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Abstract

Once the set of finite graphs is equipped with an algebra structure (arising from the definition of
operations that generalize the concatenation of words), one can define the notion of a recognizable set
of graphs in terms of finite congruences. Applications to the construction of efficient algorithms and
to the theory of context-free sets of graphs follow naturally. The class of recognizable sets depends
on the signature of graph operations. We consider three signatures related respectively to Hyperedge
ReplacementHR) context-free graph grammars, to Vertex Replacem¥i) (context-free graph
grammars, and to modular decompositions of graphs. We compare the corresponding classes of
recognizable sets. We show that they are robust in the sense that many variants of each signature (where
in particular operations are defined by quantifier-free formulas, a quite flexible framework) yield the
same notions of recognizability. We prove that for graphs without large complete bipartite subgraphs,
HR-recognizability and/R-recognizability coincide. The same combinatorial condition equdies
context-free and&/R-context-free sets of graphs. Inasmuch as possible, results are formulated in the
more general framework of relational structures.
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1. Introduction

The notion of a recognizable language is a fundamental concept in Formal Language
Theory, which has been clearly identified since the 1950s. It is important because of its
numerous applications, in particular for the construction of compilers, and also for the
development of the Theory: indeed, these languages can be specified in several very different
ways, by means adutomatacongruencesegular expressionandlogical formulas This
multiplicity of quite different definitions is a clear indication that the notion is central since
one arrives at it in a natural way from different approaches. The equivalence of definitions
is proved in fundamental results by Kleene, Myhill and Nerode, Elgot and Biichi.

The notion of a recognizable set has been extended in the 1960s to trees (actually to trees
representing finite algebraic terms), to infinite words and to infinite trees. In the present
article we discuss its extension to sets of finite graphs.

The recognizability of a set of finite words or trees can be defined in several ways,
as mentioned above, and in particular by finiteterministicautomata. This definition
(together with the related effective translations from other definitions) provides linear-
time recognition algorithms, which are essential for compiler construction, coding, text
processing, and in other situations. Recognizable sets of words can also be defined in
an algebraic way by finite saturating congruences relative to the monoid structure. These
definitions, by automata and congruences, extend smoothly to the case of finite trees (i.e.,
algebraic terms), using the natural algebra structure. The notion of recognizability in a
general algebra is due to Mezei and Wrifit]. We will not discuss here the extensions to
infinite words and trees, which raise specific problems surveyed by Thomas [43] and Perrin
and Pin [40]. Our aim will be to consider sets of finite graphs.

For finite graphs, there is no automaton model, except in very special cases, and in
particular in the case of graphs representing celédialled partially ordered setsndtraces
(atraceis adirected acyclic graph, representing the equivalence class of aword w.r.t. a partial
commutation relation), see the volume edited by Diekert [22] and the papers by Lodaya
and Weil [32,33] and Esik and Németh [24]. Algebraic definitions via finite congruences
can be given because the set of finite graphs can be equipped with an algebraic structure,
based on graph operations like the concatenation of words. However, many operations on
graphs can be defined, and there is no prominent choice for a standard algebraic structure
like in the case of words where a unique associative binary operation is sufficient. Several
algebraic structures on graphs can be defined, and distinct notions of recognizability follow
from these possible choices. It appears nevertheless that two graph algebras, called the
HR-algebraand theVR-algebrafor reasons explained below, emerge and provide robust
notions of recognizability. The main purpose of this paper is to demonstrate the robustness
of these notions. By robustness, we mean that taking variants of the basic definitions does
not modify the corresponding classes of recognizable sets of graphs.

In any algebra, one can define two family of sets, the recognizable sets and the equational
sets. The equational sets are defined as the components of the least solutions of certain
systems of recursive set equations, written with set union and the operations of the algebra,
extended to sets in the standard way. Equational sets can be considered as the natural
extension of context-free languages in a general algebraic framework (Mezei and Wright
[37], Courcelle [13] for a thorough development). The two graph algebras introduced above,
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theHR- and theVR-algebrg are familiar to readers interested in graph grammars, because

their equational sets are the (context-freBjperedge Replaceme(itiR) sets of graphs

on the one hand, and the (context-frée)tex Replacemerft/R) sets on the other. Both

classes of context-free sets of graphs can be defined in alternative, more complicated ways

in terms of graph rewritings, and are robust in the sense that they are closed under certain
transformations expressible in Monadic Second-Order LAdE

The main results of this paper, described below in more detail, are:

(1) the robustness of the classes/&F andHR-recognizable sets of graphs,

(2) therobustness ofthe class of recognizable sets of finite relational structures (equivalently
of simple directed ranked hypergraphs), which extends the two previous classes,

(3) the exhibition of structural conditions on sets of graphs implyingHRatecognizability
andVR-recognizability coincide,

(4) the comparison of the recognizable sets oMRealgebra and those of a closely related
algebrarepresentimgodular decompositior{gmnodular decomposition is another useful
notion for graph algorithms).

The notion of recognizability of a set of finite graphs is important for several reasons. First,
because recognizability yields linear-time algorithms for the verification of a wide class of
graph properties on graphs belonging to certain finitely generated graph algebras. These
classes consist of graphs of bounded tree-width and of bounded clique-width. These two
notions of graph complexity are important for constructions of polynomial graph algorithms,
see[23,20]. Furthermore, these graph properties are not very difficult to identify because
Monadic second-order (MS) logic can specify them in a formalized and uniform way.
(In many cases, an MS formula can be obtained from the graph theoretical expression
of a property.) More precisely, a central result [8,9,15,20] says that every set of graphs
(or graph property) definable by an MS formula is recognizable (respectively admits such
algorithms), for appropriate graph algebras. This general statement covers actually several
distinct situations.

Another reason comes from the theory of Graph Grammars. The intersection of a context-
free set of graphs and of a recognizable set is context-free (in the appropriate algebraic
framework). This gives immediately many closure properties for context-free sets of graphs,
via the use of MS logic as a specification language for graph properties. Recognizability
also makes it possible to construct terminating and (in a certain sense) confluent graph
rewriting rules by which one can recognize sets of graphs of bounded tree-width by graph
reduction in linear time, see Arnborg et al. [2].

Finally, recognizability is a basic notion for dealing with languages and sets of terms,
and on this ground, its extension to sets of graphs is worth investigating. Logical characteri-
zations of recognizability can be given using MS logic, extending many results in language
theory [16,24,28-30]. Several questions remain open in this research field.

We have noted above that defining recognizability for sets of graphs cannot be done in
terms of finite automata, so that the algebraic definition in terms of finite congruences has
no alternative. Another advantage of the algebraic definition is that it is given at the level
of universal algebra [37], and thus applies to objects other than graphs. However, even in
the case of graphs, the algebraic setting is useful because it hides (temporarily) the com-
plexities of operations on graphs and makes it possible to understand what is going on at a
structural level.
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We now present the main results of this article more in detail. The two main algebraic
structures on graphs call&R andHR, originate from algebraic descriptions of context-
free graph grammars. Definitions will be given in the body of the text. It is enough for this
introduction to retain that the operations\at are more powerful than those BR. Hence
every HR-context-free set of graphs (i.e., defined by a grammar based on the operations
of HR) is VR-context-free, but not vice-versa. For recognizability, the inclusion goes in the
opposite direction: everyR-recognizable set iBlR-recognizable but the converse is not
true. However, if the graphs of a sethave no subgraph of the fori, , (the complete
bipartite graph om + n vertices) for soma, thenL is HR-recognizable if and only if it
is VR-recognizable (this is the main theorem of Sec)nA similar statement is known
to hold under the same hypothesis for context-free setsisifvithout K, ,, (i.e., no graph
in L contains a subgraph isomorphic k3, ), then it isHR-context-free if and only if it
is VR-context-free [12]. The proofs of the two statements are however different (and both
difficult).

Up to now we have only discussed graphs, but our approach, which extends the approach
developed by Courcelle in [9], also works for hypergraphs and for relational structures.

The operations on graphs, hypergraphs and structures are basically of three types
defined in Section 3: we use only one binary operation, the disjoint union; we use unary
operations defined by quantifier-free first-order formulas; and basic graphs and
structures corresponding to nullary operations. In this way we can generate graphs and
structures by finite algebraic terms. The quantifier-free definable operations can modify
vertex and edge labels, add or delete edges. This notion is thus quite flexible. What is re-
markable is that these numerous operations can be added without altering the notion of
recognizability.

The main result of Section 4 states that the same recognizable sets of graphs are obtained
if one uses the basi¢R-algebra (closely connected to the definitioncbfjue-width, the
same algebra enriched with quantifier-free definable operations, and even the larger algebra
dealing with relational structures. Variants of ¥-algebra which are useful, in particular
for algorithmic applications, are also considered, and they are proved to yield the same class
of recognizable sets.

In Section 5, we discuss similarly th¢R-algebra which is very important because of
its relation withtree-widthand with context-free graph grammars. We prove a robustness
result relative to the subclass such that the distinguished vertices denoted by distinct labels
(nullary operations) are different. Th#R-operations are appropriate to handle graphs and
hypergraphs with multiple edges and hyperedges (wheread®Rtoperations are not). The
original definitions (see [8]) were given for graphs with multiple edges and hyperedges. In
Section 7, we prove that for a set of simple graptR;recognizability is the same in the
HR-algebra of simple graphs and in the largi®-algebra of graphs with multiple edges.
Without being extremely difficult, the proof is not just a routine verification.

In Section 8, we consider an algebra arising from the theory of modular decomposition
of graphs. We show that under a natural finiteness condition, the corresponding class of
recognizable sets is equal to thatvi-recognizable ones.

In an appendix, we clarify the definitions of certain equivalences of logical formulas,
focusing on cases where they are decidable, and we give upper bounds to the cardinalities
of the quotient sets for these equivalences. These results yield upper bounds to the number of
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equivalence classesin logically based congruences. They are thus useful for the investigation
of recognizability in view of the cases where the sets under consideration are defined
by logical formulas. They also provide elements to appreciate (an upper bound of) the
complexity of the algorithms underlying a number of the effective proofs in the main body
of the paper.

This work has been presented in invited lectures by CourfElleand Weil [47].

2. Recognizability

The notion of arecognizable setis due to Mezei and Wright [37]. It was originally defined
for one-sort structures, and we adapt it to many-sorted ones with infinitely many sorts. We
begin with definitions concerning many-sorted algebras.

2.1. Algebras

We follow essentially the notation and definitions from [45], see also [13]Slet a set
called the set oforts An S-signatureis a setF given with two mappings: # — seqS)
(the set of finite sequences of elementShfcalled thearity mapping, andr: 7 — S,
called thesortmapping. We denote y( /) the length of the sequenea¢f), which we call
alsoarity. Thetypeof fin Fis the paia(f), o(f)) thatwe shall rather write( /) — a(f),
or(s1,s2,...,8n) — sifa(f) =(s1,...,sn) ande(f) = s. The sequence( /) may be
empty (that isp = 0), in which caséd is called aconstant of type (/) = s.

An F-algebrais an objectM = ((Ms)ses. (fm) reF), Where for eacts € S, M is
a non-empty set, called thdomain of sorts of M. For a nhonempty sequence of sorts
p=(s1,---,sn), we denote by, the productMs, x Mg, x --- x Mg . If p(f) > 0, then
fu is atotal mapping fromf, sy to M r). If fis a constant of typs, then fy, is an element
of Ms. The objectsf, are called theperationsof M. We assume thals N My = ¢ for
s # s’. We also letM denote the union of théfs (s € S). Ford € M, we leta(d) denote
the uniques € S such that! € Ms.

A mappingh: M — M’ betweenF-algebras is @omomorphisnfor F-homomorphism
if it is useful to specify the signature) if it mapgs into M for each sors and it commutes
with the operations of-.

We denote byl' (F) the set of finite well-formed terms built with (we will call them
F-termg, and byT (F)s the set of those terms of sart(the sort of a term is that of its
leading symbol). IfF has no constant the SE(F) is empty.

There is a standard structure Bfalgebra o7’ (F). Its domain of sort is T (F)s, and
T (F) can be characterized as tingial F-algebra. This means that for eveFyalgebraM,
there is a unique homomorphismaly,: T (F) — M. If r € T(F)s, the image ot under
valys is an element of/g, also denoted by, . It is nothing but the evaluation dfin M,
where the function symbols are interpreted by the corresponding functidvis@he can
considert as a termdenotingty,, andty, as thevalueof t in M. The set of values iM of
the terms inT' (F) is called thesubset generately F. We say that a subset bf is finitely
generatedf it is the set of values of terms ifi (") for some finite subset’ of F.
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Let F be anS-signature, 7’ be anS’-signature wheres’ C S. We say thatF’ is a
subsignaturef F, written 7' C F , if 7' is a subset ofF and the types of eveffyin 7’ are
the same with respect t6 and to.F’. We say then that af’-algebraM’ is asubalgebra
of anF-algebraM if M, C M for everys € S’, and every operation dff’ coincides with
the restriction to the domains &1’ of the corresponding operation bf.

We will often encounter the case where/&ralgebraM is also the carrier of g-algebra,
and theG-operations oM can be expressed &-terms: in that case, we say that tfie
operations oM areF-derived and thej-algebraM is anF-derived algebrgor it isderived
from M).

More formally, anS-sorted set of variables a pair(X, ¢) consisting of a seX and
asort mappings: X — S (usually denoted simply b¥). We letT (F, X) be the set of
(F U X)-terms written with7 U X, where it is understood that the variables are among the
nullary symbols (constants) of U X. T (F, X)s denotes the subset of those terms of sort
s. Now if X is a finite sequence of pairwise distinct variables frdrandz € T (F, X)s,
we denote by, » the mapping fromV/; ) to M associated witlt in the obvious way
(o(X) denotes the sequence of sorts of the elemem§ oiVe callr), x aderived operation
of the algebra MIf X is known from the context, we writg, instead ofty, x. This is
the case in particular ifis defined as a member &f(F, {x1, ..., x¢}): the sequencg’ is
implicitly (x1, ..., xg).

2.2. Recognizable subsets

Let F be anS-signature. AnF-algebraM is locally finiteif each domainV/s is finite. If
M is an F-algebra and € S is a sort, a subsét of My is M-recognizablef there exists
a locally finite 7-algebraA, a homomorphismi: M — A, and a (finite) subsef of As
such thatL = h=1(C).

We denote byRed M), the family ofM-recognizable subsets #f;. In some cases it will
be useful to stress the relevant signature and we will talk-oécognizable sets instead of
M-recognizable sets.

An equivalent definition can be given in terms of finite congruencesorgruenceon
M is an equivalence relatiov on M = | J,.g Ms, such that each séi is a union of
equivalence classes, and which is stable under the operatidmsloi locally finiteif for
each sort, the restrictiorreg of &~ to My has finite index. A congruenaturates a seif
this setis a union of classes. A subkeif My is M-recognizable if and only if it is saturated
by a locally finite congruence dvl.

The following facts are easily verified from the definition of recognizability or its char-
acterization in terms of congruences (§&4]), and will be used freely in the sequel.

Proposition 2.1. Let M be anF-algebra

e For each sors, the family Re¢M)s containsMs and the empty sgand it is closed under
union intersection and difference

e If his a unary derived operation of M or a homomorphism\gfinto M, (whereM’ is
anotherF-algebrg), then the inverse image under h of anrbtognizable set is recog-
nizable
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e If N is aG-algebra with the same domain as Bhd if everyG-congruence of N is aft-
congruence of Me.g N is derived from Mor G is obtained fromF by adding constanjs
then every Mrecognizable set is{kecognizablelf in addition G containsF, then M and
N have the same recognizable subsets

o If M'isasubalgebraof M and L is anivecognizable sethenL N M’ is M’-recognizable
This includes the case whei¢’ has the same domain as, ind is anF’-algebra for
some subsignaturg” of F.

e Suppose that M is generated Byand let va}, be the evaluation homomorphism from
T (F)onto M A subset L oM is F-recognizable if and only if v@}l(L) isarecognizable
subset of (F). If in addition F is finite, then this is equivalent to the existence of a finite
tree-automaton recognizing v;;ﬂI(L).

Example 2.2. On the set of all words over a finite alphal#etlet us consider the binary
operation of the concatenation product, and the unary operatienx?, which is derived

from the concatenation product. Then the 3rd statement in Propogitloshows that we

have the same recognizable subsets as if we considered only the concatenation product. It
is interesting to note that, in contrast, adding the operaties »2 to the signature adds

new equational languages, e.g. the set of all squares.

We will see more technical conditions that guarantee the transfer of recognizability be-
tween algebras in Section 2.4 below.

2.3. Remarks on the notion of recognizability

We gather here some observations on the significance of recognizability.

First, we note that if is an operation of arF-algebraM, with arityk, and if By, . .., By
areM-recognizable, therf (By, ..., By) is not necessarily recognizable. This is discussed
for instance in [10], where sufficient conditions are given to ensurefthBy, ..., By) is

recognizable. It is well-known for instance that the product of two recognizable subsets of
the free monoid (word languages) or of the trace monoid is recognizable; a similar result
holds for recognizable sets of trees.

Now, let M be anF-algebra and lefF’ be a signature which differs frox only by
the choice of constants and their values. In particitannay be obtained fronF by the
addition of countably many new constants. Then the congruenclekare the same with
respect taF and toF’ and it follows that a subset &l is F-recognizable if and only if it
is 7'-recognizable.

It is customary to assume that ttfeéalgebraM is generated by the signatu/é If M
is a countableF-algebra that is not generated 5y we can enrich¥ to 7' by adding to
F one constant of the appropriate sort for each elemem.dfhenF’ generated/ (in a
trivial way). As noted aboveyl has the sam&- andF'-recognizable subsets.Llfis one of
these subsets, the saJ;ll(L) of F'-terms is recognizable but we cannot do much with it,
because we lack the notion of a finite tree-automaton. See the conclusion of the paper for a
further discussion of this point.

Finally, we can question the interest of the notion of a recognizable set. Is it interesting
in every algebra? The answer is clearly no. Let us explain why.
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If the algebraic structure over the consideredés poor, for example in the absence of
non-nullary functions, then every deis recognizable, by a congruence with two classes,
namelyL and its complement. The notion of recognizability becomes void.

