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We consider finite hypergraphs with hyperedges defined as sets of vertices of unbounded cardinality.
Each such hypergraph has a unique modular decomposition, which is a tree, the nodes of which
correspond to certain subhypergraphs (induced by certain sets of vertices called strong modules) of
the considered hypergraph. One can define this decomposition by monadic second-order (MS) logical
formulas. Such a hypergraph is convex if the vertices are linearly ordered in such a way that the
hyperedges form intervals. Our main result says that the unique linear order witnessing the convexity
of a prime hypergraph (i.e., of one, the modular decomposition of which is trivial) can be defined in MS
logic. As a consequence, we obtain that if a set of bipartite graphs that correspond (in the usual way) to
convex hypergraphs has a decidable monadic second-order theory (which means that one can decide
whether a given MS formula is satisfied in some graph of the set) then it has bounded clique-width.
This yields a new case of validity of a conjecture which is still open. C© 2002 Elsevier Science (USA)

Key Words: hypergraph; bipartite graph; monadic second-order logic; clique-width; modular decom-
position.

INTRODUCTION

We are interested in the expression in monadic second-order (MS) logic of properties of graphs and
hypergraphs, and also in the definition by MS formulas of their relevant structures. We take “structure”
as a generic term that can cover several notions like that of a tree-decomposition of width at most k of a
graph [15], the representation of a planar drawing of a planar graph (by rotation schemes, see [8]), or the
modular decomposition of a graph [5, 12, 16], a linear order of a given graph satisfying certain properties
like being a topological sorting [5], a depth-first spanning tree [4, 9] just to take a few examples.

Certain graphs have a unique such structure: for instance, every graph has a unique modular decom-
position, every connected graph has a unique decomposition in 3-connected components (a result by
Tutte [19] used in [7]), and every planar 3-connected graph has a unique planar representation, by a
theorem of Whitney (used in [8]). It seems that such structures are easier to define by MS formulas when
they are unique. The constructions are otherwise more difficult (as in [15] for tree-decompositions) or
impossible (for instance, one cannot define by MS formulas a linear order on a set).

We study here the notion of modular decomposition of a hypergraph. To be precise, we consider finite
hypergraphs with hyperedges that are unordered and of unbounded rank, i.e., that are defined as (un-
ordered) sets of vertices of unbounded cardinality. Each such hypergraph has a unique modular decompo-
sition, which is a tree, the nodes of which correspond to certain subhypergraphs (induced by certain sets of
vertices called strong modules) of the considered hypergraph. One can also consider the tree of the modu-
lar decomposition as the syntax tree of an algebraic expression denoting the considered hypergraph. Such
an expression uses operations that are defined in terms of substitutions of hypergraphs to vertices in prime
hypergraphs. A hypergraph is prime if it cannot be obtained from smaller hypergraphs by substitutions.

These notions of module, substitution, prime hypergraph, and modular decomposition are formally
similar to the corresponding notions for graphs. A hypergraph can be considered as a bipartite graph
in a standard way; however, its modular decomposition is not the modular decomposition of the corre-
sponding bipartite graph.

We prove that the modular decomposition of a hypergraph is definable by MS logical formulas. We
take advantage of the fact that the logical structure representing a hypergraph has an element in its
domain for each hyperedge. This should be contrasted with the case of graphs considered in [5]. This
article uses logical structures, the domains of which consist only of vertices. The modular decomposition
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of a graph is proved to be definable by MS formulas with the help of an auxiliary linear order. In the
present case, we need no such order.

We focus then our attention on convex hypergraphs, i.e., on those the vertices of which can be linearly
ordered in such a way that the hyperedges form intervals. We prove that a prime hypergraph has at most
one (up to reversal) linear order witnessing its convexity. This result is similar to the one saying that a
prime graph has at most one transitive orientation (i.e., an orientation such that the binary edge relation
is transitive). See [14] for this result, actually due to Gallai. These results are similar but we do not
know whether any of them is derivable from the other.

Our main result says that in a prime convex hypergraph, this unique linear order can be defined by
MS formulas.

We derive from this result that, if a set of convex bipartite graphs (i.e., of bipartite graphs corresponding
to convex hypergraphs) has a decidable monadic second-order theory, which means that one can decide
whether a given monadic second-order formula is satisfied in some graph of the set, then it has bounded
clique-width. This yields a new case of validity of a still open conjecture made by Seese [17] and
reformulated in terms of clique-width by means of results by Courcelle and Engelfriet [10]. Previous
cases were considered in [4, 9, 17]. The notion of clique-width and a discussion of this conjecture can
be found at the beginning of Section 4.

1. PRELIMINARIES

For monadic second-order logic and relational structures, we refer the reader to the Appendix and to
previous papers, in particular to the survey [6] and to [5], where modular decompositions of graphs are
also considered.

We will consider finite hypergraphs where each hyperedge is a nonempty set of vertices. These sets
are not ordered; hence, hypergraphs are undirected.

To a hypergraph H with set of vertices V and set of hyperedges E corresponds a directed bipartite
graph Bip(H ) with set of vertices V ∪ E and an edge from x to e if and only if x is in V and is a vertex
of e (e ∈ E). The requirement that hyperedges are nonempty implies that the corresponding vertices of
Bip(H ) are not isolated. A vertex v of V in Bip(H ) can be isolated. The mapping Bip is thus a bijection
of the class of hypergraphs onto a class of directed bipartite graphs.

Trees will be rooted and directed in such a way that every node is reachable from the root (denoted
by rootT for a tree T ) by a unique directed path. A tree T will be represented by a structure 〈NT , sucT 〉
where NT is the set of nodes and sucT ⊆ NT × NT is the successor relation in T . Leaves have no
successor. Although trees are graphs, it will be convenient to call their vertices nodes, especially in the
case where we discuss simultaneously a hypergraph and a tree representing its structure.

If A is a set and ∼ is an equivalence relation on A a cross-section of ∼ is a set B ⊆ A which contains
one and only one element of each equivalence class of ∼. Thus B is isomorphic to A/∼ in a canonical
way. If A is a part of a relational structure and ∼ is definable by an MS formula, then the cross-sections
of ∼ can be characterized by an MS formula with free variable B. It follows that the transformation of
A into A/∼ is an MS transduction, which uses a parameter, namely B. See the Appendix or [6] for a
review of definitions.

For sets α, β we write α ⊥ β if and only if they overlap; that is, if and only if α −β �= Ø, β −α �= Ø
and α ∩ β �= Ø. We will also say that α overlaps β.

If G is a loop-free undirected graph, a module of G is a set X of vertices such that every vertex not
in X is adjacent either to no vertex of X or to all of them. A module M is strong if no other module
overlaps it. The strong modules form a tree for inclusion, which is the modular decomposition of the
graph. The modular decomposition of a graph can be constructed in linear time [12]; its definability in
MS logic is considered in [5].

2. MODULAR DECOMPOSITION OF HYPERGRAPHS

A hypergraph H will be formally handled as a triple 〈VH , EH , incH 〉, where VH is the finite set of
vertices, EH is the finite set of hyperedges (VH ∩ EH = Ø), and incH ⊆ VH × EH is the incidence
relation; we assume that each e ∈ EH belongs to some pair in incH .
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We let H (a) = {v ∈ VH/(v, a) ∈ incH } for a ∈ EH . This set is thus nonempty. We may have
H (a) = H (b) with a �= b. The rank of a ∈ EH is Card(H (a)), the cardinality of H (a).

Let H and K be hypergraphs. We write H ⊆ K if VH ⊆ VK , EH ⊆ EK , incH = incK ∩ (VH × EH ).
We say then that H is a subhypergraph of K . If X ⊆ VH , we let H [X ] = 〈X , E ′, incH ∩ (X × E ′)〉
where E ′ = {a ∈ E/H (a) ⊆ X}. We say that H [X ] is the subhypergraph of H induced by X .

We denote the hypergraph 〈{x}, Ø, Ø〉 by 1x (or by 1 if it is not important to specify x).
Let H, K be nonempty hypergraphs. We write G = H [K/x] if x ∈ VH , VH ∩VK = Ø, EH ∩EK = Ø,

VG = VH ∪ VK − {x}, EG = EH ∪ EK , and incG = incK ∪ (VK × {a ∈ EH/(x, a) ∈ incH }) ∪ (incH ∩
((VH − {x}) × EH )).

We say that G is the result of the substitution of K in H for x. It is easy to see that

H [K/x][K ′/y] = H [K ′/y][K/x]

if H , K , K ′ are pairwise disjoint and x, y ∈ VH , x �= y. We have also

H [K/x][K ′/y] = H [K [K ′/y]/x]

if x ∈ VH and y ∈ VK and both sides of this equality are well defined. We will use the notation
H [K1/x1, . . . , Kn/xn] for H [K1/x1][K2/x2] . . . [Kn/xn] if x1, . . . , xn ∈ VH are pairwise distinct.

