
Theoretical Computer Science 42 (1986) 1-122

North-Holland

EQUIVALENCES AND TRANSFORMATIONS
SYSTEMS-APPLICATIONS TO RECURSIVE
PROGRAM SCHEMES AND GRAMMARS*

OF REGULAR

Bruno COURCELLE
Department of Mathematics and Computer Science (Associated CNRS Laboratory), Bordeaux-1
University, 33405 Talence, France

Communicated by M. Nivat
Received January 1985
Revised September 1985

Abstract. This work presents a unified theory of recursive program schemes, context-free gram-
mars, grammars on arbitrary algebraic structures and, in fact, recursive definitions of all kind by
means of regular systems. The equivalences of regular systems associated with either all their
solutions or their least solutions (in all domains of appropriate type satisfying a set of algebraic
laws expressed by equations) are systematically investigated and characterized (in some cases) in
terms of system transformations by folding, unfolding and rewriting according to the equational
algebraic laws. Grammars are better characterized in terms of polynomial systems which are
regular systems involving the operation of set union, and the same questions are raised for them.
We also examine conditions insuring the uniqueness of the solution of a regular or of a polynomial
system. This theory applies to grammars of many kinds which generate trees, graphs, etc. We
formulate some classical transformations of context-free grammars in terms of correct transforma-
tions which only use folding, unfolding and algebraic laws and we immediately obtain their
c o r r e c t n e s s .

Contents

0. Introduction . 3
0.1. All solutions of a regular system . 3
0.2. Polynomial systems . 4
0.3. Applications to context-free grammars . 5

1. Preliminaries . 5
1.1. Terms, trees, magmas . 6
1.2. Substitutions . 7
1.3. Rewriting systems . 7
1.4. Equational classes of F-magmas . 9
1.5. to-complete F-magmas . 9
1.6. Equational classes of to-complete F-magmas . 10
1.7. Commutation lemmas for rewriting relations . 11

* This work was presented in part to the 26th Symposium on Foundations of Computer Science,
Portland, OR, U.S.A., October 1985 and to the 26th Semester of the Stefan Banach International
Mathematical Center, Warsaw, Poland, 1985.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

2 B. C o u ~

2. Regular systems . 12

2.1. Defini t ion of regular systems . 12

2.2. Solut ions . 13

2.3. Equivalences of regular systems . 13
2.4. Remarks on terminology and notations . 14

2.5. Renamings . 14

2.6. Singular unknowns . 15
2.7. Recursive applicative program schemes as regular systems . 15

2.8. Context-free grammars as regular systems . 17

2.9. Definit ions: t ransformat ions of regular systems . 17
3. Compar ing regular systems with respect to their full sets of solutions . 18

4. Transformat ions by folding, unfolding and rewriting . 21

5. Compar ing regular systems with respect to their least solutions . 29

6. System transformations and - - equ iva l ence . 35

7. Subsystems and auxiliary unknowns . 41

8. Regular systems having a un ique solution . 46

9. Recursive applicative program schemes as regular systems . 49

9.1. Sorts and signatures . 49

9.2. Derived signatures . 50
9.3. beta and its inverse . 51

9.4. Properties of eomp ~, . 51

9.5. Reeursive applicative program schemes . 55

9.5.1. Definitions . 55

9.5.2. Construct ion . 55

10. Powerset magmas . 56

11. Polynomial regular systems . 62

11.1. Defini t ion of po lynomia l systems . 62

11.2. Polynomial systems of special types . 63

11.3. Equivalences and preorders on +-regular systems . 63

11.4. Examples . 64

11.4.1. Finite-state au tomata . 64

11.4.2. Context-free grammars . 65

12. Polynomial systems and their sets of solutions . 65

13. Polynomial systems and their lea.,t solutions . 78

14. Transformat ions of po lynomia l systems and - - e q u i v a l e n c e . 82

15. Polynomial systems having a un ique solution . 89

16. Grammars on arbitrary magmas . 95

16.1. Derivat ion trees . 96

16.2. Context-free tree grammars: the IO-case . 98

16.3. Context-free tree grammars: the OI-case . 99

16.4. Derivat ion sequences . 100

16.5. Derivat ion sequences in M (F , u)/,,->*~ . 101

16.6. Iterative algorithms . 104

16.7. The occurrences of variables in IO-context-free tree languages . 106

16.8. The noncirculari ty test for attribute grammars . 106

17. Appl icat ions to context-free grammars . 108

17.1. Dele t ion of nontermina ls which define no word . 108

17.2. Dele t ion of useless nonterminals ' . 109

17.3. El iminat ion of e-rules . 109

17.4. El iminat ion of chain-rules . 111

17.5. Chomsky normal form . 111

17.6. Invert ible grammars . 111
17.7. Gre ibach normal form . 112

18. More general grammars . 113

Appendix A. Coherent and simplifiable congruences . 114
References . 120

Equivalences and transformations of regular systems

A lot of good music remains
to be written in C major.

A. Schoenberg
O. Introduction

Recursive program schemes, context-free grammars, context-free tree-grammars,
graph grammars of certain types, and more generally all forms of mutually recursive
definitions can be encompassed within the concept of a regular system.

Such systems have been introduced under various names in [30, 35, 36, 37, 39,
48, 54, 83]. They provide a common framework for studying recursive program
schemes, either applicative [25, 29, 31, 32, 55] or imperative [35,46] and for
context-free grammars generating words, trees, arbitrary objects (along the lines of
[73]). But we felt that many fundamental questions concerning them had not been
enough investigated.

O. 1. All solutions of a regular system

One of the central ideas of this work is the investigation of the set of all solutions
of a regular system as well as of its least solution. Least solutions (as opposed to
sets of solutions) have been investigated quite in depth for the following reasons.
When one writes a context-free grammar, one is interested in the tuple of languages
generated by the nonterminals (by means of rewritings) which coincides with the
least solution of the grammar considered as a regular system (see [51, 78] and Section
2.8). This fact applies to many types of grammars (generating trees, graphs, etc.)
and can be used as a foundation stone for the general concept of a grammar over
an arbitrary F-magma (i.e., F-algebra), as shown in [73] (see Definition 16.1 below).
Another reason is that the function computed by a recursive definition (by means
of some precisely defined operational semantics) is the least solution (over some
well-chosen domain) of the corresponding equation (see [4, 81, 82]). Whence the
importance of least solutions for the semantics of programming languages formalized
in the framework of denotational semantics [80] or that of recursive program schemes
([46, 55, 81], among many others).

This leads us to define two equivalence relations on the set of regular systems
having the same set of unknowns. S = S' iff S and S' have the same set of solutions
in every domain and S - S ' iff S and S' have the same least solution in every
to-complete domain. In fact we shall refine these equivalences into =~ (and ---~)
by letting ~ be a set of equations corresponding to the algebraic laws assumed in
the domains. We shall try to get syntactical characterizations of these equivalence
relations. In the presence of equations, these equivalences become undecidable as
one can guess immediately. But as in the case of program schemes, we shall be
more interested by transformation rules for regular systems than by decidability
results (which may be of exponential complexity when they exist).

The reader may question the introduction of the equivalence relation ~ z since,
at first sight, only - z seems to be of interest in computer science. The motivation
comes from the consideration of program transformations. When programs are

4 B. Courcelle

expressed as systems of recursive equations, transformations by unfolding, folding
and rewriting according to the algebraic laws (expressed as equations) are very natural
and useful. This applies to context-free grammars as well, although nearly nothing
appears in print on this subject. Unfortunately, these transformations are not always
correct. To be more precise, if S is transformed into S' in such a way, there are
three possibilities:

(i) S' and S have the same solutions, whence they have the same least solution,
(ii) every solution of S is a solution of S' (but not conversely), but S and S'

have the same least solution,
(iii) the same holds but the least solution of S' is strictly smaller than that of $.

Few works have been devoted to the correctness issue, i.e., to the problem of drawing
the border between cases (i)-(ii) and case (iii) [25, 63, 64].

On the other hand, when manipulating recursive program schemes and context-
free grammars, one frequently uses transformations of type (i) above (see for instance
[8, Theorem 1.7]), but their theory has never been made (to the author's knowledge).
We shall provide a very simple syntactical condition ensuring the preservation of
all solutions (see Section 4), which is much simpler than the ones of [25, 63, 64]
ensuring the preservation of the least solution. We shall say that a transformation
rule is ~ ~-correct if it preserves the set of all solutions, and that it is ~ ~-correct if
it preserves the least solution of the system to which it applies, whenever the domain
satisfies the set of equations ~. We shall introduce a collection of transformation
rules and determine for each whether it is ~ ~-correct or -~-correct.

A natural question is then the completeness of a set O-- of transformation rules
known to be T-correct for some equivalence ~ (i.e., is it true that, for every $, S'
such that S~7S', the system S can be transformed into S' by a finite sequence of
transformations in if?).

We shall obtain very few completeness results and mostly when ~ = ~.

0.2. Polynomial systems

By a polynomial system we mean a regular system written with a set of base
functions containing the binary symbol +. These systems are always solved in
powerset algebras. The equation systems investigated in [73] are of this type.

They provide a convenient way to investigate context-free grammars. Many basic
results concerning context-free grammars can be established for polynomial systems,
and they are immediately applicable to grammars generating trees, graphs, whatever
you want, provided the appropriate algebraic structure is given. We shall provide
examples in Section 16.

Since + is interpreted in a fixed way, some equations concerning it and the other
functions are always satisfied: associativity, idempotence, distributivity, etc. Let
be this set. Hence, a polynomial system solved in ~ (M) where M satisfies ~g can
be considered as a regular system solved in some M' satisfying ~ w ~ (provided
satisfies some linearity conditions). We shall see that, in many cases, the theory of

Equivalences and transformations of regular systems 5

polynomial systems modulo ~ reduces to the theory of regular systems modulo
w ~. But some (probably difficult) questions remain open. Finally, we shall provide

a uniform presentation for several classical 'iterative' algorithms: computation of
the set of nonterminals of a context-free grammar which generate no word, of those
which generate the empty word, of those of an IO-context-free tree grammar which
generate no tree. To this list we also add the noncircularity test for attribute grammars
since we can consider an attribute grammar as a graph grammar which generates
the usual dependency graphs.

0.3. Applications to context-free grammars

Most books on context-free grammars establish the theorem of Ginsburg and
Rice [51] saying that the language generated by a nonterminal is equal to the
corresponding component of the least solution (in the set of languages) of the
(polynomial) system associated with the grammar. But they rarely use it afterwards.
Most proofs use inductions on the length of derivations. Actually, they repeat in a
more or less hidden way the proof of the theorem of Ginsburg and Rice.

Hence, we prefer to base proofs (for instance the correctness proof of the classical
transformation which eliminates e-rules in context free grammars) on the fixed-point
characterization of context-free languages rather than on the classical characteri-
zation based on derivation sequences. This approach tends to unify manipulations
of programs and manipulations of grammars.

In particular, we formulate the classical transformations of reduction, elimination
of chain- and e-rules, Chomsky-normal form in terms of our basic, correct transfor-
mations of polynomial systems. This establishes also their correctness.

We also consider the unicity of solutions of polynomial systems. As an application
of general results we give necessary and sufficient conditions for the unicity of the
solution in ~ (X ÷) or ~ (X *) of a context-free grammar (considered as a polynomial

system).

1. Preliminaries

We review the basic concepts, fix our notations and state a few lemmas. We first
precise a few mathematical notations.

We denote by N the set of nonnegative integers and by N+ the set of positive
ones. We denote by [n] the interval {1, 2, 3 , . . . , n} for n >t 0 (with [0] = 0).

For sets A and B we denote by A - B the set {a~A]a~B}.
The domain of a partial mapping f : A ~ B is denoted by Dom(f) . The restriction

of f to a subset A' of A is denoted by f I A'.
If f is a mapping B n-~ C and g l , . . . , gn are mappings A m ~ B, we denote

by f o (g l , . . . , g n) the mapping h : A m-~C such that h (a l , . . . , a m) =

f (g l (a l , . . . , am), . . . ,g , , (al , . . . , am)).

6 B, Courcelle

The set of total mappings A--> B is denoted by [A--> B]. The cardinality of a set

A is denoted by Card(A).
The powerset of A is denoted by ~(A) .

1.1. Terms, trees, magmas

The notations are mostly those of [26, 28]. As in many previous works we shall
use the term F-magma for what is usually called an F-algebra.

We quickly list the corresponding notations:

• F denotes a ranked alphabet with rank function p : F--> •,

• F~ = { f ~ F I p (f) = i}; an element of Fo is called a constant,
• X = {xl, x 2 , . . . , x , , . . . } is a set of variables (of arity 0) and Xk = {Xl , . . . , Xk};

alternative sets of variables will be U, Y, Uk, Yk,
• M = (M, (fM)s~) denotes an F-magma with domain M, (the reader should note

the typographical distinction between an F-magma M and its domain M; this

distinction will be kept in all magmas to be defined below),

• M(F, X) denotes the free F-magma generated by X, with domain M(F, X),

considered as a set of terms (and sometimes of trees),

• tM: M k --> M is the mapping defined by t if t is a term defined by the context as

an element of M(F, Xk) (some elements of Xk may have no occurrence in t),

• M / ~ denotes the quotient F-magma when - is a congruence on M.
The general notation for terms is with prefixed function symbols, commas and

parentheses. The parentheses surrounding the argument are omitted in examples in

the case of a unary funct ion symbol. Some binary symbols denoting associative

functions will be infixed. So a typical example is x+f (x , gy)+h(x , ggx, y) where

p(h) = 3, p (f) = p(+) =2, p(g) = 1.
The set of subterms of a term t in M(F, X) is defined as follows:

Subterm(t)= f{ t} if t~ FowX,
[{ t } u S u b t e r m (h) u ' " "uSubterm(tk) if t = f (h , . . . , tk).

A subterm t' of t is proper if t ' ~ t.
The length of a term t in M(F, X) is the integer It[equal to the number of

occurrences of symbols of F u X in the linear writing of t or the number of nodes

of the tree representing t. I f Y ~ F u X, then I tl y denotes the number of occurrences
of symbols from Y in t.

Let Z __q X. The set of variables from Z occurring in t is denoted by Varz(t) . The

notation Var(t) is used when Z = X or is known from the context.
A term t is Z-linear if every x in Z has at most one occurrence in t. As above,

the prefix Z is omitted i f no ambiguity can arise.
If G c F and Tc_ M(F, X) , we denote by G(T) the set of terms of the form

f (t l , . . . , tk) for k>~O,f ~ GC~Fk, h , . . . , tke T.

Equivalences and transformations of regular systems 7

1.2. Substitutions

Let t, t l , . . . , tk~ M(F, X) . We denote by t [t x / x l , . . . , tk/Xk] or by t[t,/xi;l<~ i<~
k], or by t [t ~ , . . . , tk] if the context clearly defines the sequence Xl , . . . ,Xk , the

result of the simultaneous substitution of ti for all occurrences of xi in t.