Another extreme case is when the algebraic structure is so rich that there are very few
recognizable sets. For an example, consider th&ls#tnatural integers equipped with the
successor and the predecessor functions (predecessor is defppred @) = 0, pred(n +
1) = n). The only recognizable sets aieand the empty set. Indeed+fis a congruence
and ifn ~ n+ p forsomen >0, p > 0, then by using the functigored n + p — 1 times, we
find that 0~ 1. It follows (using the successor function repeatedly) that any two integers
are equivalent.

Intuitively, if one enriches an algebraic structure by adding new operations, one gets
fewer recognizable sets.

For another example, let us consider the morfaich}* of words over two letters. Let
us add a unary operation, tlercular shift, defined by:sh(e) = ¢ andsh(au) = ua,
sh(bu) = ub, for every wordu. The language*b is no longer recognizable w.r.t. this new
structure, however recognizability does not degenerate completely since every commuta-
tive language that is recognizable in the usual sense remains recognizable in the enriched
algebraic structure.

It is not completely clear yet which algebraic condition makes recognizability
“interesting”.

2.4. Technical results on recognizability

The statements in this section explain how to transfer a locally finite congruence from
one algebra to another, possibly with a different signature, and hence how to transfer rec-
ognizability properties between algebras. Proposifidnabove contains examples of such
results.

The statements that follow will be used in the proof of some of our main results, in
Section 4. They are, unfortunately, heavily technical in their statements (but not in their
proofs...).

Lemma 2.3. Let F be anS-signature and letj be aT-signature Let S be anF-algebra
and let T be gj-algebra Let also?{ be a collection(#:s) such thatfor eacht € T and
s € S, Hi.s consists of mappings froff into Ss with the following property

for each operatiory € G of type(ty, ..., t,) — tand for eachh € H; s, there exist
sortssy, ..., s, € S, mappingsh; € Hy, 5; (1<i <r) and anF-derived operation f
of type(si, ..., s,;) — ssuch thatfor everyx; € Ty,...,x, € T, h(g(x1,...,x)) =

.f(hl(-xl)a LRI ) hr('xr))'
Finally, let = be anF-congruence on S and let be the equivalence relation definemh
eachT;, by

x =~y ifandonly if h(x) = h(y) for everyh € His, s€S.

Then~ is aG-congruence on.T
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Proof. Let g be an operation i@, of type(ty,...,t.) — t,and letxy, y1 € Ty, ..., x,,
yr € Ty, such thaty; ~ y; foreachi =1, ..., r. Letalsoh € H;s withs € S.

By hypothesis, there exist Sods, ..., s, € S, mappingsi; € Hy, s, (fori =1,...,r)
and anF-derived operatiofiiof type(sy, ..., s;) — s such that

h(g(xy, ..., x)) = f(hi(x1), ..., h(x;))
h(g(y1, .-, yr)) = f(ha(y1), - ., hr (3r)).

Sincex; ~ y; for each, we have; (x;) = h;(y;); and since= is anF-congruence, it fol-
lows thath(g(x1, ..., x,)) = h(g(y1, ..., yr)). Thus we have(x1, ..., x,) ~ g(y1, ...,
yr), Which concludes the proof.[]

With the notation of Lemma&.3, for each sort € T, let <, be the quasi-order relation
defined oty = Jgcg His bY

h < k' if there exists arF-derived unary operatiofi such that’ = f o h.

Lemma 2.4. With the notation of Lemm2.3, if for eacht the order relation associated
with < has a finite number of minimal elemerdad if theF-congruence= on S is locally
finite, then theG-congruence~ on T is locally finite

Proof. Lett € T. We want to show that there are only finitely massyclasses irf;. By
assumption, there exist elements . .., h; € H; such that every mapping 6{; is of the
form f o h; for some i <k and someF-derived operatiof.

For eachi, let S, be the range ofi; and letn; be the number of-classes irfs;. It is
immediately verified from the definition of, that if x, y € Tz, thenx ~ y if and only if
hi(x) = h;(y) for each i <k. In particular,7; has at most - - - n; ~-classes, which
concludes the proof. [

We will actually need even more technical versions of these lemmas.

Lemma 2.5. Let ST, F, G and’H be as in Lemm&.3,and let{ be aG-congruence on T
such that
for each operatiory € G of type(ts, ..., t,) — t, for eachh € H; s and for eacty =
(z1, ..., zr) Where each; is a({-class ofTy,, there exist sorts; z, ..., s,z € S, map-
pingsh; ; € Hy, s;- (1<i<r)and anF-derived operationf; of type(syz, ..., s.z)
> s such thatin T, h(g(x1,...,x)) = fz(h1z(x1), ..., h.z(x,)) if eachx; isin z;.
Finally, let = be anF-congruence on S and let be the equivalence relation definemh
eachT;, by

x~y ifandonlyif x { yandh(x) = h(y) foreveryh € Hys, s € S.

Then~ is aG-congruence on IMoreover if H satisfies the hypothesis of Lem&hdand
= and{ are locally finite then~ is locally finite as well

Proof. The proof is the same as for Lemmas 2.3 and 2[4.
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3. Algebras of relational structures

Even though we are ultimately interested in studying sets of graphs, it will be convenient
to handle the more general case of relational structures. Furthermore, relational structures
can be identified with simple directed hypergraphs. Such hypergraphs form a natural rep-
resentation of terms. See for instance the chapter on hypergrafdt for applications.

In this paper, all graphs and structures are finite or countable. Our proofs will not usually
depend on cardinality assumptions on the graphs or structures, and hence our results will
hold for finite as well as for infinite graphs or structures. However, recognizability in the
algebraic sense we defined, is really interesting only for dealing with finitely generated
objects, and hence for finite graphs and structures. For dealing with infinite words, trees
and graphs, other tools are necessary, see for instance [40,43,29,30].

3.1. Relational structures

Let R be a finite set of relation symbols, afidbe a finite set of nullary symbols. Each
symbolr € R has an associated positive integer calledhitk, denoted by (). An (R, C)-
structure is atupld = (Dg, (rs)rer, (cs)cec) Such thaDy is a (possibly empty) set called
thedomainof S eachryg is ap(r)-ary relation onDyg, i.e., a subset obg(’), and eaclrg is
an element ofDg, called thec-sourceof S,

We denote byStS(R, C) the class of (finite or countablg€R, C)-structures, and we
sometimes writeStS(R) for StS(R, ¥). By convention, isomorphic structures will be
considered as equal. In the notati6nS, St stands forstructures while the seconds
stands foisources

A structureS e StS(R, C) is source-separated cg # c for ¢ # ¢’. We will denote
by StSsep (R, C) the class of source-separated structurég $(R, C). See Corollary 3.11
and Section 3.5.2.

In order to handle graphs, we will consider particular kinds of structures in the sequel.
We let E = {edge} be the set of relation symbols consisting of a single binary relation
edge, intended to represent directed edges. Thus graphs can be seen as the elements of
StS(E), also writtenGraph. Clearly these graphs are directed, simple (we cannot represent
multiple edges) and they may have loops. For a discussion of graphs with multiple edges,
see Section 7.

We letGS(C) denote the seftS(E, C). These structures are callgaaphs with sources
We letGSsep (C) denote the intersectiohS (C) N StSsep(R, C).

We will discuss als@raphs with portgSection 4): ifP is a finite set of unary relation
symbols calleghort labels then we denote b » the set of relational symboBU P and by
GP(P) the classStS(Ep). Port labels are useful for studying the clique-width of graphs,
see [18,19] and Remark 4.11.

3.2. The algebr&:S

We first define some operations on structures.
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Disjoint union Let C and C’ be disjoint sets of constants and I&te StS(R, C) and
S € StS(R’, C"). Let us also assume th&tand S’ have disjoint domains. We denote by
S @ S’ the union ofSandsS’, which is naturally a structure i§tS(R U R’, C U C").

If SandsS’ are not disjoint, we replac® by a disjoint copy. We need not be very precise
on how to choose this copy because different choices will yield isomogpfsams, and
we are interested in structures up to isomorphism.

Remark 3.1. Itis also possible to define a similar operation, without the restrictionChat
andC’ are disjoint (as in, say9,14]). See Section 3.5.1 for a discussion.

Quantifier-free definable operation®ur purpose is now to define functions fr&nS(R,
C) to StS(R’, C') by quantifier-free formulas. We denote BV (R, C, {x1, ..., x,}) the
set of quantifier-free formulas qiR, C)-structures with variables ifx1, .. ., x,}.

A gfd operation schemigom StS(R, C) to StS(R’, C’) is a tuple

(51 (@r)reR’a (KC,d)CGC,dEC’)s

whereé € QF(R,C,{x}), ¢, € QF(R,C,{x1,...,xp4»}) If r is ap(r)-ary relation
symbol,x. s € QF (R, C, ), such that the following formulas are valid in every structure
in StS(R, C),forallc,c’ € C,d € C' andr € R’ of arity p(r):

® Ked NKe'g = €= c;

hd \/eeC Ke.d;

® Ked = 5(C);

® Vx1,...,Xp() ((/)r(xl, ce Xp(r) = /\f):]? 5(xi)).

The reason for these conditions becomes apparent with the following definition gfitthe
operationg: StS(R, C) — StS(R’, C') defined by such a scheme. Lete StS(R, C).
The domain of the structurg(S) is the subset of the domain 6fdefined by formula
and the relationr (r € R’) on g(S) is described by formule, . Finally, if d € C’, then
dg(sy = cs if ¢ € C and$ satisfiesc, 4. The first two conditions imposed above assert that
relative toS, c is uniquely defined for eacd, the third condition asserts thaj s, always
lies in the domain 0g (), and the fourth condition asserts that the relatiorfr € R’) can
only relate elements of the domain g(fS).

Remark 3.2. Note that in the first condition; = ¢’ does not mean thatandc¢’ are the
same constant, but that they have the same value in the considered structure.

Remark 3.3. The conditions to be verified by a gfd operation scheme are decidable. It
follows that the notion of a gfd operation scheme is effective. See Appendix A (Rénsark
in particular) for a discussion of this decidability result.

Example 3.4. Let R be a finite set of relational symbol§,be a finite set of source labels

and leta, b be source labels. We define the following operations.

e ifa e Candb ¢ C,srcren,_,; isthe unary operation of tyg®, C) — (R, C\{a}U{b})
which renames the-source of a structure tolasource;

e if a € C, srcfg, is the unary operation of typ&, C) — (R, C \ {a}) which forgets the
a-source of a structure;
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o if a # b € C, fus,; is the unary operation of typgR, C) — (R, C) which identifies

the a-source and thé-source of a structure (so the resulting domain element is both

the a-source and thé-source), and reorganizes the tuples of the relational structure

accordingly.

Note that the operation namesren,_. 5, srcfg, andfus, ; are overloaded: they denote
different operations when the se&s and C are allowed to vary. A completely formal
definition would use operation names suchkragen,_, » r.c, which would be inconvenient.

Itis immediately verified that the operations of the fasreren, ., andsrcfg,, are gfd. It
is probably worth showing explicitly a gfd operation scheme defining the opeffakigy.

Letd(x) be the formulga = b) v ((a # b) A (x # a)). If r € R has arityp(r) = n, let
@, (x1, ..., x,) be the formula

((a =b) /\r(xl,...,x,,)) \%

((a #bhn </\(xi =b)n N\(xi #b) Ar(yl,...,yn)>> ,
IC{1,...n} \iel i¢l

where for eaclt, y; = a if i € I andy; = x; otherwise. For eacli € C such thatl # a

and for eachkr € C, let k. 4 be the formulac = d; let k), , be the formularue, and let

Kc.q De the formulac = a for eache # b. It is now routine to verify that the scheme

(4, ((Pr)reR, (Kc,d)c,dGC) definesfusa’b.

Remark 3.5. There is no gfd operation frofizS(R) into StS(R’, C) if C’' # @, because
in the absence of constants in the input structure, we cannot define constants in the output
structure.

Example 3.6. The natural inclusion aftS(R, C) into StS(R’, C) whenR’ containsRis
a gfd operation in natural way: the formulas intended to define relatioRS\irk are taken
to be identicallyfalse.

The signatureS. We define the algebist S of structures with sourceas follows. First, let
us fix once and for all a countable set of relation symbols contakisiigg and countably
many relation symbols of each arity, and a countable set of constants. In the sequel, finite
sets of relation symbolR and finite sets of constan@will be taken in these fixed sets.
The set of sorts consists of all such paiRs C). The set of elements &S of sort(R, C)
isStS(R, C).

The signatures consists of the following operations (interpretedirs). First, for each
pair of sorts(R, C) and(R’, C") such thatC N C’ = ¢, the disjoint unior® is an operation
of type (R, C), (R, C")) — (RU R’, C U C’). Note that we overload the symb®|, that
is, we denote in the same way an infinite number of operationStéh Next, every gfd
operation is a (unary) operation

Finally, we observe that the signatuecontains the natural inclusions 8tS(R, C)
into StS(R’, C) whenR’ containsR, which are gfd (Exampl8.6).

As for constants i, one can pick a single source lakebnd consider a single constant
a, denoting the structure with a single element, which iszesource, and no relations.
Together with the operations ifi, this constant suffices to generate all finite relational
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structures. As noted in Secti@3, the choice of constants does not affect recognizability.
It only affects the generating power of the signature, but this is not our point in this paper.

3.3. Elementary properties &itS
We first consider the composition of gfd operations.

Proposition 3.7. Qfd operations inStS are closed under compositigqwhenever types fit
for defining meaningful compositihn

Proof. Let g:StS(R,C) — StS(R',C’") andg’:StS(R',C") — StS(R”,C") be
gfd operations, given respectively by the scher®sy, ), cr', (Ke.d)cec.aec’) and (',
(lp;')rER”a (Kéyd)ceC’,deC”)-

The compositiorg’ o g turns an(R, C)-structure into afR”, C”)-structure.

Let 8% y° (r € R") andr?, (c € C',d e C") be obtained from’, y, and« , by
replacing every occurrence ofy1, ..., o) (r € R) by, (y1, ..., yp()); our formulas
are now in the language @R, C’)-structures and we need to “translate” the constants
d € C’into elements o. However, this translation, a mapping frafto C, depends on
the structure in which we operate.

To reflect this observation, for each mapping”’ — C, we let(6°) be the conjunction
of the formulasky).a (d € C’) and the formula obtained from by replacing each
occurrence ofl (d € C’) by h(d). Finally, we leté” be the disjunction of the(5%) whenh
runs over all mappings fror@’ to C.

We proceed in the same fashion to defijijeandx” , for eachr € R” and eachr € C’,

d € C".Finally,if b € C andd € C”, we letip.q = \/ ec/ (i), . A KL ).

Itis a routine verification tha®”, (Y/)),cr", (Ab.a)bec.aec) is a gfd operation scheme,

which defines the operatiqyi o g. This completes the proof.[]

For eachS € StS(R, C), we define theype ofS, written {(S), to be the restriction of
toits set of sources. Thatis: the domairi @f) is the set ofC-sources of, and the relations
of {(S) are those tuples dE-sources that are relations $h In order to simplify notation,
we also denote by the equivalence relation a8vS given by

S¢{T ifandonlyif {(S)and{(T) are isomorphic.

Lemma 3.8. LetS, T € StS(R,C). ThenS { T if and only if S and T satisfy the same
formulasinQF (R, C, ).

Proof. A formulain QF (R, C, ¥) is a Boolean combination of atoms of the form= d
wherec,d € C,orr(xy, ..., x,) Wherer € R has arityn and thex; are inC. Itis immediate
that such an atom is true kif and only if itis true in{(S). ThusS and{(S) satisfy the same
formulas inQ F(R, C, ¥): in particular,{-equivalent structures satisfy the same formulas
in QF (R, C, ¥). Thus, if we denote bJhS; (S) the set of formulas i@ F (R, C, #) that

are satisfied by (see SectioB.4), we find thafh§Q, (S) = TS (L(S)).
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Conversely, we observe thatSfis a structure irfStS(R, C), which consists only of its
C-sources (thatis§ = {(S)), thenS is entirely described by some formuladh¥ (R, C, ¥).
Thus, if{(S) # {(T), thenTHEG, (S) # TG, (7). This suffices to conclude the proof.

' O

The type relatiori has the following important property.
Proposition 3.9. The type relatiord is a locally finite congruence afitS.

Proof. The verification that (S & ') = {(S) ® {(S) (S € StS(R, C), S’ € StS(R', C’)

andC N C’ = @) is immediate. Let us now consider a gfd operatigrStS(R, C)

— StS(R', C'), specified by the gfd operation sche@e (,),cr’, (Ke.d)cec.aec’)- BY
Lemma3.8, S and{(S) satisfy the same formulas @ F (R, C, ¥). In particular, for each

¢ € Candd € C’, S and{(S) both satisfyk, 4, or both satisfy its negation. ThgsS) and
2(l(S)) have the same sources, and hefiggs)) = {(g({(S))).

We have just shown that the type relation is a congruence. To complete the proof, it suffices

to show that for each sofR, C), the set of types of so¢R, C), thatis, the sef(StS(R, C))

is finite. Note that ifS € StS(R, C), then{(S) has cardinality at mostard(C) (and also

at mostcard(S)). It follows thatcard({(StS(R, C))) <card(C)! [],x 244" [

Remark 3.10. Proposition3.9 can be seen as a particular case of a result of Feferman and
Vaught [25], Theorem 3.12 below, which will be used in Section 6. The simple formulation
above will be very useful.

Note that the knowledge ¢f S) is sufficient to determine wheth§iis a source-separated
structure. This observation is used to prove the following corollary.

Corollary 3.11. Let(R, C) be asortinStS. ThenStSsep (R, C) is a recognizable subset
of StS(R, C).

Proof. Whether a structur&is source-separated depends only onits ty§¢: in particular,
the type congruendgsaturatesStSsep (R, C). By Propositior3.9, this relation is a locally
finite congruence, and hendeSsep (R, C) is recognizable. O

3.4. Aresult of Feferman and Vaught

If (R, C)is asort ofStS, we denote byFO(R, C) the set of closed first-order formulas
over RandC. For each integed, we denote byrO, (R, C) the set of those formulas of
guantifier-depth at most. Up to a decidable syntactic equivalence (taking into account
Boolean laws, properties of equality, renaming of quantified variables, see Appendix A),
there are only finitely many formulas in each §&,(R, C). Thus, we can reason as if
FO, (R, C) was actually finite.