We will use two special notations: H ⊕ K for B[H/x, K/y] where B = 〈{x, y}, Ø, Ø〉 and a ∗ H for
L[H/x] where L = 〈{x}, {a}, {(x, a)}〉. Hence H ⊕ K is the union of two disjoint hypergraphs H and
K and a ∗ H is obtained from H by the addition of a new hyperedge a containing all VH . We will write

A ∗ H = H if A = Ø,

and

A ∗ H = a1 ∗ (a2 ∗ . . . (ak ∗ H )) if A = {a1, . . ., ak}.

We say that a hypergraph H is connected if the corresponding bipartite graph Bip(H ) is connected.
Although hypergraphs correspond to bipartite graphs (by Bip), the above definitions for hypergraphs

are not just the corresponding ones for bipartite graphs. In particular, a subhypergraph of H corresponds
to an induced subgraph of Bip(H ). An induced subhypergraph of H consists of a set X of vertices and all
hyperedges that have all their vertices in X . In the hypergraph H [K/x] obtained by substitution, where
the vertices of K replace x , the rank of a hyperedge a of H containing x is increased by Card(VK ) − 1,
because in H [K/x], its set of vertices is H (a) ∪ VK − {x}. The substitution of hypergraphs is not the
substitution of the corresponding bipartite graphs.

LEMMA 2.1. If G = H [K1/x1, . . . , Kk/xk] then each Ki is a subhypergraph of G and H is isomor-
phic to a subhypergraph of G.

Proof. The first assertion is straightforward from the definitions. For the second, observe that one
can recover H from G by eliminating all the hyperedges from the Ki

′s, and for each i , all the vertices
from Ki except one (we can do this because the hypergraphs Ki are nonempty). Hence H is isomorphic
to a subgraph of G.

LEMMA 2.2. (1) If H is not connected, it can be written in a unique way as H1 ⊕ · · · ⊕ Hk where
each Hi is connected and nonempty. Unicity holds up to the ordering of the list H1, . . . , Hk.

(2) If H is connected, it can be written in a unique way as A ∗ K where K is ∗-atomic, i.e., is
not of the form a ∗ K ′ for any a and K ′. Furthermore A = {a ∈ EH/H (a) = VH }.

We omit the easy proof. We only observe that the Hi
′s correspond to the connected components of

Bip(H ).
We will draw hypergraphs as bipartite graphs, with vertices represented by black dots and hyperedges

by white circles. See Fig. 1.
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FIGURE 1

A hypergraph is an atom if it is nonempty, connected, and ∗-atomic. In the example of Fig. 1, we
have H = K [L/x, M/y], L = 1u ⊕ 1v , M = a ∗ (1t ⊕ 1w). Both hypergraphs H and K are atoms.

We are interested in canonical expressions of atoms of the form P[H1/x1, . . . , Hk/xk] where P is as
small as possible.

We introduce the notion of a module. Let H be a hypergraph. A module in H is a subset X of VH

that does not overlap H (a) for any a in EH , i.e., such that for all such a:

H (a) ⊆ X or X ⊆ H (a) or X ∩ H (a) = Ø.

In the hypergraph H of Fig. 1, {u, v} and {t, w} are modules.
If G = H [K/x] for G, H, K hypergraphs, then VK is a module of G. If X is a module of G, one can

express G as H [G[X ]/x] for some hypergraph H with VH = (VG − X ) ∪ {x} where x �∈ VG . Hence,
modules are useful for the study of substitutions.

A module of a hypergraph H is not in general a module of the graph Bip(H ): In the hypergraph H ′ of
Fig. 2a, the set {5, 6, 7} is a module. It is not a module of the graph Bip(H ′) (actually shown in Fig. 2a
since we represent hypergraphs as bipartite graphs), because the vertex m of Bip(H ′) is linked to 5 and
not to 7.
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A hypergraph H is prime if it is an atom, is not of the form 1x , has no hyperedge of rank 1 and no
modules other than VH , Ø, and the singletons.

The smallest prime hypergraph is •—–◦—–•—–◦—–• because no hypergraph with one or two
vertices is prime. If we delete the hyperedge b from K of Fig. 1, we obtain this prime hypergraph.

A prime hypergraph is connected (because it is an atom), and for any two vertices, there is a hyperedge
containing one of them and not the other, because otherwise, these two vertices would form a module.

The forthcoming definitions and lemmas will be fully similar to the corresponding ones for graphs.
The objective is to have for hypergraphs a notion of modular decomposition.

LEMMA 2.3. If X and Y are modules in H and X ∩ Y �= Ø, then X ∪ Y is a module in H.

Proof. Let a ∈ EH with H (a) ∩ (X ∪ Y ) �= Ø. If H (a) ∩ X �= Ø then:

(1) either H (a) ⊆ X and then H (a) ⊆ X ∪ Y ,

(2) or X ⊆ H (a), and then Y ∩ H (a) �= Ø since X ∩ Y �= Ø; if H (a) ⊆ Y then H (a) ⊆ X ∪ Y ;
otherwise, Y ⊆ H (a), and then X ∪ Y ⊆ H (a).

LEMMA 2.4. (1) Let X be a module of hypergraph H ; let G = H [K1/x1, . . . , Kk/xk]. If x1, . . . ,

xk /∈ X, then X is a module of G. Otherwise, let X ′ = X − {x1, . . . , xk}. Then X ′ ∪ ⋃{VKi /xi ∈ X} is
a module of G.

(2) Let X be a module of G = H [K/x]. If VK ⊆ X, then X ∪ {x} − VK is a module of H.

The proof is a verification from the definitions.
A module X in a hypergraph H is strong if no other module overlaps X . In other words, for every

module Y , either X ⊆ Y , Y ⊆ X , or X ∩ Y = Ø. A module X in H is proper if X �= VH , X �= Ø. If
X, Y are maximal proper strong modules, then either X ∩ Y = Ø or X = Y .

LEMMA 2.5. Let H be an atom and X ⊆ VH be a proper module. There exists a maximal proper
strong module Y such that X ⊆ Y .

Proof. There exists a maximal proper module Y such that X ⊆ Y . We prove that it is strong. Let
Z be a module with Y ∩ Z �= Ø, Y not be a subset of Z and Z not be a subset of Y . Then Y ∪ Z is a
module by Lemma 2.3.

If Y ∪ Z �= VH then Y is not maximal, a contradiction. Hence Y ∪ Z = VH .
Since H is connected, there is a hyperedge a ∈ EH such that

H (a) ∩ (Y − Z ) �= Ø and H (a) ∩ Z �= Ø.

If H (a) ⊆ Z we cannot have H (a) ∩ (Y − Z ) �= Ø. Hence, since Z is a module, Z ⊆ H (a). We
have H (a) ∩ Y �= Ø. Since Z ⊆ H (a), we cannot have H (a) ⊆ Y . Hence Y ⊆ H (a) and Y ∪ Z =
VH ⊆ H (a). Hence H = a ∗ H ′ and is not an atom, a contradiction.

Hence, for every module Z , either Z ∩ Y = Ø, Y ⊆ Z , or Z ⊆ Y . This shows that Y is strong.

PROPOSITION 2.6. Let H be an atom, H �= 1. Let C1, . . . , Ck be its maximal proper strong modules
and Ki = H [Ci ] for i = 1, . . . , k.

(1) There exists a prime hypergraph P such that H = P[K1/x1, . . . , Kk/xk].

(2) Conversely, if H = P[L1/x1, . . . , Ln/xn] and P is prime, then {VL1 , . . . , VLn } = {C1, . . . ,

Ck}, n = k, and {L1, . . . , Ln} = {K1, . . . , Kk}.
This proposition says in particular that every atom which is not a singleton can be expressed in a unique

way as P[K1/x1, . . . , Kk/xk] where P is prime. As in Lemma 2.2 we have a unique decomposition.

Proof. Let H, C1, . . . , Ck , and {K1, . . . , Kk} be as stated.

(1) By Lemma 2.5, every vertex which is by itself a module is contained in some Ci . Since the C ′
i s

are disjoint, {C1, . . . , Ck} is a partition of VH . Hence, there exists P such that H = P[K1/x1, . . . , Kk/xk].
Clearly k ≥ 2. Hence P �= 1, P is an atom (otherwise H would not be an atom), and it has no hyperedge
of rank 1 (since Ki contains all hyperedges a of H such that H (a) ⊆ Ci ).
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It remains to prove that P has no module M such that 1 < Card(M) < Card(P) = k. Assume it has
one, say M . Let M ′ be the union of the sets Ci such that xi belongs to M . It is a proper module of
H that contains at least two of the modules C1, . . . , Ck . This holds by Lemma 2.4.1. By Lemma 2.5,
it is contained in one of C1, . . . , Ck ; hence one of these sets is properly contained in another. This
contradicts their definition. Hence, we get that P is prime.