There are two extensions of this operation to sets of trees, whose algebraic
properties have been investigated in [45]. The first one is

A [A I / X I , . . . , A k / X k] : { t [t l / x l , . . . ' t k /Xk] [t e A, tl e A ~ , . . . , t k E A k } ,
1 0

where A, A~ , . . . ,Ak~_ M (F , X) .
The second one is defined in several steps:

A [A 1 / x l , . . . , A k / X k] = [_ J { t [A ~ / x l , . . . , A k / X k] l t e A } ,
O I O I

{ A~ i f t = x ~ ,

{t} if t e F o w (X - - X k) ,
t[A 1 / x l , . . . , A k / X k] = { f (u l , . . . , u ~) l u i • t i [A l / x l , . . . Ak/Xk],l<~i<~nI

Ol O l '

if t = f (h , . . . , t,,).

One has

A [A1/Xl , . . . ,Ak/Xk]C_ A [A 1 / X l , . . . , Ak/xk]
I O O I

a n d t h e inclusion may be strict.

Let Y be a set of variables. We denote by Ctxt(F, Y) the set of terms in

M(F, Y u {x}) having exactly one occurrence of x. The variable x is any variable
not in F w Y. An element c of Ctxt(F, Y) is called a context and, if t e M(F, Y),

then c[t] denotes the term c[t/x]. It is clear that the precise variable x used in the
definition of Ctxt(F, Y) is irrelevant.

In a few cases we shall also use substitutions of the form t [t l / y l , . . . , tk/Yk] where

Y~,.-- , Yk are pairwise distinct elements of X w Fo, i.e., we shall substitute terms
for constants and not only for variables.

Finally, the word 'substitution' also refers to the mapping 0 : M(F, Xk) --> M(F, Y)
associated with a list t l , . . . , tk of elements of M(F, Y) by O(t) = t [t J x ~ , . . . , tk/Xk].

1.3. Rewriting systems

The basic results can be found in [59, 61].

A rewriting system is a subset R of M(F, X) x M(F, X) . With R is associated a

rewriting relation -->R on M(F, Y) (where Y is any set of variables, not necessarily
disjoint from X) defined by t ->R t' if and only if

t = c [r [t l / x l , . . . , tk/Xk]],

t' = c[r'[tl/ xl , . . . ' tk/ Xk]],

8 B. Courcelle

for some (r, r') in R, some t l , . . . , tk in M(F, Y), some c in Ctxt(F, Y) (with r,

r' 6 M(F, Xk)).
We shall say that R is ground if R has no variables, i.e., if k = 0 or i f R has

variables that will not be subject to substitution. We shall frequently use U to denote

such a set of variables and we shall define such a ground rewriting system R as a
subset of M (F w U) x M (F w U). (Here M (F ~ U) denotes the same set as

M(F, U) but with U merged into the set of function symbols F and not distinguished

as a set of variables.)
A term t is R-irreducible if t OR t' for no t'. If t o * t' and t' is R-irreducible,

then t' is a R-normal form of t.

The property of confluence insures that every term t has at most one R-normal

form: R is confluent if, for all t, tl, t 2 such that t o * tl and t o * t2, there exists a

t3 such that tl o * t3 and t2 o * t3. This property can be established by means of the
concept of critical pair (it is a bit technical and we shall not recall it; see [59]).

We now recall some definitions concerning termination, which allow to prove

that a term has at least one normal form.
Let <~ be a partial order on M (F , Y). A rewriting system R is compatible with <~

(or is <~-compatible) if, for all t, t' in M(F, Y), t o R t' implies t '< t (where <

denotes the strict partial order associated with ~<). If < is well-founded, i.e., if there

is no infinite decreasing sequence t l> t2>" ' ' > t, > . . - , then OR is Noetherian

(i.e., has no infinite chains of rewritings). If R is Noetherian, then every term has

at least one R-normal form. If R is Noetherian and confluent, then every term t

has a unique R-normal form denoted by nfR(t).
A rewriting system R is right-irreducible if, for every pair (s, t) in R, t is R-

irreducible. It is left-irreducible if, for every pair (s, t) in R, s is irreducible w.r.t.
R -{(s , t)}. It is proper if it is both left- and right-irreducible. Let us mention that

a ground rewriting system is left-irreducible iff it has no critical pair. From the proofs
of [59, Lemmas 2.5 and 3.1] one can easily extract the following lemma.

1.1. Lemma. Let R be a rewriting system which is ground and left-irreducible. For all
t, tl, t2 such that t o R tl and t OR t2, if tl ~ t2, there exists t3 such that t 1 -->R t3 and

t2 ° R t3. Hence, R is confluent.

M6tivier has proved the following results [72, Theorem 7 and Corollary 9].

1.2. Proposition. (1) Every confluent and Noetherian rewriting system R can be trans-
formed into a proper confluent and Noetherian system R' such that nfR, = nfR (whence
R and R' generate the same congruence).

(2) There exists at most one rewriting system which is proper, confluent, compatible

with some f ixed well-founded ordering and which generates some given congruence.

An obvious corollary of Lemma 1.1 and Proposition 1.2(2) is the following.

1.3. Corollary. There exists at most one ground rewriting system which is proper, is
compatible with some fixed well-founded ordering and which generates some given
congruence.

Equivalences and transformations of regular systems 9

1.4. Equational classes ofF-magmas

Let ~¢ be an arbitrary class of F-magmas. We write c¢~ t = t' for t, t' in M(F, Xk)
if tM = th for all M in c¢. Given a subset ~ of M(F, X) x M(F, X), we denote by
of.($') the variety defined by ~, i.e., the class of all F-magmas M such that tM = t~
for all (t, t') in ~, (and we denote by Y'= °//'(ft) the class of all F-magmas). We write
~ t= t' for °F(~)~ t = t'. We denote by <-~ the rewriting relation -*R associated
with R={(t , t'), (t', t)[t=t' is an equation of ~} (the double arrow is used to
emphasize the symmetry of this relation).

The following basic result is a syntactical characterization of the semantical
equivalence associated with ~.

1.4. Lemma (Birkhoff [9]). ~ t = t ' ifft<-~*t'.

1.5. to-complete F-magmas

An to-complete F-magma is an object M = (M, -kM, ~<M, (fM)f~F), where ~<M is a
partial order on M with least element ±M, which is to-complete (the least upper
bound of a countable directed set D exists and is denoted by Sup(D)) and such
that, for all f in F, fM belongs to (MP(Y)~ M) (i.e., is monotone and to-continuous).

There is a free to-complete F-magma generated by a set X, denoted by M~(F, X)
whose,domain consists of infinite trees (see [25, 26, 54]).

We quickly recall one possible construction of M~(F, X). We denote by Ma (F, X)
the Fw{~}-magma M (F u { ~ } , X) , where D is a new constant (the notation
emphasizes its special role). An order on Ma(F, X) is defined by

t<t ' iff t '~ t[Ma(F,X)/D]
o~

(i.e., if t' is the result of the OI-substitution of terms for occurrences of O in t
(different terms can be substituted for distinct occurrences of D)).

The set M~(F, X) of infinite trees can be formally defined as the ideal completion
of Ma(F, X) w.r.t. < (see [31, 32, 33, 56, 69, 84]). We shall only need the following

facts:
(1) Ma(F, X) ~ M~(F, X).
(2) M~(F, X) is to-complete w.r.t. < and its least element is O.
(3) Every element of M°~(F, X) is the least upper bound of an increasing sequence

in Ma(F, X).
(4) For every s in Ma(F, X), for every increasing sequence (tn)n_N in M°~(F, X),

s < Suo(tn) iff s < tn for some n.
The F-operations on M~(F, X) are the extensions by continuity of the correspond-

ing operations on Ma(F, X). This turns M~(F, X) into an to-complete F-magma,
which is the free to-complete F-magma generated by X.

Here is another aspect of this result. A tree t in M~(F, Xk) defines a monotone
and to-continuous mapping t M : M k-~ M for every to-complete F-magma M by

tM = SUp{SMI S ~ Ma (F, Xk) , S < t }.

In the definition of SM one takes ZM as the value of ~.

1 0 B. CourceUe

Finally, substitutions extend to infinite trees by

to[t l / x , , . . . , t,,/ x,,]

= Sup{ So[S~/ Xl , . . . , s , / x ,] l So, . . . , s , ~ M a (F, X), s, < ti for i = 0 , . . . , n}

and the fundamental property is

t O [ll/Xl, • • • , tn/Xn]M = / 0 M ° (t , M , • • •, t,M)

(see [26] for more details).

1.6. Equat ional classes o f to-complete F - m a g m a s

For every subset ge of M a (F , X) x M o (F , X) (considered as a set of equations),

we denote by ~V'(~) the class of all to-complete F-magmas which satisfy ~ (i.e.,

which belong to ~(ge)) and by °V'° the class ~V°'(0). We denote by cg~ t = t' the

semantical equivalence associated with a class c¢ _c ~V '° by the following conditions:

(1) t, t ' ~ M ~ (F , X k) for some k,

(2) tM = th for all M in ~.

We use the notation ~ ~,o for ~o , (~)~ . Hence, if c£~_ ~ and t or t' (or both) is
not finite, the notation c ~ t = t' is meaningful only if ~ _ ~,o. I f ~ is a set of

equations, the notation ~ ~ t = t' is meaningless if t or t' is infinite. Note that if t

and t' are finite ~ t = t' implies ~ ~,o t = t' but the converse does not necessarily

hold (see [25]).
We recall from [31, 32, 56] the syntactical characterization of this equivalence. It

uses a sequence of definitions.

A preorder on M a (F , Xk) is defined by

t < o t' itt t (~ w <)*t ' .

This preorder is extended to M°~(F, Xk) by

t ~< g t' iff for all s in M n (F , Xk) such that s < t, there exists s' in M n (F , X k)

such that s ' < t' and s ~< o s'.

And finally, for t, t' ~ M°~(F, Xk):

t ' i t t t ~ t' t' t------~ ~ and ~<~t.

The following result is analogous to Lemma 1.4.

- IX) t t" 1.5. Lemma. Let t, t' ~ M a (F, X k). Then g' ~ ,o t = t' l i f t =- ~

The relation ---~ is a congruence, hence, the quotient F-magma M~(F, X) / - ~ is

a natural object to consider. Unfortunately, it is not to-complete in general; it is not

the free ~o-complete F-magma satisfying ~. But such a free object exists and is

M~ = [Mn(F, X) / ~ °] °~, where ___o is the equivalence relation associated with the
preorder < ~ and [M] ~ denotes the ideal completion of M (see [31, 32, 33, 56] for
more details). We only recall that if h : M~(F , X) ~ M~ is the canonical homomorph-

= t' (respectively t t'). ism, then h(t)<<-h(t ') (respectively h(t) h (t ')) iff t <~ ~

Equivalences and transformations o f regular systems 11

1.7. Commutation lemmas for rewriting relations

We conclude this sect ion with a few technica l results concerning rewrit ing systems

that will be needed in Sections 3, 4 and 6.

We say that a rewri t ing system R ~ M (F, X) x M (F, X) is left-linear (respectively

right-linear) if for all (s, t) in R the term s is l inear (respectively the term t is linear).

It is linear if it is bo th left- and right-l inear. It is balanced if Islx--Itlx for all (s, t)

in R, all x in X.
Let F and X be as above and U be a finite set of constants dis joint f rom F. In

the fo l lowing lemmas we shall assume that R is a finite rewrit ing system on M(F, X)
and tha t S and S' are finite g round rewrit ing systems on M (F u U) such that $,

S'c_ U x M (F , U).

1.6. Lemma. Let us assume that R is left-linear. Let t, t', s ~ M(F , U) be such that
t --> Ps s and t --> "~ t', for some p, m >>- 1. There exist s' in M(F , U) and p' >10 such that

m S' and t' s'. s "->R ">PS' Furthermore, p'<~p i f R is right-linear, and p ' = p if R is
right-linear and balanced.

Proof. The lemma is p roved by induc t ion on m (for all t, s, t ' and p). It is clear

that the p roof reduces to the case m = 1. And we do this p roo f by induc t ion on p.

Once again the only interest ing case is p = l . So let t = c [r [h , . . . , tk]], t '=
c [r ' [h , . . . , tk]] for some (r, r') in R with r, r' in M(F, Xk). The considera t ion of

t -->s s yields two cases.

Case 1: s = c ' [r [h , . . . , tk]] with c -->s c' and then one takes s ' - - c ' [r ' [h , . . . , tk]].

Case 2: s = c [r [h , . . . , t [, . . . , tk]] with ti -'>s t'i for some i. I f p ' is the number of
t ' 1 S t I occurrences of xi in r , it is clear that t'->Ps s , where = c [r ' [h , . . . , t , . . . , tk]].

I f fur thermore R is r ight- l inear (respectively r ight- l inear and ba lanced) , then, in

Case 2, one has p'~< 1 (respect ively p ' = 1). The result fol lows by induct ion. []

1.7. Lemma. I f R is right-linear, then, for all t, t' in M(F , U), t -->*,~R t' iff there

exists s in M(F, U) such that t -->* s -->* t'.

Proof. One proves by induc t ion on m that if t ->*~,R t' and this sequence of rewritings
mt' for some s in M(F, U). uses m steps of the fo rm OR, then t-->* s-->R

The case m = 0 is trivial.
m - - 1 t t" For m > 0, one can assume by induc t ion tha t t -->* tl --> R t2 --> * t3 --> R Since

R -1 is left-linear, L e m m a 1.6 can be appl ied to h , t2, t3 and yields the existence o f
m t t s such that tl ->* s -->R t3. Hence , t -->* s OR as desired. []

1.8. Lemma. Let us assume that S u S' is left-irreducible.
(1) For all t, tl, t2 in M (F , U), i f t ->s tl and t -'>s" t2, either t~ = h or there exists

s such that tl -'>s, s and t2 -->sS.
(2) For all t, t' in M (F , U), t-->*us,-~ t' iff there exists s such that t->*s s and

S -'> ~,-I t p.

12 B. CourceIle

Proof. Part (1) is an easy extension of Lemma 1.1. Part (2) is an easy consequence

of part (1) by means of classical arrow-chasing. []

1.9. Lemma. Let us assume that S • S' is left-irreducible and that R is linear. For all

t, t' in M (F , U), t(-->s ~ -->R W S,<--)*t' iff there exist s and s' in M(F, U) such that

t ->*s s ->* s' *x- t'.

Proof. We prove by induction on m that, if t -'->~SwRuS ,-1 t' with m steps of the form
m S r t r. ->R, then there exist s and s' such that t ->s* s ->R *,<-

The case m = 0 is an immediate consequence of Lemma 1.8.

For m > 0 and by induction, one can assume that

* * m - 1 * t t"
t ~ tl t2 t3 > t4 < SwS'- - 7 - 7 R S'

By Lemma 1.7 there exists a t~ such that

* !

tl ~ t2--~ t3.

By Lemma 1.8 there exists an s such that t -->* s *,<-- t~, hence, we have

t ~ s < t ~ t4(t'.
S" R S"

m s I By Lemma 1.6 there exists an s' such that s-->R *,<- t 4. Hence, s and s' are as

desired. []

2. Regular systems

We define regular systems and some relations between them. We present the basic

examples of regular systems: recursive applicative program schemes and context-free

grammars.