For an(R, C)-structures, we let itsFO,-theorybe the seffhQ, (S) of formulas in
FO, (R, C) that are valid inS. It is finite since it is a subset of the finite 36D, (R, C).
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Theorem 3.12. Letd >0.
(1) For every gfd operatiory of type(R, C) — (R’, C’), there exists a mappingj such
that, for every(R, C)-structureS

TH S o (F(S) = £ TN ().

(2) For every(R, C) and (R’, C’"), where C and C’ are disjoint there exists a binary
function@’j such thatfor every(R, C)-structureS, and every(R’, C’)-structures’,

TH, %o .coe (S ® 8) = THSG (S) & TS (5.

Remark 3.13. The second assertion was provedds] for first-order logic, and extended
by Shelah to monadic second-order logic [42]. The importance of this result is discussed
by Makowsky in [34].

Remark 3.14. The functionsff and @fi‘ have finite domains and codomains. However
these sets are quite large. These functions can be (at least in principle) effectively determined
for given(R, C), (R, C’), andd.

3.5. Variants of the algebra of relational structures

In the literature on recognizable and equational sets of graphs, several variants of the
signatureS and the algebr&:S are considered, notably a variant where the definition of
the disjoint union is replaced by a more general parallel product, and a variant where all
structures are assumed to be source-separated. We verify in this section that these variants
do not yield different notions of recognizability.

3.5.1. Parallel composition vs. disjoint union

In the literature (e.d9,14]), the operation of disjoint unio® is sometimes replaced by
the so-callegbarallel compositiorfor produci), written||, an operation of typ& R, C), (R’,
C")) - (RUR’,C U () for which we do not assume tha@tandC’ are disjoint. IfS €
StS(R, C)andS’ € StS(R’, C'), the parallel compositiofi || S’ is obtained by taking the
(set-theoretic) disjoint union of andS’ and then identifying the-sources of§ and S’ for
eachc € C N C’. LetS) denote the signature obtained frdfrby substituting| for &.

Proposition 3.15. Let L be a subset af7S. ThenL is S-recognizable if and only if it is
S|-recognizable

Proof. We first observe that the operatiahn is a particular case df. ThereforeS is a
sub-signature of and hence, everg-recognizable set i§-recognizable.

To prove the converse, it suffices to verify thiais anS-derived operation by Proposi-
tion 2.1. Indeed, ifS € StS(R, C) andS’ € StS(R’, C"), the parallel compositios || S’
can be obtained by the following sequenceSsbperations (see Example 3.4 for their
definition):

e for eachc € C N C’, apply the gfd operatiosrcren._,; which renames the-source in

S” with a new source label, say not inC; let §’ be the resulting structure;
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o take the disjoint uniors @ S';

e for eachc € C N C’, apply the operatiofius.  which identifies the--source and the
c-source inS @ §';

e apply the source-forgetting operatiercfg: foreachc e CNC’. O

3.5.2. Source-separated structures
The property thats # ¢ for ¢ # ¢’ is calledsource separationThis property makes
it easier to work with operations on structures and graphs, and hence we discuss a variant
of the S-algebraStS, which handles source-separated structures. We will also use it in
Section6.
Recall thatStSsep (R, C) denotes the set of source-separated structursSiiR, C).
We now define a subsignatufg,, of S such thatStSsep is a sub-algebra afzS.
Disjoint union@ clearly preserves source separation, and is pafigt Next we include
in Ssep the operations specified by gfd operation schemes such that, foreaah and
d # d’' € C’' (see the notation in Section 3.2),

Ke,d = TKe,d's (1)
which guarantees that the operation preserves source separation.

Example 3.16. The operationsrcren,_.;, andsrcfg, defined in Exampl@.4 are inSsep.
The operatiorfus, ; defined in the same example is not.

In contrast, the operation writteéns,,_, ,, which identifies thei-source and thé-source
of a structure as ifus, ,, and makes the resulting element of the domairsaurce but not
ana-source, preserves source separation. It can be writtersas;, = srcfg, o fus, p.

The operation which, given a graph with source labeladb, exchanges the source labels
a andb if the corresponding vertices are linked by an edge and does nothing otherwise, is
another example of a gfd operationStep.

Regarding the effectiveness of the definitionSgf,, we observe the following.

Proposition 3.17. Given a gfd operation schemane can decide whether the correspond-
ing gfd operation preserves source separation

Proof. Let g be the gfd operation specified by the given gfd operation scheme, and let

StS(R, C) be the domain 0. One can effectively construct the images unglef every

type inStS(R, C), since there are only finitely many of them, and they can all be enumer-

ated. One can then verify whether the operation preserves source-separation on types.
Now it follows from the proof of Propositio.9 that for eachS € StS(R, C), we

have{(g({(S))) = {(g(S)). In particular,g preserves source separation if and only if it

preserves it for the structures of the folits). Thus one can effectively decide whether

8 € Ssep. U

We now show that the restriction to source-separated structures does not change the notion
of recognizability.
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Theorem 3.18. Let L be a subset af1Sse,. ThenL is S-recognizable if and only if it is
Ssep-recognizable

Proof. By definition, Ssep is a subsignature of, so everyS-recognizable set iSsep-
recognizable.

To prove the converse, we first define a mapginghich maps a structurte e StS(R, C)
to a source-separated structéi®) € SrSsep(R, C) by splitting sources that were identi-
fiedinS.

We assume that the countable set of constant symbols (from vihishtaken, see
Section3.2) is linearly ordered. Ldtg: C — C be given by

h§(c) =min{d € C | cs = ds}.

We letC§ = h3(C) andC; = C \ C§. The structuré:(S) has domain set the disjoint
union of § andCf. For eachr € Cg, thec-source ofi(S) is thec-source ofS, and for each
¢ € C3, thec-source of(S) is the element e C3. Finally, for eachr € R, the relation
ris) equals the relations (so it does not involve the elements@f). Observe that is
not a gfd operation, and thaf, C3 andC; depend only orf(S).

Now letL be anSsep-recognizable subset &t Ssep and let= be a locally finiteSsep-
congruence recognizing it. We need to construct a locally fifiitmngruence~ on S¢S
which recognizes.

The relation~ on St S is defined as follows. I§, T € StS(R, C), we say thas ~ T if
{(S) = {(T) andh(S) = h(T). Itis immediately verified that is an equivalence relation.
Moreover, the~-class of a structuré is determined by it§-class, and by the=-class of
h(S). Since bothl and= are locally finite,~ also is locally finite.

Let us now prove that is anS-congruence. Le§ ~ T € StS(R,C) andS’ ~ T’ €
StS(R’, C"),withCNC’ = ¢. By Propositior3.9,{(S® §") = {(T & T"). Itis not difficult
to verify that

h(S®S)=h(S)®h(S).

Itfollows thath(S& S") = h(T T’) sinced is an operation ise,. ThusS@ S ~ THT'.

Next letg be a gfd operation fron§tS(R, C) to StS(Q, B), given by the gfd operation
schemdo, (npq)qu, (Ke.p)eec.vep). LetS andT be~-equivalent elements &frS(R, C),
which will remain fixed for the rest of this proof. We need to show #@t) ~ ¢(7). We
already know from PropositioB.9 that if S ~ T € StS(R, C), then{(g(S)) = {(g(T)),
and we want to show that(g(S)) = h(g(T)).

Sincel(g(S)) = {(g(T)), the mappingshg(s) andhgm, from B to B, coincide. Let
By = hg“> (B) andB1 = B\ Bo. Without loss of generality, we may assume tBah C =
@#. The domain set of(g(S)) (resp.h(g(T))) is the disjoint union of the domain @f(S)
(resp.g(T)) and Bj.

It suffices to show that there exists a gfd operakoa Ssep, depending org and{(S),
such that:(g(S)) = k(h(S) & B1) andh(g(T)) = k(h(T) & B1) (whereB is the source-
only element 0fStSsep (9, B1)). Indeed, the fact that is anSsep-congruence will then
imply thatz(g(S)) = h(g(T)).
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Let &' be obtained frond by replacing every occurrence ofe C by h(S) (c). For each
g€ Q,ceCandb e B, let lﬁ; be obtained frony, andx’c,b be obtained fromx,. 5 in the
same fashion.

Let nowk’: StS(R, C U B1) — StS(Q, B) be defined by the scheme

o, (;{;)qu, (%e.p)cecuny.vep) defined as follows:

Y@)=dx)A AN =(x=0) |V V x=0b)
ceCy beBy

Yy =W, foreachg € Q0

Jyp =trueif b € By

o, = falseif b € By andc # b

., = falseif b € Bpandc € C}

e = \/ K, if b e Boandc € C§.
h™ (@)=b, h3(d)=c

It is now a routine verification that (for our fixed structuek’ (h(S) ® B1) = h(g(S)).
Since all our definitions depend only ¢6S), we also havé’(h(T) & B1) = h(g(T)).

One last step is required in this proof as the gfd operatiamay not preserve source
separation for all structures, thaté$may not lie inSsep. It does for the particular structures
h(S) & B1 andh(T) & B1, but perhaps not for others. Actually, structutésuch that
LU) # {(h(S) ® B1) = {(h(T) & B1) do not matter in this context, so we can replace
k' by the operatiork, with the same domain and range/dswhich maps a structuré
to k' (U) if {(U) = {(h(S) @ B1), and to the source-only source-separated strudiuee
StS(Q, B) where all relations are empty. This new operaigareserves source separation
by construction, and it is easily verified to be gfd. This completes (at last) the proof.

4. The algebraGP of graphs with ports

Graphs with ports were introduced in Sect® . Recall thatifP is a set of unary relation
symbols, therE p denotes the sdip = {edge} U P and the class of graphs with portsim
written GP(P) can be identified wittStS(E p). We observe that a vertex of a graph with
ports in P can be gp-port for one or several port labelse P, or for none at all.

For convenience, we will consider thats a finite subset of the s&t of natural integers.

4.1. The signatur&R on graphs with ports

We define the set of sorts of the algefR to be the set of finite subsets f For each
such subseP, the set of elements @fP of sort P is the setlGP(P) of graphs with ports
in P.

The signaturé/R consists of constants, unary operations and binary operations. These
operations (interpreted iGP) are as follows.
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First, if P, Q are finite subsets of, then® is as inStS, and is thus a binary operation of
type(Ep, Eg) — Epug.InGP, we conside as an operation of type?, Q) — PUQ.
Next, the unary operations ®R are the following (clearly gfd) operations:
o if p, g are distinct integersadd,, , is an operation of typ@ — P for each sortP such
thatp, ¢ € P: it modifies neither the domain (the set of vertices) nor the unary relations
p (p € P); the new edge relation has the existing edgéss every edge from a-port
to ag-port: it is given by

edge (x,y) V (p(x) Agq(y));

o if D is afinite subset oN x N, mdfp is an operation of typ# — Q whereP is any
finite set containing the domain of the relati®nand Q is any finite set containing the
range ofD; it modifies neither the domain (set of vertices) nor the edge relation; for each
q € Q, theg-ports of the output structure are the vertices of the input structure that are
p-ports for somep such thatp, ¢) € D; thatis,q(x) is given by\/(p,q)eD p(x).
Finally, for each integep, we letp be the constant of typlgr} denoting the graph with a
single vertex, no edges, and whose vertexpspmrt. We also lep'°°P be the same graph,
with a single loop.

Remark 4.1. The following operations on graphs with ports occur in the literature, and are
particular cases ofR-operations.

Let p # ¢ be integersP be a subset oN containingp andQ = P \ {p} U {¢}. The
operatiorren,,_,,, of type P — Q whichrenamesveryp-port to ag-port, is an operation
of VR: it is equal tomdfp whereD = {(r,r) | r € P\ {p}} U {(p, q)}. Observe that this
operation fuses the sets of vertices definegtandg.

Let p be an integer, and lgt be a subset oN containingp. The operatiorig,,, of type
P — P\ {p}, which forgets p-ports is an operation ofR: it is equal tomdfp where
D ={(r,r)|r e P\{p}}

Remark 4.2. In our definition of graph with ports, an element@P(Q) does not need
to haveg-ports for eacly € Q. Thus, if P C Q, every graph with ports il? can also be
viewed as a graph with ports ifd. The natural inclusion o§P(P) into GP(Q) is part of

the signatur&/R: it is equal tomdfp whereD = {(p, p) | p € P}.

Remark 4.3. Again (as in Exampl@&.4), the operations introduced in this section are de-
noted by overloaded symbols. A formal definition should specify the type of the operation,
and would read something likeld,, , p or mdfp p o.We prefer the more concise notation
introduced here.

4.2. Atechnical result

The following result describes the action of a gfd operation on a disjoint union of struc-
tures. It is the key to the main results of this section, described in Section 4.3 below.

Proposition 4.4. Let { be the type congruendsee Sectior8.3). Let & be a unary gfd
operation onStS, fromStS(R, C) to StS(Eg, V) = GP(Q), let (Ry, C1) and (R2, C2)
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be sorts ofStS such thatR = R{UR,, C1NCo = PandC = C1UC>,, and letz = (z1, z2)
with z1 a {-class inStS(R1, C1) andzz a {-class inStS(R2, Co).

Then there exist quantifier-free definable operatigns: StS(R1, C1) — GP(Q13),
827 StS8(R2, C2) = GP(Q23), and fz: GP(Q1: U 02z) — GP(Q), such that
e f:is a composition of unary operations ¥R;
e for eachx; € StS(R1, C1) in classzy and eachxy € StS(R2, C2) in classzo, h(x1 ®

x2) = fz(g1z(x1) ® g2:(x2)).

Proof. Let(d, Yeqges (z//q)qu) be the gfd operation scheme defining the operatidrere
Yeqge defines theedge relation,y,, defines they-ports ¢ € Q), and there is no formula of
the formr, 4 since the range dfis in GP(Q) = StS(Eg, ¥). The formulas), Y444, and
Y, forg € Q, are in the language @R, C)-structures.

The atoms ob(v) are either of the form(y1, ..., y,¢) (r € R), 0rv =¢,0rc1 = c2
(c, c1, c2 € C). Letd! be the formula obtained frod(v) by substituting the Boolean value
0 (false) for the following atoms, which are certainly false in a disjoint sy x», with
x1 € StS(R1, C1), x2 € StS(R2, C2) and the variable interpreted inxy:

e eachr-atom such that ¢ R1 and an argument afis v or a constant irCy;

e eachr-atom such that ¢ R, and an argument afis a constant irCy;

e eachr-atom such that € R1 N Ry, an argument of is a constant irC,, and another
argument of- is v or a constant irCy;

e each atom of the formy = ¢ such that € C2 andy is equal tov or to a constant ity .

The remaining atoms it are either INDF(R1, C1, {v}) orin QF(R2, Co, ¥). Note thatthe

{-class of an element &t S(R2, C2) determines entirely which formuJas OF(R2, Co, ¥)

it satisfies. For each as in the statement of the proposition, wed&t be the formula in

QF (R, C1, {v}) obtained fromy! by replacing eachatomi@ F (R2, C», #) by the Boolean

value 0 or 1 according to theclasszz. We observe that if is a vertex ofx; & x2 which

happens to be in, then

o(v) 51’2(1)) whenever thé-class ofxs is zo.

For eachy € Q, let z//;'Z be defined similarly. Then we also haveyiis a vertex ofc1 @ x2
in X1,

lpq(v) = lp;’z(v) whenever thé-class ofx; is z».

Let alsos™* andy* be defined dually. And again, if j € {1, 2}, we letyj . (v, w) be

the formula obtained frong 44, by substituting the Boolean value 0O for the atoms that are
certainly false in a disjoint suny @ x> for the variablev interpreted iny; and the variable

w interpreted inx;:

e eachr-atom such that ¢ R; andv is an argument of;

eachr-atom such that ¢ R; andw is an argument of;

eachr-atom such that ¢ R1 and a constant if’; is an argument of;

eachr-atom such that ¢ Ry and a constant i is an argument of;

eachr-atom such that € Ry N R, an argument of is a constant irC2, and another
argument of is a constant irCy;
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e eachr-atom such that € Ry N Ry, an argument of is v (resp.w) and another argument
of r is a constant irC3_; (resp.Cz—;);

e each atom of the form = ¢ with ¢ € C3_;, w = cwith ¢ € C3_j, orcy = ¢ with
c1 € C1andcy € Cy;

e if i # j, eachr-atom such that € R1 N Ry, andv andw are arguments of.

As above, the remaining atomehi'dlge areinQF(R1, Cq1, {v, w}) U QF(R2, C2,¥), and

for eachz, we Ietxpi’dti be obtained fronqbialge by substituting the Boolean values 0 or 1
for the atoms iNQ F(R2, C2, ¥) according to thé-classz,. If v, w are vertices ok ® x2

in x1, and if thel-class ofx; is z2, then

117
lpedge(vv U)) S lﬁedgé(v’ U))

We defineﬁi’dzéi similarly, vand get the analogous equivalence.
Ifi # j,theatoms oﬂ/’ége areinQF(R;, C;, {v})andinQ F(R;, C;, {w})—which may

e
include atoms i F(R1, C1, ¥) and in Q F (R, Ca, ). Again, we |etlﬁ;’é;e be obtained
from x//ggge by substituting the Boolean values 0 or 1 for the atoms without free variables
according to th€-classeg1 andzz. And we observe that i, w are vertices ofc1 @ x»,
visinx; and in thel-classz;, w is inx; and in thel-classz;, then
Vedge (V. w) = Ygige(v, w).

Now letk = 1+ max(Q), let X¢y1,..., Xy be an enumeration of the subsets of
QF(R1, Cq1, {y}), and letYyy1, ..., Y, be an enumeration of the subsets@®F (R, C»,
{y}). Letus denote by thesetQU{k+1,..., ¢} and byQothesetQuU{¢+1,..., m}.

We define the gfd operatiogy z: StS(R1. C1) — GP(Q1) defined by the following
operation scheme:

0, eme V(g€ Q) Op (k+1<n<0),

where foreach+1<n <¢, 0,(v) holds if the set of quantifier-free formulas@®¥ (R1, C1,
{y}) satisfied by is exactlyX,,.

