep of source separated graphs. The

operations ofHRall preserve source separation, except forfusa,b, but we defined in Example
3.16 the operationfusa→b = srcfga ◦ fusa,b which does. LetHRsep be the signature on
GSsep consisting of⊕ and the qfd unary operations of the formsrcrena→b, srcfga and
fusa→b.

Proposition 5.5. Let L be a subset ofGSsep. Then L isHR-recognizable if and only if it is
HRsep-recognizable.

Proof. SinceHRsep consists only ofHR-derived operations, everyHR-recognizable set
subset ofGSsep is alsoHRsep-recognizable.

The proof of the converse is a variant of the proof of Theorem3.18. First we note that the
type relation� (see Section 3.3) is also anHR-congruence onGS. We use the same mapping
h defined in the proof of Theorem 3.18, that maps a graph with sourcesS ∈ GS(C) to a
source-separated graphh(S) ∈ GSsep(C) by splitting sources that were identified inS. We
refer to that proof for notation used here.

If L is anHRsep-recognizable subset ofGSsep and≡ is a locally finiteHRsep-congruence
recognizing it, we define a relation∼ on GS as follows. IfS, T ∈ GS(C), we say that
S ∼ T if �(S) = �(T) andh(S) ≡ h(T). As in the proof of Theorem 3.18,∼ is easily seen

200 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

to be a locally finite equivalence relation. It is also easily seen that∼ is preserved under the
HRsep-operation⊕.

We now need to verify that ifS ∼ T ∈ GS(C) and g is one of the unary opera-
tions ofHRsep defined onGS(C), theng(S) ∼ g(T). Again, Proposition3.9 shows that
�(g(�(S))) = �(g(�(T))) and we want to show thath(g(S)) ≡ h(g(T)). The graphsSand
T are fixed for the rest of this proof. We writeh0, C0 andC1 for hS0, CS

0 andCS
1 .

As in the proof of Theorem 3.18, it suffices to construct anHRsep-derived operationk,
depending ong and�(S), such thath(g(S)) = k(h(S)) andh(g(T)) = k(h(T)). There is
no reason why the operationk constructed in the proof of Theorem 3.18 should beHRsep-
derived, but the operationsg considered here, namelysrcrena→b, srcfga andfusa→b are
simple enough that we can directly construct a suitablek in each case.
If g = srcrena→b. Theng is defined onGS(C) (wherea ∈ C andb �∈ C) and its range is
GS(C \ {a} ∪ {b}). One verifies thath(srcrena→b(S)) is equal to
• srcrena→b(h(S)) if a ∈ C1 andb > h0(a);
• srcrena→h0(a)(srcrenh0(a)→b(h(S))) if a ∈ C1 andb < h0(a);
• srcrena→b(h(S)) if a ∈ C0 andb < c for everyc ∈ C1 such thath0(c) = a;
• srcrenc→b(srcrenb→c(h(S))) if a ∈ C0 andb > c = min{d ∈ C1 | h0(d) = a}.
If g = srcfga . Theng is defined onGS(C) (wherea ∈ C) and its range isGS(C \ a). One
verifies thath(srcfga(S)) is equal to
• fusa→h0(a)(h(S)) if a ∈ C1;
• fusa→c if a ∈ C0, h0

−1(a) �= ∅ andc = min{h0
−1(a)};

• srcfga(h(S)) if a ∈ C0 andh0
−1(a) = ∅.

If g = fusa→b. Theng is defined onGS(C) (wherea �= b ∈ C) and its range isGS(C \a).
One verifies thath(fusa→b(S)) is equal to
• srcrena→h0(a)(fush0(a)→h0(b)(h(S))) if a ∈ C1 andh0(b) < h0(a);
• srcrena→h0(b)(fush0(b)→h0(a)(h(S))) if a ∈ C1 andh0(b) > h0(a);
• srcrena→h0(a)(h(S)) if a ∈ C1 andh0(b) = h0(a);
• fusa→h0(b)(h(S)) if a ∈ C0 anda > h0(b);
• srcrena→c(fush0(b)→a(h(S))) if a ∈ C0, andc = min{h0(b), h

−1
0 (a)}, anda < h0(b);

• srcrena→c(fusa→c(h(S))) if a ∈ C0, a = h0(b) andc = min{d ∈ C1 | h0(d) = a}.
This concludes the proof.�

Again with the same proof as for Proposition3.15, we can show that the operation⊕ can
be replaced by‖ in the signatureHRsep—yielding the signatureHRsep,‖.

Proposition 5.6. Let L be a subset ofGSsep. Then L isHRsep-recognizable if and only if it
isHRsep,‖-recognizable.

5.2.3. Other variants
The equivalence betweenHRsep,‖- andHR‖-recognizability for a set of source-separated

graphs—a consequence of Propositions5.4–5.6—was already established by Courcelle [10]
for graphs with multi-edges (see Section 7). In the same paper, Courcelle established the
equivalence betweenHRsep- andB-recognizability for several variantsB of the signature
HR, which we now describe. We refer to [10] for the proofs.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 201

For each finite setC of source labels, letsrcfgall be the composition of the operations
srcfgc for eachc ∈ C (in any order). Let also�C be the following binary operation on
GSsep, of type (C,C) → ∅: if G,H ∈ GSsep(C), thenG�CH = srcfgall(G ‖ H):
G�CH is obtained by first taking the parallel compositionG ‖ H , and then forgetting all
source labels.

Let CS be the signature onGSsep, which consists only of the�C operations.
Let HRfg be the derived signature ofHR‖, which consists of the operationssrcfgall

and‖.
Let HRren be the subsignature ofHR‖, which consists of the operationssrcrenp→q

and‖.
Let HRrensep be the subsignature ofHRsep,‖, which consists of the operations‖ and those

operationssrcrenp→q which preserve source separation.
The following result is a compilation of[10, Section 4].

Proposition 5.7. If L ⊆ GS, then L is HR-recognizable if and only if L isHRren-
recognizable.
If L ⊆ GSsep, then L isHRsep-recognizable if and only if L isHRrensep-recognizable.
If L ⊆ Graph, the following are equivalent:

• L isHR-recognizable;
• L is CS-recognizable;
• L isHRfg-recognizable.

Remark 5.8. The notationCS refers to the notion offully cutset-regularsets of graphs,
introduced by Abrahamson and Fellows[1]. Full cutset-regularity is equivalent toCS-
recognizability.

In [10], Courcelle also shows a number of closure properties of the class ofHRsep-
recognizable sets of source-separated graphs with sources. In particular, it is shown that
this class contains all singletons and it is closed under the operations ofHRsep
[10, Section 6].

Finally Courcelle shows the following result [10, Theorem 6.7].

Proposition 5.9. LetL ∈ GS(C). Then L isHR-recognizable if and only ifsrcfgall(L) is
HR-recognizable.

6. Finiteness conditions ensuring thatHR- and VR-recognizability coincide

We saw that aVR-recognizable set of graphs is alwaysHR-recognizable (Corollary5.2).
The converse does not hold in general, as we discuss in Section 6.3. We first explore
structural conditions on graphs, which are sufficient to guarantee that anHR-recognizable
set of graphs is alsoVR-recognizable.

Let
−→
K n,n be the directed complete bipartite graph withn+ n vertices. A directed graph

G ∈ Graph iswithout
−→
K n,n if it has no subgraph isomorphic to

−→
K n,n. The main result in

this section is the following.

202 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Theorem 6.1. Let n be an integer. AnHR-recognizable set of graphs without
−→
K n,n is VR-

recognizable.

This theorem is proved in Section6.1, and some of its corollaries are discussed in
Section 6.2.

Note that results similar to Corollary 5.2 and Theorem 6.1 hold forVR- andHR-equational
sets of graphs. As explained in the introduction, such sets are exactly the context-free sets
of graphs, formally specified in terms of recursive sets of equations using the operations of
VR andHR respectively. Specifically, the following results are known to hold:
• everyHR-equational set of simple directed graphs isVR-equational[15];
• if a VR-equational set of directed graphs is without

−→
K n,n for somen, then it isHR-

equational (by the main theorem in[12] and Lemma 6.6).
Thus the same combinatorial condition is sufficient to guarantee the equivalence between

VR- andHR-recognizability, as well as betweenVR- andHR-equationality. A further similar
result concerning monadic second-order definability and using a stronger combinatorial
property will be discussed in Section 6.4.

6.1. Proof of Theorem 6.1

We first record the following observation.

Lemma 6.2. Let G be a directed graph and letx, y be two vertices of G that are not
adjacent, and such that there is no vertex z such that both(x, z) and(y, z) (resp. both(z, x)
and(z, y)) are edges. Let H be obtained from G by identifying x and y. If G contains

−→
Km,m

as a subgraph, then so does H.

Proof. LetK be a subgraph ofG isomorphic to
−→
Km,m. From the hypothesis, the verticesx

andy are not both inK. It follows thatK is still isomorphic to a subgraph ofH. �

The proof of Theorem6.1 will proceed as follows. We consider anHR-recognizable set
L of finite graphs without

−→
K n,n and we denote bym the largest integer such that

−→
Km,m is

a subgraph of a graph inL. Such an integer exists by hypothesis.
Since we are talking about source-less graphs, the setL isHRsep-recognizable by Propo-

sition 5.5, and we consider a locally finiteHRsep-congruence≡ saturatingL. We will define
a locally finiteNLC-congruence∼ on GP that also saturatesL. By Proposition 4.9, this
suffices to show thatL is VR-recognizable. The definition of∼ makes use of the notion of
expansion of a graph, defined below.

Note that the following definitions depend on the integerm, even though terminology
and notation do not make this dependence explicit.

Small and large port labels and formulas. LetG ∈ GP(P) be a graph with ports. Ifp ∈ P ,
we denote bypG the set ofp-ports ofG. We say that a port labelp isvoid inGif pG is empty,
we say thatp is small in Gif 1�card(pG)�m and thatp is large in G if card(pG) > m.

Observe that if the port labelsp andq are both large inG, thenaddp,q(G) contains−→
Km+1,m+1 as a subgraph.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 203

Moreover, ifp is large inG, if r1, . . . , rk are small inG, let

H = addp,r1addp,r2 · · · addp,rk (G).

For i = 1, . . . , k, let ni = card(riG). If H does not contain
−→
Km+1,m+1, then we must

haven1+ · · · + nk�m. If G already contains edges from thep-ports to other vertices, then
n1+ · · · + nk < m. The notion of expansion below will make it possible to handle this sort
of complicated situation (see Example6.3).

Let us say that a closed first-order formula issmall if it has quantifier-depth at most
2m+ 2. Note that the existence of a subgraph isomorphic to

−→
Km+1,m+1 can be expressed

by a first-order formula of quantifier-depth 2m+ 2.