2.1. Definitions o f regular systems

Let F be a finite ranked alphabet, let U be a finite set of variables.

A regular system S over F with set of unknowns U is a sequence of equations of

the form u --- t with u in U and t in M(F, U) and such that for each u in U there

is one and only one equation with left-hand side u. The set of unknowns of S is

denoted by Unk(S). It is equivalent to define S as a set of equations as above and

to assume that Unk(S) is l inearly ordered.

We shall also use the latter definition, and in order to avoid the necessity of

defining each time the order on Unk(S) we shall assume that Unk(S) is always a

subset of some fixed infinite set of unknowns 0//which is linearly ordered in a fixed

way. Another technical assumption will be made in the construction that precedes

Lemma 12.9. The set Unk(S) inherits a linear order from 0//in an obvious way.

Equivalences and transformations of regular systems 13

All our definitions and theorems will be formulated with respect to a regular

system S which will always be of the general form (ui = ti ; 1 ~< i<~ n) with Unk(S) =
{ul, u 2 , . . . , u,} (ordered in this way) and ti ~ M(F, Unk(S)) for all i.

We shall refer to F as the base alphabet and to ui -- ti as the equation defining ui.
Let U be a finite subset of ~. If u ~ t~ is a mapping associating t~ in M(F, U) with

u in U, we can form a regular system S ' = (u = t~ ; u ~ U). And U is linearly ordered

as a subset of ~.
As we are dealing with syntax, we immediately define special types of regular

systems.
A system S (as above) is uniform if ti ~ F(Unk(S)) for all i; it is quasi-uniform

if t ~ F (Unk(S))wUnk(S) for all i; it satisfies the Greibach condition (or is a

Greibach system) if ti ~ F(M(F, Unk(S))) for all i.

If S' is another system, then S' is a subsystem of S (denoted by S'c_ S) if

Unk(S') _ Unk(S) and if every equation of S' is an equation of S. If U' c_ Unk(S)

we denote by S I U' the set of equations (u~ = ti;ui c U'). It is not necessarily a

subsystem of S. But we can always consider it as a regular system over F w U - U',

with set of unknowns U'.

2.2. Solutions

Let S be a regular system. Let M be an F-magma. A solution of S in M is an

n-tuple m = (m l , . . . , mn) in M " such that mi= tiM(m) for all i = 1 , . . . , n. We shall
also write this as m = SM(m) by letting SM: M n-> M n denote the target-tupling of

t iM, . - . , trim (i.e., SM(m)= (t iM(m) , . . . , tnM(m)).
We shall denote by SOlM(S) the set of all solutions of S in M (this set may be

empty).
Let now M be an to-complete F-magma. Every regular system S has a least

solution in M denoted by ~-SOIM(S) and classically characterized by

 -SOIM(S) = Sup(S ,(±
i~>0

as a consequence of the Fix-point Lemma (see [65] on various aspects of this lemma).

2.3. Equivalences of regular systems

Let ~- be an arbitrary class of F-magmas. Let S be a regular system. We define

an equivalence relation on M(F, U n k (S)) by letting

t ' t ~s,9- iff tM(m) = t~(m) for all M in ~- and for all m in SOIM(S).

If S and S' are two regular systems with the same set of unknowns we let

S < ~ S ' iff SolM(S)_ SOlM(S') for all M in J-

iff t~s.~rt' for every equation (t, t') o f S'.

S ~ r S ' iff SOIM(S)=SOIM(S') for all M in ~', i.e.,

iff S < ~ S' and S' < ~ S.

14 R Courcelle

If 3-= {M}, the subscript ~- is replaced by M. If gr= ~V(~) for some set of
equations ~, the subscript J is replaced by ~. If i f = ~ (= °V(O)) the subscript
is omitted. Analogous definitions can be given for to-complete magmas and least
solutions.

Let ~-~ °V'° and t, t', S, and S' be as above. Then,

t ~ s ,~ - t' iff

S ~<~-S' iff

iff

S - ~. S' iff

iff

tM(g-SolM(S)) = t~(/z-SolM(S)) for all M in ~-

/z-SolM(S) ~ Solm(S')

(whence/x-SoIM(S') ~<~ g-SolM(S)) for all M in ~-

t ~s,~-t' for every equation (t, t') of S',

/x-SoIM(S) =/z-SolM(S') for all M in ~-, i.e.,

S < ~r S' and S' ~< ~- S.

As above we shall replace the subscript 5r by M, ~, or we shall omit it if ~-= {M},
~- = ~,o(~) or O" = ~.,o(= oVO, (~j)), respectively. We shall mainly use the last two cases.

The following facts are clear (where ~ is a set of equations):

(2.3.1) t =s,~ t' implies t ~s.~ t',

(2.3.2) S ~ ~ S' implies S ~< ~ S',

(2.3.3) S = ~ S ' implies S ~ S ' .

Similar implications hold when ~ is replaced by M, where M ~ °V'.

2.4. Remarks on terminology and notations

The term 'regular system' has been used in [26] to designate regular systems in
the sense of Section 1.1 which are uniform. The regular systems of this paper would
be called "extended regular systems with finite right-hand sides" in the terminology
of [26]. (We are sorry for that, but we think the present terminology is more
appropriate than the one of [26] for this paper.) They have been introduced and
investigated in [36-39, 45, 75] ("systems of regular equations"), and in [24] (allowing
infinitely many equations).

Finally, as a mnemonic hint to notations, the reader should note that ~ and its
modifications refer to all solutions of regular systems (in unordered F-magmas)
whereas ~ refers to their least solutions in to-complete F-magmas.

2.5. Renamings

Let S = (ui = t i ; i ~ [n]) and S' be another regular system. We say that S' is a
renaming o f S if there exists a bijection t~:Unk(S)~Unk(S') such that S '=
(a(ui) = ti[t~(uj)/uj ; 1 <~j <~ n]; i ~ [n]). We write this S '= t~(S). If t~ is monotone,

Equivalences and transformations of regular systems 15

i.e., if a(u~) has rank i in Unk(S'), then SOIM(S)=SOIM(S ') and /z-SolM(S) =

~-SolM(S') for all M in T" (or in T"°).

Note that we do not write S ~ S' and S - S', since in Section 2.3 we require that
S and S' have the same unknowns. The reason is that we want to express = and

as sequences of transformations of systems which preserve the sets of unknowns

(see Sections 4 and 6). This restriction in the definitions of ~ and - (and of ~z-,

- ~ , <e~, ~<e~) is not a loss of generality since, for any two systems S and S' with

the same number of unknowns and such that SoIM(S) = SOlM(S') for all M in ~-_ 0//"

(respectively tz-SolM(S)=I.t-SolM(S') with M in T "'°) there exists a monotone

renaming a such that a (S) ~e~S' (respectively a(S) ~e~ S') (a similar property can
be stated for ~ r and ~<e~). Hence, we do not lose anything by restricting our

definitions of ~ er, ~z ' , etc. to pairs of systems with same sets of unknowns. It is
also to have easier formulated (and more concrete) system transformations that we

use explicit unknowns (with names, e.g., u, v, w, Ul, u~ , . . .) and not just integers

as, for instance, in [42] and all the subsequent papers on iterative theories.

2.6. Singular unknowns

In regular systems we allow equations of the form u = u' and even of the form

u = u. Here are a few technical definitions to deal with these equations.
For u, u' in Unk(S) we write u --> u' if u = u' is an equation of S.

An unknown u is singular if u -->+ u. It is powersingular if u ~* v for some singular

unknown v. We denote by Sing(S) and by Psing(S) the sets of singular and

powersingular unknowns of S.

Finally, we let Ys be the binary relation on Unk(S) such that UysU' iff u -->* v and

u' -->* v for some v in Sing(S). If u, u' ~ Psing(S) and UysU' does not hold, we say
that u and u' are independent. The reason is that a solution of S can be constructed

where u and u' have distinct values (see the proof of Proposition 3.2(1) below).

Otherwise, if UysU', then u and u' have the same value for every solution of S, i.e.,

U ~ S ut"

If u is powersingular, then its value in the least solution of S in every to-complete

F-magma M is -I-M. We write this u - s O, where/ '2 is the special constant always

denoting the least element of an to-complete magma (see Section 1.5). Hence, u "-s u'

for every u, u' in Psing(S) (whereas u =s u' if and only if UysU' for u, u' in Psing(S)).

This will be proved in Proposition 5.14.

2. 7. Recursive applicative program schemes as regular systems

We only present an example. A more detailed treatment will be given in
Section 9.

A typical example of a recursive applicative program scheme is the pair (,Y, t),
where ,Y is the system of equations

O(x,, x:) = f (x l , O(x:, #/(x2, xl))),

O(Xl, xz) = g(f(x2, x2), O(x,, x2)),

16 B. CourceIle

defining two functions 0 and ~ by mutual recursion and where t = O(x~, g~(x2, x2)).
This term plays the role of the 'main program' written in terms of auxiliary recursively
defined functions 0 and ~.

Every to-complete F-magma D (where F = {f, g}) can be considered as an interpre-
tation for (~, t) and a function tD: D x D ~ D can be associated with (~, t) and D.
There are several ways to define to. One of them consists in solving ,~ in D, i.e., in
finding the least pair (0i~, 6D) of continuous functions: D × D ~ D which satisfies
2; (where fv , gD give meaning to f, g) in an obvious way. This approach has been
investigated at length in various works ([25, 26, 29-32, 34, 55, 56]).

Solving 2 in D corresponds exactly to solving the regular system S with unknowns
0, ~ and consisting of the following two equations:

0 = comp(f, ¢rl, comp(0, ~r2, comp(6, ¢r2, ¢rl))),

= comp(g, comp(f, 7r2, 7r2), ~),

in the to-complete H-magma M, where H = {comp, f, g, ~q, ~'2} with p(comp) -- 3,
p (f) = p(g) = p(zq) = p(Tr2) = 0 and such that:
• M = (D x D--> D) (the set of to-continuous functions: D x D--> D),

• f M = f D ,

• g m = g l) ,

" 7riM is the ith projection D x D-~/9, i = 1, 2,
• compM(a, /3, 3/)= a o (/~, 3/) for a, fl, 3/ in (D x D o D) .

It can be shown that (0t,, Or,)=/z-SolM(S).
Such program schemes have been investigated in the above cited works as systems

of algebraic equations (like ~) rather than as systems of regular equations (like S).
In S, the base functions of 2 and the recursively defined ones are treated as

objects (i.e., as elements of the domain where S is solved) and their composition
is made explicit by means of the base function eomp. The variables disappear and
are replaced by constants, denoting projection functions. The composition of func-
tions is used in 2~ of course, but as a syntactic construction.

A system like ~ is certainly more readable than the corresponding regular system
S. It is close to real ALGOL or LISP procedure definitions. A system like S is close
to an FP-program [3].

The main advantage of regular systems is that their theory is easier than that of
algebraic systems, and more general since it applies also to context-free grammars
of words, trees, and graphs as the present paper will show. It also applies to
higher-type recursion as shown in [37, 39, 48] and to imperative program schemes
[26, 35].

Not all existing results on recursive applicative program schemes can be con-
veniently presented in terms of regular systems, at least at first look (e.g., [7, 22,
25]) and the formalism of algebraic systems remains necessary, but the most one
can do with regular systems the better it is.

E q u i v a l e n c e s a n d t r a n s f o r m a t i o n s o f r e g u l a r s y s t e m s 17

2.8. Context-free grammars as regular systems

A context-free grammar is usually defined as a triple G = (N, T, P) consisting of
two finite disjoint alphabets N (nonterminal symbols) and T (terminal symbols)
and a finite subset P of N × (N u T)* called the set of production rules. By using
P as a rewriting system, one defines L(G, u) the language generated by G from the
nonterminal symbol u (and L(G, u)c_ T*).

It is also classical to associate with G the system of equations SG = (u = Pu ; u ~ N),
where Pu is a term (we shall say a polynomial in Sections 10-17) in M(F, N) defined
as follows.

We let F = {+,. , e, O} u T, where +, . are binary and all its other elements are
nullary. The infix notation will be used for + and . and, since they will denote
associative operations, parentheses will be omitted. Then we let Pu =

{w~(NuT)* l (u ,w)~P} . If Pu=0, then pu=O. Otherwise, P,,=gq+'"+ff~m
where P,, = { w l , . . . , win} and w~--> ff is the mapping (N u T)*--> M(F, N) such that

E~--->E.

a l a 2 . . . ak~--> a 1 . a 2 . a 3 . • . . . a k ,

where a ~ , . . . , akE N w T. Without loss of generality we can assume that N =
{ u , , . . . , un} and is ordered in this way.

Let M be the F-magma with domain ~(T*) , such that + denotes the set union,
denotes the product of languages, f2 denotes ~J, e denotes {e} and a denotes {a}

for all a in T. Ordered by set inclusion, M is to-complete and by a result of Ginsburg
and Rice [51] ([78] for another proof) the least solution of SG in M is the n-tuple

of languages (L(G, u~))i~tn].
The system S~ is regular over F. The concatenation of words is explicitly intro-

duced as the composition of functions was in Section 2.7. In Sections 10-18 we
shall investigate the class of polynomial systems which abstracts from systems like
SG by working in an arbitrary powerset magma ~ (M) instead of the specific one
~(T*) (see Section 10 for the definition of ~(M)) .

We conclude this chapter with some general definitions concerning transforma-
tions of regular systems.

2.9. Definitions: transformations of regular systems

By an equivalence of regular systems we mean an equivalence relation on the set
of regular systems such that any two equivalent systems have the same set of
unknowns. Examples of equivalences are ~ and ~ ~.

By a transformation we mean a binary relation • on the set of regular systems
which is semi-decidable, i.e., such that the set of pairs of systems (S, S') such that
S~'S' is recursively enumerable. Typical examples are unf (the classical transformation
by unfolding, see Definition 4.1) and rewr~ (consisting in transforming the right-hand
sides of a regular system by rewritings associated with ~, see Definition 4.1).

18 B. Courcelle

Let *l be an equivalence of regular systems. A transformation r is *l-correct i f

r c_ *l, i.e., if S*lS' whenever S'rS'. A set of transformations 3- is *l-correct if its

elements are B-correct. It is *l-complete if *l -- 3.*, i.e., if it is *l-correct and if, for

S, S' such that S*IS', one has $3.*S', i.e., S = S' or SroS~zl • • • SkrkS' for some k t> 0,

some systems $ 1 , . . . , Sk, and some Zo, . . . , ~'k in 3..

If 3- and 3.' are two sets of transformations, we say that 3- is strictly less powerful
than 3: (respectively has the same power as 3-') if 3-* ___ 3-'* (respectively if 3"* = 3.'*).

In the next sections we shall characterize the equivalences ~ and ~ and try

to find sets of transformations which are correct and complete w.r.t, them.

Our completeness results will be obtained by the definition of a mapping S ~ S, 7

(where 77 is some equivalence) such that

(1) SBS, ,
(2) S*lS' if and only if S, 7 = S'

(3) S ~ * S , .
We summarize conditions (1) and (2) by saying that S T is *l-canonical. (Actually

this notion refers to the mapping S~-~Sn.)