Similarly, the gfd operatio,z: StS(R2, C2) — GP(Q2) is defined by the operation
scheme

%%, YRR YT (ge ). On (L+1<n<m),

where for eacli+1<n <m, 0,(v) holds if the set of quantifier-free formulas@h¥ (R2, Ca,
{y}) satisfied by is exactlyX,,.

Finally, we consider structurag € StS(R1, C1) andx, € StS(R2, C2), with {-classes
respectivelyz; andzp, and we compare the graphs with pogts: (x1) @ g2z(x2) and
h(x1 @ x2). The above remarks show that these two graphs have the same set of vertices,
the sameag-ports € Q), and the same edges between two vertices afr two vertices
of x2. On the other hangg z (x1) ® g2.:(x2) misses the edges bfx; & x2) that connect a
vertex ofxy with a vertex ofx».

These edges are captured by the formuﬂéé;é and u/xz’l’2

edge- Now, if v is a vertex of

x1 andw is a vertex ofxp, we already observed that the truth valuesgbéféé(v, w) and
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z/xﬁalg;g(w, v) are entirely determined by the quantifier-free formulas with one free variable
satisfied byv in x1 and byw in x2: that is, they are entirely determined by the (unique)
indexk + 1< n < suchthat), (v) and by the (unique) indek+ 1 < n <m such that), (w).

In other Words;,bl’z’z(a, b) andz//z’l‘z(b, a) are equivalent to disjunctions of conjunctions

edge edge
of the form
0,(a) A 0,(b) forsomek +1<n<Landl + 1<u<m.

Thus the edges ih(x1 @ x2) from a vertex ofy; to a vertex ofro can be created from
g1.:(x1) @ g2.z(x2) by applying repeatedly the operations ViR) of the formadd, , such
thatn € [k + 1, ¢], 0, A 0, is a disjunct ofwi;fég.

Similarly, the edges i (x1 & x2) from a vertex ofx;, to a vertex ofx; can be created
from g1 z(x1) ® g2,z (x2) by applying the appropriate operations of the fardd,, ,. The last
operation consists in forgetting the auxiliary ports numbeéredL tom, that is, in applying
the operatiomdfp, with D = {(¢,¢9) | ¢ € Q}. O

4.3. Recognizable sets of graphs with ports

In this section, we consider different notions of recognizability that can be used for sets
of graphs with ports. Lef. € GP(P). ThenL can beVR-recognizable, as a subset of
theVR-algebraGgP. It can also beS-recognizable, as a subset of tBealgebraStS since
GP(P) = StS(Ep). Finally, we introduce another signature, writtéR™, on GP: it is
obtained fronVR by adding all the gfd operations between the sortgBf

Theorem 4.5. Let P be a finite subset 6f and let L be a subset &fP(P). The following
properties are equivalent

1. Lis S-recognizable

2. Lis VR -recognizable

3. Lis VR-recognizable

Proof. Since the operations &fR are operations ofR™, and the operations ofR* are
operations ofS, it follows from Proposition2.1 that (1) implies (2), and (2) implies (3).
Thus, we only need to verify that (3) implies (1).

We use Lemma 2.5, with = VR, S = GP,G =S, T = S5tS, and( the type congruence
(see Section 3.3), which relates structures with sources of the same sort, provided they satisfy
the same quantifier-free formulas. We use the collectioof sets? g c).p of unary gfd
operations fron5tS(R, C) to GP(P).

LetL be avR-recognizable subset ¢fP(P) and let= be a locally finitevR-congruence
on GP such thatl is a union of=-classes. Sincé is a locally finite S-congruence on
StS (Proposition 3.9), its restriction tgP is also a locally finiteVR-congruence; and
the intersection o= and( is a locally finite VR-congruence o;P which saturateg.
Thus we can assume, without loss of generality, thatquivalent elements gfP are also
{-equivalent.

Next we consider the equivalence relatroron St S defined as in Lemma 2.5. Note that
the identity ofGP(P) belongs toH g, g), p, SO thatx-equivalent elements GP(P) =
StS(Ep, V) are also=-equivalent. In particular- saturated and it suffices to show that
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~ is locally finite and is a-congruence. In view of Lemn&5, it is enough to verify that
‘H satisfies the assumptions of Lemmas 2.3 and 2.4.

We first verify the hypothesis of Lemma 2.3. Lggbe an operation of: eithergis a
unary gfd operation og = @. In the latter case, Proposition 4.4 states precisely that the
required property holds.

If gis a gfd operation of typeRy, C1) — (R, C), andh € Hr,c),p, thenh o g is a gfd
operation (Lemma 3.7) and henéa,= % o g € H(g,.cy).p- Now lettingf be the identity
mapping ofGP(P), we find thath(g(x)) = f(h1(x)) as required. In this casg; andf
do not depend on thgclass ofx.

Next, we turn to the verification of the hypothesis of Lemma 2.4.¢£t . ., ¢, be an
enumeration of the elements OfF (R, C, {x}) and lety, ..., x, be an enumeration of the
elements o F (R, C, {x, y}).

Thus, a gfd operation scheme fra$aS (R, C) into GP(Q) consists in the choice of a
formulad = ;) (1<io<k), a formulayeqq, = 7; (1<j <€), a sequence of formulas
®ip>---» @ (I<in < --- < iy <k),and apartitionoQasQ = Q1U---UQ,:if g € O},
theny, = @i (If 9 =9, thenr =0.)

Let us now consider two unary gfd operatignsStS(R, C) — GP(Q) andg’: StS(R,
C) — GP(Q"), associated with the same choice of valigg andi; < --- < i,. Let
Q=Q01U---UQ,andQ = Q] U---U Q, be the corresponding partitions @fand
Q’. Finally let &, no, 71, ..., @, be the following operations in the signatw@&. These
operations have the common particularity to not alter the graph structure, and to modify
only the port predicates.

The mappingrg shifts every port index of an element G°(Q) by m = max(Q’), to
yield a graph with ports i@ +m, whose port names do notinters€étWe letR, = Q;+m
for1<h<r.

For 1<h <r, mp = mdfp,, where

Dy = {(a,a)|ae 'UQ;U UR,-}U(thQ;l).

i<h i>h

Thusm, turns a graph with ports i@’ +- - -+ Q) _; + R+ Rp 11+ - - R, into agraph with
portsinQ} + -+ Q),_; + O}, + Ruy1+ - - - R, with the same vertex set, the same edge
relation, the samg-ports for eacly € | J;_, Q: U ;. R:, and with eachi-port (- € R;)
turned into ag-port for eachy € Q).

It is now an easy verification that, if = 7, o - -- o 11 o 7, theng’(x) = n(g(x)) for
eachy € StS(R, C). Thus the quasi-ordeg (g ¢) defined in Lemma&.4 is in fact a finite
index equivalence relation, and this concludes the protf.

Remark 4.6. This actually proves also that we get the same recognizable sets of graphs
with ports, if we consideg P (Q) as a domain of sof) in the algebra of structuresgithout
sources—which consists of the domaifisS(R, ¥) equipped with the operations &
between them. If we were only interested in the equivalence of this recognizability Rdth
andVR™-recognizability (or just the equivalence betweérr and VR -recognizability),

we could do with Lemmag.3 and 2.4 instead of Lemma 2.5, and with a simpler version of
Proposition 4.4, making no referencelto
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4.4. Variants of the algebra of graphs with ports

The first variant considered here replaces the signatRilgy a smaller signature, which
we will see is equivalent t&R in terms of recognizability. The second one concerns a
certain class of graphs with ports, and is central in the definition of the clique-width of
a finite graph.

4.4.1. Avariantof/R onGP

In Sectiord.3, we exhibited signatures larger th&m, for which all theVR-recognizable
sets of graphs with ports are recognizable: namely the signaRirenG P and the signature
S onthe wider algebr&tS. In contrast, we exhibit in this section a smaller signature (in fact,
a signature consisting &fR-derived operations) which does not create new recognizable
subsets.

The basic idea behind the definition of this new signature is the following: when we
evaluate &/R-termt of the formadd, ,(¢'), then we add edges from eggiport of G’, the
value oft’, to each of itgy-ports. It may happen that some edges fropport to ag-port
already exist inG’. In this case, we do not add a parallel edge since we are dealing with
simple graphs. Thus the tetpresents a form of redundancy, since some of its edges may
be, in some sense, defined twice.

For disjoint sets of port labelB andQ, we denote by/ (P, Q) the set ofvVR-derived
unary operations defined by terms of the fofid f2(. .. (f,(x)) ...)), where thef; are of
the formsadd,, , oradd,, , for pin Pandqgin Q. Since the operatiorsid,, , are idempotent
and commute with one another, an operatiof(®, Q) is completely described by a subset
of (P x Q) U (Q x P). ThusJ(P, Q) is finite, although one can write infinitely many
terms specifying its elements. For each elemert J (P, Q), we let®; denote the binary
operation defined, fo € GP(P) andH € GP(Q),byG®; H = J(G & H).

We observe that in the evaluation of a term of the for®y ¢/, the application o& ; does
not recreate edges that already exisGirthe value oft, or in G/, the value of’ since the
add), , operations forming®; add edges between the disjoint graghandG’ (becausg
andq are not port labels of the same argument graphs).

Now the signatur&LC consists of the operatiors; as above, the unary gfd operations
of the formfg,, andren,,,;, as defined in Remark 4.1, and the constarandp'°°P as in

VR. We denote bygPNC the NLC-algebra of graphs with ports.
Remark 4.7. The notatiorNLC refers to a very similar algebra used by Waif#ké)].

Example 4.8. We have in fact already encounterét C-operations andNLC-derived
operations.

TheVR-derived operatiorf: whose existence is proved in Propositib4 is actuallyNLC-
derived. Consider indeed the last paragraphs of the proof of that proposition: the operation
/3 is obtained by first composing operations of the faitd,, , andadd, ,, where the pairs
(n, u) lie in a certain subset dk + 1, ¢] x [¢ + 1, m] and the pairgu, n) lie in another
subset of¢ + 1, m] x [k + 1, £], and then composing operations of the fdyy.

One can also check that the operatiaps. . . , 7, at the end of the proof of Theorem 4.5
areNLC-derived.
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Proposition 4.9. Let P be a finite subset 6f and let L be a subset ¢fP(P). Then L is
VR-recognizable if and only if L i8ILC-recognizable

Proof. The proof is a simple extension of the proof of Theo .

Since the operations 0fLC areVR-derived, everyR-recognizable subset 6fP is NLC-
recognizable. For the converse, we observe that the proof that (1) implies (3) in Theorem 4.5
can be modified to show that &t.C-recognizable set gfP is S-recognizable.

Again, we rely on Lemma 2.5, but now with = NLC, S = GP, andg, T, { andH as
in Theorem 4.5.

In order to justify the fact that the arguments used in the proof of Theorem 4.5 are also
valid with these assumptions, we refer to Example 4.8. Indeed this example shows two
things: on the one hand, the operatignin Proposition 4.4 is in facNLC-derived, so
that the first hypothesis of Lemma 2.5 is satisfied by this new choic¢é afidS. On the
other hand, the finiteness hypothesis of Lemma 2.4 is also satisfied with this new value of
F = NLC. This completes the proof.[]

4.4.2. Graphs whose port labels partition the vertex set

In certain contexts, and in particular in the definition of the clique-width of a graph (see
Remark 4.11), one needs to consider graphs with ports where port labels partition the vertex
set. More precisely, for each set of port laiel&etGP™(P) be the set of elements 6P (P)
such that each vertex is a port, and no vertex is bagitpart and ag-port for p # g. Let
alsoGP™ = (GP™(P)).

Note thatGP™ is preserved by the operations of the fopnadd, , andren,_,,. These
operations form the signatuxR™, andGP™" is aVR™-algebra.

Remark 4.10. The operatioradd,, , is writtena,, , in [19].

Remark 4.11. Theclique-widthof a finite graphG, denoted byewd(G), is defined as the
smallest cardinality of a s& such thaiG is the value of a (finiteyYR"-term using a se®
of port labels, se§l9,7].

For algorithmic applications [20], it is useful to have efficient recognition algorithms for
classes of graphs of clique-width at mé&sft the moment we only know that this problem
is NP. It is polynomial fork <3, see [7].

Proposition 4.12. Let L be a subset @P™(P). Then L isVR™-recognizable if and only if
L is VR-recognizable

Proof. SinceVR” consists of operations MR, every locally finiteVR-congruence oGP
induces a locally finit&/R™-congruence ogP”. In particular, ifL is VR-recognizable, and
hence is saturated by a locally fink®-congruence oGP, thenL is saturated by a locally
finite VR™-congruence ogP”, and hencé is VR"™-recognizable.

To prove the converse, we first introduce the mapping”? — GP™ defined as follows.
If G € GP(P), thena(G) is the graph inGP™(2F) with the same set of vertices and the
same edge relation &, and such that for each vertexand eachX € P, v is anX-port
in ¢(G) if and only if X is the set ofp € P such thaw is ap-port in G. We say that a port
labelpis void in Gif there are n@-ports inG.
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Now let us assume thatis VR™-recognizable, and let be a locally finite congruence
on GP™ saturating it. IfG, H € GP(P), we letG ~ H if a(G) anda(H) have the same
non-void port labels, and(G) = o(H). It is immediately verified that- is a locally finite
equivalence relation.

We now verify that~ is aVR-congruence. Iz € GP(P) andH € GP(Q), itis easily
seenthat(G @ H) = o(G) ®a(H).If p,q € P,theng(add, ,(G)) = f(a(G)) wheref
is the composition of the operatioaddy y for eachX, Y € P suchthap € X andg € Y.
Finally, one can verify that iD € P x Q, thena(mdfp(G)) = ¢g(a(G)) whereg is the
composition of the operationsny_.y, whereX C P, Y C Q andY = D (X)) = {q €
0O | (p,q) € D forsomep € P}.

It is a routine task to derive from these observations the factthataVVR-congruence.
We now need to verify that saturatet. LetG € L andG ~ H. In particular,G € GP™,
so that the non-void port labels efG) are exactly the setsp} wherep is a non-void
port label of G. Sincea(G) anda(H) have the same non-void port labets,is also in
GP™. Moreover, ifhis the composition of the operatiorsn,,_, , (p non-void inG), then
G = h(o(G)) andH = h(a(H)). Sinceh is VR™-derived, it follows thatG = H, and
henceH € L. This concludes the proof.[]

5. The algebra of graphs with sources

Recall that we calgyraphs with sourcethe elements af+S of sort(E, C), whereE =
{edge} andC is some finite set of source labels, and that we Wgig&C) for StS(E, C)
(see Sectiol.1).

5.1. The signaturélR

The disjoint unior® and the operations of the forsrcren,—, 5, srcfg, andfus, ; (defined
in Example 3.4) preserve graphs with sources. We denotRlifie signature consisting of
all these operations, $6S is anHR-algebra.

We note the following properties &fR-recognizability.

Proposition 5.1. Let C be a finite set of source labels. Ev&tyrecognizable subset of
StS(E, C) is HR-recognizable

Proof. This is a simple consequence of Proposiohand of the observation given above
that the operations ¢iR are also operations &f. [

Note that the clas&raph of graphs, defined in Section 3.1, is equalitB(¥) as well
as toGS (¥) = StS(E). ThusVR-recognizability andHR-recognizability are properties of
subsets ofsraph.

Corollary 5.2. Let L be a set of graph@& subset ofsraph). If L is VR-recognizablethen
it is HR-recognizable
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Proof. This follows immediately from Propositidh.1 and Theorem 4.5.00

Remark 5.3. Intuitively, the VR-operations are more powerful than tR&-operations
(every HR-context-free set of simple graphs \\R-context-free but the converse is not
true, [12]), but theHR-operations are not among th&-operations, nor are they derived
from them.

We will see in Sections 6.1 and 6.2 sufficient conditions H&-recognizable sets to
be VR-recognizable, and in Section 6.3, examplesiBfrecognizable sets which are not
VR-recognizable.

5.2. Variants of the algebra of graphs with sources

We find in the literature a number of variants of the signatiReor of the algebraS.
We now discuss these different variants, to verify that they do not introduce artefacts from
the point of view of recognizability.

5.2.1. The signaturélR;

Let HR; denote the signature @ghS obtained by substituting the parallel compositjpn
for & (see Section 3.5.1). With the same proof as Proposition 3.15, we get the following
result.

Proposition 5.4. Let L be a subset afS. Then L isHR-recognizable if and only if it is
HR-recognizable

5.2.2. Source-separated graphs

As in Section3.5.2, we now discuss the clagsse, 0Of source separated graphs. The
operations oHR all preserve source separation, excepfisy, 5, but we defined in Example
3.16 the operatioffus,—., = srcfg, o fus, ;, which does. LeHRse, be the signature on
GSsep consisting of® and the gfd unary operations of the fosreren,_,p, srcfg, and
fus,—p.

Proposition 5.5. Let L be a subset @Ssep. Then L isHR-recognizable if and only if it is
HRsep-recognizable

Proof. SinceHRsep consists only ofHR-derived operations, evemR-recognizable set
subset 0l Ssep is alsoHRgep-recognizable.

The proof of the converse is a variant of the proof of TheoBh8. First we note that the
type relatiorn! (see Section 3.3) is also &f-congruence ogS. We use the same mapping
h defined in the proof of Theorem 3.18, that maps a graph with sodree$/S(C) to a
source-separated graphS) € GSsp (C) by splitting sources that were identifiednWe
refer to that proof for notation used here.

If Lis anHRsp-recognizable subset 6iSse, and= is a locally finiteHRsep-congruence
recognizing it, we define a relation on GS as follows. If S, T € GS(C), we say that
S~ Tif {(S) = {T)andh(S) = h(T). As in the proof of Theorem 3.18; is easily seen
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to be a locally finite equivalence relation. It is also easily seenthatpreserved under the
HRsep-Operationd.

We now need to verify that i§ ~ T € GS(C) andg is one of the unary opera-
tions of HRgep, defined onGS(C), theng(S) ~ g(T). Again, Propositior8.9 shows that
{(g(8S))) = L(g(&(T))) and we want to show that(g(S)) = h(g(T)). The graphsSand
T are fixed for the rest of this proof. We write, Co andC1 for 2§, C5 andC;.