(2) Let us conversely assume that H = P[L1/x1, . . . , Ln/xn] where P is prime. Then VL1 , . . . ,

VLn are proper modules. We prove they are maximal. If one of them is properly included in a proper
module X of H , then Lemma 2.4.2 yields a proper module of P , and P is not prime.

Hence {VL1 , . . . , VLn } ⊆ {C1, . . . , Ck} by Lemma 2.5. The other inclusion follows from Lemma
2.4.2. This completes the proof.

LEMMA 2.7. If H = H1 ⊕ · · · ⊕ Hk, with H1, . . . , Hk connected, k ≥ 2, or if H = P[H1/x1, . . . ,

Hk/xk] with P is prime, the strong modules of H are VH and the strong modules of H1, . . . , Hk.

Proof. The set VH is trivially a strong module in both cases.
Let us consider the case H = H1 ⊕ · · · ⊕ Hk . Let X be a strong module of Hi . It is a module of H .

Let us check that it is strong. Let Y be a module of H that overlaps X . The set Y ∩ VHi is a module
of Hi and hence does not overlap X . Hence Y is not a subset of VHi . Since Hi is connected and Y
overlaps X , there is a hyperedge a of Hi such that H (a) overlaps Y . Since Y is a module of H we
must have Y ⊆ H (a), contradicting the fact that Y is not a subset of VHi . Hence X is a strong module
of H .

Conversely, let X be a strong module of H , X �= VH . Let Xi = X ∩ VHi . It is a strong module of
Hi . If two of the sets Xi are not empty, say X1 and X2, and X j is such that Z = VHj ∩ (VH − X ) �= Ø
(w.l.o.g. j �= 1), then Y defined as VH2 ∩ VHj is a module such that X − Y includes X1 �= Ø, Y − X
includes Z �= Ø, and X ∩ Y includes X2 �= Ø; hence X is not strong.

Hence X ⊆ VHi for some i , and X is a strong module of Hi .
We now consider the case H = P[H1/x1, . . . , Hk/xk] with P prime. Every strong module X in some

Hi is a module in H . Let us prove it is strong in H . If it is not, some module Y in H overlaps X. If Y
is in Hi then X is not strong in Hi . Hence Y overlaps Hi , and this contradicts Proposition 2.6.2, saying
that VHi is a strong module of H .

Conversely, by Proposition 2.6.2 and since P is prime, every strong module in H not equal to VH is
in some Hi . It is easy to see that it is strong in Hi .

A component of a hypergraph H is a subhypergraph of H of the form H [X ] where X is a nonempty
strong module of H . We let Comp(H ) denote the set of components of H .

THEOREM 2.8. Every hypergraph H has a unique hierarchical decomposition defined as follows:

(1) if H is not connected, then H = H1 ⊕ · · · ⊕ Hk, k ≥ 2, H1, . . . , Hk are connected;

(2) if VH = {x}, then H = EH ∗ 1;

(3) if H is connected and VH not singleton, then H = A ∗ P[H1/x1, . . . , Hk/xk] where

(3.1) either P = 1x1 , k = 1, A �= Ø, H1 is not connected;

(3.2) or P is prime, Hi = H [Xi ] where {X1, . . . , Xk} is the set of maximal proper strong
modules of H.

Furthermore, we have in these cases, respectively,

(1) Comp(H ) = {H } ∪ Comp(H1) ∪ · · · ∪ Comp(Hk),

(2) Comp(H ) = {H },
(3.1) Comp(H ) = {H } ∪ Comp(H1) − {H1},
(3.2) Comp(H ) = {H } ∪ Comp(H1) ∪ · · · ∪ Comp(Hk).

Proof. Case (1) follows from Lemma 2.2.1; the expression of Comp(H ) follows from Lemma 2.7.
Case (2) is immediate from the definitions.

We now consider Case (3). By Lemma 2.2.2, H can be written in a unique way as A ∗ H ′ where
A = {a ∈ EH/H (a) = VH } and H ′ is a ∗-atom. If H ′ is not connected we are in Case (3.1), and the
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expression of Comp(H ) follows from Lemma 2.7. The set V ′
H cannot be a singleton because Case (2)

handles this case.
Hence the remaing possibility is when H ′ is connected and ∗-atomic. Then Proposition 2.6 applies

and yields Case (3.2) together with the unicity of P . The characterization of Comp(H ) follows from
the definitions and Lemma 2.7.

DEFINITION 2.9 (Modular decomposition). From Theorem 2.8 we get a tree T = T (H ) representing
this decomposition, called the modular decomposition of H and defined as follows:

(1) NT = Comp(H ),

(2) rootT = H ,

(3) the leaves of T are the components with a single vertex,

(4) for every component C ∈ Comp(H ), where VC is not a singleton, we have the following
cases where, in each of them, C1, . . . , Ck are the successors of C :

(4.1) C = D ∗ P[C1, . . . , Ck], (cf. Case (3.2) of Theorem 2.8) where P is prime, k ≥ 3
(because prime hypergraphs have at least three vertices), and D may be empty,

(4.2) C = D ∗ (C1 ⊕ · · · ⊕ Ck), k ≥ 2 (cf. Case (3.1) of Theorem 2.8), C1, . . . , Ck are
connected, D �= Ø,

(4.3) C = C1 ⊕ · · · ⊕ Ck , k ≥ 2, C1, . . . , Ck are connected (cf. Case (1) of Theorem 2.8).

In Cases (4.1) and (4.2), we will denote D by Full(C) and we call it the set of full hyperedges of C .
By Lemma 2.1, a hypergraph P as in Case (4.1) is isomorphic to a prime subhypergraph of C whence

of H . We will call these hypergraphs the principal prime subhypergraphs of H . We denote their set by
PPrime(H ).

EXAMPLE. The proper strong modules of H ′ (shown in Fig. 2a) are A = {3, 4}, B = {5, 6, 7}, C =
{1, 2, 3, 4, 5, 6, 7}, D = {8, 9}, E = {10, 11, 12, 13, 14}, F = {11, 12}, G = {1, 2}, and the singletons.

Let us define H = a ∗ H ′. The modular decomposition of H is shown in Fig. 2b. The nodes of type
(4.1) are B, C, E , and Full(C) = Full(E) = Ø, Full(B) = { j}. The nodes of type (4.2) are A, D, F , and
the root which corresponds to the module VH of H . We have Full(A) = {i}, Full(D) = {d}, Full(F) =
{x}, Full(VH ) = {a}. There is only one node of type (4.3), namely G.

The principal prime hypergraphs are shown in boxes B, C , and E . The edges between these nodes
and their successors start inside the boxes from the vertices to which substitutions are made (see
Case (4.1) of the definition).

The box B contains not only the prime hypergraph but also the hyperedge j which forms Full(B).

We now consider the formalization of this definition in MS logic.
A hypergraph H is represented by the relational structure |H |2 = 〈VH ∪ EH , incH 〉. The subscript 2

is a reminder of the two possibilities of quantifications arising from this representation: on vertices and
on hyperedges (see the Appendix). Our objective is to build from |H |2 a structure

Dec(H ) = 〈VH ∪ EH ∪ NT , incH , sucT , compT 〉

such that NT ∩ (VH ∪ EH ) = Ø, 〈NT , sucT 〉 = T (H ), and compT = {(x, w)/x ∈ NT , w ∈ VC ∪ EC

where C is the component of H corresponding to node x of T (H )}.
Hence this structure contains |H |2 and, in addition, a structure representing T (H ) together with the

relation compT between the nodes of T (H ) and the corresponding components of H . Our aim is to
construct the nodes of T (H ) from VH ∪ EH and to define its relations by MS formulas. Formally this
means that Dec(H ) is obtained from |H |2 by an MS transduction. See the Appendix (or the survey
papers [3, 6]) for formal definitions.

In [5], we proved a similar result for graphs G, represented by the less informative structures |G|1 =
〈VG, edgG〉, that do not permit quantifications on sets of edges, but given with a linear order on the
vertices. In contrast, in the following proof, we need no linear order but we use quantifications on sets
of hyperedges.
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THEOREM 2.10. There exists an MS-transduction associating Dec(H ) with |H |2 for every
hypergraph H.

Proof. The leaves of T are in bijection with the vertices of H : a leaf of T is a component of H of
the form H [{x}] for x ∈ VH and hence consists of x and the hyperedges a of H such that H (a) = {x}.

We let E1 ⊆ EH be the set of hyperedges a such that H (a) (the set of vertices of a) is a strong module
of cardinality at least 2, and for a, b ∈ E1 we let a ∼1 b if and only if H (a) = H (b). There is a bijection
between E1/∼1 and the set of components C of H that are either of the form (4.2) of Definition 2.9 or
of the form (4.1) (also of Definition 2.9) with Full(C) �= Ø. Hence, one can select a cross-section X of
∼1, X ⊆ E1 and we get in this way a representation of the nodes of T (H ) of these two forms.