2.1. Proposition. Let *l be an equivalence of systems and 3- be a set of ,1-correct
transformations such that ¢-1 ~ 3-* for each r in 3-. I f S T is *l-canonical and $3-*S,
for all S, then 3- is *l-complete.

Proof. If S*lS', then S T = S~ and Sz1~2 rkS~¢[-1 ,-1,,, Zl ~ for some r l , . . . , ~ ' k ,

r ~ , . . . , ~ in 3-. This easily yields $3.*S'. []

Remark. The renaming of unknowns of regular systems introduced in Section 2.5

is also a transformation, but is not ,/-correct since it modifies the sets of unknowns

(see the end of Section 2.5).

3. Comparing regular systems with respect to their full sets of solutions

In this section we characterize the relation ~ g and we obtain a transformation

which is ~- g-complete. Other transformations will be investigated in the next section.

This characterization will deal with rewriting systems associated with S.

3.1. Definition. Let S be a regular system and ~ be a set of equations, ~ _

M(F, X) x M(F, X). Let U = Unk(S) (with X n U = 0). We shall also denote by S
the ground rewriting system {(ui, ti)l 1 <~ i <~ n} on M (F u U). Note that the elements
of U are considered as constants and not as variables, as are those of X. Note that

S is left-irreducible.

We shall also use the ground systems S -1= {(ti, ui)[1 ~< i~< n} and R(S) defined

as S -1 minus the pairs (u, u) for u in U.

Equivalences and transformations of regular systems 19

We denote by ~-'>s the relation -->s,.,s-~ on M (F u U), by -'> s,~ the relation -->s u ~--> ~,
and by ~-->s,~ the relation *-->s u ~-->~. (Note that the pairs of ~ use variables from
the set X (where X n U = 0) hence, *->~ is not a ground rewriting relation.)

3.2. Theorem. Let S and S' be two regular systems over F having the same set of
unknowns U:

(1) for t, t' in M(F, U), t ~s.~ t' i f and only if t <-->*s,~ t'.
r

(2) S ~ S if and only if u <-->*s,~ t' for every equation u = t' of S'.

Proof. (1) For every F-magma M, for every m = (m ~ , . . . , m,,) in M n, let M (m) be

the (F u U) -m ag ma (M, (f) s ~ , (mi),,,~u). It is clear that m is a solution of S in M
iff M(m) satisfies S considered as a set of ground equations. Hence, t ~s,~ t' iff
S w ~' ~ t = t'. The result follows from Lemma 1.4.

For later reference, let us mention that the main step of the proof consists in the
construction of M(F, U) /o* .~ which belongs to °V(~) and where S has a solution.
See [6] for a more general use of this construction.

Part (2) follows from part (1) and fact (2.3.1) of Section 2.3. []

These characterizations raise questions of decidability when ~ is finite. We answer
them in the following proposition.

3.3. Proposition. (1) The properties t = s t', S < S', S -~ S' are decidable.
(2) The properties t ~s,~ t', S <<.~ S', S ~ S' are undecidable in general (even if ~g

has a decidable word problem).

Proof . (1) By Lemma 1.1, t <-->* t' iff t ->* s and t' -->* s for some s. By classical
techniques [16, 17, 50] one can construct a finite-state tree automaton recognizing
the tree-language L(S, t)= {w ~ M(F, U) l t -> *s w} and similarly for L(S, t'). Hence,
one can test whether L(S, t) c~ L(S, t') ~ ~, i.e., whether t ~--~* t'. The decidability of
S < S' and S ~ S' follows from Theorem 3.2(2). Another proof that S ~- S' is decidable
will be given below (Proposition 4.13).

(2) Let F consist of one binary function symbol " . " (for which infix no ta t ion
will be used), together with constants. Let ~ consist of the single equation expressing
t h a t . is associative. It follows that M(F, U)/<-->* is the free semigroup generated
by Fou U.

The problem of deciding whether t <--> s*,~ t' for a regular system S and two elements
t and t' of M(F, U) is exactly the word problem for a Thue system (on a free
semigroup X +) defined by a finite set of the form {(x, mx) l xe Y}, where Y c _ X
and mx ~ X + for all x in Y (the set U corresponds to Y, the set Fo to X - Y, the
function " . " to the concatenation of words). And this special case of the word
problem for Thue systems has been shown undecidable by Book [15]. Hence, t ~s.~- t'
is undecidable in general.

The last undecidability results follow from Lemma 3.4 below. []

20 B. Courcelle

Our main interest is the investigation of the relations =~r and ~e~. The relations

t =s, ert' and t ~s,~r t' are technical tools to help in this study (see Section 2.3) and

the following lemma shows that, vice versa, =s,e~ can be characterized in terms of
=~r (or ~e~) and similarly for ~s.~.

3.4. Lemma. Let S be a regular system over F, let t, t' s M (F , Unk(S)), and ~rc_ °F.

Let u and u' be new unknowns, not in Unk(S). Let S' = S w (u = t, u' = t) and S" = S w

(u = t , u ' = t ') .

(1) Then t ~-s,e~t' i f f S ' <~rS" iff S ' - ~ - S " .

(2) I f furthermore, J-c_ OF,,, then t ~ s,e~ t' i f f S' <<.e~S" iff S' ~e~S".

Proof. (1) Let us assume that t =s,e~ t'. Let m be a solution of S' in M for some M

in ft. Its restriction to Unk(S) defines a solution of S, hence, tM(m)= t ~ (m) and

m is also a solution of S". Similarly, any solution of S" in M is a solution of S'.

Hence, S' ~ ~r S" and S' ~ ~- S".

Conversely, if S' ~ e~ S", then any solution of S in M extends into a solution of

S' which is also a solution of S" hence, such that try(m) -- t~ (m) . Hence, t -s,~- t .

Part (2) is proven with a similar argument. []

Proposition 3.3 leaves open the problem of finding conditions on ~ * (or on ~)

insuring that the word problem for S u ~ is decidable (either for some given S or
for all possible ones). Lemma 1.9 with S' = S, R = ~ u ~-1 may help to find such

conditions.

We now derive from Theorem 3.2 the definition of an = ~-complete transformation.

3.5. Definition. Let eq~ be the semidecidable relation on regular systems defined

as follows for S and S', respectively of the form (ui = h ; i s In]) and (u~ = t[; i s [hi):

S eq~ S' iff for all i in [n], ti ~-'>s*.¢ t[and ti ~->*,,~ t'i.

Note that this condit ion corresponds to saying that S u ~ and S ' u ~ generate

the same congruence on M (F , U) (see Example 4.15). And Lemma 1.9 simplifies

the expression of eqg if ~ is linear.

Part (2) of Theorem 3.2 immediately yields the following corollary.

3.6. Corollary. (1) S ~ ~ S' i f f S eq~ S'.

(2) {eq~} is ~-~-complete.

Although having eq~ is better than nothing, we are not fully satisfied with it since
it does not produce a sequence S 1 , . . . , S k of systems such that
S ~ g S l "~gS2~'~g ° ' " ~ g S k ~ g S t, where each step S->S1, S~->S2, etc. can be
considered as 'elementary'. In other words eq~ is too global.

Equivalences and transformations of regular systems 21

We shall try to find other transformation rules, based on the processes of folding,
unfolding and rewriting modulo ~. Such transformations are commonly used in
manipulations of recursive programs [19, 25, 63] and of context-free grammars (see
Section 17). Hence, we think it to be important to study them at a theoretical level,
in particular because they are not always correct (see [25, 63, 64]), so that they must
be used with some caution.

3.7. Remark. The reader may ask what is the relation between t ~s,~ t' and t "--s.M t'
for some fixed M in °V(~), say, for instance, M = M(F, X)/~-->*. Actually, the former
implies the latter but not conversely. Take for example S = (u =fu) , t = u, t '= a
(where a is any constant), ~ = ~J. Then, t =s,~ t' since S has no solution in M(F, X).

The reason is that when there exists a homomorphism h : M--> M', the image under
h of a solution of S in M is a solution of S in M', but S may have other solutions
in M'. Hence, t =s.M t' does not imply t =s.M,t'. This fact has also been noted by

Nelson [75].

4. Transformations by folding, unfolding and rewriting

Transformations of recursive programs by unfolding, folding and use of equations
expressing the algebraic properties of the considered interpretations have been used
by Burstall and Darlington [19]. But these transformations are not always correct,
i.e., the program obtained is not always equivalent to the original one. Hence, after
having used such a transformation, one must prove the equivalence of the program
thus obtained with the original one.

Alternatively, syntactical restrictions insuring the correctness can be defined
[25, 63, 64]. We shall apply these transformations to regular systems and define
syntactical restrictions insuring their ~ ~-correctness. A completeness result will be
proved when ~ = 0 by means of the transformation of an arbitrary system into a

~-canonical equivalent one.

4.1. Definition. Let S and ~ be as in Definition 3.1 and let S ' = (u ~ = t l ; l ~ < i ~ < n).
We introduce the following transformations (see Section 2.9 on system transforma-
tions in general):

S unf S'

S fld S'

S ufld S'

iff for all i in In], ti->3 t[

iff for all i in In], ti -->*-1 t[

iff for all i in [n], t~ *->* t[

S rewr~ S' iff for all i in In], ti ~->* t~

(unfolding),

(folding),

(folding-unfolding),

(use o f equational laws).

Finally, the use of laws can be mixed with unf, lid, ufld, in the following transforma-
tions:

Sunf~S ' iff for all i in [n], ti "->*,~ t[,

22 B. Courcelle

and similarly for lid¢ and ulid,. Note that r ewr ,_ unf~_ ulid~ and that rewr~
fld~ ~ ufld~.

4.2. Example. Let S = (u = f u) , S ' = (u = f f u) , and S " = (u = u) .

S unf S' and that S fld S".
These examples show that un f - lg fld and that lid-1 ~ unf.

It is clear that

4.3. Proposition. (1) The transformation unf , is transitive.

(2) unf , = unf. rewr~ i f ~ is linear.

(3) The'classes {unf, rewr~} and {unf~} have the same power i f ~ is linear.

Proof. (1) If S unf~ S' unf~ S" with S '= (u, = t; ; i ~ [n]) and S" = (u, = t'[; i e [n]),
then t~ -->*,¢ t[-->*,~ t," for all i= 1 , . . . , n. Since ui -->*~ t~, -> s, - --> *, ~ hence,
t~ --> s,¢ ti. This shows that S unf~ S".

Part (2) is an immediate consequence of Lemma 1.7.
Part (3) follows from parts (1) and (2). []

The following example shows that the results of Proposition 4.3 do not hold
for fld~.

4.4. Example. We first show that lid is not transitive by considering

S1 = (u = f f u , V = gfw, w =fu) ,

$2 = (u = fw, v = gfw, w = fu),

= (u = fw, v = w = fu).

Hence, $1 lid $2 fld $3, but S~ lid $3 does not hold.
Let now ~ = { fx = g fx} and S = (u =fu) . Let S ' = (u = gu) so that S lid¢ S' since

f u ~->~ g fu s*- gu. It is easy to verify that S y S ' does not hold for any 3' in {lid, rewr,}*.
Hence, fld~ ~ {lid, rewr~}* and {fld~} is strictly more powerful than {lid, rewr~}.

4.5. Proposition. The transformation ufld, is transitive.

The proof is similar to that of Proposition 4.3(1).
Next, we examine the ~¢-correctness of these transformations.

4.6. Proposition. (1) I f S ufld~ S', then S < z S'.

(2) I f S rewr~ S', then S ~- ~ S'.

Proof. (1) Let M ~ T'(~) , let m = (m l , . . . , m.) e SOlM(S). Since t~ *->*,z ti, t~M(m) =
tiM(m) = mi, hence, m is a solution of S' in M.

(2) As for (1), but since S rewr, S' implies S' rewr, S, one also has S' <~ S, hence,
S ~ S ' . []

Equivalences and transformations of regular systems 23

Example 4.2 shows that the inequality of Proposition 4.6(1) may be strict since
neither S -- S' nor S ~ S" hold (this follows from Theorem 3.2).

We now define restrictions of the transformations unf~, fld,, and ufid~ which are
--,-correct. The main idea is to restrict ufld, into rufld, in such a way that

S rufld~ S' implies S' rufld~ S

and this guarantees that S' ~ S as in the proof of Proposition 4.6(2).

4.7. Definition. Let S, S' and ~ be as in Definition 4.1. Let T be a nonempty subset
of [n] (the set of indices of the unknowns of S and S') such that T # [n]. We write
S runf~ T) S' if, for all i in [n], the following holds:

(1) if i e T, then t~= t~;
(2) if i~ T, then t,-->*rr., tl where SI T---{(uj, t j) l j s T}.

In words, this means that S unf, S' with the restriction that only the equations
of rank j, j ~ T, can be transformed and this by means of ~ and the remaining
equations (i.e., those with rank in T).

Similar definitions are given for rfld(~ T) and rufld(~ T) with -'>Srr-'.* and <-'>str.,

instead of ->st T,*-
It is also convenient to write S rewr(~ T) S' if S rewr, S' with t[= ti for all i in T.

Hence, rewr~ r) c unf~ T), fld~ T), ufld~ r).

In some cases and especially in examples, the elements of U = Unk(S) have no
indices (i.e., U n k (S) = {u, v, w}) and we shall use for T subsets of U instead of
subsets of [Card(U)] , in an obvious way.

Finally, we let

S runf, S' if S runf~ r) S',

S d i d , S' if S didST) S',

S rufld~ S' if S rufid~ r) S'

for some T, and these transformations are called restricted unfolding, restricted folding,
and restricted folding- unfolding, respectively.

4.8. Proposition
(1) runf~ T) = did ~r) -1;
(2) runf~ T) = runf <T).rewr~ T) i f ~ is linear;
(3) rfld~ 7")= rewr~T).l'fld (T) i f ~g is linear;
(4) rufld~ r) = runf~ T) . rewr~T> . rfld (T> i f ~g is linear;
(5) runf~ T), rfld~ T), and rufld~ T) are transitive and rufid~ r) is symmetric.

Proof. (1) Let S runf~ r) S'. Then, S r T = S ' I T, hence, t, ->*tT t[iff t[->*'tr-' ti (for
i~ T).

24 B. Courcelle

(2) Let S runf~ r) S'. We look for S" such that S runf ~r) S" rewr~ r) S'. If t, "-> srr,~ ti,
then ti-->*rTt'fe->*t[by Lemma 1,7. Hence, the result follows with S"=
(ui t~ l<~i~<n) and " - " = "; t ~ - t ~ i f i ~ T , t~ as above i f i ~ T .

Part (3) follows from parts (1) and (2) and the fact that rewr~ r) is symmetric.
Part (4) is proved as part (2), by using Lemma 1.9.
Part (5) is proved by simple verification. []

Remark that runf~, rfld~, rufldr are not transitive and that rufld~ is symmetric.
We now establish the ~ - c o r r e c t n e s s of these transformations.