As in the proof of Theorem 3.18, it suffices to constructiyep-derived operatiork,
depending org and{(S), such that:(g(S)) = k(h(S)) andh(g(T)) = k(h(T)). There is
no reason why the operati&ronstructed in the proof of Theorem 3.18 shouldHBge,-
derived, but the operatiorgsconsidered here, namedycren,_,, srcfg, andfus,_,, are
simple enough that we can directly construct a suitétieeach case.

If ¢ = srcren,— 5. Thengis defined orGS(C) (wherea € C andb ¢ C) and its range is
GS(C \ {a} U {b}). One verifies thak (srcren,_, ,(S)) is equal to

e srcren,_,(h(S)) if a € C1andb > ho(a);

® srcreny— po(a) (srerenpg)—p(h(S))) if a € C1 andb < ho(a);

e srcren,_;(h(S)) if a € Cogandb < c¢ for everyc € C1 such thatip(c) = a;

e srcren._,p(sreren, s (h(S))) if a € Coandb > ¢ = min{d € C1 | ho(d) = a}.

If ¢ = srcfg,. Theng is defined orGS(C) (wherea € C) and its range i§S(C \ a). One
verifies thati(srcfg, (S)) is equal to

o fus,—nga)(h(S)) if a € Cq;

o fusy_ if a € Co, ho~Y(a) # ¥ andc = min{ho L(a)};

e srcfg, (h(S)) if a € Coandho™1(a) = 0.

If ¢ =fus,—p. Thengis defined orGS(C) (Wherea # b € C)anditsrange i§S(C \ a).
One verifies thak (fus,—;(S)) is equal to

o srcreng_ o) (Fusng@)— o) (1(S))) if a € C1 andho(b) < ho(a);
srcreng s g (b) (FUSHo () — ho(a) (1(S))) [f a € C1 andho(b) > ho(a);
srereny s o) (1(8)) if a € C1 andho(b) = ho(a);

fusy—no) (1(S)) if a € Co anda > ho(D);

srcreng— ¢ (fuspgpy—a (h(S))) if a € Co, andc = min{ho(d), hal(a)}, anda < ho(b);
srcren, . (fus,—..(h(S))) if a € Co,a = ho(b) andc = min{d € C1 | ho(d) = a}.

his concludes the proof.[]

— o o o o o

Again with the same proof as for Propositi8ri5, we can show that the operati@rcan
be replaced by in the signaturéiRsep—Yielding the signaturélRsep |-

Proposition 5.6. Let L be a subset @Ssep. Then L isHRgep-recognizable if and only if it
iS HRsep, | -recognizable

5.2.3. Other variants

The equivalence betweetRse, |- andHR | -recognizability for a set of source-separated
graphs—a consequence of Propositibs-5.6—was already established by Courcelle [10]
for graphs with multi-edges (see Section 7). In the same paper, Courcelle established the
equivalence betweerRs,- and B-recognizability for several variants of the signature
HR, which we now describe. We refer to [10] for the proofs.
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For each finite se€ of source labels, letrcfg,;; be the composition of the operations
srcfg,. for eachc € C (in any order). Let als@]¢c be the following binary operation on
GSsep, Of type (C,C) — @:if G, H € GSsep(C), thenGOcH = srcfg,; (G || H):
GUcH is obtained by first taking the parallel composition| H, and then forgetting all
source labels.

LetCS be the signature 0fiSsep, Which consists only of thelc operations.

Let HR™ be the derived signature &fR;, which consists of the operatiorscfg,;
and|.

Let HR™" be the subsignature iR, which consists of the operationscren,_.,
and||.

Let HRgg}, be the subsignature ¢fRsep, |, Which consists of the operatiofisand those
operationsrcren ,_,, which preserve source separation.

The following result is a compilation ¢1.0, Section 4].

Proposition 5.7. If L < G§, then L is HR-recognizable if and only if L iHR™"-
recognizable
If L € GSsep, then L isHRsep-recognizable if and only if L iBIRGY -recognizable.
If L C Graph, the following are equivalent:
e L isHR-recognizable;
e L isCS-recognizable;
e Lis HR™-recognizable.

Remark 5.8. The notationCS refers to the notion ofully cutset-regularsets of graphs,
introduced by Abrahamson and Fellofdd. Full cutset-regularity is equivalent t6S-
recognizability.

In [10], Courcelle also shows a number of closure properties of the claB®gp-
recognizable sets of source-separated graphs with sources. In particular, it is shown that
this class contains all singletons and it is closed under the operatiortsRaf
[10, Section 6].

Finally Courcelle shows the following result [10, Theorem 6.7].

Proposition 5.9. Let L € GS(C). Then L isHR-recognizable if and only ércfg,; (L) is
HR-recognizable

6. Finiteness conditions ensuring thaHR- and VR-recognizability coincide

We saw that &R-recognizable set of graphs is alwayR-recognizable (Corollar$.2).
The converse does not hold in general, as we discuss in Section 6.3. We first explore
structural conditions on graphs, which are sufficient to guarantee th#R-aacognizable
set of graphs is als@R-recognizable.
Let Tfn,n be the directed complete bipartite graph with- n vertices. A directed graph
G € Graph is withoutT()n,,, if it has no subgraph isomorphic tff,,,,,. The main result in
this section is the following.
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Theorem 6.1. Let n be an integer. AHR-recognizable set of graphs withoﬁn'n is VR-
recognizable

This theorem is proved in Sectidhl, and some of its corollaries are discussed in
Section 6.2.

Note that results similar to Corollary 5.2 and Theorem 6.1 holdBerandHR-equational
sets of graphs. As explained in the introduction, such sets are exactly the context-free sets
of graphs, formally specified in terms of recursive sets of equations using the operations of
VR andHR respectively. Specifically, the following results are known to hold:
e everyHR-equational set of simple directed graph¥ksequationa[15];
e if a VR-equational set of directed graphs is withoTa)t;l,,, for somen, then it isHR-

equational (by the main theorem|[it2] and Lemma 6.6).

Thus the same combinatorial condition is sufficient to guarantee the equivalence between
VR- andHR-recognizability, as well as betwe®R- andHR-equationality. A further similar
result concerning monadic second-order definability and using a stronger combinatorial
property will be discussed in Section 6.4.

6.1. Proof of Theorem 6.1
We first record the following observation.

Lemma 6.2. Let G be a directed graph and lat y be two vertices of G that are not
adjacentand such that there is no vertex z such that lgthy) and(y, z) (resp. both’z, x)
and(z, y)) are edges. Let H be obtained from G by identifying x and y. If G cont&ips,
as a subgraphthen so does H

Proof. LetK be a subgraph d& isomorphic toT()m,m. From the hypothesis, the vertices
andy are not both irK. It follows thatK is still isomorphic to a subgraph &f. [

The proof of Theoren.1 will proceed as follows. We consider HR-recognizable set
L of finite graphs withoutTf,,,n and we denote byn the largest integer such thﬁm,m is
a subgraph of a graph In Such an integer exists by hypothesis.

Since we are talking about source-less graphs, theise¢iRsep-recognizable by Propo-
sition 5.5, and we consider a locally fini#Rsep-congruences= saturatind-. We will define
a locally finite NLC-congruence~ on GP that also saturates. By Proposition 4.9, this
suffices to show thdt is VR-recognizable. The definition ef makes use of the notion of
expansion of a graph, defined below.

Note that the following definitions depend on the integereven though terminology
and notation do not make this dependence explicit.

Small and large port labels and formuldset G € GP(P) be a graph with ports. If € P,

we denote by the set op-ports ofG. We say that a port labglis void in Gif pg is empty,

we say thap is small in Gif 1 <card(pg) <m and thapis large in Gif card(pg) > m.
Observe that if the port labels andq are both large irG, thenadd, ,(G) contains

?n1+1’m+1 as a subgraph.
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Moreover, ifpis large inG, if r1, ..., r; are small inG, let
H = add, add, ,, - --add,  (G).

Fori = 1,...,k, letn; = card(rig). If H does not containT<)m+1,m+1, then we must
haveni + - - - + ny <m. If G already contains edges from thorts to other vertices, then
ni1+ ---+n; < m. The notion of expansion below will make it possible to handle this sort
of complicated situation (see Exam@e3).

Let us say that a closed first-order formulasimall if it has quantifier-depth at most
2m + 2. Note that the existence of a subgraph isomorphﬁml,mﬂ can be expressed
by a first-order formula of quantifier-deptim2+ 2.

ExpansionsWe will define supergraphs @ € GP(P) called expansionsthat contain
information relevant to the distribution of small and large port labels, and where ports
are represented by sources. Furthermore, it will be possible to simulateGinperation
on G that does not creat?m+1,m+1 subgraphs byHR-operations on expansions G
These expansions will then be used to transformHRg,,-congruence= into anNLC-
congruence-.

Furthermore, we will define- in such a way that two equivalent graphs satisfy the same
small first-order formulas.

We now give formal definitions. For each port lalpelwe define a se€ (p) of source
labels,

C(p) ={in(p,i),out(p,i),s(p,i) | 1<i<m}.

If Pis a set of port label<; (P) denotes the union of thé(p), for pin P.

Let G € GP(P) be a graph with ports, l&f  C(P), and letG be a graph I Ssep (C).
We say thatG is anexpansiorof G if the following conditions hold:

(1) G has no subgraph isomorphic 8,41 1.

(2) Except for the labeling of ports and sourc@ss a subgraph of;. The sources of,
and its vertices and edges notGnare specified by Conditions (3) and (4).

(3) If piis small inG, then eactp-port of G is ans(p, i)-source ofG for some integer
i <m. Differentp-ports are of course labelled by different source labels. There are no
in(p, j)- orout(p, j)-sources.

(4) If pislarge inG, then there may be vertices 6fthat are not irG, with source labels of
the formin(p, i) orout(p, i) for somei <m. Moreover, there is an edgedhfrom each
vertex of p; to eachin(p, i)-source, and from eadut(p, i)-source to each vertex in
pc- There are ne(p, j)-sources.

In particular,G may have several different expansions, but it has only a finite number of
expansions (up to isomorphism). This number is bounded by a function depending on
and the cardinality oP. Indeed, for each small port lalgglthere is only a bounded number
of ways to makep-ports intos(p, i)-sources (see (3)), and for each large port lgb#iere
is a bounded number of ways to creatép, i)- andout(p, i)-sources (see (4)).

Example 6.3. Letm = 2, and letG be a graph with port labels, ¢, r. Suppose thab has
4 p-ports, 2g-ports and I-port, so thap is large, andy, r are small inG, see Figl. Then
in any expansion o6, everyg- andr-port will be a source, say labeled by, 1), s(g, 2)
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out(p,2)  in(p,1) _ in(p,2)

Fig. 1.H is an expansion dB.

ands(r, 2) (there is only one(r, i)-source, but it is not required that these sources should
be labeled with consecutive numbers starting at 1).

Moreover, an expansion & may have up to two new vertices that amép, j)-sources,
and at most oneut(p, j)-source. Say, an expansibircould have new vertices &s(p, 1)-
andin(p, 2)-sources, with edges from each of thp-ports to eachn(p, j)-source; and it
could have a new vertex as a, sayf(p, 2)-source, with edges from that vertex to each of
thep-ports.

Note that ifG has a vertex with an edge fronx to at least $-sources, then an expansion
cannot have dut(p, j)-sources: otherwise it would contain a copyTo)f;,g, which is not
allowed for an expansion.

Remark 6.4. Itis not always the case th@tis determined by each of its expansiandf p
is large inG but G has nan(p, i)- orout(p, i)-sources, then it is not possible to determine
which of its vertices are-ports.

Construction of arNLC-congruence from aklRsep-congruencelet = be a locally finite
HRsep-cONgruence saturatirlg We define a relation- on GP as follows. FoiG andG’ in
GP(P)we letG ~ G’ if and only if
(a) eitheitGandG’ both contaian,,,H,mH as a subgraph, or neither does and in that case,
the following two conditions hold:
(b) GandG’ satisfy the same small first-order formulas (i.e., with quantifier-depth at most
2m + 2) on graphs with ports.
(c) for every expansiols of G, there exists an expansi@i of G’ such thaiG = G’ and
G and G’ satisfy the same small first-order formulas on graphs with sources (we say
thatG and G’ areequivalent expansiolisand conversely, for every expansia of
G’ there exists an expansignof G equivalent toG'.
Note that Condition (b) implies th& and G’ have the same void, small and large port
labels, and Condition (c) implies tha&tandG’ have the same source labels.
The relation~ is clearly an equivalence relation on each@gi P). It has finitely many
classes on eadfiP(P) since a finite graph has a uniformly bounded number of expansions
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(up to isomorphism), thBlRgep-congruences is locally finite, and there are finitely many
first-order formulas of each quantifier-depth on graphs with sources in a sulise® pf
Now a graph without ports and Withome,mH has a unique expansion: itself. It
follows that, for graphs without ports and withoT(t)mH,mH, the equivalences: and~
coincide. In particular;- saturate$ since= does.
It remains to prove that is anNLC-congruence. Recall that the signattiieC consists
of the operations of the forriy ,, ren, ., and®;.

The port forgetting operatiaiWe first consider the operatidg,,. We consideiG, G’ with
G ~ G' and we want to prove thadl ~ H', whereH = fg,(G) andH' = fg,(G’).

First of all, the underlying graphs @& andH (resp.G’ and H’) are identical, so thab
andG’ contain?mﬂ,mﬂ if and only if so doH and H’. If this is the case, theG¢ ~ G’
andH ~ H’. We now exclude this case and assume @&ahdG’ are without7<)m+1,m+1.
Note also that ip is void in G, then it is inG’” as well, and we havél = G, H' = G’, so
that H ~ H'. We now assume thatis not void inG.

It is an immediate consequence of Theorgm?2 thatH and H’ satisfy the same small
first-order formulas on graphs with ports, so Condition (b) is verified.

We now consider Condition (c). Léf be an expansion dfi. We will show that there
exists an expansio@ of G and a unarHRsep-termt such thatd = ¢(G). SinceG ~ G/,
there exists an equivalent expansiéhof G’, ands(G’) will be the desired expansion of
H’. Using the fact thag is anHRgep-congruence and Theorem 3.12, we will have~ H’
as expected.

If pis large inG, the situation is particularly simplé is also an expansion &, so we
can choose to represent the identity. I’ is an expansion ofi’, equivalent toH, then
G’ does not use source labels of the farp, i), in(p, i) or out(p, i), S0 G’ is also an
expansion ofd’.

If pis small inG, let G be a graph with source obtained fraiby letting eactp-port of
G be ans(p, i)-source (where distinct source labels are used for digpipairts). ThenG
is an expansion db, andH = r(G) wheret is the composition of the operatiosfg, i)
(1<i<m). Using the definition of-, there exists an expansi@{ of G’ which is equiv-
alent toG, and we only need to verify thai’ = ¢(G’) is an expansion of’. The only
point to check here is the fact thAt is a subgraph of’: this follows from the facts that
G is a subgraph of; and the operationsand fg, do not change the underlying graph
structures.

The renaming operatioWe now consider the operatieen,_.,. Let G, G’ with G ~ G”:
as with the port forgetting operation, we want to prove #iat H’ whereH = ren,_, ,(G)
andH’ = ren,_,,(G"). As above, we can reduce the proof to the case where né&ther
G’ containsT()mH,mH, and where is not void inG (if pis void in G, thenH = G and
H' = G’). Moreover, Condition (b) follows from Theorem 3.12.

We consider Condition (c), following the same strategy as aboveHLts an expansion
of H.

If qis void in G, then the transformatiorren, ., is a reversible renaming,
that is, G = ren,_ ,(H). Moreover, if t is the composition of the operations
of the form SrcreNg(p,i)—s(q.i)s SFCréNin(p,i)—in(g,i) and SrcreNout(p,i)—out(qg,i) s and
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if ' is the composition of the operatmmcrenv(q D)—s(p.i)s STCreNin(g.i)—in(p.i) and
Srcrenout(q.i)—out(p.i)» thenG = ¢ (H) is an expansion 06, H = #(G). Moreover, if
G’ is an expansion o', equivalent taG, thenH’ = ¢(G’) is an expansion of’.

We now assume thatis not void inG. We need to consider several cases.

Casel: p andg are both large irs. Thenpis void andq is large inH.

In order to build the desire@, we split eactin(g, i )-source off into anin(p, i)-source
and anin(q, i)-source. Thén(p, i)-source is linked by incoming edges to pdports ofG,
and thein(q, i)-source is linked similarly to alf-ports. In the same fashion, we split each
out(q, i)-source ofH into anout(p, i)-source and anut(g, i)-source linked by outgoing
edges to alp-ports ofG and to allg-ports respectively. The tertrsuch thatd = ¢(G) is
the composition of the operationssin(,i)—in(q.i) aNdfusoutp,i)—out(q,i)-

The graphG does not contairk 4141, Sincef does not (by Lemm@.2). Hences is
an expansion oB. Let nowG’ be an expansion @’ equivalent toG, and letd’ = 1(G').

It is easily verified thaf!’ is an expansion off’, and as above, it follows thaf ~ H'.

Case2: pis small andj is large inG.

In order to buildG from H, we make thg-ports ofG into s(p, i)-sources, we delete the
edges between thie(g, i)- and theout(g, i)-sources and the-ports ofG. The ternmt which
must do the opposite (that is, construgtfrom G) is a composition of source forgetting
operations and of additions of new edges. More precisely, for £gchuch thats(p, i)
andin(g, j) are source labels i, we use the operatiodd —> Z @ (x — ), where
(0 — w) is the 2-vertex, 2-source, 1-edge graph, followed by the operafiens, ;(,.i)
andfus,—in(g, j).- We then apply similar operations to create edges fronothgy, j)- to
thes(p, i)-sources. And we finally apply the operatiansfg;, ;)-

The graphG is a subgraph off (up to source labels), 56 does not contairk - 1.m-+1,
and hence it is an expansion®f The proof continues as in the previous case.

Case3: qis small ancp is large inG.

To build G from H, we make they-ports ofG into s(g, i)-sources, we delete the edges
between thén(p, i)-sources or theut(p, i)-sources and thg-ports ofG. In addition we
rename eacim(p, i)-source to am(q, i)-source, and eadut(p, i)-source to aout(q, i)-
source. We can use the same reasoning as in Case 2 to conclude in this case.