We let E2 = EH − E1 − {the hyperedges of rank 1}. For each a ∈ E2 we let C(a) be the small-
est component containing a. It is necessarily of the form (4.1), and a ∈ Full(C(a)) ∪ EP (because if
C(a) = Full(C(a)) ∗ P[C1, . . . , Ck] and a ∈ Ci , then Ci and not C(a) would be the smallest component
containing a).

Let E ′
2 = {a ∈ E2/Full(C(a)) = Ø}. We let for a, b ∈ E ′

2 : a ∼2 b if and only if C(a) = C(b). We
choose a cross-section Y ⊆ E ′

2 of ∼2. The elements of Y can be used to define the nodes C of type
(4.1) such that Full(C) = Ø. Note that X ∩ Y = Ø.

It remains to define the nodes of type (4.3), i.e., those corresponding to the strong modules that are
not connected.

The connected strong modules are represented by the elements of the set Z = X ∪ Y ∪ VH . We
denote by M(x) the module represented by x ∈ Z . We let Z3 ⊆ Z be the set of x ∈ Z such that M(x)
is some Ci in the unique strong module of the form C1 ⊕ · · · ⊕ Ck with k ≥ 2. We will denote by N (x)
this strong module. We let x ∼3 y if and only if N (x) = N (y).

A cross-section U of ∼3, U ⊆ Z3 can be used to represent the strong modules that are not connected
(i.e., those of the form (4.3) of Definition 2.9). If x ∈ U , then the module it represents is N (x).

Finally the structure Dec(H ) can be constructed with domain

D = (VH ∪ EH ) × {1} ∪ (X ∪ Y ∪ VH ) × {2} ∪ U × {3},

where (u, 1) in D represents u in VH ∪ EH , where (u, 2) represents the node of T (H ) corresponding to
M(u), and (u, 3) represents the node N (u).

It is routine to see that compT (H ) and sucT (H ) are definable by MS formulas.

For the hypergraph of the example of Definition 2.9 one obtains, for instance, the tree shown in Fig. 3.
Its internal nodes a, b, d, u, i, j, x are copies of the hyperedges with the same names. Leaves

1, 2, . . . , 14 are copies of the vertices of H . We have Z = {1}. We use 1+ to denote the copy of 1
used to represent N (1) = G (see Fig. 2b); we have M(1) = H[{1}].

We conjecture that the complexity of constructing the modular decomposition of a hypergraph is
linear, by a suitable adaptation of the algorithm for graphs [12].

Möhring and Radermacher [16] review modular decompositions for several types of structures:
graphs, set systems, and Boolean functions. Their set systems are hypergraphs such that no two

FIGURE 3
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hyperedges have the same set of vertices, and the notion of modular decomposition they consider
coincides with ours on these hypergraphs.

Bonizzoni and Della Vedova consider in [1] a different notion of modular decomposition for hyper-
graphs. (Their hypergraphs are actually set systems as in [16].) It is based on a notion of substitution
such that, if K is a hypergraph substituted for a vertex x in a hypergraph H , then x is replaced by K
in a natural way, and a hyperedge α of the form α′ ∪ {x} of H with α′ nonempty is replaced by all the
hyperedges of the form α′ ∪β, where β is a nonempty subset of VK . The corresponding notion of mod-
ular decomposition generalizes that for graphs (if we consider graphs as hypergraphs with hyperedges
of cardinality 2).

3. CONVEX HYPERGRAPHS

An ordered hypergraph (H, ≤), i.e., a hypergraph H given with a linear order ≤ on VH , is convex
if H (a) is an interval for each a ∈ EH . We say that a hypergraph H is convex if (H, ≤) is convex for
some linear order ≤. We say that such an order witnesses the convexity of H . The hypergraph of Fig. 2a
is convex.

The undirected graphs of the directed graphs Bip(H ) for some convex hypergraph H are characterized
by forbidden induced subgraphs by Tucker [18]. We will not use such characterization. The complexity
of recognizing them is linear (Booth and Lueker [2]).

The notion of convexity is compatible with substitutions, modules, and modular decompositions. For
example, if H and K are convex hypergraphs, then so is H [K/x]. If (H, ≤) is convex, and X is a strong
module of H , then X is an interval for ≤. If H is convex, all its components corresponding to the nodes
of its modular decomposition are convex. The verifications are easy, and we will not need these facts in
the remainder of the paper.

If ≤ is a linear order on VH , we denote by ≤−1 the opposite linear order. If (H, ≤) is convex, then so
is (H, ≤−1).

PROPOSITION 3.1. If (H, ≤) is convex and H is prime, there are only two orders witnessing the
convexity of H, namely ≤ and ≤−1.

The proof technique for this proposition will be refined later in order to prove that the two linear
orderings are definable by monadic second-order formulas.

This result is also interesting because of its similarity with the one saying that a prime undirected
graph has at most one transitive orientation (i.e., an orientation such that if x → y and y → z are directed
edges, then there is also a directed edge x → z). See Kelly [14] for a detailed presentation of this result,
actually due to Gallai.

For proving the proposition, we need some notation. We recall that for sets α, β we write α ⊥ β if
and only if they overlap, i.e., if and only if α − β �= Ø, β − α �= Ø, and α ∩ β �= Ø.

Let V be linearly ordered by ≤. If α, β ⊆ V , we write α < β if and only if α ∩ β = Ø and x < y for
every x ∈ α, y ∈ β. We write x |y|z if and only if either x < y < z or z < y < x . This ternary relation
called the betweenness relation of <, should be read as follows: y is between z and x . With its extension
to pairwise disjoint sets we obtain the following obvious lemma.

LEMMA 3.2. If α, β are intervals in (V, ≤) where ≤ is a linear order, and α ⊥ β, then the intervals
α − β, β − α, and α ∩ β satisfy (α − β) | α ∩ β | (β − α).

We will prove in particular that if H is prime, ≤ witnesses its convexity, and m is the least element of
VH , then this order can be defined in a unique way from m and the memberships of the vertices in the
hyperedges. The above lemma is a first step in the proof. It proves in particular that if m is in α−β, then
m ≤ x < y < z for every x in α −β, every y in α ∩β, every z in β −α, where α and β are overlapping
hyperedges. This gives a first approximation of ≤ that can be refined into a complete characterization.

A hyperpath in a hypergraph H is a nonempty sequence of hyperedges (a1, a2, . . . , an) such that, if
n ≥ 2:

H (ai ) ⊥ H (ai+1) for i = 1, . . . , n − 1,

H (ai ) ∩ H (a j ) = Ø for 1 ≤ i < i + 2 ≤ j ≤ n.
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FIGURE 4

LEMMA 3.3. If H is a connected hypergraph (not necessarly convex) and if x, y are vertices not in
a same hyperedge, there exists a hyperpath (a1, . . . , an) in H with x ∈ H (a1), . . . , y ∈ H (an).

Proof. This follows from Lemma 1.2 of [9], but a direct proof is actually easy.

Proof of Proposition 3.1. Let (H, ≤) be convex with min and max as least and greatest elements.
They are not in a same hyperedge a, because otherwise, H (a) would contain all vertices and H would
not be prime.

By Lemma 3.3, there exists a hyperpath (a1, . . . , an) such that min ∈ H (a1), max ∈ H (an). We have
n ≥ 2. Assume (H, ≤′) is convex where ≤′ is another linear order. Consider the following sets:

H (a1) − H (a2), H (an) − H (an−1),

H (ai ) ∩ H (ai+1) for i = 1, . . . , n − 1

H (ai ) − (H (ai−1) ∪ H (ai+1)) for i = 2, . . . , n − 1.

Some of these sets may be empty; see the example of Fig. 4.
They form a partition of VH in intervals relative to ≤. Let B be the set of these intervals that are

nonempty. It is linearly ordered under <. It follows from Lemma 3.2 that B is also linearly ordered
under <′ with the same betweenness relation, since this relation is definable in terms of memberships
of vertices in the sets H (a).

Figure 4 shows an example, with four hyperedges a1, . . . , a4 represented as intervals. For readability,
we denote by ai the set H (ai ). (We will do the same in Figs. 5 and 6.) We have H (a3) − (H (a2)∪H (a4)) =
Ø in the case shown in Fig. 4.

We continue the proof. Without loss of generality we can assume that H (a1) − H (a2) <′ H (an) −
H (an−1). If this is not the case, we replace <′ by the opposite order. Hence < and <′ coincide on B
since they are both characterized by the same membership relations and H (a1) − H (a2) is smaller than
H (an) − H (an−1) for the both of them.