4.9. Proposition. If S rufld~ S', then S ~ S'.

Proof. By Proposition 4.6(1) and since rufld~ is symmetric, S ~ S' and S' ~ S.

Hence, S =~ S'. []

In other words, rewr~ and rufld~ are ~ - c o r r e c t , whereas ufld~ is not.
We now prove the =-completeness of {rufld}.

4.10. Theorem. Let S and S' be two regular systems. Then S ~ S' iff S rufld* S'.

We shall prove this by defining a =-canonical system S~ associated with S such
that S rufld* S=. The result will follow from Proposition 2.1. Some technical

definitions are needed.

4.11. Definition. Let us fix a linear order ~< on the set Unk(S) which is not necessarily
the same as the one of 91 (see Section 2.1). We extend it to a partial order on

M(F, U) by the following recursive definition:

t<~ t'

iff either t, t '~ U and t <~ t' (w.r.t. the given order on Unk(S)) ,
or t ~ U, t '~ U,
or t = f (t l , . . . , tn), t ' = f (t ~ , . . . , t ') and ti<<-t[for i = l , . . . , n.

4.12. Proposition. Let S be a regular system and <~ be a linear order on Unk(S).
There exists a unique regular system S_-_ such that S -~ S~ and R (S~_) is <~ -compatible
and left-irreducible. Hence, S___ is ~--canonical

Proof. We shall use some technical results proved in Appendix A.
Given S let ~ be the congruence *-~'s* on M (F u U). It is F-coherent and

F-simplifiable by Proposition A.2. The regular system S , of Proposition A.7 is the
unique one such that R(S. .) is left-irreducible, is ~<-compatible, and generates -
(i.e., such that S ~ S,.). Hence, we let S~ = S.~.

Equivalences and transformations o f regular systems 25

Since S= is defined from ~ * , S" = S~_ if S' is another system such that ~ * and
~* , are the same, i.e., such that S ' ~ S . Hence, S= is -~-canonical. []

The last assertion of Proposition A.7 shows that if one uses another linear order

on Unk(S), say <~', the corresponding system S" associated with S and <~' is just

a renaming of S,. and hence, that the dependence of this construction upon ~< is

inessential.

Hence, from now on and for the sake of simplicity, we shall take for <~ the
restriction to Unk(S) of the order of q/, i.e., u; <~ uj iff i ~<j.

4.13. Proposition. L e t S be a regular sys tem. O n e can e f fect ively construct a s e q u e n c e

o f s y s t e m s $ 1 , . . . , S,,, such tha t

S rufld $1 rufld $2" • •Sm rufld S=.

Hence , the ~ - e q u i v a l e n c e o f regular s y s t e m s is decidable.

Proof. Firs t part . Let S = (ui = ti;1 <~ i ~< n). Note that R (S) is ~<-compatible iff, for

all l, j in [n], tl = u j ~ j >1 1 iff d (S) = 0, where d (S) is the sum of the numbers l - j

such that 1 <~j < l ~< n and h -- uj. If d (S) = 0, then there is nothing to do. Otherwise,

we shall construct a sequence of systems S1, S 2 , . . . , S k such that

S rufld* $1 rufld* $2" • • mild* Sk, d (S) > d (&) >" • " > d (S k) = 0 (whence R (S k) is
~<-compatible). Let j and l be such that 1 <~j < l <~ n, h = uj, j is minimal such that

there exists such an I.

We first assume that tj # uj.

Let S' and S" be the two systems with set of unknowns U and right-hand sides

t'i, t~:, 1 <~ i <~ n such that

t ~ = t ~ = t i f o r i # j , i # l ,

! P! II
= = = t 1 -- tj ut, tj tj, t~ tj.

It follows that

S runf O) S" rfld <° S',

where we write (j) for ({j}). This corresponds to the transformations of (. . . , uy =

tj, . . . , ul = uj, . . .) into (. . . , u j = tj, . . . , u t = tj, . . .) and then into (. . . , u j =

u t , . . . , u~ = t j , . . .) by a restricted unfolding followed by a restricted folding. Note
that S" = S ' when tj = ut.

We show that d (S ') < d (S) . This is clear if tj e~ U. Otherwise, let tj = u,,,. By our

choice of j, we only have to consider the two cases m i> l and l > m > j for which
we have, respectively

d (S ') = d (S) - (l - j) ,

d (S ') = d (S) - (l - j) + l - m = d (S) + j - m,

so that d (S ') < d (S) .

26 B. Courcelle

If tj = uj, then we use the transformations

S rfld <° S" runf <J) S'

so that S = (. . . , u s = u s , . . . , u l= us,...} becomes S"=(. . . , u s = Ul,.. . , ul= us,...)
and then becomes S '=(. . . , u j=u~, . . . , u t=u~, . . .) . It is clear that d(S')=
d (S) - (l - j) < d (S) .

In both cases, S rufld 2 S' and d(S') < d(S). Hence, this t ransformation of S into
S' can be repeated finitely many times in order to yield Sk such that R(Sk) is

~<-compatible.
Second,part. We now have to construct a sequence of systems giving Sk rufld* S=.

In order to simplify the notations we identify Sk and S for the subsequent steps.

If R(S) is left-irreducible, there is nothing to do. Otherwise, there exists l and

j # I in [n] such that tj is a subterm of h.

There are two cases. In the first case, tj # h (i.e., b is a proper subterm of h). We

let t be the result of the substitution of u s for some occurrence of t~ in h (i.e.,

h-->R<s) t). Letting S ' = (u i = t[;l<<-i<~n) with t[= t and t'i = ti for i S l, we have
S rtid <j) S'. It is clear that R(S') is still compatible with ~<. Furthermore t < h, so
that (t~ , . . . , t~) < (t l , . . . , t,,) (< is the componentwise extension o f < to M(F, U)n).

Let us now assume that tj = h. Without loss of generality, we can assume that

j < I. We let S ' = (u~ = t~; 1 ~< i ~< n) be such that t~ = ut, t~ = ti for i ~ j .

Hence, S rild (1) S', R(S') is compatible with ~< since R(S) is so and t~ < tj, hence,

(t ~ , . . . , t ' n) < (l a , . . . , t n) .
Hence, this t ransformation of S into S' can be repeated finitely many times,

yielding a system S~ such that R(S'k) is compatible with ~< and left-irreducible.

Since we have only used restricted foldings and unfoldings, S~, = S. By Proposition

4.12, S~ = S~_. Hence, we have shown how to construct a sequence of transformations

giving S rufld* S=. []

Theorem 4.10 is then an immediate consequence of Propositions 2.11 and 4.13

and the fact that mild is symmetric.
We now illustrate Proposition 4.13 with an example.

4.14. Example. The given system S and its successive modifications are displayed

in Table 1. The equations of a system that are not written are the same as in the

preceding one. The star * indicates the equation that is used to transform the system.
The system R(S4) is ~<-compatible and is obtained by

S rnnf (1) S1 rtld (4) S~ run[~3) 52 runf (5) S~ rlld (7) S 3 r u n f (6) $4 rfld (7) S 4.

The subsequent transformations eliminate the critical pairs in R(S4) (between
rules 1 and 2, and 5 and 6) by

$4 rfld (~) $5 rlid (7) $6 rtid (5) $7 rltd (6) $8.

All cases of the construction of Proposition 4.13 have been used in this example.

Equivalences and transformations of regular systems

Tab le 1.

27

s s~ s~ s~ s~ s~ s~

U 1 = U 3

u2=f(ul, U3)

~3 = Ul

~4 = U3

U 5 : U 6

U 6 = f (u l , u l)

~7 = U5

U 3 ~ U 3 U 3 ~ U 4 *

U 4 ~ U 4

U 7 = U 6

U 5 = U 7

U 7 = f (u l , Ul) *

& S5 $6 S7 Ss

U 1 = U 3 * U l = U 3

U 2 =f(ut , u3) u2 =f (u l , u 1) U2 = U 7 U 2 = U 5 U 2 = U 5

I,l 3 = U 4 U 3 = /d 4

U 4 = U 4 Id 4 ~ U 4

U 5 : U 7 * US = U 6

U 6 = U 7 * U6 = U 7

U7 = f (u l , U l) * U7 = f (u l , u l)

A natural question is then whether Theorem 4.10 extends to =~ and rufld~, i.e.,

whether {rufld~} is =~-complete. The answer is no, as shown by the following

example.

4.15. Example. Let S = (u = gu, v =f(u, v)) and S ' = (u = gu, v = h(u, v)). Let ~ =

{f(gx, y) = h(x, f(x, y)), h(gx, y) =f(x, h(x, y))}. It is easy to verify that S eq~ S':

f (u , v) 7 f(gu, v) -~ h(u,f(u, v)) "~-1 h(u, v)

and similarly f (u, v) ~--> "~,, ~ h (u, v).
We claim that S m i l d * S ' does not hold. Let us assume that

S r u H d ~ f S 1 ruHd~ $2" • • Sk and consider the step S rufld~ $1.

Since the first equation of S can be modified neither by ~, nor by the second one

nor by itself, it remains unchanged in $1. The same argument applies to $1, $2, etc.

so that our initial assumption implies that f(u, v)~--~*~R h(u, v), where R is the

(ground) rewriting system {u ~ gu}. In order to prove that this is impossible let us
consider the least subset M of M(F, U) such that

(1) f(gnu, v) ~ M for all n ~ 0 ,

(2) f(g"u, t), h(gnu, t) ~ M for all t in M and all n I> 0.

It is easy to verify that f (u , v)~M, h(u, v)~M, and t ' ~ M whenever t ~ M and
t I . t ~'~*uR Whence the result.

28 B. Courcelle

This example leaves the following open problem.

4.16. Problem. Find conditions on ~ insuring that {rufld~} is ~ - c o m p l e t e .

It is easy to verify (by an adaptat ion of the proof of Theorem 4.10) that equations
of the form f (x , y) =f(y, x) expressing the commutativity of binary operators satisfy
the completeness requirement of Problem 4.16. But the general situation remains
to be investigated.

We conclude this section with a technical result, that we include for the sake of
completeness.

4.17. Definition. Let S be a regular system and U = Unk(S). We define an increasing
sequence Uo ~ U1 c_c_. • • ~_ U~ ~ . • • _ U by letting

Uo=O, U,+,=U,u{ujcUltjeM(F, U,)}.

The system S is recursion-free if U = [.3 { Ui]i >i 0}. It is trivial if U = U1, i.e., if
the unknowns do not occur in the right-hand sides of the equations.

4.18. Proposition. (1) Let S be a regular system. The following properties
equivalent:

(i) S is recursion-free,
(ii) S runf* S for some trivial system S,

(iii) S unf S for some trivial system S,
(iv) S has at most one solution in every F-magma,
(v) S has one and only one solution in every F-magma.

The system S of (ii) and (iii) is uniquely defined.
(2) I f S is a Greibach system, these properties are equivalent to:
(vi) S has at least one solution in every F-magma.

are

Proof. (i) ~ (i i) : Let S be recursion-free but not trivial. Let h(S) = Card(U - U~)
so that h(S) > 0; hence, in particular, Card(U2) > 0.

Let S'=(u~= t'i;l<~ i ~ < n) be the system such that t [= t~ if u~e U~ and t~=
t~[tj/uj ; uj e U1] if ui ~ U1. Hence, S runf (u0 S' and h(S') = h(S) -Ca rd (U2) < h(S).
Note also that S' is recursion-free. This step can be iterated until one obtains a
trivial system S and one has S runf* S.

(i i)~ (i i i) : By Proposition 4.3(1) and Definition 4.7, this easily follows.
(i i i)~ (iv) : It is clear that S has at most one solution in any F-magma M. Hence,

the same holds for S since Solm(S)__ Solm(S) (by Proposition 4.6(1)).
The unicity of S follows since if S = (u~ = ~; 1 ~<i~ < n), the n-tuple (t l , . • . , t,,) is

the solution of S (and of S) in M(F).
(i v) ~ (i) : I f S is not recursion-free, one can define an F-magma M with domain

{a, b, b'} and two distinct solutions of S in M. One lets m = (m l , . . •, m,) with mi = a

Equivalences and transformations of regular systems 29

if u~ ~ U' = [._J { Uj IJ ~> 0} and mi = b if ui ~ U', and one defines m' similarly with b'
instead of b.

For defining M it suffices to take:

(~ i f k = 0 o r d l = d 2 dk=a,
fM(d l , . . . , dk) = if d i= b for some i= 1 , . . . , k,

b' if d~ = b' for some i and dj ~ {a, b'} for all j # i.

(v) ~ (iv): This implication is trivial.
(i i)~(v) : This follows from Proposition 4.9 and the fact that S has one and only

one solution.
(2) Let S be a Greibach system.
(v) ~ (vi): This implication is trivial.
(v i)~(i) : If S is not recursion-free, there exists a rewriting sequence u~ - ~ t for

some u~ in U, some t in F(M(F, U)) having at least one occurrence of u~. Hence,
u~ =s t. Hence, S cannot have any solution (m~, . . . , m,) in M(F) since one would
have for such a solution Imil =]t[mz/ul , . . . , m,/u~]l>lm, I. Hence, (vi) does not
hold. []

This result should not have surprised anybody accustomed to manipulating
context-free grammars and recursive program schemes. Its present formulation
includes in particular [75, Proposition 1].

5. Comparing regular systems with respect to their least solutions

We now consider the relations t -s .~ t', S ~<z S', S ~ S' by which systems can
be compared with respect to their least solutions in all to-complete F-magmas
satisfying some set ~ of equations.

5.1. Definition. Let S be a regular system (of the general form of Section 2.1). For
every to-complete F-magma M, this system has a least solution (m~, m2, . . . , mn)
in M', denoted by /z-SOIM(S) and characterized as Supi~0 i SM(-I-M) (see Section
2.2). In the F-magma M~(F) , this least solution is an n-tuple of trees, T(S)=
(T(S, Ul) , . . . , T(S, un)). These trees are regular, i.e., they only have finitely many
distinct subtrees. See for instance [26] for a systematic study of regular trees.

Since M ~ (F) is the initial to-complete F-magma [54], there exists for any to-
complete F-magma M a unique to-continuous homomorphism hM: M~(F)--> M.
(The notation tM will also be used for hM(t).)

5.2. Proposition. For every regular system S as
F-magma M, /z-SOIM(S) = hM(/~-Sol~c~a(~)(S)),
u,)) , . . . , hM(T(S, un))).

above, for every to-complete
i.e., I~-SolM(S)=(hM(T(S,

30 B. Courcelle

This proposition is just a special case of the following one, proved (as Lemma
5.3) in a slightly less general situation in [73] (see also Section 16.3).

5.3. Lemma. Let S be a regular system over F. Let M and M' be two o~-complete
F-magmas and h :M-> M' a homomorphism of to-complete F-magmas such that
h(±M) = ZM'. Then, /~-SolM,(S) = h(/x-SOIM(S)). Hence, t ~S,M t' implies

t ~S,M' t'.