Cased: p andq are small inG, andcard(pg) + card(gg) <m.

To build G from H, we renama(q, i) into s(p, i) whenever the(q, i)-source off is a
p-port inG. The termt which does the opposite is a composition of source renamings. The
graphG does not contairk ,41.m+1, otherwised would do, sinces is equal toF up to
source labels, and henézis an expansion db. The other parts of the proof are the same.

Caseb: p andq are small inG, andcard(pg) + card(gg) >m + 1.

To build G from H, we make theg-ports (respg-ports) ofG into s(p, i)-sources (resp.
s(g,i)-sources), we delete the edges betweenirilg i)- andout(g, i)-sources and the
p- andg-ports of G, and we delete than(q, i)- andout(q, i)-sources. The terrhwhich
does the opposite is a composition of additions of new edges astdfgfoperations, as in
Case 2, see Fig. 2. The graghdoes not contair?()mﬂ,mﬂ, otherwiseH would too, since
G is a subgraph off (up to source labels), and hen6eis an expansion oB. The proof
continues as in the previous cases.

This concludes the proof th&t ~ G impliesren,_,,(G) ~ ren,_,,(G).
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p p q q

S
L]
)
Q

out(q,1) in(q,2)

s(p,1) s(p,2) s(q,1) s(g,2)

out(q,1) in(q,2)

s(p,1) s(p.2) s(q,1) s(q,2)

Fig. 2.m = 2 andH = 1(G) = srefg(p.1),5(p,2).5(q.1),5(¢,2) (G || E).

The operationg ;. We now consider the operati@h; whereJ € (P x Q) U (Q x P),
P andQ are disjoint. LetG ~ G’ in GP(P), K ~ K'inGP(Q), H =G ®,; K and
H' = G’ ®; K'. We want to prove thall ~ H'.

We first consider the very special case whére ¢, and the operatio® ; is simply the
disjoint union. TherH contains?mH,mH if and only if G or K does, if and only ifG" or
K’ does, if and only ifH’ does.

Assuming thaH does not contailizmﬂ,mﬂ, an application of Theore®.12 ensures,
as for the operations of port forgetting or renaming tHaind H’ satisfy the same small
first-order formulas.

We now consider an expansiéhof H. Itis necessarily of the forrd = G & K whereG
andK are expansions @ andK respectively. Then there exist expansiéisandK’ of G’
andK’ respectively, which are equivalent@andk . One then verifies thai’ = G’ ® K’
is an expansion off’, which is equivalent td{.

Next we assume thadtis a singleton/ = {(p, ¢)}, thatis,G ® ; K = add,, ,(G @ K)
with p € P andqg € Q.

SinceG andG’ on one hand, and andK’ on the other satisfy the same small first-order
formulas, Theorem 3.12 shows thdt= add, ,(G @ K) contains?mH,mH if and only
if H' = add, ,(G'® K') does. Assume now this is not the case and consider an expansion
H of H.

Again there are several cases. Note fhahdq cannot both be large i@ andK respec-
tively. We claim thati can defined as(G, K) wheret is anHRsep-term, G is an expansion
of G andK is an expansion oK. As for the other operations, we consider expansiGhs
andK’ of G’ andK’, equivalent taG andK . Although it is a bit tedious, we verify formally
that H' = +(G’ @ K') is an expansion ofl’. It follows that H' is equivalent toH, and
henceH ~ H'.
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Gy K =add, ,(G & K)

in(p,1) in(p,2) in(p,3)

s(q,1)

é>((1,72)
K

Q

N

Fig- 3.N = I(G» K) = SrCfgall(G Il Srcrens(q,l)~>in(p,2),s(q,2)~>in(p,3)(K))-

Casel: pis large inG andq is small inK.

ThenH has edges from ap-ports of G to all g-ports ofK, which are actually (g, i)-
sources ind . For each of these(g, i)-sources, say, we create a new vertex, and each
edge coming fronG to x is redirected towards’. We makex” into anin(p, j)-source (for
some appropriatg of the expansmm} of G we are constructing. The desired expansion
of K is just the subgraph off induced by the set of vertices & And G consists of the
subgraph off induced by the vertices @ together withy’ and all these redirected edges.
Then theHRsep-termt needs only to fuse iF & K the above described(p, j)-sources
with the corresponding(q, i)-sources. This can be done by a combination of the operation
@ and those of the forrfusin(,, j)—s(q.i). The only point to check is th& does not contain
K mi1ms1. We can apply Lemma.2 becausé] is obtained fromG @ K by fusions of
pairs of vertices which are not adjacent and have no incoming edges with the same source
(becausés andK are disjoint) and no outgoing edge at all.

_Then there exist expansmﬂﬁ andK’ of G’ and K’ respectively, equivalent t6 and

K. By letting H = t(G’, K’), we get the desired expansion®f, equivalent toH .

This case is illustrated in Fig. 3, where = 3 andN is the constructed expansion of
GR®sK.

Case2: pis small inG andq s large inK.

It is fully similar to the first case, creating nesut(g, j)-sources instead oh(p, j)-
sources. We omit the details.

Case3: pis small inG andq is small inK.

Let G be the subgraph with sources Hf consisting of the vertices B, and letk
be defined similarly in terms df. Then H is obtained fromG @ K by the addition of
edges from each(p, i)-source ofG to eachs(g, j)-source ofK , which can be done by an
HRsep-term (see Case 2 of the discussion of the renaming operation). Giacel K are
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subgraphs of{, they cannot contai%?mﬂ,mﬂ and hence, they are in fact expansions of
G andK as desired. The proof continues as above.

Cased: pis void inG or g is void inK.

Thenadd,, , acts as the identity o6& ® K, So®; acts asp on (G, K) and we are back
to a previously studied case. Recall thagp fresp.q) is void in G (resp.K), then it is void
in every~-equivalent graph with source.

This concludes the study of the case wh&iga singleton inP x Q. The case wheré
is a singleton inQ x P is of course similar.

The proof is actually the same in the general case whéeot a singleton. We need
only do the same constructions for all elemefjisq) in J. The only possible difficulty
could arise from the use of Lemn@2 to verify that the graph€ and K obtained from
H by the creation of vertices (like’ in Case 1 above) and the redirection of edges do
not contain?mH,mH, and hence are expansions. Thus let us consider the transforma-
tion of G @ K into H. It consists in a sequence of fusions of pairs of vertices. When-
ever we fuse ain(p, i)-source ofG, sayx, with ans(q, j)-source ofK, sayy, we must
verify that the fusions performed previously keep the hypothesis of Lemma 6.2 valid. It
is clear thatx andy are not adjacent, sinceis adjacent with vertices o6 only. Be-
cause of previous fusions, there may exist an edge from 2amé to y. However, this
edge comes from a previously applied operatiki, , with p’ # p. It follows that
there is no edge fromto x. An analogous argument also applies to fusions between an
out(p, i)-source ofG and ans(q, j)-source oK, and also when we exchange the roles of
G andK. Hence, finally, we can apply Lemma 6.2 to deduce thand K do not contain
T<)m+1,m+1 becauseH does not. Hence, they are expansion&adndK, as we needed
to check.

This concludes the proof of Theorem 6.1.

6.2. Other finiteness conditions

We now consider some consequences of Theorem 6.1K} gtbe the undirected com-
plete bipartite graph with + n vertices, that isK,, , is the undirected graph underlying
?n,n. We say that a (directed) graphvisthout K, ,, if its undirected underlying graph has
no subgraph isomorphic t&, .

We say that a grap® is uniformly k-sparseif card(E(H)) <k card(V (H)) for every
finite subgraptH of G, whereV (H) and E(H) are the sets of vertices and edgedHof
A set of graphs isiniformly k-sparséf each of its elements is.

Proposition 6.5. Let L € Graph be a set of graphsatisfying one of the following prop-
erties
Lis without?,,,n for some n
or L is withoutk, , for some n
or L consists only of planar graphs
or L is uniformly k-sparse for some k
or L consists only of graphs of tree-width at most k for some k
Then L isHR-recognizable if and only if L i¥R-recognizable
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Proof. By Corollary5.2, it is always the case thav®&-recognizable set of graphsHiR-
recognizable.

If Lis Without?,,,n for somen, the converse implication was proved in Theorem 6.1.
Lemma 6.6 below shows thhtis withoutK ,, , for somep if and only if it is without?n,n
for somen.

It is well-known that planar graphs are witholiz 3 (planarity is a property of
the underlying undirected graph, afd 3 is the undirected graph underlyilﬁg,g). It fol-
lows that planar graphs are also WithOlizg’g, and the result follows from
Theorem 6.1.

Itis easily seen thaT()ZkH,ZkH is notk-sparse. So ik is uniformly k-sparse, then it is
Without?2k+1,2k+1.

Finally, it is known that graphs of tree-width at mésire uniformly(k 4+ 1)-sparse (see
for instance [16]), which yields the last assertioii]

Lemma 6.6. Let p be aninteger. There exists an integer n such that a directed graph without
?Iw, is withoutK, ,.

Proof. We use the particular case of Ramsey’'s Theorem for bipartite graphs, given as
Theorem 127, p. 95]. It states that for eagh there exists an integersuch that, if the
edges ofk,, , are partitioned into two sefsandB, then eitheA or B contains the edges of
a subgraph isomorphic &, .

So let us assume that, W C V(G), whereU andW are disjoint sets ofi elements and
there is an edge betweerandw (in one or both directions) for eadlr, w) € U x W.
Let A be the set of pairgu, w) € U x W such that the edge is fromto w, and let
B = (U x W)\ A. Then there exist set¢’ € U andW’ € W, with cardinalityp, such
thatU’ x W/ € Aor W x U’ C B. In either case, we get a subgraph@isomorphic to

II\JI(]))te that a quick and direct proof can be given wite= p227, but we do not know the
minimal n yielding the result. [

Remark 6.7. The statement relative to bounded tree-width sets of graphs in Proposi-
tion 6.5 is also a consequence (in the case of finite graphs) of Lapoire’s result [31],
which states that, in a graph of tree-width at mksbne can construct a widthtree-
decomposition by monadic second-order (MSO) formulas. This can be used to show that
everyHR-recognizable set of graphs of bounded tree-width is definable in Counting Monadic
Second-order (CMSO) logic, using edge set quantifications. Courcelle showed [11] that,
for finite graphs of bounded tree-width, edge set quantifications can be replaced by ver-
tex set quantifications. The considered set is therefore definable in CMSO logic with
vertex set quantifications only, and hence/R-recognizable by another of Courcelle’s
results [9].

Remark 6.8. Itis proved in[8] that every set of square gridsH®-recognizable. It follows
from Theorem 6.1 that every such set is alferecognizable. Hence, there are uncountably
many VR-recognizable sets of graphs, so we cannot hope for an automata-theoretic or



B. Courcelle, P. Weil / Theoretical Computer Science 342 (2005) 173-228 211

a logical characterization ofR-recognizability—in contrast with the situation prevailing
for words, trees and some special classes of graph$§432,33,24,29,30].

6.3. HR-recognizable sets which are néR-recognizable

The aim of this short section is to establish the existend¢¢Rafecognizable sets which
are notvR-recognizable. We first establish a lemma.

Lemma 6.9. Every set of cliquefof the formk,,, n > 1) is HR-recognizable

Proof. LetL be a set of undirected cliques (recall that an undirected graph is a graph where
the edge relation is symmetric). We provide a locally fidgifecongruence 0§ Ssep Which
saturatek (see Sectiob.2.3). By Proposition 5.7, this establishes thistHR-recognizable.

For each finite set of source labels, le6 (C) be the set of graphs }iSsep(C) having
at least one internal vertex (i.e., a vertex which is not a source), agt (€1) be the set of
graphs inGSsep (C), in which every vertex is a source. In particula,(C) is finite.

Let = be the following equivalence relation §fSs.,. We use the operatiodlc, as in
Section 5.2.3. G, G’ € GSsep(C), We letG = G’ if and only if eitherG = G/, or
G,G' € G'(C) and for everyH € G*(C), GOcH € Liff G'OcH € L.

Note that for eaclC, there are only finitely many-classes inGSsep (C),—namely at
mostp + 27, wherep is the cardinality oilG*(C).

Moreover,= saturated.. Indeed, suppose th@t, G’ € GSsp(C), G = G’ andG € L.
LetH be the graph i Ssep (C) consisting of distinct-sources{ € C) and no edges. Then
we haveG = GO¢H andG’ = G'O¢ H. It follows from the definition of= thatG’ € L.

Finally, we check that is aCS-congruence. LeG, G, H, H' € GSsep(C), With G =
G’ andH = H’: we want to show thatOc H = G'Uc H'. We observe that if botf® and
H have internal vertices, theB¢ H is not a clique (by definition of operatidic), and
hence cannot be ib. The rest of the proof is a straightforward verificatior.]

We can now prove the following.
Proposition 6.10. There is arHR-recognizable set of graphs which is nMit-recognizable

Proof. LetA be a set of integers which is not recognizabléN succ, 0), for instance the
set of prime numbers, and lebe the set of cliquek,, forn € A. ThenL isHR-recognizable
by Lemma6.9.

We now consider a set &R-terms describindg. and using exactly 2 port labelg,and
g- Recall thatp denotes th&R-constant of typd p}, that is, the graph with a single vertex
that is ap-port and no edges. The constanis defined similarly. Now lek; = p, and
kny1 = ren,_, padd, sadd, ,(k, ® ). Itis not difficult to verify thatk, denotes the clique
K, where all the vertices ang-ports, K,, itself is denoted by the ternrmdfyk,, and the
setK of all VR-terms of the formk,, is recognizable (as a set of terms, or trees). i§
VR-recognizable, then the setWR-terms inK that denote graphs Inis recognizable. This
set consists of all the terms of the formifyk, withn € A, and it can be shown by standard
methods that it is not recognizable. It follows tthais notVR-recognizable. [
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6.4. Sparse graphs and monadic second-order logic

Since graphs are relational structures, logical formulas can be used to specify sets of
graphs. Monadic second-order logic is especially interesting because

every monadic second-order definable set of finite grapki&iseecognizablg9,15].

There is actually a version of monadic second-order logic allowing quantifications on
edges and sets of edges (one replaces the graph under consideration by its incidence
graph; we omit details). We say that a seiMS,-definable if it is definable by a monadic
second-order formula with edge and edge set quantifications, and that we use the phrase
MS; -definable to refer to the first notion. It is immediately verified (from the definition)
that

Every MG-definable set i81S,-definable.

The two following statements are more difficult.

Every M$-definable set of simple graphshH&-recognizablg8].

If a set of simple graphs is uniformkysparse for somé and MS-definablethen it is
MS; -definabl€/16].

This is somewhat analogous to the situation of Theorem 6.1 (see Proposition 6.5). How-
ever the combinatorial conditions are different: if a set of graphs is unifokesjyarse for
somek, it is without K ; for somet, but the converse does not hold. Itis proved in the book
by Bollobas [5] that, for each> 2, there is a numbexsuch that for each, there is a graph
with n vertices andin® edges that does not contaffy ,, whereb = 2t /(¢ 4+ 1). For these
graphs, the number of edges is not linearly bounded in terms of the number of vertices, so
they are not uniformlk-sparse for ank.

It is not clear how to extend Courcelle’s proof in [16], to use the conditidhout K, ;
instead ofuniformly k-sparse

7. Simple graphs vs multi-graphs

The formal setting of relational structures is very convenient to deal with simple graphs,
as we have seen already. It can also be used to formalize multi-graphs (i.e., graphs with
multiple edges), if we consider two-sorted relational structures.

Formally, amulti-graph with sourceén C is a structure of the fornG = (V, E, inc,
(cc)cec) WhereVis the set of vertices is the set of edges, eaeh is an element 0¥, and
inc is a ternary relation of typ& x V x V. We interpret the relatiomc(e, x, y) to mean
thateis an edge from vertex to vertexy. We denote by S,, (C) the set of multi-graphs
with sources irC. As in the study ofStS or GS, we assume that the finite sets of source
labelsC are taken in a fixed countable set. Wede,,, be the union of thgS,, (C) for all
finite setsC of source labels.

Graphs and hypergraphs with multiple edges and hyperedges are often used, see the
volume edited by Rozenberg [41]. In this context, itis in fact frequent to consider operations
on multi-graphs that are very similar to tli#R-operations orgS. More precisely, the
operations of disjoint union, source renaming, source forgetting and source fusion can
be defined naturally on multigraphs with sources: tf$, can be seen naturally as an
HR-algebra.
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Itis clear that each simple graphdi® (C) can be considered as an elemer@i &), (C). It
is important to note however that thi&-operations orGG S,,,, when applied to such simple
graphs, do not necessarily yield the same result gSinFor instance, let, b be distinct
elements oC, and letG € GS(C) be a simple graph. The action of fusing #asource and
theb-source ofG may now result in multiple edges: if there were arrows in both directions
betweenus andbg, or if there were arrows to (resp. from) a vertex®@from (resp. to)
bothag andbg. In contrast, the same operationd® (C) yieldsfus, »(G), an element of
GS(C) by definition. To avoid confusion, we will denote Inyfus, , this operation when
used ingS,,.

Fortunately, we do not have this sort of problem with the other operations: applying
the operations of disjoint union, source renaming or source forgetting to simple graphs
considered as elements 6f5,, yields the same result as applying the same operations
within the algebra;S.

We letHR,, be the signature o@S,, consisting of the operations of the fors srcfg,,,
srcren,—p andmfus, ;. Thus,GS,, is anHR,,-algebra. We observe that, as a signature (that
is, as a set of symbols denoting operatioht8),, is in natural bijection wittHR. So we do
not really need to introduce the new notatidR,,, and we could very well say th&s,,
is anHR-algebra. We simply hope, by introducing this notation, to clarify our comparative
study of recognizable subsets in the algelgf&sandgs,,. This distinction will be useful
in the proofs of Theorems&.3 and 7.4.

To summarize and amplify the above remarks, let us introduce the following notation.
We denote by: GS — GS,, the natural injection. For each multi-gragh we denote by
u(G) the simple graph obtained fro@by fusing multiple edges (with identical origin and
end): that isp is a mapping fron§;S,,, ontoGS. Elementary properties efandu are listed
in the next proposition.