Expansions. We will define supergraphs ofG ∈ GP(P) calledexpansions, that contain
information relevant to the distribution of small and large port labels, and where ports
are represented by sources. Furthermore, it will be possible to simulate anNLC-operation
on G that does not create

−→
Km+1,m+1 subgraphs byHR-operations on expansions ofG.

These expansions will then be used to transform theHRsep-congruence≡ into anNLC-
congruence∼.

Furthermore, we will define∼ in such a way that two equivalent graphs satisfy the same
small first-order formulas.

We now give formal definitions. For each port labelp, we define a setC(p) of source
labels,

C(p) = {in(p, i),out(p, i), s(p, i) | 1� i�m}.
If P is a set of port labels,C(P) denotes the union of theC(p), for p in P.

LetG ∈ GP(P) be a graph with ports, letC ⊆ C(P), and letḠ be a graph inGSsep(C).
We say thatḠ is anexpansionof G if the following conditions hold:
(1) Ḡ has no subgraph isomorphic to

−→
Km+1,m+1.

(2) Except for the labeling of ports and sources,G is a subgraph of̄G. The sources of̄G,
and its vertices and edges not inG, are specified by Conditions (3) and (4).

(3) If p is small inG, then eachp-port ofG is ans(p, i)-source ofḠ for some integer
i�m. Differentp-ports are of course labelled by different source labels. There are no
in(p, j)- or out(p, j)-sources.

(4) If p is large inG, then there may be vertices ofḠ that are not inG, with source labels of
the formin(p, i) orout(p, i) for somei�m. Moreover, there is an edge in̄G from each
vertex ofpG to eachin(p, i)-source, and from eachout(p, i)-source to each vertex in
pG. There are nos(p, j)-sources.

In particular,Gmay have several different expansions, but it has only a finite number of
expansions (up to isomorphism). This number is bounded by a function depending onm
and the cardinality ofP. Indeed, for each small port labelp, there is only a bounded number
of ways to makep-ports intos(p, i)-sources (see (3)), and for each large port labelp, there
is a bounded number of ways to createin(p, i)- andout(p, i)-sources (see (4)).

Example 6.3. Letm = 2, and letGbe a graph with port labelsp, q, r. Suppose thatGhas
4 p-ports, 2q-ports and 1r-port, so thatp is large, andq, r are small inG, see Fig.1. Then
in any expansion ofG, everyq- andr-port will be a source, say labeled bys(q,1), s(q,2)

204 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Fig. 1.H is an expansion ofG.

ands(r,2) (there is only ones(r, i)-source, but it is not required that these sources should
be labeled with consecutive numbers starting at 1).

Moreover, an expansion ofGmay have up to two new vertices that arein(p, j)-sources,
and at most oneout(p, j)-source. Say, an expansionH could have new vertices asin(p,1)-
andin(p,2)-sources, with edges from each of the 4p-ports to eachin(p, j)-source; and it
could have a new vertex as a, say,out(p,2)-source, with edges from that vertex to each of
thep-ports.

Note that ifGhas a vertexxwith an edge fromx to at least 3p-sources, then an expansion
cannot have 2out(p, j)-sources: otherwise it would contain a copy of

−→
K3,3, which is not

allowed for an expansion.

Remark 6.4. It is not always the case thatG is determined by each of its expansionsḠ. If p
is large inG butḠ has noin(p, i)- or out(p, i)-sources, then it is not possible to determine
which of its vertices arep-ports.

Construction of anNLC-congruence from anHRsep-congruence. Let≡ be a locally finite
HRsep-congruence saturatingL. We define a relation∼ onGP as follows. ForG andG′ in
GP(P) we letG ∼ G′ if and only if
(a) eitherGandG′ both contain

−→
Km+1,m+1 as a subgraph, or neither does and in that case,

the following two conditions hold:
(b) G andG′ satisfy the same small first-order formulas (i.e., with quantifier-depth at most

2m+ 2) on graphs with ports.
(c) for every expansion̄G of G, there exists an expansion̄G′ of G′ such thatḠ ≡ Ḡ′ and

Ḡ andḠ′ satisfy the same small first-order formulas on graphs with sources (we say
that Ḡ andḠ′ areequivalent expansions); and conversely, for every expansionḠ′ of
G′ there exists an expansion̄G of G equivalent toḠ′.

Note that Condition (b) implies thatG andG′ have the same void, small and large port
labels, and Condition (c) implies thatḠ andḠ′ have the same source labels.

The relation∼ is clearly an equivalence relation on each setGP(P). It has finitely many
classes on eachGP(P) since a finite graph has a uniformly bounded number of expansions

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 205

(up to isomorphism), theHRsep-congruence≡ is locally finite, and there are finitely many
first-order formulas of each quantifier-depth on graphs with sources in a subset ofC(P).

Now a graph without ports and without
−→
Km+1,m+1 has a unique expansion: itself. It

follows that, for graphs without ports and without
−→
Km+1,m+1, the equivalences≡ and∼

coincide. In particular,∼ saturatesL since≡ does.
It remains to prove that∼ is anNLC-congruence. Recall that the signatureNLC consists

of the operations of the formfgp, renp→q and⊗J .

The port forgetting operation. We first consider the operationfgp. We considerG,G′ with
G ∼ G′ and we want to prove thatH ∼ H ′, whereH = fgp(G) andH ′ = fgp(G

′).
First of all, the underlying graphs ofG andH (resp.G′ andH ′) are identical, so thatG

andG′ contain
−→
Km+1,m+1 if and only if so doH andH ′. If this is the case, thenG ∼ G′

andH ∼ H ′. We now exclude this case and assume thatG andG′ are without
−→
Km+1,m+1.

Note also that ifp is void inG, then it is inG′ as well, and we haveH = G, H ′ = G′, so
thatH ∼ H ′. We now assume thatp is not void inG.

It is an immediate consequence of Theorem3.12 thatH andH ′ satisfy the same small
first-order formulas on graphs with ports, so Condition (b) is verified.

We now consider Condition (c). Let̄H be an expansion ofH. We will show that there
exists an expansion̄G of G and a unaryHRsep-term t such thatH̄ = t (Ḡ). SinceG ∼ G′,
there exists an equivalent expansionḠ′ of G′, andt (Ḡ′) will be the desired expansion of
H ′. Using the fact that≡ is anHRsep-congruence and Theorem 3.12, we will haveH ∼ H ′
as expected.

If p is large inG, the situation is particularly simple:̄H is also an expansion ofG, so we
can chooset to represent the identity. If̄G′ is an expansion ofG′, equivalent toH̄ , then
Ḡ′ does not use source labels of the forms(p, i), in(p, i) or out(p, i), so Ḡ′ is also an
expansion ofH ′.

If p is small inG, let Ḡ be a graph with source obtained from̄H by letting eachp-port of
G be ans(p, i)-source (where distinct source labels are used for distinctp-ports). ThenḠ
is an expansion ofG, andH̄ = t (Ḡ) wheret is the composition of the operationssrcfgs(p,i)
(1� i�m). Using the definition of∼, there exists an expansion̄G′ of G′ which is equiv-
alent toḠ, and we only need to verify that̄H ′ = t (Ḡ′) is an expansion ofH ′. The only
point to check here is the fact thatH ′ is a subgraph ofH̄ ′: this follows from the facts that
G is a subgraph ofḠ and the operationst and fgp do not change the underlying graph
structures.

The renaming operation. We now consider the operationrenp→q . LetG,G′ with G ∼ G′:
as with the port forgetting operation, we want to prove thatH ∼ H ′ whereH = renp→q(G)

andH ′ = renp→q(G
′). As above, we can reduce the proof to the case where neitherG nor

G′ contains
−→
Km+1,m+1, and wherep is not void inG (if p is void inG, thenH = G and

H ′ = G′). Moreover, Condition (b) follows from Theorem 3.12.
We consider Condition (c), following the same strategy as above. LetH̄ be an expansion

of H.
If q is void in G, then the transformationrenp→q is a reversible renaming,

that is, G = renq→p(H). Moreover, if t is the composition of the operations
of the form srcrens(p,i)→s(q,i), srcrenin(p,i)→in(q,i) and srcrenout(p,i)→out(q,i), and

206 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

if t ′ is the composition of the operationssrcrens(q,i)→s(p,i), srcrenin(q,i)→in(p,i) and
srcrenout(q,i)→out(p,i), thenḠ = t ′(H̄) is an expansion ofG, H̄ = t (Ḡ). Moreover, if
Ḡ′ is an expansion ofG′, equivalent toḠ, thenH̄ ′ = t (Ḡ′) is an expansion ofH ′.

We now assume thatq is not void inG. We need to consider several cases.
Case1: p andq are both large inG. Thenp is void andq is large inH.
In order to build the desired̄G, we split eachin(q, i)-source ofH̄ into anin(p, i)-source

and anin(q, i)-source. Thein(p, i)-source is linked by incoming edges to allp-ports ofG,
and thein(q, i)-source is linked similarly to allq-ports. In the same fashion, we split each
out(q, i)-source ofH̄ into anout(p, i)-source and anout(q, i)-source linked by outgoing
edges to allp-ports ofG and to allq-ports respectively. The termt such thatH̄ = t (Ḡ) is
the composition of the operationsfusin(p,i)→in(q,i) andfusout(p,i)→out(q,i).

The graphḠ does not contain
−→
Km+1,m+1, sinceH̄ does not (by Lemma6.2). HenceḠ is

an expansion ofG. Let nowḠ′ be an expansion ofG′ equivalent toḠ, and letH̄ ′ = t (Ḡ′).
It is easily verified thatH̄ ′ is an expansion ofH ′, and as above, it follows thatH ∼ H ′.
Case2: p is small andq is large inG.
In order to buildḠ from H̄ , we make thep-ports ofG into s(p, i)-sources, we delete the

edges between thein(q, i)- and theout(q, i)-sources and thep-ports ofG. The termtwhich
must do the opposite (that is, constructH̄ from Ḡ) is a composition of source forgetting
operations and of additions of new edges. More precisely, for eachi, j such thats(p, i)
and in(q, j) are source labels in̄G, we use the operationZ �−→ Z ⊕ (� −→ �), where
(� −→ �) is the 2-vertex, 2-source, 1-edge graph, followed by the operationsfus�→s(p,i)

andfus�→in(q,j). We then apply similar operations to create edges from theout(q, j)- to
thes(p, i)-sources. And we finally apply the operationssrcfgs(p,i).