Proof. It is easy to see that h(SM(X)) = SM,(h(x)) for all x in M" and since h (± M) =

_LM, ' h (S h (± ~ I)) i n = SM,(±M,) for all i. Hence, by the continuity of h,

/~ .SOIM,(S) i . =Sup(SM,(±M,))=Sup h (S h (± ~))

= h (S u p (S ~ (± ~))) = h(/~-SolM(S)).

The second assertion immediately follows. Note the difference with Remark
3.7. []

We can now state our characterizations of t - -s .~t ' and S < ~ S ' (whence of
S ~ S'), where S' denotes a regular system of the form (ui = t~; 1 ~< i ~ < n) and si
denotes T(S, ui) for all i= 1 , . . . , n. For t in M(F, { u l , . . . , un}), we denote by
T(S, t) the tree t [s~ /u~ , . . . , s J u ,] (it is infinite in general). The free to-complete
F-magma satisfying ~ is denoted by M~ (its definition is recalled in Lemma 1.5).

5A. Theorem. (1) For t, t' in M(F, U), t - s ,~ t' iff t ~'S,M, f i f f T(S, t) =-~ T(S, t').
(2) S < ~ S ' iff S <<,MfS' iff si =--~ T(S, t[) for all i= l , . . . , n.

Proof. (1) Let t c M(F , U), let M s ~V*'(~) and (m~, . . . , m,) be the least solution
of S in M. It follows from Proposition 5.2 that t M (m ~ , . . . , m ,) =
hM(t [s~ /u l , . . . , S,/U,]), where hM is the unique to-continuous homomorphism:
M~(F)-->M. Hence, by taking M = M ~ , one gets

t mS, M, t' if[hM,(t [s l , . . . , S,,]) = hM~(t '[sl , . . . , S,,])

iff t [s l , . . . , s.] - ~ t ' [s l , . . . , s.] (by Lemma 1.5).

It is clear that t ~s,~ t' implies t ~S.M, t' and the converse holds by the second
assertion of Lemma 5.3 since for every M in ~ ' (~) there exists an to-continuous
homomorphism: M~ -> M.

Part (2) immediately follows from part (1) and the definitions. []

5.5. Proposition. (1) The relations t ~ s t', S <~ S', and S ~ S' are decidable.
(2) The relations t "~ s,~ t', $ <~ $', and S ~ ~ S' are not semidecidable (hence, they

are undecidable).

E q u i v a l e n c e s a n d t r a n s f o r m a t i o n s o f regular s y s t e m s 31

"= t ' Proof. (1) If g =0, then ~ is just the equality in M ~ (F) and properties t - s
and S <~ S' are decidable since the equality of two regular trees is decidable [26, 30].

(2) The undecidabil i ty of t ~s.~ t' will be shown below (Proposition 13.8). The
cases S ~<~ S' and S ~ S' follow from this one by Lemma 3.4. []

Rather than on decidability questions, we shall concentrate our attention (in the
next section) on -~-correct transformations, and their possible -~-completeness.

Theorem 5.4(2) yields the following characterization:

S - ~ S ' itt 6[s l , . . . , s,] =-~t~[sl,..., sn] and
! t t i [s~ , . . . , s ' ,] -~t i [sb . . . , s',] for all i = 1 , . . . , n

(where (s~ , . . . , sn) = T(S) and (s~, . . . , s ') = T(S')) which is analogous to Corollary
3.6(1). But since t - ~ t' is not semidecidable in general (for regular trees t and t'),
this characterization cannot be considered as defining a transformation rule as eq~
did. Furthermore, Proposition 5.5(2) shows that there does not exist any recursively
enumerable set of transformations which is -~-comple te (for arbitrary finite sets
g), otherwise, - ~ would be semidecidable which is not the case.

We conclude this section with three technical results helping to establish some
facts like t ~s,~ t' or S ~ S'. The first one is the so-called Scott's Induction Principle
([34, 58]; some works (e.g. [68]) attribute it also to De Bakker and Scott [5]).

5.6. Definition (Scott's Induction Principle). Let S be a regular system, M ~ T T M and
(m , , . . . , ran) =/~-SolM(S). Let P(x , , . . . , x,) be an n-ary predicate on M. We do
not specify any logical calculus in which P is written; we only assume that, for all
x ~ , . . . , x, in M, P(x~, . . . , x,) is either true or false.

We say that P is to-continuous if, for every n-tuple (d~J), . . . , d~)) of increasing
sequences in M (i.e., d~J)<~d~ j') for all i~[n], all O<~j<-j'), it holds that if
P(d~), . . . , d~)) is true for all j >t 0, then P(d~,. . . , d,) is true, where d~ = Supj d~ j).

We say that P is S-inductive if the following conditions hold in M:

(1) P(-t-M,.. •, ±M),

(2)

Condition (2) is just a short writing for
(2') For all x~ , . . . , x , in M, if P(x~, . . . , x ,) is true, then so is

P (t l M (X 1 , . . . , X n) , . . . , tnM(Xl, . . . , X,)).

Scott's Induction Principle is based on the following proposition and consists in
establishing the validity of P(ml , . . . , m,,) by verifying that P is to-continuous and
S-inductive.

5.7. Proposition. I f P is to-continuous and S-inductive, then P(~-SOIM(S)) holds.

Proof. The hypothesis allows to prove by induction o n j that P(a~J) , . . . , a~)) holds
for all j t> 0, where (a ~) , . . . , a~)) = SJM(±M,.. . , ±M)-

Since mi = Supj(a~J)), the to-continuity of P shows that P(ml , . . . , m,) holds. []

32 B. Courcelle

Our second technical result will allow us to define a new ~ ~-correct transforma-
tion. (It uses the notations of Section 1.6.)

5.8. Proposition. Let ~ be a set of equations, let S =(ui = t~;1 <<-i<~ n) and S '=

(u~ = tl; 1 <~ i<~ n) be two regular systems, let q~ e M (F , Unk(S)) for all i in In]. For

all M in °F and m e M ~, let qM(m) = (qlM(m), • • •, q,M(m)).

(1) I f q i [t l / u l , . . . , t , / u ,] ~->* t~[q l /Ul , . . . , q,/u~] for all i in [n], then qM(m) e
SOIM(S') for all M in T'(~) and all m in SOIM(S).

Let us now assume that f l e F and that M e T"° (~).

(2) If, for all i, q i [t l / U l , . . . , t ~ / u ,] - ~ t ~ [q l / U l , . . . , q , / u ,] and q i [~ / u l , . . . ,
~ / u ,] <<o t [p[~ /u l , . .. , ~ / u ,] for some p >>- O, then qM(/~-SolM(S)) =/.t-SolM(S').

I t p In this proposition, t~°=ui and t ~ P + l = t i [t l / u l , . . . , t ~ / u ,] so that S ' p -

(u~ = t[p; i e [hi) is the pth iterate of S', (S'P)M = (S~) p and S~(_L~) is the so-called
Kleene-sequence of S' in M (see [56, 76]).

P r o o f o f Propos i t ion 5.8. Part (1) is easily verified from the hypotheses.

(2) From (1), we have qM(p-SOlM(S)) >//~-SOIM(S'). For the opposite inequality,
one can apply Scott's Induction Principle to the system S and the formula

qM(Xl, . . . , X,) <<-/z-SolM(S').

The verifications are easy. []

5.9. Remark. In Proposition 5.8(1), the inequality may be strict. Take for example:

S = (u = f u) , S ' = (u = h u) , M with domain M = { a , b}, and f M (a) = f M (b) = a ,

hM(a) = a, hM(b) = b. Then, M e °F(~), where ~ = { f f x = hfx}. Let now q =fu. Then,
q[fu] .->~ hq. The unique solution of S in M is a and qM(a) =fM(a) = a is also a
solution of S'. However, S' has another solution in M, namely b.

In case (2), the second hypothesis cannot be omitted. It suffices to take b = ~M
in the above example. Then the least solution of S is a. Hence, qM(p-SolM(S)) = a.

And, clearly, /~rSolM(S')= b.

5.10. Definition. Let us assume that the systems S and S' of Proposition 5.8 have
a common subset of equations S" = S I U" = S' [U" for some U" c_ U. Let U' =
U - U". In order to state in a simpler way the subsequent conditions, we assume
without loss of generality that U'= { U l , . . . , Uk} and that U"= {Uk+~,.. . , U,}. Hence,
t[= t~ for all i = k + 1, . . . , n. We also assume the following conditions for all i in [k]:

(1) t[e M(F , {ul, . . . , Uk}),

(2) t i [f l / u l , . . . , [l / u ,] <o t [p [f l / u l , . . . , fI/Uk] for some p>~O,
(3) t i [h / u l , . . . , t , / u ,] --~ t [[t l /U l , . . . , tk/Uk].

I f all these conditions hold, up to a renaming of the unknowns, we write S redef~ S'
and we say that S' is obtained by a redefinition of (certain unknowns of) S.

Equivalences and transformations of regular systems 33

Actually, the equations u~ = t~ for i = 1 , . . . , k are satisfied by the least solution of
S and are taken as new defining equations for u ~ , . . . , Uk in S'.

5.11. Remark. This transformations can be used with U" = t~. Consider, for example,

S = (u = D , v = f (v , O)) , S ' = (u = u , v = f (v , u)) .

Then conditions (1), (2), and (3) hold with U " = O (and ~ =t~). This fact will be
exploited in Proposition 5.16.

The following result is an easy corollary of Proposition 5.8.

5.12. Corollary. I f S redef~ S', then S ~ ~ S'.

Proof. We apply Proposition 5.8 with qi = t~ for i = 1 , . . . , n.
The condition q , [t l , . . . , t,,]---ift~[q~,..., qn] of Proposition 5.8(2) is trivially

satisfied if i = k+ 1 , . . . , n and it follows from condition (3) if i e [k].
Condition qi[D,. • •, f2] ~<o t~p[D,... , D] of Proposition 5.8(2) follows from con-

dition (2) and the definition of (q l , . . . , q~).
Hence, Proposition 5.8(2) yields, if (m l , . . . , m,)=/.t-SolM(S), (m~, . . . , m ') =

/,-SolM(S'),

qM(~-SOIM(S)) =/*-SolM(S'),

whence the result follows since qM(/-r-SolM(S))=/,-SOIM(S). []

5.13. Remark. Let redef~ be the transformation defined exactly as redefif with o *
instead of - ~ in Definition 5.10(3). Then, redef~_cufld~. To see this, note that
conditions (1) to (3) of Definition 5.10 (with o * instead of--if) imply the following:

S : (U 1 = t l , . • •, uk = tk, Uk = t k + l , . . .) ,

S ' = (Ul = t] , . . . , Uk = t'k, Uk = t k + l , . . .) ,

and, for all i in [k],

ti 2, t i [t J u l , . . . , t , / u n] ~-~ t ~ [h / u l , . . . , tk/Uk] *- t~.
s if s

Hence, S ufld, S' (but S rufld, S' does not hold). Note also that S redef, S' implies
S ufld,, S' where ~' is the restriction of = , to M a (F , X) .

Our third technical result concerns the powersingular unknowns of a regular
system. The proof of the following proposition is another example of the use of
Scott's Induction Principle.

Let us precise that F is a ranked alphabet which does not contain the special
constant/2. We denote by Fn the ranked alphabet F u {D}.

34 B. Courcelle

5.14. Proposition. Le t S be a regular sys tem over F a n d u ~ U = Unk(S). The f o l l o w i n g

properties are equivalent :

(1) u sO;

(2) u is powers ingu lar ;

(3) there is no t in F (M (F , U)) such that u -->* t.

Proof. (2) ~ (1) : Let M be an co-complete F-magma. Let P (x ~ , . . . , x ,) be the
following property

A'{x , = u, ~ Psing(S)}.

Since u~ s Psing(S) implies t~ e Psing(S), the property P is S-inductive. It is also
co-continuous, hence, true. Since it is true for all M, u~ u s /2 if u~ is powersingular.

(3) 0 (2) : This is proved by an easy argument.
(1)O(3) : Let t ~ F (M (F , U)) such that u ->s* t. Since u m s t, T (S , u) = T (S , t) e

F (M ~ (F)) . Hence, T (S , u) ~ ~ and u 7Cs I2. []

5.15. Definition. Let S be a regular system S over Fo. We denote by Unk° (S) the
set of unknowns u of Unk(S) such that u u s f2 and by Unk+(S) the set Unk(S) -

Unk°(S) .
The system S is ~ - r e d u c e d if, for all i in [n],

(1) t ,~ M (F a , Unk+--(S)),

(2) ti = O iff U i E Unk°(S) .

With any system S we can associate a system Red_(S) = (ui = t~; i 6 [n]) by letting

t~ = t , [O / u ; u ~ Unk°(S)] .

5.16. Proposition. S redef -~ Red_(S). Hence, Red_(S) u S a n d Red_(S) is - - r e d u c e d .

Proof. Let us verify conditions (1), (2), and (3) of Definition 5.10 with S for S',
Red_(S) for S, and U " = O (i.e., k = n). Condition (1) is trivially true, condition (2)

holds with p = 1.
For every s ~ M o (F , Unk(S)) , let g = s [l l / u ; u c Unk° (S)] . By using an induction

on the structure of s, one can prove that

s[t l / Ul, . . . , t~/ u ,] = s[t~/ ul , . . . , t~ / un]. (1)

If s ~ U n k ° (S) , then g = f 2 and s = u j with t~=£2, hence, (1) holds. If s~
U n k (S) - U n k ° (S) , then g = s , hence, (1) holds. The case s = f (s l , . . . , s , ,) , f ~ F a

easily follows by induction. This proves (1).
Then one proves condition (3) of Definition 5.10 by taking for s the terms h , • • •, t,

(so that ~=t~ for all i = 1 , . . . , n). []

Equivalences and transformations of regular systems 35

6. System transformations and ---equivalence

We already know several ~ ~-correct transformations of regular systems. We shall
define another one, eunf called the extended unfolding. We shall also prove that
unfg is - ~-correct.

Since the -~-equiva lence of regular systems is not semidecidable, there is no
hope to find any finite (or even recursively enumerable) set of transformations
(depending on ~) that would be ~ - c o m p l e t e . But we shall find one, namely
{eunf, eunf-1}, for the special case where ~' = 0 (recall that S - S ' is decidable).

The following proposition collects easy consequences of already proved results
(Propositions 4.6(1), 4.9, and 5.12).

6.1. Proposition. Let S, S' be two regular systems and let ~ be a set o f equations.

(1) I f S rufld~ S', then S' ~ ~ S.
(2) I f S ufld~ S', then S <~ S', i.e.,/~-SolM(S') ~< #-SoIM(S) for M in ofo,(~).
(3) I f S redefg S', then S' --- ~ S.

Here is the new transformation.

6.2. Definition. Let S be a regular system of the usual form and S ' =
(u~ = tl; 1 <~ i ~ n). Let I (S) be the ground rewriting system {(tj, uj) IJ ~ [n] and tj s U}.
We say that S' derives from S by extended unfolding if, for all i = 1 , . . . , n,

(2) PSing(S') __q PSing(S).

We denote this by S eunf S'.