It remains to prove that < and <′ coincide on each set in B. This is trivial if each set of B is a
singleton. Let b ∈ B have cardinality ≥ 2. Since H is prime, b is not a module; hence H (a) ⊥ b for
some a ∈ EH . Let us choose one such a and consider the set B ′ of sets c∩ H (a), c− H (a) for all c ∈ B.
Since H (a) is not a subset of any c ∈ B (because the sets in B are pairwise disjoint and H (a) ⊥ b), the
set B ′ is a set of ≤-intervals which forms a partition of VH . The ≤-interval b of B is replaced in B ′ by
two ≤-intervals b′ and b′′ (with b = b′ ∪ b′′, b′ ∩ b′′ = Ø); at most one other set of B is divided into
two sets.

The set B ′ is again linearly ordered by <, and also, in the same way, by <′ since the relative orders
of b′ and b′′ under < and <′ are defined by membership relations (by Lemma 3.2) in the same ways.
Letting b′ = b ∩ H (a), b′′ = b − H (a), let c be an interval of B −{b} such that H (a) ∩ c �= Ø. If b < c
we have b′′ < b′ < H (a) ∩ c. If c < b we have H (a) ∩ c < b′ < b′′. The same holds with <′ instead
of <. Hence the ordering of B ′ is the same with respect to < and <′.

By repeating this step one reaches a partition B∗ of VH in ≤-intervals which are all singletons. The
orders < and <′ coincide on the set B∗ (by induction) and hence on VH . This completes the proof of
Propoposition 3.1.

We will now refine this argument and make it into an MS definition of the two orderings of
Proposition 3.1.
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The MS formulas used in the remainder of this section are intended for the structures |H |2 representing
hypergraphs H and will use quantifications on hyperedges and sets of hyperedges.

PROPOSITION 3.4. There exist MS formulas µ(m) and ω(m, x, y) such that, for every prime hyper-
graph H:

(1) |H |2 |= µ(m) if and only if (H, ≤) is convex for some linear order ≤ with least element m;

(2) if ≤ is a linear order such that (H, ≤) is convex, if its least element is m, for every two vertices
x, y, then |H |2 |= ω(m, x, y) if and only if x ≤ y.

Again, we need some definitions. A chain is a sequence (a1, a2, . . . , an) of hyperedges such that
H (ai ) ⊥ H (ai+1) for each i = 1, . . . , n − 1. (A hyperpath is thus a chain.)

Let m, x, y be pairwise distinct elements of VH . An (m, x, y)-separating chain is a chain
(a1, a2, . . . , an) such that:

(i) m ∈ H (a) where a is the first element,

(ii) {x, y} ⊥ H (b) where b is the last element,

(iii) no subsequence ai1 , ai2 , . . . , aik with i1 < i2 < · · · < ik is a chain having properties (i) and
(ii).

It is clear that, from a chain statisfying properties (i) and (ii), one can extract an (m, x, y)-separating
chain.

LEMMA 3.5. Let H be a hypergraph. Let (a1, . . . , an) be an (m, x, y)-separating chain with n ≥ 2.

(1) We do not have H (ai ) ⊥ H (a j ) for any i < i + 2 ≤ j .

(2) We do not have H (ai ) ⊆ H (a j ) for any i < j .

Proof. (1) If we have H (ai ) ⊥ H (a j ) for some i < i + 2 ≤ j then we can delete ai+1, . . . , a j−1

which contradicts the minimality condition of the definition of separating chains (condition (iii)).

(2) Assume on the contrary that we have H (ai ) ⊆ H (a j ) for some i < j . Let (i, j) be the
lexicographically first pair with H (ai ) ⊆ H (a j ), i < j .

If i = 1 then m ∈ H (a j ) and we can delete a1, . . . , a j−1 from the chain, contradicting the minimality
condition. Hence i > 1. Since H (ai−1) ⊥ H (ai ), and H (ai−1) − H (a j ) �= Ø by the minimality of i we
obtain H (a j ) ⊥ H (ai−1) contradicting (1). Hence no such pair (i, j) can exist.

LEMMA 3.6. Let H be a hypergraph, and let (a1, . . . , an) be an (m, x, y)-separating chain. If
H (a j ) ⊆ H (ai ) for i < i + 2 ≤ j then H (ak) ⊆ H (ai ) for all k, i + 2 ≤ k ≤ n.

Proof. Let us assume H (a j ) ⊆ H (ai ) and i < i + 2 ≤ j , where j is minimal with these properties.
Since H (a j ) ⊥ H (a j−1), and H (a j−1)−H (ai ) �= Ø by the minimality of j , we obtain H (ai ) ⊥ H (a j−1).
Hence j = i + 2 by Lemma 3.5.1 and so H (ai+2) ⊆ H (ai ). Assuming the conclusion is false, let k be
the smallest integer such that k > i + 2 and H (ak) is not included in H (ai ). Since H (ak−1) ⊆ H (ai )
and H (ak) ⊥ H (ak−1) we have H (ai ) ⊥ H (ak) but this contradicts Lemma 3.5.1.

An index i + 1 such that H (ai+2) ⊆ H (ai ) is called a turn. (In the example of Fig. 5, the indices 3,
7, and 10 are turns.)

LEMMA 3.7. Let (H, ≤) be convex and m = minH be the least element of VH . Let (a1, . . . , an) be
an (m, x, y)-separating chain. Let i1, . . . , ik be the turns with i1 < i2 < · · · < ik (we may have k = 0
and if k ≥ 1 we have i1 > 1 and ik < n).

(1) Each subsequence (a1, . . . , ai1 ), (ai1 , . . . , ai2 ), . . . , (aik−1 , . . . , aik ), (aik , . . . , an) is a hyper-
path.

(2) For each j we have

H
(
ai j + 1

) ∪ · · · ∪ H (an−1) ∪ H (an) ⊆ H
(
ai j − 1

)
.
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FIGURE 5

(3) Assume that y ∈ H (an), x /∈ H (an). If x /∈ H (a1) ∪ · · · ∪ H (an), then k = 0 and y < x ;
otherwise:

(3.1) either x ∈ H (an−1) and y < x if k is odd, and x < y if k is even,

(3.2) or x ∈ H (aik−1), and x < y if k is odd, and y < x if k is even.

Proof. (1) By Lemmas 3.5 and 3.6, if H (ai ) ∩ H (a j ) �= Ø for i + 1 < j then H (a j ) ⊆ H (ai )
and there is a turn between i and j . Hence if a subsequence (ai , ai+1, . . . , a j ) has no turn we have
H (ap) ∩ H (aq ) = Ø for i ≤ p < p + 1 < q ≤ j and this sequence is a hyperpath.

(2) Immediate consequence of Lemma 3.6.

(3) Observe that H (a1) ∪ · · · ∪ H (an) = H (a1) ∪ · · · ∪ H (ai1 ) by Lemma 3.6.

First case: x /∈ H (a1)∪· · ·∪H (an). Then k = 0 because otherwise, (a1, . . . , an) could be shortened
into (a1, . . . , a j ) for some j ≤ i1.

Since H (a1) ∪ · · · ∪ H (an) is an interval that contains m = minH and y, and that does not contain x ,
we have y < x . See Fig. 6a.

Second case: x ∈ H (a1) ∪ · · · ∪ H (an−1) and y ∈ H (an). Let j be the largest index such that
x ∈ H (a j ), j < n. We must have y ∈ H (a j ); otherwise (a1, a2, . . . , a j ) is a shorter (m, x, y)-separating
chain.

Note that x /∈ H (at ) for any t > j and that y /∈ H (at ) for any t with j + 1 < t < n (otherwise the
(m, x, y)-chain could be shortened into (a1, . . . , at )).

Subcase 1: y ∈ H (a j+1). Hence y ∈ H (a j ) ∩ H (a j+1) and n = j + 1. We have x ∈ H (an−1),
and this corresponds to Subcase (3.1) of the statement.

We may have k = 0 or ik ≤ j with k even and, in both cases,

H (a j ) − H (a j+1) < H (a j ) ∩ H (a j+1);

hence x < y. See Fig. 6b.
Otherwise ik ≤ j with k odd, then H (a j ) ∩ H (a j+1) < H (a j ) − H (a j+1), and hence y < x . See

Fig. 6c.

Subcase 2: y /∈ H (a j+1). This means that n ≥ j + 2 and H (an) ∩ H (a j ) �= Ø. Hence by
Lemma 3.6, we have H (a j+2) ⊆ H (a j ); i.e., j + 1 is a turn say i p.

It follows that i p is the last turn, i.e., p = k and j = ik − 1. Otherwise, the chain could be shortened
into (a1, . . . , aik−1) because H (aik−1) overlaps {x, y}: ik − 1 > j implies that x /∈ H (aik−1) and the fact
that ik is a turn implies that H (an) ⊆ H (aik−1) and so y ∈ H (aik−1). We are in Subcase (3.2) of the
statement. Now there are two cases.
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FIGURE 6
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If k is odd then x < z for all z ∈ H (at ), t > j ; hence x < y. (See Figs. 6d and 5). If k is even then
z < x for all such z and y < x . See Fig. 6e.