The graphḠ is a subgraph of̄H (up to source labels), sōG does not contain
−→
Km+1,m+1,

and hence it is an expansion ofG. The proof continues as in the previous case.
Case3: q is small andp is large inG.
To build Ḡ from H̄ , we make theq-ports ofG into s(q, i)-sources, we delete the edges

between thein(p, i)-sources or theout(p, i)-sources and theq-ports ofG. In addition we
rename eachin(p, i)-source to anin(q, i)-source, and eachout(p, i)-source to anout(q, i)-
source. We can use the same reasoning as in Case 2 to conclude in this case.
Case4: p andq are small inG, andcard(pG)+ card(qG)�m.
To buildḠ from H̄ , we renames(q, i) into s(p, i) whenever thes(q, i)-source ofH̄ is a

p-port inG. The termt which does the opposite is a composition of source renamings. The
graphḠ does not contain

−→
Km+1,m+1, otherwiseH̄ would do, sinceḠ is equal toH̄ up to

source labels, and hencēG is an expansion ofG. The other parts of the proof are the same.
Case5: p andq are small inG, andcard(pG)+ card(qG)�m+ 1.
To build Ḡ from H̄ , we make thep-ports (resp.q-ports) ofG into s(p, i)-sources (resp.

s(q, i)-sources), we delete the edges between thein(q, i)- andout(q, i)-sources and the
p- andq-ports ofG, and we delete thein(q, i)- andout(q, i)-sources. The termt which
does the opposite is a composition of additions of new edges and ofsrcfg operations, as in
Case 2, see Fig. 2. The graphḠ does not contain

−→
Km+1,m+1, otherwiseH̄ would too, since

Ḡ is a subgraph ofH̄ (up to source labels), and henceḠ is an expansion ofG. The proof
continues as in the previous cases.

This concludes the proof thatG ∼ G′ impliesrenp→q(G) ∼ renp→q(G
′).

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 207

Fig. 2.m = 2 andH̄ = t (Ḡ) = srcfgs(p,1),s(p,2),s(q,1),s(q,2)(Ḡ ‖ E).

The operation⊗J . We now consider the operation⊗J whereJ ⊆ (P × Q) ∪ (Q × P),
P andQ are disjoint. LetG ∼ G′ in GP(P), K ∼ K ′ in GP(Q), H = G ⊗J K and
H ′ = G′ ⊗J K ′. We want to prove thatH ∼ H ′.

We first consider the very special case whereJ = ∅, and the operation⊗J is simply the
disjoint union. ThenH contains

−→
Km+1,m+1 if and only ifG orK does, if and only ifG′ or

K ′ does, if and only ifH ′ does.
Assuming thatH does not contain

−→
Km+1,m+1, an application of Theorem3.12 ensures,

as for the operations of port forgetting or renaming thatH andH ′ satisfy the same small
first-order formulas.

We now consider an expansion̄H ofH. It is necessarily of the form̄H = Ḡ⊕K̄ whereḠ
andK̄ are expansions ofGandK respectively. Then there exist expansionsḠ′ andK̄ ′ of G′
andK ′ respectively, which are equivalent tōG andK̄. One then verifies that̄H ′ = Ḡ′ ⊕ K̄ ′
is an expansion ofH ′, which is equivalent toH̄ .

Next we assume thatJ is a singleton,J = {(p, q)}, that is,G⊗J K = addp,q(G⊕K)

with p ∈ P andq ∈ Q.
SinceGandG′ on one hand, andK andK ′ on the other satisfy the same small first-order

formulas, Theorem 3.12 shows thatH = addp,q(G⊕K) contains
−→
Km+1,m+1 if and only

if H ′ = addp,q(G′ ⊕K ′) does. Assume now this is not the case and consider an expansion
H̄ of H.

Again there are several cases. Note thatp andq cannot both be large inG andK respec-
tively. We claim thatH̄ can defined ast (Ḡ, K̄) wheret is anHRsep-term,Ḡ is an expansion
of G andK̄ is an expansion ofK. As for the other operations, we consider expansionsḠ′
andK̄ ′ of G′ andK ′, equivalent toḠ andK̄. Although it is a bit tedious, we verify formally
that H̄ ′ = t (Ḡ′ ⊕ K̄ ′) is an expansion ofH ′. It follows that H̄ ′ is equivalent toH̄ , and
henceH ∼ H ′.

208 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Fig. 3.N = t (Ḡ, K̄) = srcfgall (Ḡ ‖ srcrens(q,1)→in(p,2),s(q,2)→in(p,3)(K̄)).

Case1: p is large inG andq is small inK.
ThenH has edges from allp-ports ofG to all q-ports ofK, which are actuallys(q, i)-

sources inH̄ . For each of theses(q, i)-sources, sayx, we create a new vertexx′, and each
edge coming fromG to x is redirected towardsx′. We makex′ into anin(p, j)-source (for
some appropriatej) of the expansion̄G ofGwe are constructing. The desired expansionK̄

of K is just the subgraph of̄H induced by the set of vertices ofK. And Ḡ consists of the
subgraph ofH̄ induced by the vertices ofG together withx′ and all these redirected edges.
Then theHRsep-term t needs only to fuse in̄G ⊕ K̄ the above describedin(p, j)-sources
with the correspondings(q, i)-sources. This can be done by a combination of the operation
⊕ and those of the formfusin(p,j)→s(q,i). The only point to check is that̄G does not contain−→
Km+1,m+1. We can apply Lemma6.2 becauseH̄ is obtained fromḠ ⊕ K̄ by fusions of
pairs of vertices which are not adjacent and have no incoming edges with the same source
(becauseG andK are disjoint) and no outgoing edge at all.

Then there exist expansions̄G′ andK̄ ′ of G′ andK ′ respectively, equivalent tōG and
K̄. By lettingH̄ ′ = t (Ḡ′, K̄ ′), we get the desired expansion ofH ′, equivalent toH̄ .

This case is illustrated in Fig. 3, wherem = 3 andN is the constructed expansion of
G⊗J K.
Case2: p is small inG andq is large inK.
It is fully similar to the first case, creating newout(q, j)-sources instead ofin(p, j)-

sources. We omit the details.
Case3: p is small inG andq is small inK.
Let Ḡ be the subgraph with sources ofH̄ consisting of the vertices ofG, and letK̄

be defined similarly in terms ofK. ThenH̄ is obtained fromḠ ⊕ K̄ by the addition of
edges from eachs(p, i)-source ofḠ to eachs(q, j)-source ofK̄, which can be done by an
HRsep-term (see Case 2 of the discussion of the renaming operation). SinceḠ andK̄ are

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 209

subgraphs ofH̄ , they cannot contain
−→
Km+1,m+1 and hence, they are in fact expansions of

G andK as desired. The proof continues as above.
Case4: p is void inG or q is void inK.
Thenaddp,r acts as the identity onG⊕K, so⊗J acts as⊕ on (G,K) and we are back

to a previously studied case. Recall that ifp (resp.q) is void inG (resp.K), then it is void
in every∼-equivalent graph with source.

This concludes the study of the case whereJ is a singleton inP ×Q. The case whereJ
is a singleton inQ× P is of course similar.

The proof is actually the same in the general case whereJ is not a singleton. We need
only do the same constructions for all elements(p, q) in J. The only possible difficulty
could arise from the use of Lemma6.2 to verify that the graphs̄G andK̄ obtained from
H̄ by the creation of vertices (likex′ in Case 1 above) and the redirection of edges do
not contain

−→
Km+1,m+1, and hence are expansions. Thus let us consider the transforma-

tion of Ḡ ⊕ K̄ into H̄ . It consists in a sequence of fusions of pairs of vertices. When-
ever we fuse anin(p, i)-source ofḠ, sayx, with ans(q, j)-source ofK̄, sayy, we must
verify that the fusions performed previously keep the hypothesis of Lemma 6.2 valid. It
is clear thatx and y are not adjacent, sincex is adjacent with vertices ofG only. Be-
cause of previous fusions, there may exist an edge from somez in G to y. However, this
edge comes from a previously applied operationaddp′,q with p′ �= p. It follows that
there is no edge fromz to x. An analogous argument also applies to fusions between an
out(p, i)-source ofG and ans(q, j)-source ofK, and also when we exchange the roles of
G andK. Hence, finally, we can apply Lemma 6.2 to deduce thatḠ andK̄ do not contain−→
Km+1,m+1 becauseH̄ does not. Hence, they are expansions ofG andK, as we needed
to check.

This concludes the proof of Theorem 6.1.

6.2. Other finiteness conditions

We now consider some consequences of Theorem 6.1. LetKn,n be the undirected com-
plete bipartite graph withn + n vertices, that is,Kn,n is the undirected graph underlying−→
K n,n. We say that a (directed) graph iswithoutKn,n if its undirected underlying graph has
no subgraph isomorphic toKn,n.

We say that a graphG is uniformly k-sparseif card(E(H))�k card(V (H)) for every
finite subgraphH of G, whereV (H) andE(H) are the sets of vertices and edges ofH.
A set of graphs isuniformly k-sparseif each of its elements is.

Proposition 6.5. LetL ⊆ Graph be a set of graphs, satisfying one of the following prop-
erties:
L is without

−→
K n,n for some n

or L is withoutKn,n for some n
or L consists only of planar graphs
or L is uniformly k-sparse for some k
or L consists only of graphs of tree-width at most k for some k.
Then L isHR-recognizable if and only if L isVR-recognizable.

210 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Proof. By Corollary5.2, it is always the case that aVR-recognizable set of graphs isHR-
recognizable.

If L is without
−→
K n,n for somen, the converse implication was proved in Theorem 6.1.

Lemma 6.6 below shows thatL is withoutKp,p for somep if and only if it is without
−→
K n,n

for somen.
It is well-known that planar graphs are withoutK3,3 (planarity is a property of

the underlying undirected graph, andK3,3 is the undirected graph underlying
−→
K 3,3). It fol-

lows that planar graphs are also without
−→
K3,3, and the result follows from

Theorem 6.1.
It is easily seen that

−→
K2k+1,2k+1 is notk-sparse. So ifL is uniformly k-sparse, then it is

without
−→
K 2k+1,2k+1.

Finally, it is known that graphs of tree-width at mostk are uniformly(k+ 1)-sparse (see
for instance [16]), which yields the last assertion.�

Lemma 6.6. Let p be an integer. There exists an integer n such that a directed graphwithout−→
K p,p, is withoutKn,n.

Proof. We use the particular case of Ramsey’s Theorem for bipartite graphs, given as
Theorem 1 in[27, p. 95]. It states that for eachp, there exists an integern such that, if the
edges ofKn,n are partitioned into two setsA andB, then eitherA orB contains the edges of
a subgraph isomorphic toKp,p.

So let us assume thatU,W ⊆ V (G), whereU andW are disjoint sets ofn elements and
there is an edge betweenu andw (in one or both directions) for each(u,w) ∈ U × W .
Let A be the set of pairs(u,w) ∈ U × W such that the edge is fromu to w, and let
B = (U ×W) \ A. Then there exist setsU ′ ⊆ U andW ′ ⊆ W , with cardinalityp, such
thatU ′ ×W ′ ⊆ A or W ′ × U ′ ⊆ B. In either case, we get a subgraph ofG isomorphic to−→
K p,p.