By Lemma 1.8(2), condition ('1) is equivalent to

ui 7 t -----> ti for some t ~(s)

and yields two cases:

(1') t i-~ t ~ t[for some t,
l (s)

(1") ui ~ t~.

Case (1') means that in addition to the usual unfoldings one uses some foldings
associated with the non-Greibach equations. In case (1") one only uses these foldings.
Hence, deaf ly , S ennf S' implies S arid S'. But this does not guarantee that S - S'.
Hence, we have introduced ennf separately.

36 B. Courcelle

Condition (2) is necessary to guarantee that S'--- S. As a counterexample, consider

S = (u = v , v = w , w = g w) , S ' = (u = v , v = u , w = g w)

and note that condition (1) holds, but

Psing(S) = 0, Psing(S') = {u, v}

so that (by Proposition 5.14) S is not ~-equivalent to S'.

Finally, condition (1) implies Psing(S) _ Psing(S'), hence, Psing(S') = Psing(S)
if S eunf S'.

6.3. Proposition. (1) The t r a n s f o r m a t i o n eunf is ~-correct .

(2) The t r a n s f o r m a t i o n unf~ is - ~-correct.

Proof. (1) Let S = (u~ = t i , i ~ In]) and S ' = (u~ = t~; i ~ In]) be such that S eunf S'.
Then, S ufld S' and S ~ < S' by Proposition 6.1(2), i.e., if (m l , . . . , m n) =/z-SolM(S)

and (m ~ , . . . , m ') = I ~ - S o l M (S ') (for some to-complete F -magma M), then
m~ <~M m~ for all i = 1 , . . . , n.

In order to establish the opposite inequalities, we let P (X l , . . . , x ,) denote the
property defined by

(i) V i c [n] , V w ~ T/'xi <~M WM(m~,. • . , m') ,

where

{ * / T i = w ~ M (F , U) Iui s~ I (s) ' W

= { w ~ M (F , U) l u i ~ w'----~ w for some w' in M (F , U)} S X(S)

and U = (1 1 1 , . . . , l /n}.

We want to establish the validity of P (m l , . . . , m,) by Scott's Induction Principle
(see Definition 5.6). It is clear that P is o-continuous and that P(-I-M,.. . ,-I-M)
holds. We verify that condition (2) of Definition 5.6 holds. Let x l , . . . , x, e M satisfy
(i). We have to show that, for all i, all w in T~,

(ii) 6M(Xl , . . . , X ,) ~ M WM(m~, . . . , m ").

There are two cases:
,

C a s e 1" ui -->s ti --> s~x~s) w. This means that w e t i [o l T 1 / 1 1 1 , . . . , T , , / 1 1 n] " Since, by
(i), x s ~ M w h (m ~ , . . . , m ') for all w' in Tj, we have

6 M (X l , . . . , X ,) ~M tM(m~, . . . , m ' ,) ,

for all t in t i[oiT1/111,. . . , T n / u ,] , hence, in particular, for t = w. This establishes (ii).
C a s e 2: ui -->*¢s) w = u s. This means that us ->* ui. We must prove that

I ! ! (iii) t i M (X l , . . . , Xn) ~ M m j = t) M (m b . . . , m~) .

There are two subcases.

S u b c a s e 2.1: u~ and us belong to Ps ing(S ')=Psing(S) . Then m~=_LM, whence
x~ = .1_, for all ut in Psing(S'). Since 6 ~ Ps ing(S ')= Psing(S), (iii) holds.

Equivalences and transformations of regular systems 37

Subcase 2.2: u~ and uj do not belong to Psing(S'). This means that for some
j l , ' ' ' , J m in [n] one has

(iv) ttj = Ujl 7 tfil = Uj2 --->S' t~z = uj3 --~ " " s, (#"'

with t~m not in U. Hence,

u j = u j ,
*) *) t

s~t(s) ujm s~Hs) tim

and, by a previous remark,

u/7 t - - - - - , 1(s)

for some t, and t cannot be in U.
+ + !

Since uj -->* ui, one necessarily has u~ -'>s t, hence, ui -+Sul(S) tj=. The proof of
Case 1 gives

t iM(X1 , . . . , X,) <~M tjmM(m~,. . . , m ') .

From (iv) we have

! I ? ~ I I rnj = rnj2 rnjm - tjmM(m l , . . . , m ') ,

hence, (iii) is proved.
We have shown that P is S-inductive. Hence, P (m l , . . . , m ,) holds by Proposition

5.7. By taking w = ui in (i), one gets mi <~M m~ for all i.
(2) Letting S and S' be as in part (1), we now assume that S unfz S' and we

prove in a similar way that S' - = S.

We let M e T'°'(~g), (m l , . . . , mn)=p-SolM(S) and (m ~ , . . . , m ')=/~-SolM(S ') .
As in (1), the inequality /z-SoIM(S')~< ft-SOiM(S) is immediate. In order to obtain
the opposite inequality we consider the property Q (X l , . . . , x ,) defined as the
conjunction of Q ~ (x ~ , . . . , xn):

A {Xi<~tiM(Xl,. . ' ,Xn)l l<~i<~n}

and of QE(Xl , . . . , x,,):

A {xi <- w M (m l , . . . , m')l 1 <~ i <~ n, w e Ai},

where Ai = { u , } u { w l t , w}.
We shall prove by Scott 's Induction Principle that Q (m l , . . . , m ,) holds. It is

clear that Q is to-continuous and that Q(-I-~I) holds. We now verify condition (2)
of Definition 5.6.

Let x l , . . . , x~ e M and x[= t~M(X~,. . . , X,). We must prove that Q (x l , . . . , x ,)

implies Q (x l , . . . , x',). We first consider Q~"

= t M(x , . . . , x ,)

<~ t iM(Xl, . . . , X') (by Q~ and the monotonicity of tiM)

and this holds for all i in [n].

38 B. Courcelle

Next we prove that

(v) x : = . . . , w M (x , , . . . , x ,) ,

for all i, for all w such that ti --> ks~ W for some k. We use an induction on k. If
k - - I W p k = 0, then w = ti and the result holds trivially. Otherwise, let t/--> su~ "->s~ w.

t One can assume that x i < - w ~ (x ~ , . . . , x , ,) . If w ' ~ w , then w M (x ~ , . . . , x ,) =
w ~ (x l , . . . , x ,) . If w'-->s w, then w '= c[uj/y] and w = c[tJy] for some c in
M (F , { u l , . . . , u , ,y}) . Hence, by Q1, w ~ (x l , . . . , x ~) - - CM(Xl, . . . ,X, , ,Xj)<-

CM(Xl, . . . , X,, X~) = WM(Xl, . . . , X,). Whence the result follows.
We now establish Q2(x~ , . . . , x ') . Let w ~ A;.
First case: If 6 _ _ > k W, then

X i ".= W M (X l , . . . , X n)

<~ W M (m ~ , . . . , m ~)

Second case: If w = u~, then

x : . . . , x ,)

i I <~ t i r n (m ~ , . . . , m ')

?
= m i

= w M (m ~ , . . . , m ') .

(by property (v) above)

(by Q: and the monotonicity of WM).

(by the first case since 6 "->ku~ t~)

(since (m ~ , . . . , m ') is a solution of S')

Hence, Q (m l , . . . , mn) holds.
It follows that mi ~< m~ for all i in [n] (by letting w = ui in Q2). []

6A. Remarks and examples. (1) Let So = (u =fu) and S~ = (u = u). One has So fld St ,
but So is strictly smaller than S~ w.r.t. < since u "s~/2. This shows that fld is not
- - co r rec t (whereas unf is by Proposition 6.3).

(2) Consider now the two systems $2 = (u = g(v, w), v = f (v) , w = f (w)) and $3 =
(u = g(w, v), v = f (v) , w = v). It is clear that $3~ $2. Remark that $3 eunf $2 since

g(w, v)'~3 g(v, v)7~3) g(v, w), v " ~ f (v) ~ f (w) .

We now prove that rufld, unf, and nnf -~ are insufficient to derive $2 from $3, i.e.,
that the set of transformations {rafld, unf, unf -~} is not - -complete . Let c~ be the
set of all systems of the form (u = g (f " v , fmw), V =fP(v) , w = f q (w)) for n, m ~>0,
p, q 1> 1. It is easy to verify that all these systems are - -equivalent to S: and that
c¢ is the set of all systems S such that S2yS for some y in {mild, unf, unf-1} *. Our
claim is proved since $3 ~ c~.

This example shows that the extended unfolding adds power to the set
{rufld, unf, unf-1}.

(3) It would be natural to extend eunf into eunf~ by taking -**ui(s)u~ instead of
->*u1(s) in condition (1) of Definition 6.2. But this transformation is not -~-cor rec t

Equivalences and transformations of regular systems 39

since the rewri t ings which use ~ can destroy the effect o f condi t ion (2) o f Def in i t ion

6.2. It suffices to have in ~ the rule f x = x, and to cons ider S as in the coun te rexample

following Def ini t ion 6.2 and S"= (u = v, v =fu, w = gw). Then S ennf~ S", but

S" ~ S .
A rule like f x = x looks s tupid but a similar example could be built wi th the rule

x + x = x , which we shall use in Section 10.

We shall prove the ~ -comple t enes s of ~ = {eunf, eunf -~} for the class o f regular

systems over F (not over Fa, an extension to systems over Fn will be given

afterwards). We first construct for every system S over F a ~ -canon ica l system S~

and we shall prove that S_ eunf S.

6.5. Definition (m-canonical systems). Let S be a regular system and U n k (S) = U =

{ u l , . . . , un}. Let (s l , . . . , sn) be its least solut ion in M ~ (F) and T(S) = { s l , . . . , s,}.
Hence, k = C a r d (T (S)) <~ n. Let us enumerate T(S) as {si~,.. •, si k} with i l , . • . , / i ,

[n].
Let U ' = {u~ , , . . . , u~} and -= be the congruence relat ion ms on M(F , U ') , i.e. (by

Theorem 5.4), t--- t' iff t [s iJui~, . . . , s,~/u,~]= t '[s~, /u~, . . . , sl~/u~]. This con-

gruence is F -coheren t and F-s impli f iable (see Defini t ion A.1) and, fur thermore ,

u ~ u' for u, u' ~ U', u' # u.
Let S' be the regular system associated with = by Defini t ion A.6 and let S_ be

the system S' u {u~ = u s ; ui ~ U - U' , u s e U', si = ss}. Its set of unknowns is U. It is

clear that S_ is constructed f rom the set T(S), the mapping : U--> T(S) associa t ing

s~ with u~, and the sequence i ~ , . . . , ik. For an other sequence i ~ , . . . , i~ such tha t

T(S) = { s i l , . . . , s~,} one obta ins a different system S_ but this system is jus t a

renaming of the first one. In o rder to avoid this indeterminacy, we assume in the

sequel that i ~ , . . . , ik is such tha t s~ # s~j for all j = 1 , . . . , k, all i < / j .

The fo l lowing lemma is an ex tens ion of Lemma A.7. It shows that -->*s_u~(s_) p lays
* with respect to -- with respect to ms the same role as -->s.

6.6. Lemma. Let t e M(F, U) and l e [n] . I f t ms ul, then ut -->*_ui(s_) t.

Proof. We let S_ = {ui = t~; 1 <~ i <~ n).

Case 1: t ~ U, say t = u~. Then, st = s s. Let u,,, be the unique e lement o f U ' such

that s~ = sin. There are several subcases:

Subcase 1.1: l # m, j # m. Then t~ = u,,,, t~ = urn, hence, ut -->s_ t~ -->t~s_) us = t.

Subcase 1.2: l # m, j = m. Then t~ = Urn, hence, ut -->s_ t~ = u s = t.

Subcase 1.3: l = m , j # m. Then t~ = Urn, hence, ut = t~ -->1~s_) us = t.

Case 2: We now assume tha t t e F (M (F , U)) . Let t ' = t [u J u i ; u s e U ' ,
ui ~ U, s~ = ss] so that t' ~*cs_~ t by definit ion of S'.

Hence, it suffices to prove tha t t~ ~ * t'. But t~ = t'. Hence, t~ ~< t' by Def ini t ion

A.6. This fact fol lows then f rom L e m m a A.7 appl ied to the subsystem S' o f S_. []

40 B. CourceUe

6.7. Proposition. Let S be a regular system over F. Then S ~ S_ and S~ is ~-canonical.
Furthermore, S_ eunf S.

Proof. Since S_ is defined from T(S), i.e., the n-tuple of trees (s l , . . . , sn), the

systems S_ and ,~_ are equal if T(S) = T(S), i.e., if S - S, where S is another system

with the same unknowns as $. By Proposition 6.3, it suffices to prove that S_ eunf S

to establish that S_ - $. (We shall use the notations of the proof of Lemma 6.6.)

Let i s [n]. One has t i --S Ui, hence, Lemma 6.6 shows that U i ">~S_~;I<S_)l i . We
only have to verify that Ps ing(S)~ Psing(S_). If ui ~ Psing(S), then si =/2. Let m

be such that um ~ U' and Sm= 12. The equivalence class of u,n modulo -= is reduced
to u~. Hence, t " = u,,,. Furthermore, t~ = Urn. Hence, ui ~ Psing(S~).

Hence, we have shown that S_ eunf S. []

6.8. Theorem. The set of transformations {eunf, eunf -1} is --complete for the class
of regular systems over F.

Proof. The --correctness follows from Proposition 6.3.

Let S---S'. Then S_ = S ' , hence, S' eunf -~ S_ eunf S by Proposition 6.7. []

6.9. Corollary. rufld ~ eunf -~ . eunf.

It is clear that {eunf, eunf -~} is not - -comple te for regular systems over Fa. It

suffices to consider S = (u = u) and S' = (u = 12). They are --equivalent , but since

neither eunf nor eunf -~ can introduce 12 in any system over F to which they apply,

S' cannot be reached from S by them. Nevertheless, we have the following propo-

sition.

6.10. Proposition. The class {redef, redef -~, eunf, eunf -~} is --complete for regular
systems over Fa.

Proof. Let S and S' be --equivalent . Then $1 = Red_(S) and S~ = Red_(S') are also
--equivalent . Furthermore, $1 and S~ have no singular unknowns, and by Theorem

8.8 each of them has a unique solution in M°~(F). These solutions coincide with

the least ones, hence, are equal since S - S' and $1 - S, S~ - S'. This means t h a t / 2

can be considered as an ordinary constant in $1 and S~. More precisely, if a is any
new constant, then the systems $2 and S~ where a is substituted for 12 everywhere
in $1 and SI, are still - -equivalent . Hence, $2 eunf-~.eunf S~ by Theorem 6.8 and
$1 eunf -1 . eunf S~.

The result then follows from Proposit ion 5.16. []

Equivalences and transformations of regular systems 41

7. Subsystems and auxiliary unknowns

Many useful transformations of grammars and recursive program schemes involve
the introduction of auxiliary unknowns (i.e., nonterminals for grammars and pro-
cedure symbols for recursive program schemes) or the elimination of unknowns
and equations which are unnecessary (in some sense). The validation of such
transformations in terms of ~ , - or ~ -equ iva lence necessitates the comparison of
two systems with different sets of unknowns. In this direction we already know that
the renaming of unknowns can help (see Section 2.5), but further definitions are
necessary.