The last lemma shows that, if we know an (m, x, y)-separating chain, we can compare x and y. The
next lemma proves the existence of such separating chains in prime convex hypergraphs for any x and y.

Let a ∈ EH , where H is any hypergraph and H (a) has at least two vertices. Let E(a) be the set of
hyperedges b such that there is a chain (a1, a2, a3, . . . , an) with a1 = a, an = b. Let W (a) = ⋃{H (b)/b ∈
E(a)}. With this notation we have:

LEMMA 3.8. The set W(a) is a module of H.

Proof. Let W = W (a). Let c ∈ EH such that H (c) ⊥ W . There exist x ∈ W − H (c), y ∈ H (c)−W ,
and z ∈ W ∩ H (c). There exists a chain (b1, . . . , bm) of elements of E(a) such that x ∈ H (b1) and
z ∈ H (bm) (because x, z ∈ W ).

There exists a smallest i such that H (bi ) ∩ H (c) �= Ø. We have y ∈ H (c) − H (bi ). If i = 1
then x ∈ H (b1) − H (c). If i > 1 then H (bi ) − H (c) �= Ø because if H (bi ) ⊆ H (c) we have
H (bi−1) ∩ H (c) �= Ø and i is not minimal. Hence H (c) ⊥ H (b) for some b ∈ E(a). Hence c ∈ E(a)
and H (c) ⊆ W , a contradiction. Hence W (a) is a module.

Proof of Proposition 3.4. Let H be prime, let ≤ witness the convexity of H , and let m be the least
element of VH .

CLAIM. For every x, y with x �= y, x �= m, and y �= m, there exists an (m, x, y)-separating chain.

Proof of claim. Since H is prime, there exists a ∈ EH such that H (a) ⊥ {x, y}. We let W (a) be
as in Lemma 3.8. Hence W (a) is a module with at least two vertices (because H is prime and hence
its hyperedges have rank at least 2). Hence W (a) = VH and m ∈ W (a). Hence there exists a chain
a1, . . . , an such that an = a and m ∈ H (a1). By removing some elements if necessary, we make it into
an (m, x, y)-separating chain. This concludes the proof of the claim.

One can write an MS2-formula with free variables m, x, y expressing the following:

(1) m, x, y are pairwise distinct vertices,

(2) there exists a subset A of EH such that

(*) there is a ∈ A with m ∈ H (a), there is b ∈ A with {x, y} ⊥ H (b), and (a, b) belongs to
the restriction to A of the reflexive and transitive closure of the relation ⊥,

(**) no proper subset of A satisfies (*).

It follows then that the elements of A as specified by (2) form an (m, x, y)-separating chain.
An MS formula ρ(A, m, x, y, u, v) can express that u is before v on this chain. Another formula

ρ ′(A, B, C, m, x, y) can express that B ∪ C is the set of hyperedges the indices of which are turns of
this chain, that B is the set of those with odd indices, and C is the set of those with even indices.

An MS formula ϕ(m, x, y) can be written that uses ρ and ρ ′ as subformulas and expresses, under
the assumption that H is prime and m is the least element of VH for a linear order ≤ such that (H, ≤)
is convex, that there exists a separating chain for (m, x, y) with turns of such ranks that we can ensure
that x < y by means of the conditions of Lemma 3.7.3.

We let µ(m) be the formula that holds if and only if

“the relation R defined by x R y

if and only if

x = m or x = y or x �= y �= m, x �= m, and ϕ(m, x, y)”

is a linear order on VH for which (H, R) is convex.
We take for ω(m, x, y) the formula µ(m) ∧ (x = m ∨ x = y ∨ ϕ(m, x, y)).
We now verify that, assuming H prime:

(1) |H |2 |= µ(m) if and only if (H, ≤) is convex for some linear order ≤ with least element m;
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(2) if ≤ is a linear order such that (H, ≤) is convex, if its least element is m, for every two vertices
x, y, then |H |2 |= ω(m, x, y) if and only if x ≤ y.

We first consider (1). The “only if” direction is clear from the definition of µ. Conversely, if (H, ≤) is
convex with least element m, then for any two elements x and y (which are distinct and distinct from m)
either ϕ(m, x, y) or ϕ(m, y, x) holds, and we have respectively x < y or y < x . Hence the relation R
specified as in the definition of formula µ is the linear order ≤ and µ(m) holds.

We now check (2). If (H, ≤) is convex with least element m, then from the observations made for
the proof of (1), and the definitions, we get that |H |2 |= ω(m, x, y) if and only if x ≤ y.

If conversely ω(m, x, y) holds, then because of the validity of µ(m), the condition ϕ(m, x, y) defines
a linear order R (see the definition of µ) for which H is convex with least element m.

We thus have the following result:

MAIN THEOREM 3.9. There exists MS2-formulas θ (m) and ω(m, x, y) satisfying the following
conditions, for every hypergraph H :

(1) For every m ∈ VH , |H |2 |= θ (m) if and only if H is prime and (H, ≤) is convex for some linear
order ≤ with least element m

(2) H is prime and convex if and only if |H |2 |= ∃m. θ (m)

(3) For every m ∈ VH , such that |H |2 |= θ (m), for every x, y ∈ DH , we have

|H |2 |= ω(m, x, y) if and only if x ≤ y,

where ≤ is the unique linear order with least element m such that (H, ≤) is convex.

Proof. We let θ (m) express that the considered hypergraph is prime (which needs no reference to
any order on the vertices) and that µ(m) holds.

Assertions (1)–(3) hold by Proposition 3.4.

This proof actually gives another proof of Proposition 3.1.

4. DECIDABLE MONADIC THEORIES OF SETS OF BIPARTITE GRAPHS

We recall that MS2 refers to MS logic over structures representing graphs in such a way that quantified
variables denote edges, vertices, and sets thereof, whereas MS1 refers to MS logic where quantified
variables can only denote vertices and sets of vertices.

We say that a set of finite graphs has a decidable MS1-theory (resp. MS2-theory) if there exists an
algorithm that decides whether a given MS1 (resp. MS2) closed formula is true for some graph in this
set.

Seese has proved [17, Theorem 8] that a set of graphs L having a decidable MS2-theory has bounded
tree-width, and he has conjectured that a set having a decidable MS1 theory is of the form τ (B) where
B is the set of finite binary trees and τ is a (1, 1)-definable MS transduction (see the Appendix for
definitions). Intuitively, this means that each graph in L can be defined “inside” some tree from B, by
MS formulas evaluated in this tree. By Theorem 5.6.8 of [6], a set of graphs is of the form τ (B) as
above if and only if it has bounded clique-width.

This conjecture has been proved for specific classes of graphs: for planar graphs [17, Theorem 7],
for uniformly k-sparse graphs, i.e., graphs such that every subgraph has a number of edges at most k
times the number of vertices (this is the main theorem of [9] and concerns the class of planar graphs)
for chordal graphs such that each vertex belongs to at most k maximal cliques [4, Theorem 4.8]. None
of the last two cases subsumes the other.

We review the notion of clique-width studied in detail in [11].
A k-graph is a simple graph given with a coloring of its vertices by colors among 1, . . . , k. (We do

not require that neighbor vertices have different colors, we only require that every vertex has one and
only one color.) We use the following operations on k-graphs:
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(1) the disjoint union of two k-graphs, denoted by ⊕ (if the two argument graphs are not disjoint,
we replace one of them by a disjoint copy),

(2) the unary operation ρi→ j that replaces every color label i by j , and

(3) the unary operation αi, j that adds to a graph new directed edges from any vertex with color
i to any vertex with color j (since we consider simple graphs, a new edge from x to y is added only if
there is not already one).

If we want to construct undirected graphs, we use instead of αi, j :

(3′) the unary operation ηi, j that adds to a graph new undirected edges between any vertex with
color i and any vertex with color j (a new edge is added only if there is not already one).

The clique-width of a k-graph is the minimum number of colors used by an algebraic expression
defining this graph and built with these operations from the elementary graph consisting of one vertex
colored by 1. A graph is considered identical to the 1-graph obtained by labeling all its vertices by 1.

We denote by cwd(G) the clique-width of a graph G. Trees have cwd at most 3, and the cographs
(see for instance [5]) are the graphs of cwd with at most 2. The set of all graphs having cwd at most
any fixed k has a decidable MS1-theory. The conjecture by Seese is thus a kind of converse.