Proposition 7.1. The mapping:: GS,, — GS is a homomorphism dfiR-algebras The
mapping:: GS — GS,, is not a homomorphispbut it commutes with the operations of the
form @, srcfg, andsrcren,_ .

1does notcommute with the operations of the fewrep ,,, butif G € GS, them(fus, »(G))
= 1(u(mfusy,;(2(G)))).

Finally, if G € GS, thenu(G) = u=1(G) N 1(GS) andu(«(G)) = G.

We now prove the following theorems, which describe the interaction bethBgn
recognizability of sets of multi-graphs amtR-recognizability of sets of simple graphs.
Theorem 7.2. The set of simple graphshiR,, -recognizableMore preciselyfor each finite

set of source label€, +(GS(C)) is HR,,-recognizable

Theorem 7.3. Let C be a finite set of source labels and ketC GS(C). ThenL is HR-
recognizable if and only if(L) is HR,,-recognizable

Theorem 7.4. Let C be a finite set of source labels and letC GS,,(C). If L is HR,,-
recognizablethenu (L) is HR-recognizable
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7.1. Proof of Theorem 7.2

We first introduce the notion of thigpe of a multi-graph: as for the elements &fS,
if G € GS,,(C), we let{(G) be the restriction of5 to its C-sources and to the edges
between them. We also denote pthe relation orgS,, induced by this type mapping: two
multi-graphsG, H € GS,,(C) arel-equivalent if{(G) = {(H).

Lemma 7.5. The type relatior{ is anHR,,-congruence 0§S,,. Moreover for each finite
set of source label€', the elements ol GS(C)) can be found in only a finite number of
(-classes

Proof. The result follows from the following, easily verifiable identities, where the multi-
graphsG, H are assumed to have the appropriate sets of sources.

(G H)={G) ®L(H),
{(srcren, 5 (G)) = srcren, ., ({(G)),
{(mfusy »(G)) = mfus, » ({(G)),

{(srcfg, (G)) = {(srcfg, ({(G))).

The finiteness of the number §fclasses containing elementsw§S(C)) follows from
the fact that there are only finitely many source-only simple graphs with sour€es inl

We also introduce the following finite invariant for a simple grapk GS(C). We define
n(G) to be the set of all pairg:, b} of elements ofC such thatu # b, ag # bg and there
exists a vertex of G with either edges from to bothag andbg, or edges ta from both
ag andbg. The set)(G) can be viewed as a symmetric anti-reflexive relatiorCon

Lemma 7.6. Let G be a simple graph i/S(C) and leta # b be elements of'. Then
mfus, »(G) has multiple edges if and only{i&, b} € n(G) or mfus, »({(G)) has multiple
edges

Proof. We first observe thahfus, ;,(G) has multiple edges if and onlydf; # b and at
least one of the following situations occurs: there are edges in both directions beiween
andbg, or there is a vertex of G with edges from (resp. to) both; andb¢ (this includes
the case where there is a loopagt or b and an edge in either direction betwaegnand
bg). That is,mfus, »(G) has multiple edges if and only;, b} € n(G) or there are edges
in both directions between; andbg.

We also observe thatfus, ; ({(G)) is a subgraph ahfus, »(G), so the former is simple
if the latter is. Finally, the existence of edges in both directions betweeand b¢ is
sufficient to ensure thahfus, ,({(G)) has multiple edges.

These observations put together suffice to prove the lemima.

We are now ready to prove Theor&h2. Let~ be the following relation, defined on each
GS,,(C). We letG ~ G’ if both G andG’ have multiple edges, or boandG’ are simple
graphs{(G) = {(G") andn(G) = n(G").
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Fig. 4. Distinct edges imfus, 1, (G).

It is immediate that- is an equivalence relation, saturatingS(C)). It follows from
Lemma7.5 and from the fact that(G) is a subset of the finite sét x C, that>~ is locally
finite. So we only need to show thatis anHR,,-congruence.

We need to describe the interaction between the mappiagd theHR,,-operations.

As observed in Proposition 7.1, &lR,,-operations preserve simple graphs except for the
operations of the forrmfus, ;. Assuming thatG, H are simple graphs with the appropriate
sets of sources, we easily verify the following:

nG & H)=n(G) Un(H),
n(srefg,(G)) =n(G) \ {{a, b} | b € C, {a, b} € n(G)},
n(srereng—p(G)) =n(G) \ {a, c} | c € C, {a, c} € n(G)}
U{{b, c} | c € C, {a,c} € n(G)}.

Moreover, ifag # bg andmfus, ,(G) is simple (if itisn't, itsy-image is not defined), then
n(mfus, ,(G)) consists of:
(1) all pairs iny(G),
(2) all pairs{c, d} such that there are edges(itG) from ato c and frombto d, or fromc
toaand fromdto b,
(3) all pairsi{a, c} (resp.{b, c}) such thatb, ¢} € n(G) (resp.{a, c} € n(G)),
(4) all pairs{a, ¢} and{b, ¢} such that there are edges{ifG) betweera andb (in either
direction) and betweeaor b andc (in any direction).

Let us justify this statement: it is easy to see that all these pairs beleintas, ,(G)).
In particular,n(G) < n(mfus, ,(G)) since, asnfus, ;,(G) is assumed to be simple, there
is no{c, d} € n(G) such thatig = ¢ andbg = dg.

Conversely, let us consider distinct edgesGih= mfus, ;,(G), fromy to x and from
zto x, as in Fig.4 (note thatx andy may be equal), such that= e¢s andz = f5 for
e, f € C. If neitherx, nory nor zis thea- andb-source inG’, then we are in case (1), i.e.,
{e, f} € n(G). If xis thea- andb-source inG’ but neithery nor zis, then{e, f} satisfies
case (1) or (2). Ify is thea- andb-source inG’ but neitherx nor zis, then{e, f} satisfies
case (3). The same holds by symmetry i the only one of these three vertices to be the
a- andb-source inG’. Finally if x = y (resp.x = z) and is thea- andb-source, inG’ then
there is an edge between theand theb-source inG and{e, f} satisfies case (4). The case
of edges fronx to y and tozis symmetrical.

In particulary(G @ H), n(srcfg,(G)), n(srcren,_.,(G)) andy(mfus, ,(G)) are entirely
determined by)(G), {(G) andy(H).
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Let us now conside6, G’, H, H' in GS,, (with the appropriate sets of sources) such
thatG ~ G’ andH ~ H’. If G is not simple, then neither a&’, G ® H, srcfg,(G),
srcren,—,(G) andmfus, ,(G). In particular, we hav&s @ H ~ G’ @ H', srcfg, (G) =~
srcfg, (G'), srcren, ., (G) =~ srcren,—.,(G') andmfus, ,(G) >~ mfus, »(G’).

Assume now thaB andH are simple. Then so ate® H, srcfg, (G) andsrcren, ., (G),
and we have seen that thejfimages are determined by G) andn(H). Since( is an
HR,,-congruence (Lemm@a.5), it follows that~ is preserved by the operatioas srcfg,
andsrcren,_, p.

By Lemma 7.6, whethemfus, ,(G) is simple, is determined by G) and#(G), and
hencemfus, ,(G) andmfus, »(G’) are both non-simple (and therrequivalent) or both
simple. In the latter case, theitimages are equal since they are both determined &y =
n(G") and{(G) = {(G’). Thus= is preserved by the operationfus, ;. This concludes
the proof of Theorem 7.2.

7.2. Proof of Theorem 7.3

Recall that we want to show that for eathe GS(C), L is HR-recognizable if and only
if 2(L) is HR,,-recognizable.

One direction is quickly established: we know from Proposition 7. Litigt= «~1(L)N
1(GS(C)). If L is HR-recognizable, then—1(L) is HR,,-recognizable sinca is a homo-
morphism. In view of Theorem 7.2, it follows thatl.) is HR,,-recognizable as well.

Conversely, let us assume thal) is HR,,-recognizable and let be a locally finite
HR,,-congruence 06S,, saturating(L). We want to define a locally finitedR-congruence
~ ongs§S saturatind-.

For each symmetric anti-reflexive relatidnon a finite set of source label® and for
each graplG € GS(D), letdels(G) € GS(D) be the graph obtained frof by deleting
the edges between tlesource and thb-source for each pali, b} in D. Let alsofus4 be
the composition of the operatiofiss, ; for all {a, b} € A, in any order.

For G,G' € GS(D), we letG ~ G’ if «(G) = «(G"), {(G) = {(G") and, for each
symmetric anti-reflexive relatioA on D,

1fussdels (G) = 1fusdels (G).

The relation~ is clearly an equivalence relation, and it is locally finite siecand{ are.
Moreover, it saturatels sinceG € L if and only if :(G) € «(L), and= saturateg(L). The
rest of the proof consists in showing thats anHR-congruence.

The source renaming operatiohet G ~ G’ in GS(D). Then«(G) = «(G’). Since=
is a congruence and in view of Propositiéri, «(srcren,—,.,(G)) = srcren,—,(1(G)) =
srcreny 5, (2(G')) = 1(srcren, ., (G")). It also follows from Lemma 3.9 thdi(srcren,_,
(G)) = {(srcreny 5 (G)).

Let us now consider a symmetric anti-reflexive relatfoan the set of source labels of
srcren,— 5 (G). Itis easily verified that

delysrcren, ., = srcren,_,pdelp,
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whereB = {{c,d} € A | {c,d} N{a,b} = B} U {{a,d} | {b,d} € A}. We also note that
if c,d € C\ {a, b}, thenfus. 4 andsrcren,_,, commute. Moreovefus, ssrcren,_,, =
srcren,_pfus, 4 and fus. psrcren,—,, = srcren,pfusc 4. Thus fusysrcren,,, =
srcren, . pfusp.

Now, using the fact thatcommutes wittsrcren,_., we have

1fusadelgsrcren,— , (G) = ifusgsrcren,— ,delp (G)
=srcren,_pfuspdelp (G)
=srcren,_ pifuspdelp(G).

Since= is anHR,,,-congruence, it follows that
1fusadelsreren,,(G) = 1fusdelysrereng— ;, (G')

and, finally, thakrcren, ., (G) ~ srcren,_,(G").

The source forgetting operatioithe proof is the same as for the source renaming opera-
tion, with this simplifying circumstance thael 4srcfg, = srcfg,del4 andfusasrcfg, =
srcfg,fus4 (sinceais not a source label afrcfg, (G), and hence does not occurA

The source fusion operationet G ~ G’ in GS(D). Here it is not immediate that
1(fus, »(G)) = 1(fus, »(G')). However, if we letA = {{a, b}}, we know that

1fus sdels(G) = rfusadel o (G).

We note thafusadel 4 (G) is equal tdfus, , (G) if G has no edge between ésor b-source,
or ifit has a loop at either. Otherwists, (G) is equal tofus 4 del 4 (G) with a loop added
to itsa-source, that is:

fus, 5 (G) = srcfg,srefgpfus, ofusy, p(fusadels(G) © E), *

whereo andf; are source labels not D andE, is the graph irGS({«, f}) with 2 vertices
and a single edge from itssource to its-source.

Observe also that the existence of loops at, or edges betwearahéb-source oG is a
condition that depends only ditG), so it will be satisfied by botks andG’ or by neither.

In the first case, wheffles s del 4 (G) = fus, 5 (G), we find immediately thatfus, »(G))
= 1(fus, ,(G")). In the second case, the samezquivalence is derived from Proposition
7.1 and Eq.%) above.

By Lemma 3.9/-equivalence is preserved by the operafias, ;.

Now let A be a symmetric anti-reflexive relation ob: we consider the graph
1fusadelsfus, 5 (G). Our first observation is thakel s fus, , = fus, »delp where

B=AU{a,c}|{b,c} € AAU{{b,c} | {a,c} e A}
Next, we observe thdtissfus, , = fus, »fusp. Thus we have

1fussdelafus, ,(G) = 1fusafus, pdelp = 1fus, pdelpfusp(G),
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and hence ifussdelsfus, ,(G) =1fussdelsfus, »(G'). It follows that fus, ,(G)
~ fus, (G").

The disjoint union operatianL,et G ~ G’ in GS(C) andH ~ H' in GS§(D) (whereC
and D are disjoint). Since and{ preserved, we haveu(G & H) = «(G' & H') and
{(GeH)={G" o H.

Now letAbe a symmetric anti-reflexive relation 6t D. LetQ (resp R) be the restriction
of Ato C (resp.D) and letP = AN ((C x D) U (D x C)). Itis easily verified that

dels (G @ H) =delp(G) ® delr(H)
fusadels (G ® H) =fusp(fuspdelp(G) ® fusgdelr(H)).

It now follows from Propositiory.1 that

1fussdels (G ® H) =fusp(fuspdely(G) @ fusgdelg(H))
= wmfuspi(fusgdelp(G) @ fusgdelg (H))
= wmfusp (1fusgdelp(G) @ +fuspdelg (H)).

Thusifusadels (G @ H) = 1fussdela (G’ @ H'),andhenc& @ H ~ G’ @ H'.
This concludes the proof of Theorem 7.3.

7.3. Proof of Theorem 7.4

Let L € GS,,(C) beHR,,-recognizable, and let be a locally finiteHR,,,-congruence
saturating-. We want to show that(L) (a subset 0§ S(C)) is HR-recognizable.

LetG, G’ € GS(D). We letG ~ G’ if, foreachH € u=1(G), there exist#’ € u=1(G’)
such thatd = H’, and symmetrically, for eacH’ € u=1(G’), there existd € u=1(G)
such thatd = H'.

The relation~ is easily seen to be a locally finite equivalence relatioShsaturating
u(L). There remains to see thatis anHR-congruence.

We first establish the following lemma.

Lemma 7.7. LetG € GS,, and letH, K € GS.

e u(G) = H @ K if and only if there exist multi-graphg’, K’ such thatG = H' @ K’,
u(H) = H andu(K') = K.

e u(G) = srcfg,(H) if and only if there exists a multi-grapti’ such thaiG = srcfg, (H’)
andu(H') = H.

e u(G) = srcren,_.,(H) if and only if there exists a multi-grapi’ such thatG =
srcren, ., (H') andu(H') = H.

e u(G) = fus, ,(H) ifand only if there exists a multi-grapti’ such thatG = mfus, ,(H')
andu(H') = H.

Proof. Recall thaiG andu(G) have the same set of vertices, and each edda (G) arises
from the identificatiom(e) > 1 edges of> between the same vertices.

If u(G) = H ® K, each edge ai(G) is in exactly one oH andK. Let H' (resp.K’) be
the graph obtained fromd (resp.K) by replacing each edgeby n(e) parallel edges. Then
G=H ®K' u(H)=H andu(K') = K, as required.
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The proof of the statements relative to the operatinfy, andsrcren,_,; is done in
the same fashion.

Letusfinally consider the case whet@s) = fus, »(H).Ifay = by, thatis,H = u(G),
thenG = mfus, ,(G) and we can leH’ = G.

If ay # by, we let H' be obtained fronH as follows: for each vertex, each edge
fromxtoy (y # a, b) is replaced by:(e) parallel edges, and the edges fraro a andb
are duplicated to a total @f(e) edges. [

We can now conclude the proof of Theor&m, by proving that- is anHR-congruence.
LetG ~ G'andH ~ H'. LetK € u=%(G ® H). By Lemma 7.7K = L & M for some
L e uY(G)andM € u=1(H). SinceG ~ G’ andH ~ H’, there exist.’ € u~1(G’) and
M eul(H)suchthatl’ = LandM’' = M.LetK' =L &@M'.ThenK' =L & M' =
L®M =K andK’ € u=1(G’ @ H'). By symmetry, this shows th&t ® H ~ G’ & H'.

The verification that- is preserved by the othéiR-operations proceeds along the same
lines. This concludes the proof of Theorem 7.4.

8. Graph algebras based on graph substitutions

The classGraph, defined in Section 3.1, has already been discussed in terms of the
signaturesS, VR andHR since itis a domain in each of the three algel&#aS, GP andgS.

In this section, we consider a different set of operation§aph, arising from the theory
of the modular decomposition of graphs, which makesph an algebra (one-sorted for a
change!). This algebraic framework was considered by the authors, in [14,46].

We first recall the definition of the composition operation on graphd-ibet a graph with
vertexsefn] = {1,...,n}(n>2).1fG1, ..., G, aregraphs, thenthegraphGy, ..., G,)
is obtained by taking the disjoint union of the graghs . .., G,, and by adding, for each
edge(, j) of Hwherei # j, an edge from every vertex @f; to every vertex oG ;.

We say that a graph imdecomposableor prime, if it cannot be written non-trivially
as a composition (a composition is trivial if each of its arguments is a singleton). It is
easily verified that iH and H’ are isomorphic graphs, then the corresponding composition
operationsyield isomorphic graphs. So we fix aBgtof representatives of the isomorphism
classes of indecomposable graphs. In particular, we may assume that every gfaph in
has a vertex set of the form] for somen > 2. We also denote h§, the resultingnodular
signature consisting of the composition operations defined by these graphsFihe
algebra of graphs is denoted Gyaph” .

It turns out that every finite graph admitsr@odular decompositigrthat is, it can be
expressed from the single-vertex graph using only operations ffigmr his fact has been
rediscovered a number of times in the context of graph theory and of other fields using
graph-theoretic representations. We refer to [38] for a historical survey, and to [36] for a
concise presentation. In other word@saph is generated by the signatufé, augmented
with the constants'°°P andv, which denote a single vertex graph, respectively with and
without a single loop edge.
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Remark 8.1. The modular decomposition of a graph is unique up to certain simple (equa-
tional) rules, see for instan§46]. Moreover, the modular decomposition of a graph can be
computed in linear time [35,36,21].

Our first results conne&R-recognizability andF..-recognizability.
Proposition 8.2. EveryVR-recognizable set of graphs j&,,-recognizable

Proof. In view of Propositior2.1 and Theorem 4.5, it suffices to show that every operation
in Fs is VRT-derived.

For each integer, let mark; be the unary operation ayP, of type@ — {i}, defined as
follows: given a graph without ports, it simply marks every vertex with port laflebving
the set of vertices and the edge relation unchanged). Notethrat is a gfd unary operation,
and hence &R*-operation.