Note that a quick and direct proof can be given withn = p22p, but we do not know the
minimaln yielding the result. �

Remark 6.7. The statement relative to bounded tree-width sets of graphs in Proposi-
tion 6.5 is also a consequence (in the case of finite graphs) of Lapoire’s result [31],
which states that, in a graph of tree-width at mostk, one can construct a width-k tree-
decomposition by monadic second-order (MSO) formulas. This can be used to show that
everyHR-recognizable set of graphs of bounded tree-width is definable in Counting Monadic
Second-order (CMSO) logic, using edge set quantifications. Courcelle showed [11] that,
for finite graphs of bounded tree-width, edge set quantifications can be replaced by ver-
tex set quantifications. The considered set is therefore definable in CMSO logic with
vertex set quantifications only, and hence isVR-recognizable by another of Courcelle’s
results [9].

Remark 6.8. It is proved in[8] that every set of square grids isHR-recognizable. It follows
from Theorem 6.1 that every such set is alsoVR-recognizable. Hence, there are uncountably
manyVR-recognizable sets of graphs, so we cannot hope for an automata-theoretic or

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 211

a logical characterization ofVR-recognizability—in contrast with the situation prevailing
for words, trees and some special classes of graphs, see[43,32,33,24,29,30].

6.3. HR-recognizable sets which are notVR-recognizable

The aim of this short section is to establish the existence ofHR-recognizable sets which
are notVR-recognizable. We first establish a lemma.

Lemma 6.9. Every set of cliques(of the formKn, n�1) isHR-recognizable.

Proof. LetL be a set of undirected cliques (recall that an undirected graph is a graph where
the edge relation is symmetric). We provide a locally finiteCS-congruence onGSsep which
saturatesL (see Section5.2.3). By Proposition 5.7, this establishes thatL isHR-recognizable.

For each finite setC of source labels, letGi(C) be the set of graphs inGSsep(C) having
at least one internal vertex (i.e., a vertex which is not a source), and letGs(C) be the set of
graphs inGSsep(C), in which every vertex is a source. In particular,Gs(C) is finite.

Let ≡ be the following equivalence relation onGSsep. We use the operation�C , as in
Section 5.2.3. IfG,G′ ∈ GSsep(C), we letG ≡ G′ if and only if eitherG = G′, or
G,G′ ∈ Gi(C) and for everyH ∈ Gs(C), G�CH ∈ L iff G′�CH ∈ L.

Note that for eachC, there are only finitely many≡-classes inGSsep(C),—namely at
mostp + 2p, wherep is the cardinality ofGs(C).

Moreover,≡ saturatesL. Indeed, suppose thatG,G′ ∈ GSsep(C), G ≡ G′ andG ∈ L.
LetH be the graph inGSsep(C) consisting of distinctc-sources (c ∈ C) and no edges. Then
we haveG = G�CH andG′ = G′�CH . It follows from the definition of≡ thatG′ ∈ L.

Finally, we check that≡ is aCS-congruence. LetG,G′, H,H ′ ∈ GSsep(C), with G ≡
G′ andH ≡ H ′: we want to show thatG�CH ≡ G′�CH

′. We observe that if bothG and
H have internal vertices, thenG�CH is not a clique (by definition of operation�C), and
hence cannot be inL. The rest of the proof is a straightforward verification.�

We can now prove the following.

Proposition 6.10. There is anHR-recognizable set of graphswhich is notVR-recognizable.

Proof. LetAbe a set of integers which is not recognizable in〈N, succ,0〉, for instance the
set of prime numbers, and letL be the set of cliquesKn for n ∈ A. ThenL isHR-recognizable
by Lemma6.9.

We now consider a set ofVR-terms describingL and using exactly 2 port labels,p and
q. Recall thatp denotes theVR-constant of type{p}, that is, the graph with a single vertex
that is ap-port and no edges. The constantq is defined similarly. Now letk1 = p, and
kn+1 = renq→paddp,qaddq,p(kn⊕q). It is not difficult to verify thatkn denotes the clique
Kn where all the vertices arep-ports,Kn itself is denoted by the termmdf∅kn, and the
setK of all VR-terms of the formkn is recognizable (as a set of terms, or trees). IfL is
VR-recognizable, then the set ofVR-terms inK that denote graphs inL is recognizable. This
set consists of all the terms of the formmdf∅kn with n ∈ A, and it can be shown by standard
methods that it is not recognizable. It follows thatL is notVR-recognizable. �

212 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

6.4. Sparse graphs and monadic second-order logic

Since graphs are relational structures, logical formulas can be used to specify sets of
graphs. Monadic second-order logic is especially interesting because
every monadic second-order definable set of finite graphs isVR-recognizable[9,15].
There is actually a version of monadic second-order logic allowing quantifications on

edges and sets of edges (one replaces the graph under consideration by its incidence
graph; we omit details). We say that a set isMS2-definable if it is definable by a monadic
second-order formula with edge and edge set quantifications, and that we use the phrase
MS1-definable to refer to the first notion. It is immediately verified (from the definition)
that
Every MS1-definable set isMS2-definable.

The two following statements are more difficult.
Every MS2-definable set of simple graphs isHR-recognizable[8].
If a set of simple graphs is uniformlyk-sparse for somek and MS2-definable, then it is

MS1-definable[16].
This is somewhat analogous to the situation of Theorem 6.1 (see Proposition 6.5). How-

ever the combinatorial conditions are different: if a set of graphs is uniformlyk-sparse for
somek, it is withoutKt,t for somet, but the converse does not hold. It is proved in the book
by Bollobas [5] that, for eacht�2, there is a numbera such that for eachn, there is a graph
with n vertices andanb edges that does not containKt,t , whereb = 2t/(t + 1). For these
graphs, the number of edges is not linearly bounded in terms of the number of vertices, so
they are not uniformlyk-sparse for anyk.

It is not clear how to extend Courcelle’s proof in [16], to use the conditionwithoutKt,t

instead ofuniformly k-sparse.

7. Simple graphs vs multi-graphs

The formal setting of relational structures is very convenient to deal with simple graphs,
as we have seen already. It can also be used to formalize multi-graphs (i.e., graphs with
multiple edges), if we consider two-sorted relational structures.

Formally, amulti-graph with sourcesin C is a structure of the formG = 〈V,E, inc,
(cG)c∈C〉whereV is the set of vertices,E is the set of edges, eachcG is an element ofV, and
inc is a ternary relation of typeE × V × V . We interpret the relationinc(e, x, y) to mean
thate is an edge from vertexx to vertexy. We denote byGSm(C) the set of multi-graphs
with sources inC. As in the study ofStS or GS, we assume that the finite sets of source
labelsC are taken in a fixed countable set. We letGSm be the union of theGSm(C) for all
finite setsC of source labels.

Graphs and hypergraphs with multiple edges and hyperedges are often used, see the
volume edited by Rozenberg [41]. In this context, it is in fact frequent to consider operations
on multi-graphs that are very similar to theHR-operations onGS. More precisely, the
operations of disjoint union, source renaming, source forgetting and source fusion can
be defined naturally on multigraphs with sources: thusGSm can be seen naturally as an
HR-algebra.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 213

It is clear that each simple graph inGS(C) can be considered as an element inGSm(C). It
is important to note however that theHR-operations onGSm, when applied to such simple
graphs, do not necessarily yield the same result as inGS. For instance, leta, b be distinct
elements ofC, and letG ∈ GS(C) be a simple graph. The action of fusing thea-source and
theb-source ofGmay now result in multiple edges: if there were arrows in both directions
betweenaG andbG, or if there were arrows to (resp. from) a vertex ofG from (resp. to)
bothaG andbG. In contrast, the same operation inGS(C) yieldsfusa,b(G), an element of
GS(C) by definition. To avoid confusion, we will denote bymfusa,b this operation when
used inGSm.

Fortunately, we do not have this sort of problem with the other operations: applying
the operations of disjoint union, source renaming or source forgetting to simple graphs
considered as elements ofGSm yields the same result as applying the same operations
within the algebraGS.

We letHRm be the signature onGSm consisting of the operations of the form⊕, srcfga ,
srcrena→b andmfusa,b. Thus,GSm is anHRm-algebra. We observe that, as a signature (that
is, as a set of symbols denoting operations),HRm is in natural bijection withHR. So we do
not really need to introduce the new notationHRm, and we could very well say thatGSm

is anHR-algebra. We simply hope, by introducing this notation, to clarify our comparative
study of recognizable subsets in the algebrasGS andGSm. This distinction will be useful
in the proofs of Theorems7.3 and 7.4.

To summarize and amplify the above remarks, let us introduce the following notation.
We denote by™: GS → GSm the natural injection. For each multi-graphG, we denote by
u(G) the simple graph obtained fromG by fusing multiple edges (with identical origin and
end): that is,u is a mapping fromGSm ontoGS. Elementary properties of™ andu are listed
in the next proposition.

Proposition 7.1. The mappingu: GSm → GS is a homomorphism ofHR-algebras. The
mapping™: GS → GSm is not a homomorphism, but it commutes with the operations of the
form⊕, srcfga andsrcrena→b.
™doesnot commutewith theoperationsof the formfusa,b,but ifG ∈ GS, then™(fusa,b(G))

= ™(u(mfusa,b(™(G)))).
Finally, if G ∈ GS, then™(G) = u−1(G) ∩ ™(GS) andu(™(G)) = G.

We now prove the following theorems, which describe the interaction betweenHRm-
recognizability of sets of multi-graphs andHR-recognizability of sets of simple graphs.

Theorem 7.2. The set of simple graphs isHRm-recognizable.More precisely, for each finite
set of source labelsC, ™(GS(C)) isHRm-recognizable.

Theorem 7.3. LetC be a finite set of source labels and letL ⊆ GS(C). ThenL is HR-
recognizable if and only if™(L) isHRm-recognizable.

Theorem 7.4. Let C be a finite set of source labels and letL ⊆ GSm(C). If L is HRm-
recognizable, thenu(L) isHR-recognizable.

214 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

7.1. Proof of Theorem 7.2

We first introduce the notion of thetypeof a multi-graph: as for the elements ofStS,
if G ∈ GSm(C), we let �(G) be the restriction ofG to its C-sources and to the edges
between them. We also denote by� the relation onGSm induced by this type mapping: two
multi-graphsG,H ∈ GSm(C) are�-equivalent if�(G) = �(H).

Lemma 7.5. The type relation� is anHRm-congruence onGSm.Moreover, for each finite
set of source labelsC, the elements of™(GS(C)) can be found in only a finite number of
�-classes.

Proof. The result follows from the following, easily verifiable identities, where the multi-
graphsG, H are assumed to have the appropriate sets of sources.

�(G⊕H)= �(G)⊕ �(H),

�(srcrena→b(G))= srcrena→b(�(G)),

�(mfusa,b(G))=mfusa,b(�(G)),

�(srcfga(G))= �(srcfga(�(G))).