Here, we will consider this conjecture for the class B of directed bipartite graphs of the form Bip(H )
for some hypergraph. These graphs are the finite directed simple graphs G such that VG is partitioned
into two sets V and W (corresponding respectively to the vertices and to the hyperedges of the considered
hypergraph) with V nonempty, every edge is directed from a vertex in V to one in W , and every vertex
in W is the end of at least one edge. The sets V and W are uniquely defined for each G in B.

From the logical point of view we will consider that |H |2 coincides with |Bip(H )|1: the relations
incH of |H |2 and edgG of |G|1 where G = Bip(H ) are the same except for their names.

The substitution H = G[K/x] where H , G, and K are bipartite graphs is defined by:

H = Bip(Bip−1(G)[Bip−1(K )/x]).

Hence it is defined only if x is a vertex of G that corresponds to a vertex of Bip−1(G) (and not to a
hyperedge).

The notions of a prime bipartite graph, of a convex bipartite graph, or of a module or a component
in a bipartite graph follow immediately via Bip from the corresponding notions for hypergraphs. In
particular, we let PPrime(G) = Bip(PPrime(Bip−1(G)) where G is a graph in B. We will consider in
some detail the convex bipartite graphs.

A useful tool will be the representation of a convex hypergraph (H, ≤) by a labeled directed graph
D = DG(H, ≤) defined as follows. We let:

(1) VD = VH ∪ EH ,

(2) pD ⊆ VD be the unary relation such that, for x ∈ VD , pD(x) holds if and only if x ∈ VH ,

(3) edgD(x, y) hold if and only if either x, y ∈ VH and y is the successor of x with respect to ≤,
or y ∈ EH and x is the ≤-smallest element of H (y), or y ∈ EH and x is the ≤-largest element of H (y).

It follows that D is a directed graph of indegree at most 2. We consider pD as a labeling relation.
Hence, D is isomorphic to a 2-graph (where 1 (resp. 2) labels the vertices in pD (resp. not in pD).
We let |D|1 = 〈VD, pD, edgD〉. (The labeling relation pD makes it possible to distinguish the edges
representing the successor relation of ≤ from the others. In many cases this relation can be reconstructed
from the degrees of vertices but not always. Consider for instance the graph x ← y → z: each of x or
z can be considered as a hyperedge of rank 1.)

The structure |H |2 = 〈VH ∪ EH , incH 〉 can be reconstructed from |DG(H, ≤)|1 as follows:

(4) VH ∪ EH = VD (with D = DG(H, ≤)),

(5) incH (x, y) ⇔ pD (x) ∧ ¬pD (y) holds, and either edgD(x, y) holds or there exist u, v such
that

pD(u) ∧ pD(v) ∧ edgD(u, y) ∧ edgD(v, y)

holds and x is on a path in D from u to v all vertices of which satisfy pD .
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FIG. 7. (a) A convex hypergraph H. (b) The graph DG(H, ≤).

An example can be seen in Fig. 7.
The transformations of structures of (|H |2, ≤) into |DG(H, ≤)|1 and of |DG(H, ≤)|1 into |H |2 (for

every convex hypergraph (H, ≤)) are MS transductions, because the definitions of the relations of one
structure in terms of the other (see clauses (1)–(3) and (4)–(5)) are expressible in MS logic.

PROPOSITION 4.1. If a set of convex prime bipartite graphs has a decidable MS1 theory, then it has
bounded clique-width.

Proof. Let L be a set of convex prime bipartite graphs; L is a subset of B. Let L ′ be the corresponding
set of convex prime hypergraphs. Consider the following transformation of structures

|H |2 "→ (|H |2, ≤) "→ |DG(H, ≤)|1,

where H is in L ′, and for each H , ≤ is one of the two linear orders witnessing that H is convex (by
Proposition 3.1).

Since ≤ is MS definable in |H |2 by Theorem 3.9, the first transformation is an MS transduction. It
uses as parameter a set M intended to be {m} for m the least element of the order ≤ to describe; the
formula µ of Proposition 3.4 verifies the correctness of the choice of a parameter.

The second transformation is also an MS transduction, hence so is their composition β by
Theorem A.2.1 of the Appendix.

It follows from Theorem A.2.2 that the set of structures |DG(H, ≤)|1 for H in L ′ has a decidable
MS theory since it is the image under an MS transduction (namely β) of a set having a decidable MS
theory (the set of graphs DG(H, ≤) for H in L ′ and ≤ witnessing its convexity).

The 2-graphs DG(H, ≤) represented by these structures have indegree at most 2; hence it follows
from Lemma 3.3 and Theorem 4.1 of [9] (but a direct proof is easy) that they have a decidable MS2

theory (because every MS2 formula can be transformed into an equivalent MS1 formula).
From Theorem 8 of [17], or Theorem 4.1.3 of [4], it follows that they have bounded tree-width.

They have thus bounded clique-width by Theorem 5.5 of [11]. Now the transformation of |DG(H, ≤)|1
into |H |2 = |Bip(H )|1 is an MS transduction. It follows from Corollary 5.6.9 of [6] (saying that the
image of a set of graphs of bounded clique-width under a (1,1)-definable MS transduction has bounded
clique-width) that the set Bip(H ) for H in L ′, i.e., the set L , has bounded clique-width.

The following fact shows that this proposition is not trivial.

FACT 4.2. The set of all prime convex bipartite graphs does not have a decidable MS1 theory.

Proof. Let L be the set of all prime convex bipartite graphs and let M be its image under β. If L
had a decidable MS1 theory, then M would have bounded tree-width, by the proof of Proposition 4.1.

However, consider a complete graph K with a linearly ordered set of vertices {v1, v2, . . . , vn}. Let E
be the set of edges of K . One has in M the incidence graph of K , namely, a graph H with set of vertices
V ∪ E and an edge from x to y if and only if y is in E and x is one of the vertices of y. The graph K is
a minor of this graph; hence H has tree-width at least the tree-width of K which is n − 1. Hence, the
set M has unbounded tree-width, a contradiction.

LEMMA 4.3. There exists a (2, 2)-definable MS transduction associating with every hypergraph the
set of its prime subhypergraphs. There exists a (1, 1)-definable MS transduction doing the same for
bipartite graphs.
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Proof. For the first assertion, a transduction τ2 on hypergraphs can be constructed so as to work as
follows. Let H be a hypergraph. The transduction τ2 takes as its parameter two sets X and Y subject to
the following monadic second-order conditions

(1) X ⊆ VH

(2) Y ⊆ EH [X ]

(3) the subhypergraph of H with X as a set of vertices and Y as a set of hyperedges is prime.

Condition (3) is actually first order, by straightforward translation from the definitions. As output,
τ2 is defined to produce the structure 〈X ∪ Y, R〉, where R is the restriction of incH to X ∪ Y . We can
obtain in this way all prime subhypergraphs of H . A corresponding transduction for bipartite graphs
(defined via the bijection Bip) is denoted by τ1.

PROPOSITION 4.4. Let L be a set of convex bipartite graphs having a decidable MS1 theory. Then

(1) the set of subgraphs of the graphs in L that are of the form Bip(H ) for some prime hypergraph
H has a decidable MS1 theory and has bounded clique-width.

(2) L has bounded clique-width.

Proof. Let L be as in the statement.

(1) It follows that τ1(L) (where τ1 is as in Lemma 4.3) is the set of its prime subgraphs and also
has a decidable MS1 theory (by Theorem A.2.2). Since its elements are convex (because convexity is
preserved by taking subhypergraphs), they have bounded clique-width by Proposition 4.1. Let m be this
bound. Hence, the set PPrime(L) defined as the union of the sets PPrime(G) for G in L has bounded
clique-width.

(2) It follows from Theorem 2.8 and Definition 2.9 that every bipartite graph G can be con-
structed in terms of disjoint unions, of additions of vertices corresponding to “full hyperedges,” and of
substitutions of bipartite graphs for vertices in the bipartite graphs belonging to PPrime(G).

We now observe that these three types of operations on graphs do not increase clique-width. For
defining bipartite graphs, we will consider expressions that produce labeled graphs such that the vertices
corresponding to hyperedges in the transformation Bip have a special label, say §, not used to label the
others. We let cwd′(G) be the least number of labels apart from § used in the construction of such a
special expression defining G. A routine proof yields:

cwd(G) ≤ cwd′(G) + 1 ≤ 2 cwd(G). (1)

We have easily:

cwd′(G ⊕ G ′) = Max{cwd′(G), cwd′(G ′)} (2)

cwd′(A ∗ G) = cwd′(G). (3)

Now if G = H [K/x] (where this substitution corresponds to hypergraph substitution via Bip, see
the beginning of this section) we have:

cwd′(G[H/x]) = Max{cwd′(G), cwd′(H )}. (4)

For proving the last assertion, it is enough to substitute for the constant denoting x in an expression
denoting G the expression ρ∗( f ) where f is an expression that defines H and ρ∗ is a sequence of
operations of the form ρp→1 that rename into 1 all the labels of H which are not the special label §.
(We recall that every vertex is defined in an expression as a singleton subgraph with label 1. This label
is changed in the expression by the operations of the form ρ1→i or ρ1→§.)