LetH be ann-ary operation, that is, a graph ., with vertex se{n], and letedgey be
its edge relation. 1G4, ..., G, are finite graphs, the construction Bf{G1, ..., G,) can
be described as follows:

e construct the disjoint uniomnark1(G1) @ - - - @ mark, (G,), an element 0§ P ([n]);
e apply (in any order) to this disjoint union the operatiaasl; ; forall i, j € [#] such that

(i, j) is an edge oH andi # j;

o forget all ports, that is, apply the operatiorify.
This completes the verification that the operation defineH loan be expressed ay¥R™-
term, and hence the proof[]

The following result shows that the converse of Proposi@iéhdoes not hold.

Proposition 8.3. Every set of prime graphs i&..-recognizableand there is a set of prime
graphs which is noVR-recognizable

Proof. LetL be a set of prime graphs, andiebe the relation oGraph defined as follows.
We letG = H if one of the following holds:
e neitherG norH is prime;
e G andH are bothl (the graph with one vertex and no edge);
e G andH are both notl, prime and ir_;
e GandH are both notl, prime and not irL.
This is clearly an equivalence relation with four classes, which saturatésreover=is an
Foo-COngruence. Indeed, |Etbe a graph witm vertices; fori = 1, ..., n, letG; = H; for
eachi. Ifforsomei, G; # 1,thenH; # 1, and neithek (G4, ..., G,) norK(Hy, ..., Hy,)
is prime: therefore they are equivalent. Otherw@e= H; = 1foreach, K(Gy, ..., G,)
andK (Ha, ..., H,) are both equal t&, and hence they are equivalent. This concludes the
proof that every set of prime graphsi#s,-recognizable.

Before we exhibit a set of prime graphs which is K8trecognizable, we define induc-
tively a sequence ofR-terms written with three port labeds b, c. We let

o = adda,b(a @ b), 41 = renc—)b(renb—m(addb,c(lﬁ @ c))).
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The termmdfy(z,) (forgetting all port labels im,) denotes the string gragh, 2, withn +2
vertices, say L ..,n 4+ 2 and edges fromto i + 1 for each Ki<n + 1. Each of these
graphs is prime.

Now let A be a set of positive integers that is not recognizabl&Ninsucc, 0) and let
L be the set of all term$, with n € A. From the above discussion, we know that
is Foo-recognizable. IL wasVR-recognizable, standard arguments would show that the
set of VR-termss, (n € A) would be recognizable as well, and it would follow thats
recognizable, contradicting its choicel]

Now let F be a finite subsignature of the modular signatéise. A graph which can be
constructed from one-vertex graphs using only operations ffoia called anF-graph.
The next result deals with setsBfgraphs. This finiteness condition (the elements afe
built by repeated composition of a finite number of graph-based operations) is non-trivial.
In fact, for many natural classes of graphs such as rectangular grids, it is not satisfied: since
grids are indecomposable, a set of graphs containing infinitely many grids cannot satisfy our
finiteness condition. But that condition is satisfied by other classical classes (e.g. cographs,
series-parallel posets), sget,46].

Using results of Courcelle [14], we can show the following result, which yields in par-
ticular a weak converse of Proposition 8.2.

Theorem 8.4. Let F be a finite subsignature ¢f., and letL be a set ofF-graphs The
following properties are equivalent

1. L is S-recognizable

2. L isVR-recognizable

3. L is F-recognizable

4. L is F-recognizable

Proof. The equivalence of (1) and (2) can be found in TheodeBn Proposition 8.2 shows
that (2) implies (3). And (3) implies (4) as an immediate consequence of Proposition 2.1
sinceF is a subsignature of . The fact that (4) implies (1) is a consequence of two results
of Courcelle: [14, Theorem 4.1], which states that if a seFedraphs isF-recognizable,

then it is definable in a certain extension\$-logic; and [14, Theorem 6.11], which states
that all sets definable in this logical language &reecognizable. [

Remark 8.5. Theorem8.4 states that for sets of graphs with only finitely many prime
subgraphs, all four notions of recognizability are equivalent. Presented in this fashion, the
statement is somewhat similar to that of Theorem 6.1.

9. Conclusion

In this article, we have investigated the recognizability of sets of graphs quite in detail,
focusing on the robustness of the notion, which was not immediate since many signa-
tures on graphs can be defined. Although we had in mind sets of graphs, we have proved
that embedding graphs in the more general class of relational structures does not alter
recognizability. We have proved that the very same structural conditions that equate
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VR-equational andiR-equational sets of graphs, also equatBsrecognizability and/R-

recognizability.

Summing up, we have defined a number of tools for handling recognizability. Some
guestions remain to investigate.

e When is it true that a quantifier-free operation preserves recognizability?

Results in this direction have been established in CourfHl Are they applicable to
guantifier-free definable operations? In particular, is it true that the set of disjoint unions of
two graphs, one from each of tWéR-recognizable sets R-recognizable?

e Which quantifier-free definable operations can be added to the sigttRuia such a
way that the class dfiR-recognizable sets is preserved (as is the case when we extend
VR to VR™)? The paper by Blumensath and Courc® which continues the present
research, considers unary non gfd operations that can be addRd tnd toStS while
preserving the classes of equational and recognizable sets.

e Our example of arHR-recognizable, noVR-recognizable set of cliques, is based on
the weakness of the parallel composition of graphs with sources, i.e., the fact that this
operation is not able to split large cliques. Can one find another example, based on a
different argument? If one cannot, what does this mean?

We conclude with an observation concerning the finiteness of signatures. Whereas all
finite words on a finite alphabet can be generated by this alphabet and only one operation,
dealing with finite graphs (by means of grammars, automata and related tools) requires
infinite signatures. More precisely, one needs infinitely many operations to generate all
finite unlabelled graphs (see Rem&& below). On the other hand, applications to testing
graph properties require the consideration of algebras generated by a finite signature. Here
is the reason.

LetM be anF-algebra of graphs. If the unique valuation homomorphistyy: T (F) —

M (which evaluates a term into an elementfis surjective, i.e., itF generate$/, then

a subset. of M is recognizable if and only Wal;ll(L) is a recognizable set of terms (see

Proposition 2.1 and Section 2.3). And the membership of a term in a recognizable set can

be verified in linear time by a finite deterministic (tree) automaton. Hence the membership

of a graphG in L can be checked as follows:

(1) One must first find some terhsuch thavaly (1) = G,

(2) then one checks whethelelongs to/al&l(L).

The latter step can be done in time proportional to the sizeusiually no larger than the
number of vertices oB. Although any ternt with valueG gives the correct answer, it may
be difficult to find at least one (graph parsing problems may be NP-complete).

Because of this fact many hard problems (in particular if they are expressed in Monadic
Second-order logic) can be solved in linear time on sets of graphs of bounded tree-width,
and also on sets of graphs of bounded clique-width, provided the graphs are given with
appropriate decompositions, g§d®,19] or [23]. If the decompositions are not given, one
can achieve linear time for graphs of bounded tree-widti\d&giproblems using a result by
Bodlaender [4], and polynomial time for graphs of bounded clique-widtiv®doroblems
using a result by Oum and Seymour [39].

However, even ifF is infinite or is finite without generating the d&t recognizability
remains interesting as an algebraic concept, and for every restriction to a finitely generated
subset oM, we are back to the “good” case of a finitely generated algebra.
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Finally, we think that infinite signatures can be used for checking graph properties defining
recognizable sets. This will not be possibléfimjte tree-automata if the graph algebra is not
finitely generated, but it can perhaps be done with automata using “oracles”. An oracle would
be a subroutine handling some verifications for big subgraphs that cannot be decomposed
by the operations under consideration. This idea needs of course further elaboration.

Remark 9.1. We asserted above that finite unlabelled graphs cannot be generated with a
finite signature. This is not entirely correct, and we briefly describe here a signature with
6 operations on a 2-sorted algebra which generates, somewhat artificially, all finite graphs
(undirected and without loops). These operations have no good behaviour with respect
to automata and verification questions, and such an “economical” generation of graphs is
useless.

The 2 sorts are, the set of finite graphs equipped with a linear order of their vertex set,
andu, the set of ordinary, unordered graphs. There is one unary operation of type,
which forgets the order on the vertex set. All other operations are unary, of type: one
consists in adding one new vertex, to be the new least element; one adds an (undirected)
edge between the two least vertices; one performs a circular shift of the vertices; and one
swaps the two least vertices. The three last operations leave the graph unchanged if it has
less than 2 vertices. Finally, one adds a 6th, nullary operation, ofdyfiee constant O,
standing for the empty graph with no vertices.

Appendix A. Equivalences of logical formulas

In this appendix, we discuss some equivalences and transformations of logical formulas
which can be used to give upper bounds for the index of congruences considered in this
paper, and to complete the proof of the effectiveness of certain notions (e.g. quantifier-free
definition schemes).

More specifically, we make precise in what sense we can state, as we do in the body
of the paper, that the set of first-order (resp. monadic second-order) formulas over finite
sets of relations, constants and free variables, and with a bounded quantification depth,
can be considered as finite. Moreover, explicit upper bounds on the size of these finite
sets are derived, which can be used to justify the termination of some of our algorithms,
and in evaluating their complexity. That these upper bounds have unbounded levels of
exponentiation is not unexpected, and even unavoidable by Frick and {2&}he

A.1. Boolean formulas

Let p1, ..., p, be Boolean variables and 18§, be the set of Boolean formulas written
with these variables. It is well known tha, is finite up to logical equivalence. For further
reference, we record the following more precise statement.

Proposition A.1. There exists a subsB)‘,Ed of B,, of cardinality2?’ such that every formula
in B, can be effectively transformed into an equivalent formulB,’frﬁ‘.
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Proof. We letB'®d be the set of Boolean formulas in disjunctive normal form, where in each
disjunct, variables occur at most once and in increasing order, no two disjuncts are equal,
and disjuncts are ordered lexicographically. These constraints guarantee the announced
cardinality of B'®%: the rest of the proof is classical[]

Of course, the formula inB,ged equivalent to a given formula, is not always the shortest
possible.

A.2. First-order formulas, semantic equivalence

Let us consider finite seR andC, of relational symbols and of constants (nullary rela-
tions, source labels) as in Sectidri. Recall that, i is a finite setFO(R, C, X) denotes
the set of first-order formulas in the languagé Bf C)-structures, with free variables ¥
For unproved results in this section, we refer the reader to [6].

Several notions of semantic equivalence of formulas can be definedy/EFO(R, C,

X), say thatp =  if for every (R, C)-structureSand for every assignment of valuesSn
to the elements oX, ¢ andy are both true or both false. Say also that,,  if the same
holds for every finite or countabl&®, C)-structureS, andg =  if Sis restricted to being
finite.

The equivalences: and=,, coincide by the Lowenheim-Skolem theorem. Indeed this
theorem states that if a closed formula has an infinite model, then it has one of each in-
finite cardinality: to prove our claim, it suffices to apply it to the formala—(p(¥) <
Y (¥)). We note that this equivalence cannot be extended to monadic second-order formulas:
there exists an MS formula with a uniqgue model, isomorphic to the set of int&geiith
its order.

Each of these three equivalences is known to be undecidable.

The equivalence: (or=,, since we consider only first-order formulas) is semi-decidable:
by Godel's completeness theoregn= v if and only if the formulavx (¢(X) < (X))
has a proof, which is a recursively enumerable property.

Trakhtenbrot proved that one cannot decide whether a first-order formula is true in every
finite structure, thus proving that, is not decidable. However, the negation=of is semi-
decidable: ifp # , a counter-example can be produced by exploring systematically all
finite (R, C)-structures. This is a proof also thatand=y do not coincide.

A.3. First-order formulas, a syntactic equivalence

We now describe a syntactic equivalerreeon formulas, which refines the semantic
equivalences= and=: that s, ifp ~ i, theng = andp =/ .

If b e By, andifeq, ..., ¢, € FO(R, C, X), we denote by (¢, ..., ¢,) the formula
in FO(R, C, X) obtained by replacing each occurrencepfn b by ¢;. Itis clear that it
andb’ are equivalent Boolean formulas, thetp, ..., ¢,) = b (¢4, ..., @,).

A Boolean transformation steqnsists in replacing in a first-order formula, a sub-formula
of the formb (¢4, ..., @,) by the equivalent formul&' (¢4, ..., ¢,), whereb, b’ € B, are
equivalent. Then we lep ~ s if ¢ can be transformed inty by a sequence of Boolean
transformation steps and of renamings of bound variables.
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Itis clear that ifp ~ , thenp = . We want to show that each first-order formula is
effectively equivalent to ar-equivalent formula of the same quantifier height, and to give
an upper bound on the numbermfequivalence classes of formulas of a given height.

A.3.1. Quantifier-free formulas

Let QF(R, C, X) be the set of quantifier-free formulash®O(R, C, X). Such formulas
are Boolean combinations of atomic formulas. Aesm(R, C, X) be the set of these atomic
formulas. Note that each atomic formula is either of the farmx y, wherex andy are
in X UC,orr(xy, ..., xpq)) wherer is ap(r)-ary relation inR and thex; are inX U C.
Lettingn = card(X) andc = card(C), it is easily verified that

card(AtomR, C, X)) = (n +¢)>+ . (n + ¢)*").

rerR

We let f (R, ¢, n) be this function. Note that if we allow for the (effective) syntactic sim-
plifications of identifying the formulas of the form = x with the constantrue, and
of identifying the formulasc = y andy = x, we can lower the value of (R, ¢, n) to
1+ %(n +omn+c—D+>, gn+ )P,

We then have the following.

Proposition A.2. There exists a subset (S8(R, C, X) of QF(R, C, X), of cardinality

22" “such that every formula in QRR, C, X) can be effectively transformed to an
~-equivalent formula in Qlfd(R, C, X).

Proof. By definition of quantifier-free formulagF(R, C, X) is the set of all formulas of

the formb (¢4, ..., ¢,), wherebis a Boolean formula and theg are atomic formulas. Now

let QF™®4(R, C, X) be the set of all formulas of the forf(p, ..., ¢,), whereb ¢ B

and theyp; are pairwise distinct atomic formulas. The proof of the precise statement is now
immediate, using Propositiohl. [

Example A.3. Let us consider graphs with sources, so fRa&bnsists of a single, binary

2
edge relation. Therf (R, ¢, 0) = 2¢2 andcard(QF®Y(R, C, %)) = 22" = g(c). Thus the
type equivalencé (see Sectio3.3 and Lemma 3.8) has at mo$t? classes iGS(C).

Remark A.4. Again, we are not claiming thatthe $pE™4(R, C, X) is as small as possible.

On quantifier-free formulas, the equivalensas decidable, because=  is false if and

only if the closed formulax (¢ (xX) <>(X)) is satisfiable, and the satisfiability problem
for existential formulas in prenex normal form is decidable (8¢ Thus one can modify
Proposition A.2 by lettin@F"™4(R, C, X) be the set of lexicographically minimal formulas

in each=-class: the same statement of Proposition A.2 would then hold=witistead of

~. In particular, the transformation would still be effective, although very inefficient. It is
not clear whether the cardinality of the new set of reduced quantifier-free formulas would
be significantly smaller.
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A.3.2. Quantifier depth of first-order formulas

Recall that the quantifier depth of a first-order formula is the maximal number of nested
quantifiers. If we letFOx (R, C, X) be the set of formulas iIRFO(R, C, X) of quantifier
depth at mosk, a formal definition is as follows=Op(R, C, X) = QF(R, C, X) and, for
eachk >0,FOr11(R, C, X) is the set of Boolean combinations of formulas in

FOW(R, C, X) =FO(R, C, X)
U {3y el eeFO(R,C, XU{yDh}
U {Yye|eeFO(R,C, X U{yh}

Using the same recursion, let us define sets of “reduced” formulas of every quantifier depth.
First we fix an enumeration of the countable set of variables. Next, \Eﬂéf‘(R, C,X)=
QF™®d(R, C, X). For eachk >0, we then IeFO,rﬁfl(R, C, X) be the set of formulas of the
formb(¢y, ..., ¢,) whereb € B'® and theyp,’s are in

==red

FO. (R, C, X) = FOFY(R, C. X)
U {3y | @eFOfYR, C, X U{y}), yminimal notinX}
U {¥y ¢ | ¢ € FOPYR, C, X U {y}), y minimal not inX}.

Proposition A.5. For each k>0, the set Fc,rfd(R,C, X) is finite Moreover every
formula in FQ.(R, C, X) can be effectively transformed to arrequivalent formula in
FOPRY(R, C, X).

Proof. Letn = card(X) andc = card(C), letg(k, R, c, n) be the cardinality oFOFY(R,
==red

C, X), and leth(k, R, c, n) be the cardinality oFO, (R, C, X). Itis elementary to verify
that these functions can be bounded as follows:

g0, R,c,n) < 2/ (R.c.m) and fork > 0,
g(k, R, c,n) < 22"
hk,R,c,n) <3gtk—1,R,c,n+1).

The rest of the proof is immediate, from the recursive definitions.

Remark A.6. Since there is a procedure to transform each first-order formula into an
~-equivalent formula in “reduced form”, we can consider a new equivalence relation on
first-order formulas: to yield the same reduced formula. This equivalence is decidable and
it refines~ (and hence=).

Remark A.7. In PropositiorA.5, we can still consider replacing each formula by the lexi-
cographically least equivalent formula, but this method is not effective, since the equivalence
of first-order formulas is not decidable.
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A.4. Monadic second-order formulas

A very similar analysis can be conducted for monadic second-order formulas of bounded
guantifier depth. One difference is that the Lowenheim-Skolem theorem does not hold for
these formulas, so the semantic equivalence of formulas based on coincidence on all finite
or countable models does not imply coincidence on all models. Moreover, since there is
no complete proof systems for such formulas, the equivaleacasd=,, are not semi-
decidable.

For the rest, one can follow the same techniques as above, to prove the following result.
We denote byMS, (R, C, W) the set of monadic second-order formulas of quantification
depthkin the language aofR, C)-structures, with their first- and second-order free variables
in W.

Proposition A.8. ForeveryfiniteR, C, W, k, one can construct a finite subset[ﬁBR, C,
W) of MS.(R, C, W) such thatfor every formula in M®R, C, W), one can construct
effectively an=-equivalent formula in MSd(R, c,W).
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