The finiteness of the number of�-classes containing elements of™(GS(C)) follows from
the fact that there are only finitely many source-only simple graphs with sources inC. �

We also introduce the following finite invariant for a simple graphG ∈ GS(C). We define
�(G) to be the set of all pairs{a, b} of elements ofC such thata �= b, aG �= bG and there
exists a vertexx of Gwith either edges fromx to bothaG andbG, or edges tox from both
aG andbG. The set�(G) can be viewed as a symmetric anti-reflexive relation onC.

Lemma 7.6. LetG be a simple graph inGS(C) and leta �= b be elements ofC. Then
mfusa,b(G) has multiple edges if and only if{a, b} ∈ �(G) ormfusa,b(�(G)) has multiple
edges.

Proof. We first observe thatmfusa,b(G) has multiple edges if and only ifaG �= bG and at
least one of the following situations occurs: there are edges in both directions betweenaG
andbG, or there is a vertexx of Gwith edges from (resp. to) bothaG andbG (this includes
the case where there is a loop ataG or bG and an edge in either direction betweenaG and
bG). That is,mfusa,b(G) has multiple edges if and only{a, b} ∈ �(G) or there are edges
in both directions betweenaG andbG.

We also observe thatmfusa,b(�(G)) is a subgraph ofmfusa,b(G), so the former is simple
if the latter is. Finally, the existence of edges in both directions betweenaG andbG is
sufficient to ensure thatmfusa,b(�(G)) has multiple edges.

These observations put together suffice to prove the lemma.�

We are now ready to prove Theorem7.2. Let+ be the following relation, defined on each
GSm(C). We letG + G′ if bothGandG′ have multiple edges, or bothGandG′ are simple
graphs,�(G) = �(G′) and�(G) = �(G′).

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 215

Fig. 4. Distinct edges inmfusa,b(G).

It is immediate that+ is an equivalence relation, saturating™(GS(C)). It follows from
Lemma7.5 and from the fact that�(G) is a subset of the finite setC ×C, that+ is locally
finite. So we only need to show that+ is anHRm-congruence.

We need to describe the interaction between the mapping� and theHRm-operations.
As observed in Proposition 7.1, allHRm-operations preserve simple graphs except for the
operations of the formmfusa,b. Assuming thatG,H are simple graphs with the appropriate
sets of sources, we easily verify the following:

�(G⊕H)= �(G) ∪ �(H),

�(srcfga(G))= �(G) \ {{a, b} | b ∈ C, {a, b} ∈ �(G)},
�(srcrena→b(G))= �(G) \ {{a, c} | c ∈ C, {a, c} ∈ �(G)}

∪{{b, c} | c ∈ C, {a, c} ∈ �(G)}.
Moreover, ifaG �= bG andmfusa,b(G) is simple (if it isn’t, its�-image is not defined), then
�(mfusa,b(G)) consists of:
(1) all pairs in�(G),
(2) all pairs{c, d} such that there are edges in�(G) from a to c and fromb to d, or fromc

to a and fromd to b,
(3) all pairs{a, c} (resp.{b, c}) such that{b, c} ∈ �(G) (resp.{a, c} ∈ �(G)),
(4) all pairs{a, c} and{b, c} such that there are edges in�(G) betweena andb (in either

direction) and betweena or b andc (in any direction).
Let us justify this statement: it is easy to see that all these pairs belong to�(mfusa,b(G)).

In particular,�(G) ⊆ �(mfusa,b(G)) since, asmfusa,b(G) is assumed to be simple, there
is no{c, d} ∈ �(G) such thataG = cG andbG = dG.

Conversely, let us consider distinct edges inG′ = mfusa,b(G), from y to x and from
z to x, as in Fig.4 (note thatx andy may be equal), such thaty = eG′ andz = fG′ for
e, f ∈ C. If neitherx, nory norz is thea- andb-source inG′, then we are in case (1), i.e.,
{e, f } ∈ �(G). If x is thea- andb-source inG′ but neithery nor z is, then{e, f } satisfies
case (1) or (2). Ify is thea- andb-source inG′ but neitherx nor z is, then{e, f } satisfies
case (3). The same holds by symmetry ifz is the only one of these three vertices to be the
a- andb-source inG′. Finally if x = y (resp.x = z) and is thea- andb-source, inG′ then
there is an edge between thea- and theb-source inG and{e, f } satisfies case (4). The case
of edges fromx to y and toz is symmetrical.

In particular,�(G⊕H),�(srcfga(G)),�(srcrena→b(G)) and�(mfusa,b(G)) are entirely
determined by�(G), �(G) and�(H).

216 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Let us now considerG,G′, H,H ′ in GSm (with the appropriate sets of sources) such
thatG + G′ andH + H ′. If G is not simple, then neither areG′, G ⊕ H , srcfga(G),
srcrena→b(G) andmfusa,b(G). In particular, we haveG ⊕ H + G′ ⊕ H ′, srcfga(G) +
srcfga(G

′), srcrena→b(G) + srcrena→b(G
′) andmfusa,b(G) + mfusa,b(G′).

Assume now thatGandH are simple. Then so areG⊕H , srcfga(G) andsrcrena→b(G),
and we have seen that their�-images are determined by�(G) and�(H). Since� is an
HRm-congruence (Lemma7.5), it follows that+ is preserved by the operations⊕, srcfga
andsrcrena→b.

By Lemma 7.6, whethermfusa,b(G) is simple, is determined by�(G) and�(G), and
hencemfusa,b(G) andmfusa,b(G′) are both non-simple (and then+-equivalent) or both
simple. In the latter case, their�-images are equal since they are both determined by�(G) =
�(G′) and�(G) = �(G′). Thus+ is preserved by the operationmfusa,b. This concludes
the proof of Theorem 7.2.

7.2. Proof of Theorem 7.3

Recall that we want to show that for eachL ∈ GS(C), L is HR-recognizable if and only
if ™(L) isHRm-recognizable.

One direction is quickly established: we know from Proposition 7.1 that™(L) = u−1(L)∩
™(GS(C)). If L is HR-recognizable, thenu−1(L) is HRm-recognizable sinceu is a homo-
morphism. In view of Theorem 7.2, it follows that™(L) isHRm-recognizable as well.

Conversely, let us assume that™(L) is HRm-recognizable and let≡ be a locally finite
HRm-congruence onGSm saturating™(L). We want to define a locally finiteHR-congruence
∼ onGS saturatingL.

For each symmetric anti-reflexive relationA on a finite set of source labelsD and for
each graphG ∈ GS(D), let delA(G) ∈ GS(D) be the graph obtained fromG by deleting
the edges between thea-source and theb-source for each pair{a, b} in D. Let alsofusA be
the composition of the operationsfusa,b for all {a, b} ∈ A, in any order.

For G,G′ ∈ GS(D), we letG ∼ G′ if ™(G) ≡ ™(G′), �(G) = �(G′) and, for each
symmetric anti-reflexive relationA onD,

™fusAdelA(G) ≡ ™fusAdelA(G′).

The relation∼ is clearly an equivalence relation, and it is locally finite since≡ and� are.
Moreover, it saturatesL sinceG ∈ L if and only if ™(G) ∈ ™(L), and≡ saturates™(L). The
rest of the proof consists in showing that∼ is anHR-congruence.

The source renaming operation. Let G ∼ G′ in GS(D). Then ™(G) ≡ ™(G′). Since≡
is a congruence and in view of Proposition7.1, ™(srcrena→b(G)) = srcrena→b(™(G)) ≡
srcrena→b(™(G′)) = ™(srcrena→b(G

′)). It also follows from Lemma 3.9 that�(srcrena→b

(G)) = �(srcrena→b(G
′)).

Let us now consider a symmetric anti-reflexive relationA on the set of source labels of
srcrena→b(G). It is easily verified that

delAsrcrena→b = srcrena→bdelB,

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 217

whereB = {{c, d} ∈ A | {c, d} ∩ {a, b} = ∅} ∪ {{a, d} | {b, d} ∈ A}. We also note that
if c, d ∈ C \ {a, b}, thenfusc,d andsrcrena→b commute. Moreoverfusb,dsrcrena→b =
srcrena→bfusa,d and fusc,bsrcrena→b = srcrena→bfusc,a . Thus fusAsrcrena→b =
srcrena→bfusB .

Now, using the fact that™ commutes withsrcrena→b we have

™fusAdelAsrcrena→b(G)= ™fusAsrcrena→bdelB(G)

= ™srcrena→bfusBdelB(G)

= srcrena→b™fusBdelB(G).

Since≡ is anHRm-congruence, it follows that

™fusAdelAsrcrena→b(G) ≡ ™fusAdelAsrcrena→b(G
′)

and, finally, thatsrcrena→b(G) ∼ srcrena→b(G
′).

The source forgetting operation. The proof is the same as for the source renaming opera-
tion, with this simplifying circumstance thatdelAsrcfga = srcfgadelA andfusAsrcfga =
srcfgafusA (sincea is not a source label ofsrcfga(G), and hence does not occur inA).

The source fusion operation. Let G ∼ G′ in GS(D). Here it is not immediate that
™(fusa,b(G)) ≡ ™(fusa,b(G′)). However, if we letA = {{a, b}}, we know that

™fusAdelA(G) ≡ ™fusAdelA(G′).

We note thatfusAdelA(G) is equal tofusa,b(G) if Ghas no edge between itsa- orb-source,
or if it has a loop at either. Otherwise,fusa,b(G) is equal tofusAdelA(G) with a loop added
to itsa-source, that is:

fusa,b(G) = srcfg�srcfg�fusa,�fusb,�(fusAdelA(G)⊕ E), (*)

where� and� are source labels not inD andE, is the graph inGS({�,�}) with 2 vertices
and a single edge from its�-source to its�-source.

Observe also that the existence of loops at, or edges between thea- andb-source ofG is a
condition that depends only on�(G), so it will be satisfied by bothG andG′ or by neither.

In the first case, wherefusAdelA(G) = fusa,b(G), we find immediately that™(fusa,b(G))

≡ ™(fusa,b(G′)). In the second case, the same≡-equivalence is derived from Proposition
7.1 and Eq. (∗) above.

By Lemma 3.9,�-equivalence is preserved by the operationfusa,b.
Now let A be a symmetric anti-reflexive relation onD: we consider the graph

™fusAdelAfusa,b(G). Our first observation is thatdelAfusa,b = fusa,bdelB where

B = A ∪ {{a, c} | {b, c} ∈ A} ∪ {{b, c} | {a, c} ∈ A}.
Next, we observe thatfusAfusa,b = fusa,bfusB . Thus we have

™fusAdelAfusa,b(G) = ™fusAfusa,bdelB = ™fusa,bdelB fusB(G),

218 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

and hence ™fusAdelAfusa,b(G)≡ ™fusAdelAfusa,b(G′). It follows that fusa,b(G)

∼ fusa,b(G′).