We now complete the main proof. The prime subgraphs of the graphs in L have cwd bounded by m
and hence cwd′ bounded by 2m − 1 (by (1)). The components of the graphs in L have cwd′ bounded
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by 2m − 1. This follows from their inductive characterizations obtained in Theorem 2.8 and the above
properties (2–4). Hence the graphs in L have cwd bounded by 2m, by (1) again.

The class of convex bipartite graphs for which Seese’s conjecture holds is incomparable with the
class of chordal graphs, and with the class of uniformly k-sparse graphs, for any k. Hence, we have
obtained a new case of validity of this conjecture, incomparable with the previously known ones.

Remark. The proof of Proposition 4.4 applies to slightly more than the convex bipartite graphs.
Let Lk be the family of bipartite graphs (Lk ⊆ B), the prime subgraphs of which are either convex or
uniformly k-sparse. Then a subset L of Lk having MS1 theory has bounded clique-width. This is so
because by the main theorem of [9], if a set of uniformly k-sparse graphs has a decidable MS1 theory,
then it also has a decidable MS2 theory and hence bounded tree-width and also bounded clique-width.

Uniformly k-sparse bipartite graphs form a somewhat natural family. A bipartite graph is uniformly
k-sparse if and only if the corresponding hypergraph is m-rank-degree-bounded, for some m. We say
that a hypergraph H is m-rank-degree-bounded if EH = A ∪ B, the hypergraph 〈VH , A〉 has rank at
most m (each hyperedge has at most m vertices), and the hypergraph 〈VH , B〉 has degree at most m
(each vertex belongs to at most m hyperedges).

FACT 4.5. (1) If H is k-rank-degree-bounded then Bip(H ) is uniformly 2k-sparse.

(2) If Bip(H ) is uniformly k-sparse then H is k-rank-degree-bounded.

The proof is easy. (For (2), we use the fact that a graph is uniformly k-sparse if and only if it has an
orientation of indegree at most k. A proof of this well-known lemma is given in [9, Lemma 3.1]). This
fact gives a concrete understanding of uniform sparseness for bipartite graphs.

OPEN PROBLEM 4.6. It remains open to extend these results to larger classes of bipartite graphs.

A natural candidate is the class of bipartite graphs we obtain by replacing intervals relative to a linear
order on vertices by paths of a tree on the set of vertices. The corresponding hypergraphs have been
considered in [13].

APPENDIX: A REVIEW OF DEFINITIONS CONCERNING
MONADIC SECOND-ORDER LOGIC

Let R be a finite ranked set of symbols where each element r in R has a rank ρ(r ) in N+. A symbol
r in R is a ρ(r )-ary relation symbol. An R-(relational) structure is a tuple S = 〈DS, (rS)r∈R〉 where
DS is a finite set, called the domain of S, and rS is a subset of Dρ(r )

S for each r in R. We will denote by
S(R) the class of finite R-structures.

The monadic second-order formulas (MS formulas for short), intended to describe properties of R-
structures S (for fixed R), are written with variables of two types, namely lower case letters x, x ′, y, . . .

denoting elements of DS and upper case letters X, Y, Y ′, . . . denoting subsets of DS . The atomic formulas
are of the forms x = y, x ∈ X , r (x1, . . . , xn) (where r is in R and n = ρ(r )), and formulas are formed
with propositional connectives and quantifications over the two kinds of variables. For every finite set W
of object and set variables, we denote by L(R, W ) the set of all formulas that are written with relational
symbols from R and have their free variables in W . If S is an R-structure, if ϕ ∈ L(R, W ), and γ is
a W -assignment in S (i.e., γ (X ) is a subset of DS for a set variable X , and γ (x) ∈ DS for an object
variable x ; we write this γ : W → S to be short), we write (S, γ ) |= ϕ if and only if ϕ holds in S with
the values of the free variables of ϕ being defined by γ . We write S |= ϕ in the case where ϕ has no
free variable.

Graphs and hypergraphs can be represented in several ways by relational structures.
For a directed graph G, we let |G|1 = 〈VG, edgG〉 and |G|2 = 〈DG, incG〉 where DG := VG ∪ EG ,

edgG is the set of pairs (x, y) such that some edge links x to y, and incG is the set of triples (e, x, y)
such that the edge e links x to y. If G is undirected, the definitions are similar with “x and y” instead
of “x to y.” Thus edgG is symmetric.

For a hypergraph H , we use the structure |H |2 with the binary relation inc, presented in Section 2
before Theorem 2.10.
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An MS1 formula (MS2 formula) is an MS formula written with the relation symbol edg (the relation
symbol inc). It is intended to express a property of a structure of the form |G|1 (|G|2), where G is a
graph (a graph or a hypergraph).

We will use transformations of relational structures, called MS (definable) transductions of relational
structures. (See [3, 6]).

Let R and Q be two finite ranked sets of relation symbols. Let W be a finite set of set variables, called
here the set of parameters. A (Q, R)-definition scheme is a tuple of formulas of the form

� = (ϕ, ψ1, . . . , ψk, (θw)w∈Q∗k),

where

k > 0, Q ∗ k := {
(q, j)/q ∈ Q, j ∈ {1, . . . , k}ρ(q)

}
,

ϕ ∈ L(R, W ),

ψi ∈ L(R, W ∪ {x1}) for i = 1, . . . , k,

θw ∈ L
(
R, W ∪ {

x1, . . . , xρ(q)
})

, for w = (q, j) ∈ Q ∗ k.

Let S ∈ S(R), let γ be a W -assignment in S. A Q-structure T with domain DT ⊆ DS × {1, . . . , k}
is defined by � in (S, γ ) if:

(i) (S, γ ) |= ϕ,

(ii) DT = {(d, i)/d ∈ DS , i ∈ {1, . . . , k}, (S, γ, d) |= ψi }
(iii) for each q in Q:

qT = {
((d1, i1), . . . , (dt , it )) ∈ Dt

T

/
(S, γ, d1, . . . , dt ) |= θ(q, j)

}
,

where j = (i1, . . . , it ) and t = ρ(q).

(By (S, γ, d1, . . . , dt ) |= θ(q, j), we mean (S, γ ′) |= θ(q, j), where γ ′ is the assignment extending γ , such
that γ ′(xi ) = di for all i = 1, . . . , t and similarly for (S, γ, d) |= ψi .) Since T is associated in a unique
way with S, γ , and � whenever it is defined, i.e., whenever (S, γ ) |= ϕ, we can use the functional
notation def�(S, γ ) for T .

The transduction defined by � is the relation defD:= ⊆ S(R) × S(Q).
A relation f ⊆ S(R) × S(Q) is an MS transduction if and only if it is equal to

{(S, T )/T = def�(S, γ ) for some W -assignment γ in S}

for some (Q, R)-definition scheme �.
These definitions apply to graphs and hypergraphs via their representation by relational structures

as explained above. We say that a binary relation R on graphs or hypergraphs is an (i, j)-definable
MS transduction where i and j belong to {1, 2} if and only if {(|H |i , |H ′| j )/(H, H ′) ∈ R} is an MS
transduction.

Theorem A.1 says that if T = def�(S, µ) then the monadic second-order properties of T can be
expressed as monadic second-order properties of (S, µ).

Let � = (ϕ, ψ1, . . . , ϕk, (θw)w∈Q∗k) be a (Q, R)-definition scheme, written with a set of parameters
W . Let V be a set of set variables disjoint from W . For every variable X in V , for every i = 1, . . . , k, we
let Xi be a new variable. We let V ′ := {Xi/X ∈ V, i = 1, . . . , k}. For every mapping η : V ′ → P(DS),
we let ηk : V → P(DS × {1, . . . , k}) be defined by ηk(X ) = η(X1) × {1} ∪ · · · ∪ η(Xk) × {k}. (Note
that every mapping from V to P(DS ×{1, . . . , k}) is of this form.) With these notations we can state the

BACKWARDS TRANSLATION THEOREM A.1. For every formulaβ inL(Q, V ),one can construct a formula
β ′ in L(R, V ′ ∪ W ) such that, for every S in S(R), for every assignment µ : W → S, for every
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assignment η : V ′ → S, we have:

def�(S, µ) is defined (if it is, we denote it by T),

ηk is a V -assignment in T and (T, ηk) |= β if and only if (S, η ∪ µ) |= β ′.

The following is a consequence.

THEOREM A.2. (1) The composition of two MS transductions is an MS transduction.

(2) If a class L of relational structures has a decidable MS theory and if τ is an MS transduction,

then τ (L) has also a decidable MS theory.

See [3, 6] for the proof.
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