The disjoint union operation. Let G ∼ G′ in GS(C) andH ∼ H ′ in GS(D) (whereC
andD are disjoint). Since™ and � preserve⊕, we have™(G ⊕ H) ≡ ™(G′ ⊕ H ′) and
�(G⊕H) = �(G′ ⊕H ′).

Now letAbe a symmetric anti-reflexive relation onC∪D. LetQ (resp.R) be the restriction
of A toC (resp.D) and letP = A ∩ ((C ×D) ∪ (D × C)). It is easily verified that

delA(G⊕H)= delQ(G)⊕ delR(H)

fusAdelA(G⊕H)= fusP (fusQdelQ(G)⊕ fusRdelR(H)).

It now follows from Proposition7.1 that

™fusAdelA(G⊕H)= ™fusP (fusQdelQ(G)⊕ fusRdelR(H))

= ™umfusP ™(fusQdelQ(G)⊕ fusRdelR(H))

= ™umfusP (™fusQdelQ(G)⊕ ™fusRdelR(H)).

Thus™fusAdelA(G⊕H) ≡ ™fusAdelA(G′ ⊕H ′), and henceG⊕H ∼ G′ ⊕H ′.
This concludes the proof of Theorem 7.3.

7.3. Proof of Theorem 7.4

Let L ∈ GSm(C) beHRm-recognizable, and let≡ be a locally finiteHRm-congruence
saturatingL. We want to show thatu(L) (a subset ofGS(C)) isHR-recognizable.

LetG,G′ ∈ GS(D). We letG ∼ G′ if, for eachH ∈ u−1(G), there existsH ′ ∈ u−1(G′)
such thatH ≡ H ′, and symmetrically, for eachH ′ ∈ u−1(G′), there existsH ∈ u−1(G)

such thatH ≡ H ′.
The relation∼ is easily seen to be a locally finite equivalence relation onGS, saturating

u(L). There remains to see that∼ is anHR-congruence.
We first establish the following lemma.

Lemma 7.7. LetG ∈ GSm and letH,K ∈ GS.
• u(G) = H ⊕ K if and only if there exist multi-graphsH ′,K ′ such thatG = H ′ ⊕ K ′,

u(H ′) = H andu(K ′) = K.
• u(G) = srcfga(H) if and only if there exists a multi-graphH ′ such thatG = srcfga(H

′)
andu(H ′) = H .

• u(G) = srcrena→b(H) if and only if there exists a multi-graphH ′ such thatG =
srcrena→b(H

′) andu(H ′) = H .
• u(G) = fusa,b(H) if andonly if there exists amulti-graphH ′ such thatG = mfusa,b(H ′)
andu(H ′) = H .

Proof. Recall thatGandu(G) have the same set of vertices, and each edgeeof u(G) arises
from the identificationn(e)�1 edges ofG between the same vertices.

If u(G) = H ⊕K, each edge ofu(G) is in exactly one ofH andK. LetH ′ (resp.K ′) be
the graph obtained fromH (resp.K) by replacing each edgeeby n(e) parallel edges. Then
G = H ′ ⊕K ′, u(H ′) = H andu(K ′) = K, as required.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 219

The proof of the statements relative to the operationssrcfga andsrcrena→b is done in
the same fashion.

Let us finally consider the case whereu(G) = fusa,b(H). If aH = bH , that is,H = u(G),
thenG = mfusa,b(G) and we can letH ′ = G.

If aH �= bH , we letH ′ be obtained fromH as follows: for each vertexx, each edgee
from x to y (y �= a, b) is replaced byn(e) parallel edges, and the edges fromx to a andb
are duplicated to a total ofn(e) edges. �

We can now conclude the proof of Theorem7.4, by proving that∼ is anHR-congruence.
Let G ∼ G′ andH ∼ H ′. LetK ∈ u−1(G⊕ H). By Lemma 7.7,K = L⊕M for some
L ∈ u−1(G) andM ∈ u−1(H). SinceG ∼ G′ andH ∼ H ′, there existL′ ∈ u−1(G′) and
M ′ ∈ u−1(H ′) such thatL′ ≡ L andM ′ ≡ M. LetK ′ = L′ ⊕M ′. ThenK ′ = L′ ⊕M ′ ≡
L⊕M = K andK ′ ∈ u−1(G′ ⊕H ′). By symmetry, this shows thatG⊕H ∼ G′ ⊕H ′.

The verification that∼ is preserved by the otherHR-operations proceeds along the same
lines. This concludes the proof of Theorem 7.4.

8. Graph algebras based on graph substitutions

The classGraph, defined in Section 3.1, has already been discussed in terms of the
signaturesS, VR andHR since it is a domain in each of the three algebrasStS, GP andGS.
In this section, we consider a different set of operations onGraph, arising from the theory
of the modular decomposition of graphs, which makesGraph an algebra (one-sorted for a
change!). This algebraic framework was considered by the authors, in [14,46].

We first recall the definition of the composition operation on graphs. LetH be a graph with
vertex set[n] = {1, . . . , n} (n�2). IfG1, . . . ,Gn are graphs, then the graphH 〈G1, . . . ,Gn〉
is obtained by taking the disjoint union of the graphsG1, . . . ,Gn, and by adding, for each
edge(i, j) of H wherei �= j , an edge from every vertex ofGi to every vertex ofGj .

We say that a graph isindecomposable, or prime, if it cannot be written non-trivially
as a composition (a composition is trivial if each of its arguments is a singleton). It is
easily verified that ifH andH ′ are isomorphic graphs, then the corresponding composition
operations yield isomorphic graphs. So we fix a setF∞ of representatives of the isomorphism
classes of indecomposable graphs. In particular, we may assume that every graph inF∞
has a vertex set of the form[n] for somen�2. We also denote byF∞ the resultingmodular
signature, consisting of the composition operations defined by these graphs. TheF∞-
algebra of graphs is denoted byGraphF∞ .

It turns out that every finite graph admits amodular decomposition, that is, it can be
expressed from the single-vertex graph using only operations fromF∞. This fact has been
rediscovered a number of times in the context of graph theory and of other fields using
graph-theoretic representations. We refer to [38] for a historical survey, and to [36] for a
concise presentation. In other words,Graph is generated by the signatureF∞ augmented
with the constantsvloop andv, which denote a single vertex graph, respectively with and
without a single loop edge.

220 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Remark 8.1. The modular decomposition of a graph is unique up to certain simple (equa-
tional) rules, see for instance[46]. Moreover, the modular decomposition of a graph can be
computed in linear time [35,36,21].

Our first results connectVR-recognizability andF∞-recognizability.

Proposition 8.2. EveryVR-recognizable set of graphs isF∞-recognizable.

Proof. In view of Proposition2.1 and Theorem 4.5, it suffices to show that every operation
in F∞ is VR+-derived.

For each integeri, letmarki be the unary operation onGP, of type∅ → {i}, defined as
follows: given a graph without ports, it simply marks every vertex with port labeli (leaving
the set of vertices and the edge relation unchanged). Note thatmarki is a qfd unary operation,
and hence aVR+-operation.

LetH be ann-ary operation, that is, a graph inF∞ with vertex set[n], and letedgeH be
its edge relation. IfG1, . . . ,Gn are finite graphs, the construction ofH 〈G1, . . . ,Gn〉 can
be described as follows:
• construct the disjoint union,mark1(G1)⊕ · · · ⊕markn(Gn), an element ofGP([n]);
• apply (in any order) to this disjoint union the operationsaddi,j for all i, j ∈ [n] such that
(i, j) is an edge ofH andi �= j ;

• forget all ports, that is, apply the operationmdf∅.
This completes the verification that the operation defined byH can be expressed as aVR+-
term, and hence the proof.�

The following result shows that the converse of Proposition8.2 does not hold.

Proposition 8.3. Every set of prime graphs isF∞-recognizable, and there is a set of prime
graphs which is notVR-recognizable.

Proof. LetL be a set of prime graphs, and let≡ be the relation onGraph defined as follows.
We letG ≡ H if one of the following holds:
• neitherG norH is prime;
• G andH are both1 (the graph with one vertex and no edge);
• G andH are both not1, prime and inL;
• G andH are both not1, prime and not inL.
This is clearly an equivalence relation with four classes, which saturatesL. Moreover,≡ is an
F∞-congruence. Indeed, letK be a graph withn vertices; fori = 1, . . . , n, letGi ≡ Hi for
eachi. If for somei,Gi �= 1, thenHi �= 1, and neitherK〈G1, . . . ,Gn〉 norK〈H1, . . . , Hn〉
is prime: therefore they are equivalent. Otherwise,Gi = Hi = 1 for eachi,K〈G1, . . . ,Gn〉
andK〈H1, . . . , Hn〉 are both equal toK, and hence they are equivalent. This concludes the
proof that every set of prime graphs isF∞-recognizable.

Before we exhibit a set of prime graphs which is notVR-recognizable, we define induc-
tively a sequence ofVR-terms written with three port labelsa, b, c. We let

t0 = adda,b(a ⊕ b), tn+1 = renc→b(renb→a(addb,c(tn ⊕ c))).

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 221

The termmdf∅(tn) (forgetting all port labels intn) denotes the string graphPn+2, with n+2
vertices, say 1, . . . , n + 2 and edges fromi to i + 1 for each 1� i�n + 1. Each of these
graphs is prime.

Now letA be a set of positive integers that is not recognizable in〈N, succ,0〉 and let
L be the set of all termsPn with n ∈ A. From the above discussion, we know thatL
is F∞-recognizable. IfL wasVR-recognizable, standard arguments would show that the
set ofVR-termstn (n ∈ A) would be recognizable as well, and it would follow thatA is
recognizable, contradicting its choice.�

Now letF be a finite subsignature of the modular signatureF∞. A graph which can be
constructed from one-vertex graphs using only operations fromF is called anF-graph.
The next result deals with sets ofF-graphs. This finiteness condition (the elements ofL are
built by repeated composition of a finite number of graph-based operations) is non-trivial.
In fact, for many natural classes of graphs such as rectangular grids, it is not satisfied: since
grids are indecomposable, a set of graphs containing infinitely many grids cannot satisfy our
finiteness condition. But that condition is satisfied by other classical classes (e.g. cographs,
series-parallel posets), see[14,46].

Using results of Courcelle [14], we can show the following result, which yields in par-
ticular a weak converse of Proposition 8.2.

Theorem 8.4. LetF be a finite subsignature ofF∞ and letL be a set ofF-graphs. The
following properties are equivalent:
1. L is S-recognizable;
2. L is VR-recognizable.
3. L isF∞-recognizable.
4. L isF-recognizable.

Proof. The equivalence of (1) and (2) can be found in Theorem4.5. Proposition 8.2 shows
that (2) implies (3). And (3) implies (4) as an immediate consequence of Proposition 2.1
sinceF is a subsignature ofF∞. The fact that (4) implies (1) is a consequence of two results
of Courcelle: [14, Theorem 4.1], which states that if a set ofF-graphs isF-recognizable,
then it is definable in a certain extension ofMS-logic; and [14, Theorem 6.11], which states
that all sets definable in this logical language areS-recognizable. �

Remark 8.5. Theorem8.4 states that for sets of graphs with only finitely many prime
subgraphs, all four notions of recognizability are equivalent. Presented in this fashion, the
statement is somewhat similar to that of Theorem 6.1.

9. Conclusion

In this article, we have investigated the recognizability of sets of graphs quite in detail,
focusing on the robustness of the notion, which was not immediate since many signa-
tures on graphs can be defined. Although we had in mind sets of graphs, we have proved
that embedding graphs in the more general class of relational structures does not alter
recognizability. We have proved that the very same structural conditions that equate

222 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

VR-equational andHR-equational sets of graphs, also equatesHR-recognizability andVR-
recognizability.

Summing up, we have defined a number of tools for handling recognizability. Some
questions remain to investigate.
• When is it true that a quantifier-free operation preserves recognizability?

Results in this direction have been established in Courcelle[10]. Are they applicable to
quantifier-free definable operations? In particular, is it true that the set of disjoint unions of
two graphs, one from each of twoVR-recognizable sets isVR-recognizable?
• Which quantifier-free definable operations can be added to the signatureHR, in such a

way that the class ofHR-recognizable sets is preserved (as is the case when we extend
VR to VR+)? The paper by Blumensath and Courcelle[3], which continues the present
research, considers unary non qfd operations that can be added toVR+ and toStS while
preserving the classes of equational and recognizable sets.

• Our example of anHR-recognizable, notVR-recognizable set of cliques, is based on
the weakness of the parallel composition of graphs with sources, i.e., the fact that this
operation is not able to split large cliques. Can one find another example, based on a
different argument? If one cannot, what does this mean?
We conclude with an observation concerning the finiteness of signatures. Whereas all

finite words on a finite alphabet can be generated by this alphabet and only one operation,
dealing with finite graphs (by means of grammars, automata and related tools) requires
infinite signatures. More precisely, one needs infinitely many operations to generate all
finite unlabelled graphs (see Remark9.1 below). On the other hand, applications to testing
graph properties require the consideration of algebras generated by a finite signature. Here
is the reason.

LetM be anF-algebra of graphs. If the unique valuation homomorphismvalM : T (F)→
M (which evaluates a term into an element ofM) is surjective, i.e., ifF generatesM, then
a subsetL of M is recognizable if and only ifval−1

M (L) is a recognizable set of terms (see
Proposition 2.1 and Section 2.3). And the membership of a term in a recognizable set can
be verified in linear time by a finite deterministic (tree) automaton. Hence the membership
of a graphG in L can be checked as follows:
(1) One must first find some termt such thatvalM(t) = G,
(2) then one checks whethert belongs toval−1

M (L).
The latter step can be done in time proportional to the size oft, usually no larger than the

number of vertices ofG. Although any termt with valueG gives the correct answer, it may
be difficult to find at least one (graph parsing problems may be NP-complete).

Because of this fact many hard problems (in particular if they are expressed in Monadic
Second-order logic) can be solved in linear time on sets of graphs of bounded tree-width,
and also on sets of graphs of bounded clique-width, provided the graphs are given with
appropriate decompositions, see[15,19] or [23]. If the decompositions are not given, one
can achieve linear time for graphs of bounded tree-width andMS2 problems using a result by
Bodlaender [4], and polynomial time for graphs of bounded clique-width andMS1 problems
using a result by Oum and Seymour [39].

However, even ifF is infinite or is finite without generating the setM, recognizability
remains interesting as an algebraic concept, and for every restriction to a finitely generated
subset ofM, we are back to the “good” case of a finitely generated algebra.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 223

Finally, we think that infinite signatures can be used for checking graph properties defining
recognizable sets. This will not be possible byfinitetree-automata if the graph algebra is not
finitely generated, but it can perhaps be done with automata using “oracles”.An oracle would
be a subroutine handling some verifications for big subgraphs that cannot be decomposed
by the operations under consideration. This idea needs of course further elaboration.

Remark 9.1. We asserted above that finite unlabelled graphs cannot be generated with a
finite signature. This is not entirely correct, and we briefly describe here a signature with
6 operations on a 2-sorted algebra which generates, somewhat artificially, all finite graphs
(undirected and without loops). These operations have no good behaviour with respect
to automata and verification questions, and such an “economical” generation of graphs is
useless.

The 2 sorts areo, the set of finite graphs equipped with a linear order of their vertex set,
andu, the set of ordinary, unordered graphs. There is one unary operation of typeo→ u,
which forgets the order on the vertex set. All other operations are unary, of typeo→ o: one
consists in adding one new vertex, to be the new least element; one adds an (undirected)
edge between the two least vertices; one performs a circular shift of the vertices; and one
swaps the two least vertices. The three last operations leave the graph unchanged if it has
less than 2 vertices. Finally, one adds a 6th, nullary operation, of typeo: the constant 0,
standing for the empty graph with no vertices.

Appendix A. Equivalences of logical formulas

In this appendix, we discuss some equivalences and transformations of logical formulas
which can be used to give upper bounds for the index of congruences considered in this
paper, and to complete the proof of the effectiveness of certain notions (e.g. quantifier-free
definition schemes).

More specifically, we make precise in what sense we can state, as we do in the body
of the paper, that the set of first-order (resp. monadic second-order) formulas over finite
sets of relations, constants and free variables, and with a bounded quantification depth,
can be considered as finite. Moreover, explicit upper bounds on the size of these finite
sets are derived, which can be used to justify the termination of some of our algorithms,
and in evaluating their complexity. That these upper bounds have unbounded levels of
exponentiation is not unexpected, and even unavoidable by Frick and Grohe[26].

A.1. Boolean formulas

Let p1, . . . , pn be Boolean variables and letBn be the set of Boolean formulas written
with these variables. It is well known thatBn is finite up to logical equivalence. For further
reference, we record the following more precise statement.

Proposition A.1. Thereexists a subsetBredn ofBn,of cardinality22n such that every formula
in Bn can be effectively transformed into an equivalent formula inBredn .

224 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

Proof. We letBredn be the set of Boolean formulas in disjunctive normal form, where in each
disjunct, variables occur at most once and in increasing order, no two disjuncts are equal,
and disjuncts are ordered lexicographically. These constraints guarantee the announced
cardinality ofBredn ; the rest of the proof is classical.�

Of course, the formula inBredn equivalent to a given formula, is not always the shortest
possible.

A.2. First-order formulas, semantic equivalence

Let us consider finite setsRandC, of relational symbols and of constants (nullary rela-
tions, source labels) as in Section3.1. Recall that, ifX is a finite set,FO(R,C,X) denotes
the set of first-order formulas in the language of(R,C)-structures, with free variables inX.
For unproved results in this section, we refer the reader to [6].

Several notions of semantic equivalence of formulas can be defined. If�,	∈FO(R,C,

X), say that� ≡ 	 if for every (R,C)-structureSand for every assignment of values inS
to the elements ofX, � and	 are both true or both false. Say also that� ≡� 	 if the same
holds for every finite or countable(R,C)-structureS, and� ≡f 	 if Sis restricted to being
finite.

The equivalences≡ and≡� coincide by the Löwenheim-Skolem theorem. Indeed this
theorem states that if a closed formula has an infinite model, then it has one of each in-
finite cardinality: to prove our claim, it suffices to apply it to the formula∃�x ¬(�(�x) ⇔
	(�x)). We note that this equivalence cannot be extended to monadic second-order formulas:
there exists an MS formula with a unique model, isomorphic to the set of integersN with
its order.

Each of these three equivalences is known to be undecidable.
The equivalence≡ (or≡� since we consider only first-order formulas) is semi-decidable:

by Gödel’s completeness theorem,� ≡ 	 if and only if the formula∀�x (�(�x) ⇔ 	(�x))
has a proof, which is a recursively enumerable property.

Trakhtenbrot proved that one cannot decide whether a first-order formula is true in every
finite structure, thus proving that≡f is not decidable. However, the negation of≡f is semi-
decidable: if� �≡f 	, a counter-example can be produced by exploring systematically all
finite (R,C)-structures. This is a proof also that≡ and≡f do not coincide.

A.3. First-order formulas, a syntactic equivalence

We now describe a syntactic equivalence≈ on formulas, which refines the semantic
equivalences≡ and≡f : that is, if� ≈ 	, then� ≡ 	 and� ≡f 	.

If b ∈ Bn, and if�1, . . . ,�n ∈ FO(R,C,X), we denote byb(�1, . . . ,�n) the formula
in FO(R,C,X) obtained by replacing each occurrence ofpi in b by �i . It is clear that ifb
andb′ are equivalent Boolean formulas, thenb(�1, . . . ,�n) ≡ b′(�1, . . . ,�n).

A Boolean transformationstepconsists in replacing in a first-order formula, a sub-formula
of the formb(�1, . . . ,�n) by the equivalent formulab′(�1, . . . ,�n), whereb, b′ ∈ Bn are
equivalent. Then we let� ≈ 	 if � can be transformed into	 by a sequence of Boolean
transformation steps and of renamings of bound variables.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 225

It is clear that if� ≈ 	, then� ≡ 	. We want to show that each first-order formula is
effectively equivalent to an≈-equivalent formula of the same quantifier height, and to give
an upper bound on the number of≈-equivalence classes of formulas of a given height.

A.3.1. Quantifier-free formulas
LetQF(R,C,X) be the set of quantifier-free formulas inFO(R,C,X). Such formulas

are Boolean combinations of atomic formulas. LetAtom(R,C,X) be the set of these atomic
formulas. Note that each atomic formula is either of the formx = y, wherex andy are
in X ∪ C, or r(x1, . . . , x�(r)) wherer is a�(r)-ary relation inR and thexi are inX ∪ C.
Lettingn = card(X) andc = card(C), it is easily verified that

card(Atom(R,C,X)) = (n+ c)2 + ∑
r∈R

(n+ c)�(r).

We letf (R, c, n) be this function. Note that if we allow for the (effective) syntactic sim-
plifications of identifying the formulas of the formx = x with the constanttrue, and
of identifying the formulasx = y andy = x, we can lower the value off (R, c, n) to
1+ 1

2(n+ c)(n+ c − 1)+∑r∈R(n+ c)�(r).
We then have the following.

Proposition A.2. There exists a subset QFred(R,C,X) of QF(R,C,X), of cardinality
22f (R,c,n)

, such that every formula in QF(R,C,X) can be effectively transformed to an
≈-equivalent formula in QFred(R,C,X).

Proof. By definition of quantifier-free formulas,QF(R,C,X) is the set of all formulas of
the formb(�1, . . . ,�n), whereb is a Boolean formula and the�i are atomic formulas. Now
letQFred(R,C,X) be the set of all formulas of the formb(�1, . . . ,�n), whereb ∈ Bredn

and the�i are pairwise distinct atomic formulas. The proof of the precise statement is now
immediate, using PropositionA.1. �

Example A.3. Let us consider graphs with sources, so thatR consists of a single, binary

edge relation. Thenf (R, c,0) = 2c2 andcard(QFred(R,C,∅)) = 222c2 = q(c). Thus the
type equivalence� (see Section3.3 and Lemma 3.8) has at most 2q(c) classes inGS(C).

Remark A.4. Again, we are not claiming that the setQFred(R,C,X) is as small as possible.
On quantifier-free formulas, the equivalence≡ is decidable, because� ≡ 	 is false if and
only if the closed formula∃�x(�(�x) /⇔	(�x)) is satisfiable, and the satisfiability problem
for existential formulas in prenex normal form is decidable (see[6]). Thus one can modify
PropositionA.2 by lettingQFred(R,C,X) be the set of lexicographically minimal formulas
in each≡-class: the same statement of Proposition A.2 would then hold with≡ instead of
≈. In particular, the transformation would still be effective, although very inefficient. It is
not clear whether the cardinality of the new set of reduced quantifier-free formulas would
be significantly smaller.

226 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

A.3.2. Quantifier depth of first-order formulas
Recall that the quantifier depth of a first-order formula is the maximal number of nested

quantifiers. If we letFOk(R,C,X) be the set of formulas inFO(R,C,X) of quantifier
depth at mostk, a formal definition is as follows:FO0(R,C,X) = QF(R,C,X) and, for
eachk�0,FOk+1(R,C,X) is the set of Boolean combinations of formulas in

F̂Ok(R,C,X)= FOk(R,C,X)

∪ {∃y � | � ∈ FOk(R,C,X ∪ {y})}
∪ {∀y � | � ∈ FOk(R,C,X ∪ {y})}.

Using the same recursion, let us define sets of “reduced” formulas of every quantifier depth.
First we fix an enumeration of the countable set of variables. Next, we letFOred0 (R,C,X) =
QFred(R,C,X). For eachk�0, we then letFOredk+1(R,C,X) be the set of formulas of the
form b(�1, . . . ,�n) whereb ∈ Bredn and the�i ’s are in

F̂O
red
k (R,C,X) = FOredk (R,C,X)

∪ {∃y � | � ∈ FOredk (R,C,X ∪ {y}), yminimal not inX}
∪ {∀y � | � ∈ FOredk (R,C,X ∪ {y}), yminimal not inX}.

Proposition A.5. For each k�0, the set FOredk (R,C,X) is finite. Moreover, every
formula in FOk(R,C,X) can be effectively transformed to an≈-equivalent formula in
FOredk (R,C,X).

Proof. Let n = card(X) andc = card(C), letg(k, R, c, n) be the cardinality ofFOredk (R,

C,X), and leth(k, R, c, n) be the cardinality of̂FO
red
k (R,C,X). It is elementary to verify

that these functions can be bounded as follows:

g(0, R, c, n) � 2f (R,c,n) and fork > 0,

g(k, R, c, n) � 22h(k,R,c,n)

,

h(k, R, c, n) � 3g(k − 1, R, c, n+ 1).

The rest of the proof is immediate, from the recursive definitions.�

Remark A.6. Since there is a procedure to transform each first-order formula into an
≈-equivalent formula in “reduced form”, we can consider a new equivalence relation on
first-order formulas: to yield the same reduced formula. This equivalence is decidable and
it refines≈ (and hence≡).

Remark A.7. In PropositionA.5, we can still consider replacing each formula by the lexi-
cographically least equivalent formula, but this method is not effective, since the equivalence
of first-order formulas is not decidable.

B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228 227

A.4. Monadic second-order formulas

A very similar analysis can be conducted for monadic second-order formulas of bounded
quantifier depth. One difference is that the Löwenheim-Skolem theorem does not hold for
these formulas, so the semantic equivalence of formulas based on coincidence on all finite
or countable models does not imply coincidence on all models. Moreover, since there is
no complete proof systems for such formulas, the equivalences≡ and≡� are not semi-
decidable.

For the rest, one can follow the same techniques as above, to prove the following result.
We denote byMSk(R,C,W) the set of monadic second-order formulas of quantification
depthk in the language of(R,C)-structures, with their first- and second-order free variables
inW.

Proposition A.8. For every finiteR,C,W, k,one can construct a finite subsetMSredk (R,C,

W) of MSk(R,C,W) such that, for every formula in MSk(R,C,W), one can construct
effectively an≡-equivalent formula in MSredk (R,C,W).

References

[1] K. Abrahamson, M. Fellows, Finite automata, bounded tree-width and well-quasiordering, in: N. Robertson,
P. Seymour (Eds.), Graph Structure Theory. Contemp. Math. 147 (1993) 539–564.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, D. Seese, An algebraic theory of graph reduction, J. ACM 40
(1993) 1134–1164.

[3] A. Blumensath, B. Courcelle, Recognizability and hypergraph operations using local information, 2004,
Submitted.

[4] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J.
Comput. 25 (1996) 1305–1317.

[5] B. Bollobas, Extremal Graph Theory, Academic Press, New York, 1978.
[6] E. Börger, E. Grädel, Yu. Gurevich, The Classical Decision Problems, Springer, Berlin, 1997.
[7] D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition of clique-width

�3 graphs, Extended abstract. in: G.H. Gonnet, D. Panario, A. Viola (Eds.), LATIN’2000, Lecture Notes in
Computer Science, Vol. 1776, 2000, pp. 126–134.

[8] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform. Comput.
85 (1990) 12–75.

[9] B. Courcelle, The monadic second-order logic of graphsVII: graphs as relational structures, Theoret. Comput.
Sci. 101 (1992) 3–33.

[10] B. Courcelle, Recognizable sets of graphs: equivalent definitions and closure properties, Math. Struct.
Comput. Sci. 4 (1994) 1–32.

[11] B. Courcelle, The monadic second-order logic of graphsVI: on several representations of graphs by relational
structures, Discrete Appl. Math. 54 (1994) 117–149 Erratum 63 (1995) 199–200.

[12] B. Courcelle, Structural properties of context-free sets of graphs generated by vertex-replacement, Inform.
Comput. 116 (1995) 275–293.

[13] B. Courcelle, Basic notions of universal algebra for language theory and graph grammars, Theoret. Comput.
Sci. 163 (1996) 1–54.

[14] B. Courcelle, The monadic second-order logic of graphs X: linear orders, Theoret. Comput. Sci. 160 (1996)
87–143.

[15] B. Courcelle, The expression of graph properties and graph transformations in monadic second order logic,
in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Vol. 1,
World Scientific, Singapore, 1997, pp. 313–400 (Chapter 5).

228 B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173–228

[16] B. Courcelle, The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set
quantifications, Theoret. Comput. Sci. 299 (2003) 1–36.

[17] B. Courcelle, Recognizability of graphs, hypergraphs and relational structures: a survey, in: DLT 2004,
Lecture Notes in Computer Science, Vol. 3340, Springer, Berlin, 2004, pp. 1–11.

[18] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle rewriting hypergraph grammars, J. Comput. System Sci.
46 (1993) 218–246.

[19] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000)
77–114.

[20] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded
clique-width, Theory Comput. Systems 33 (2000) 125–150.

[21] A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in: S. Tison (Ed.), CAAP 1994.
Lecture Notes in Computer Science, Vol. 787, Springer, Berlin, 1994, pp. 68–84.

[22] V. Diekert, The Book of Traces, World Scientific, Singapore, 1995.
[23] R. Downey, M. Fellows, Parametrized Complexity, Springer, Berlin, 1997.
[24] Z. Ésik, Z.L. Németh, Higher dimensional automata, J. Automata, Languages and Combin. 9 (2004) 3–29.
[25] S. Feferman, R. Vaught, The first order properties of products of algebraic systems, Fundam. Math. 47 (1959)

57–103.
[26] M. Frick, M. Grohe, The complexity of first-order and monadic second-order logic revisited, Ann. Pure Appl.

Logic 130 (2004) 3–31.
[27] R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, Wiley, New York, 1980.
[28] H.J. Hoogeboom, P. ten Pas, Monadic second-order definable text languages, Theory Comput. Systems 30

(1997) 335–354.
[29] D. Kuske, Towards a language theory for infiniteN -free pomsets, Theoret. Comput. Sci. 299 (2003)

347–386.
[30] D. Kuske, Regular sets of infinite message sequence charts, Inform. Comput. 187 (2003) 90–109.
[31] D. Lapoire, Recognizability equals Monadic Second-Order definability, for sets of graphs of bounded tree-

width, in: STACS 98, Lecture Notes in Computer Science, Vol. 1373, Springer, Berlin, 1998, pp. 618–628.
[32] K. Lodaya, P. Weil, Series-parallel languages and the bounded-width property, Theoret. Comput. Sci. 237

(2000) 347–380.
[33] K. Lodaya, P. Weil, Rationality in algebras with a series operation, Inform. Comput. 171 (2001) 269–293.
[34] J. Makowsky, Algorithmic aspects of the Feferman-Vaught Theorem, Ann. Pure Appl. Logic 126 (2004)

159–213.
[35] R. McConnell, J. Spinrad, Linear-time modular decomposition and efficient transitive orientation of

comparability graphs, in: Fifth Annu. ACM-SIAM Symp. on Discrete Algorithms, ACM, 1994, pp.
536–545.

[36] R. McConnell, J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999)
189–241.

[37] J. Mezei, J. Wright, Algebraic automata and context-free sets, Inform. Control 11 (1967) 3–29.
[38] R.H. Möhring, F.J. Radermacher, Substitution decomposition for discrete structures and connections with

combinatorial optimization, Ann. Discrete Math. 19 (1984) 257–356.
[39] S. Oum, P. Seymour, Approximating clique-width and branch-width, 2004, Submitted.
[40] D. Perrin, J.-E. Pin, Infinite Words, Pure and Applied Mathematics, Vol. 141, Elsevier, Amsterdam, 2004.
[41] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformations, World Scientific,

Singapore, 1997.
[42] S. Shelah, The monadic theory of order, Ann. Math. 102 (1975) 379–419.
[43] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, Vol. B, Elsevier, Amsterdam, 1990, pp. 133–192.
[44] E. Wanke,k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (1994) 251–266.
[45] W. Wechler, Universal Algebra for Computer Scientists, Springer, Berlin, 1992.
[46] P. Weil, On the logical definability of certain graph and poset languages, J. Automata, Languages Comput. 9

(2004) 147–165.
[47] P. Weil, Algebraic recognizability of languages, in: J. Fiala, V. Koubek, J. Kratochvíl (Eds.), MFCS 2004,

Lecture Notes in Computer Science, Vol. 3153, Springer, Berlin, 2004, pp. 149–175.