7.1. Definition. Let S be a regular system and let W be a nonempty subset of
Unk(S) ={ul, u 2 , . . . , u,}; we assume that W = { u i , , . . . , ui k} and that it is ordered
in this way according to the order on q/ (see Section 2.1). Let 7rw:Mn-> M k be
the mapping associating (mi , , . . . , m~k) with (m ~ , . . . , m,). Let S' be another system
such that W G Unk(S) n Unk(S') and let ~ be a class of F-magmas. We can compare
S and S' by letting

S =,,.wS' iff ,rw(SOiM(S)) = 1rw(SolM(S')) for all M in ~,

S ~ , w S ' iff 7rw(/z-SolM(S)) = ~rw(/~-SOlM(S')) for all M in

(where ~ _ oyo).

We replace ~ by M or ~, or omit it exactly as in Section 2.3.

Our purpose is to extend the results of Sections 3-6 to these equivalences.

7.2. Lemma. Let S' be a subsystem of S and U' =Unk(S').
(1) zru,(SolM(S)) ~ SOlM(S') for every F-magma M.
(2) 1rw(lz-SolM(S))= t~-Soli(S') for every ~o-complete

S ~ u , S ' .
F-magma M, i.e.,

Proof. Part (1) is clear. The inclusion may be strict since a solution of S' may have
no extension into a solution of S. One does not have S ~ u' S' in general.

Part (2) follows from the Least Fixpoint Theorem. []

Hence, if * is a set of equations, if S and S' are two regular systems such that
S redef~ S', and if S" is the subsystem S ' l U' of S' (where U' is as in Definition
5.10), then S" ~, .v ' S. One can consider the transformation of S into S" as a way
to eliminate from S the unknowns of U" (see Definition 5.10).

The possibly strict inclusion in Lemma 7.2(1) points out a difficulty with = , . w
and actually we shall only investigate a restriction of ~ , w , where W is such that
one has an equality.

We first consider ~ , . w for which things go more smoothly.

42 B. Courcelle

7.3. Definition. Let S be a regular system, U = Unk(S), W c U, and U ' = U - W.
Let F'= F w W. Then S t U' is a system over F ' .

Let us assume that W = { u i , , . . . , ui,} (enumerated in the order of 0//). For every
F-magma M and every sequence (d l , . . . , d~) in M t, one defines an F ' -magma
M ' = M (d , , . . . , dr) by letting M ' = M, fM,=fMfor f in F a n d UijM = dj for j = 1 , . . . , I.
With these notations we have the following lemma.

7.4. Lemma. l f M is to-complete, then/z-SolM,(S I U') = ~ru,(/z-SolM(S)), where M ' =
M(zrw(/z-SblM(S))).

This lemma means that if one replaces in a system S some unknowns by their
values (in the least solution), then the least solution of the system obtained in this
way yields for the remaining unknowns the same values as S. This fact is currently
used for proving properties of programs [34, 68, 82].

Proof of Lemma 7.4. Without loss of generality we can assume that U' = { u , , . . . , Uk}
and W={Uk+, , . . . ,U,} . Let (m, , . . . ,m,) - - - t z -SolM(S) and (m ~ , . . . , m ~) =
/z-SolM,(S'), where S ' = S t U'. It is clear that (m , , . . . , ink) is a solution of S' in
M', hence, (m~, . . . , m'k)<~(m~,... ,mk). In order to establish the opposite
inequality, it suffices to prove that P (m , , . . . , m,) holds, where

!
P(x, , . . . , x,) ¢:~ x,<~ m, a n d . . , and Xk <~ m'k

and Xk+ , ~ mk+l a n d . . , and x, <~ m,,

and this can easily be done with Scott's Induction Principle (see Proposition 5.7)
and by using the inequalities m~ <~ mi for i in [k]. []

7.5. Proposition. Let S and S' be regular systems and W be a subset of Unk(S) n
Unk(S') . Then S ~ . w S ' iff there exists a renaming oz and two regular systems S, and
$2 such that ot is the identity on W, Unk(ot(S))n Unk(S')= W, and

a(S)c_ S, ~ ~$2~_S' .

Proof. The ' if ' part is an immediate consequence of Lemma 7.2(2) and Section 2.5.
For the 'only if ' part, let U = Unk(S), U' = Unk(S') . We first assume that U n U' =

W and for a we take the identity. We let S = (u = t., ; u e U) and S' = (u = t,',; u e U').
We define

S a = S u (u = t ' ; u ~ U ' - U) , S 2 = S ' w (u = t . ; u 6 U - U ') ,

so that U n k (S ,) = Unk(S2)= U u U'.
We have to prove that S, - ~ $ 2 . So let M e o//.o,(~). Remark that $1 and $2 only

differ by the equations with left-handside in W, hence, S, tU"= $2 t U", where
U"= U u U ' - W. Let us denote by S" this regular system (over F u W).

Equivalences and transformations of regular systems 43

By Lemma 7.2(2),

7rw(pL-SolM(S1)) = 7rw(Trv(/z-SolM(S1))) = ~w(~-SolM(S))

and similarly,

7rw(/z-SOiM(S2)) = ~'w(/z-SOIM(S')) = 7rw(ft-SolM(S1)) (2)

since S-~,wS'.
Let now M ' = M(~'w(/z-SOiM(S)))= M(Trw(/x-SolM(S'))). Then

7ru-(/z- SoiM(S1)) =/z- SOIM,(S")

by Lemma 7.4 and, similarly

Try,,(/z-SolM(S2)) =/x- SOIM,(S") = 7rw,(br-SolM(S~)). (3)

Hence, putting (2) and (3) together, we have/.t-SOIM(S1) = ~ - S O I M (S 2) . This proves

that $1 - ~ $2.
If W c U n U', one can define U"c_ q/ and a bijection a : U--> U" such that

W = U n U" and a is the identity on W. The above proof can then be applied to

a(S) instead of S. []

By means of Theorem 6.8, this proposition gives a characterization of - w in

terms of transformations by renamings, extended unfoldings, and restriction to

subsystems.

We now consider S = ~, w S', but only in a special case, when W is 'large enough'.
This necessitates some more definitions.

7.6. Definition. Let S be a regular system and W be a subset of U. Let W0_ W~ _c

• . . c W~___ U be such that W0 = W, W~+I= VC~w{ujs UlVarv(tj)c_ W~} and let

if" = [._J { W~ [i t> 0}. We say that W is a base of S if if ' = U.

Note that S is recursion-free (see Definition 4.17) iff 0 is a base of S and that W

is a base of S iff the system S F (U - W) (over F w W) is recursion-free. Hence, it

follows from Proposition 4.18 that W is a base of S iff, for all u in U ' = U - W,

there exists t in M(F, W) such that u -->*r u' t.

7.7. Remark. Let G be the directed graph associated with S, having U as set of

nodes and having an arc from ui to Uy iff uj occurs in ti. Then W is a base of S iff

W is a base of G in the sense of Braquelaire and Courcelle [18], i.e., if W is a set
of nodes of G such that any loop in G has at least one node in W.

We say that S is a large subsystem of S' (we denote this by S ___eS') if S_c S' and
Unk(S) is a base of S'.

44 B. Courcelle

7.8. Proposition. Let S be a regular system, let W be a subset of Unk(S), and
U' = Unk(S) - W. Then W is a base of S iff there exist two systems S' and S" such
that Unk(S') = Unk(S), Unk(S") = W, and S runf <U') S' D_e S". I f this is the case, then
S' and S" exist in a unique way.

Proof. Let U = Unk(S). Since S I U' is recursion-free, it follows from Proposition
4.18 that, for all ui in U', there exists si in M(F, W) such that ui-->*Iu, si. Let

tl = ti[sJuj ; uj ~ U'] for ui in W and t'i = t~ if ui ~ U'.

The systems S' = (u~ = t[; i E [hi) and S"= S' I W satisfy the requirements.

Conversely, if S" c_eS', then Unk(S") is a base of S'.

Let us remark that, for any two systems $1 and $2, if S~ unf $2 and W~ is a base

of $2, then W~ is a base of S~ : if u ~ Unk(S1) - W~, there exists a t in M(F, W1)
such that u -> s*: t, hence, u --> s*. t. Hence, if S runf < u,) S', W is a base of S.

Finally, it follows from the unicity results of Proposition 4.18(1) that S' (whence

S") exists in a unique way. []

The transformation of S into S" can be considered as the elimination of the

unknowns of U ' = Unk(S) - W. However, this is possible only if the unknowns of

U' are 'auxiliary' in some sense, i.e., precisely if W is a base.

The above properties of bases and large subsystems are syntactical. We now

consider their semantical properties. The following lemma is the counterpart of

Lemma 7.4 and is stated with the same notations.

7.9. Lemma. I f W is a base o f S, i f U '= Unk(S) - W, and m is a solution of S in M,
then S I U' has a unique solution in M(~'w(m)) and this solution is 7ru,(m). Hence,
the mapping 7rw :SOlM(S)--> M cir.(w) is one-to-one.

This result could be written as follows:

SOlM,(S f U')= {Tru,(m)},

where m¢SOlM(S) and M ' = M (T r w (m)) in order to stress the similarity with
Lemma 7.4.

Proof of Lemma 7.9. zrv,(m) is clearly a solution of S t U' in M(~rw(m)) and this
solution is the only one since S [U' is recursion-free (Proposition 4.18).

Let m, m'~SolM(S) be such that ~ r w (m) = ~ w (m ') . Since S I U' has a Unique
solution in M(ww(m)) (by Proposition 4.18), ~u,(m) and ~v,(m') which are sol-
utions of this type are equal. Hence, m = m'. []

7.10. Proposition. I f S' ~-eS, then S' ~'Unk($') S.

Proof. Let U = Unk(S) and W = Unk(S'). By Lemma 7.2(1), one has qrw(SOlM(S))
SOlM(S').

Equivalences and transformations of regular systems 45

In order to establish the equality, let m' be a solution of S' in M. The system
S r (U - W) has a unique solution in M ' = M(m') , call it ml. Merging m' and m,
gives a solution m of S in M such that 7rw(m)= m' and 7rv_w(m)= ml. Hence,
m'~ 7rw(SOlM(S)).

Note that 7rw is a bijection of SolM(S) onto SOIM(S'). []

Hence, for large enough subsystems, the inequality of Lemma 7.2(1) becomes an
equality.

The following proposition is similar to Proposition 7.5.

7.11. Proposition. Let S, S' be regular systems and let ~ be a set of equations. Let
W ~ U n k (S) n U n k (S ') be a base for both S and S'. Then S ~-~,wS' if and only if
there exist four systems $1, $2, $3, $4 such that Unk(S2) = Unk(S3) = W, and

S runf S1 ___e $2 ~ ~ $3 _ e $4 runf-1 S'.

Proof. Let us assume that S ~ . w S ' . Let U=Unk(S) and U ' = U n k (S ') . The
existence of $1, $2, $3, $4 such that S runf $1 ~-eS2 and S' runf $4 D_eS3 follows
from Proposition 7.8. By Proposition 4.9 and Proposition 7.10, the hypothesis
S = , . w S' implies $2 = ~. w $3, hence, $2 = ~ $3.

The 'if ' direction follows from the definitions in Section 2.5, Proposition 4.9, and
Proposition 7.10. []

Note the difference with Proposition 7.5: the systems $2 and $3 are smaller than
S and S' (one takes some kind of intersection) whereas in Proposition 7.5, the
systems $1 and $2 which play a similar role are larger than S and S', respectively
and correspond to some kind of union.

In the case ~ = 0, one obtains with the help of Theorem 4.10 a characterization
of ~ w in terms of ~e and ruff&

Here we give an application to the uniformization of regular systems. At the cost
of introducing extra unknowns, one can transform an arbitrary system into a
quasi-uniform one (respectively, a Greibach system into a uniform one). More
precisely stated, we have the following proposition.

7.12. Proposition. For every regular system S one can construct a quasi-uniform system
Ufm(S) such that S ~ e S" did Ufm(S) (for some system S"). Hence, Ufm(S) ~tJnk(S) S.
I f S is a Greibach system, then Ufm(S) is uniform.

Proof. Let S = (ui = tt; 1 ~< i ~ < n) and U = Unk(S). Let R be the set of proper sub-
terms of t l , . . . , t,, which are not in U. We can enumerate R as { s l , . . . , sk}. If R = 0,
then S is quasi-uniform and one takes Ufm(S) = S. Otherwise, one defines Ufm(S) =
S' by letting U' = { u n + l , . . . , Un+k} C_ ~ (hence, U' is disjoint from U) and by letting

46 B. Courcelle

t~-* ?be the partial mapping M(F, U) ~ U w F (U w U') defined as follows:

?=t if t e U,

T=f(ui , , . . . , ui,) if t = f (w l , . . . , w~), w l , . . . , w~ e M(F, U) and,

for all j = 1 , . . . , l, either wj = uij or w s = sij_,.

Note that ?= t if te F(U) and that ?is defined whenever t e { h , . . . , t,, S l , . . . , sk}.
Finally, the system S '=(u~ = t [; i e [n + k]) w i t h t'~= ?~ for ie[n] and t[=g~_, for

i e {n + 1 , . . . , n + k} satisfies the required properties. It is not difficult to verify that
?~ -'>*'ru' t~ for all i in [n], but we omit these technical details. []

7.13. Example. Let S:(Ul=U2, u2=f(ul,g(u2,f(ul,u2)))). Then R={g(u2,
f (u l , u2)),f(ul, u2)} and U '={u3 , u4}. The system Ufm(S) is then

(Ul = U2, u2=f(Ul, U3), U3 = g(uz, u4), u 4 : f (u l , u2)).

8. Regular systems having a unique solution

When a recursive applicative program scheme (considered as a system of
equations) has a unique solution in some interpretation, a proof method which
generalizes the one of McCarthy [70] and which is simpler than Scott's Induction
Principle can be used to prove the equivalence of two systems (i.e., their - -
equivalence in some interpretation). This proof method has been investigated in
[25], under the name of Unique Fixpoint Principle. This method is also applicable
to certain context-free grammars [78] in order to prove that a given grammar
generates some given language. Examples will be given later (see Section 17).

Hence, we investigate conditions insuring that SolM(S) is a singleton. It follows
from Proposition 4.18 that the systems such that SolM(S) is a singleton for all M
in ~ are not very interesting. Hence, we shall formulate this unicity property with
respect to special subclasses of T'.

8.1. Definition. Let M be an F-magma. A regular system S is M-univocal if S has
one and only one solution in M. If ~ is a class of F-magmas, then S is %univocal
if S is M-univocal for all M in ~.

The following proposition is an easy consequence of the definitions.

8.2. Proposition. Let M e T'(~). Let S and S' be two regular systems such that
S ufid, S'.

(1) I f S has a solution in M and if S' is M-univocal, then S is M-univocal and S
and S' have the same solution in M (hence, S ~M S').

(2) I f S' is M-univocal and M e of(~), then S' -M S.

Equivalences and transformations of regular systems 47

Let us recall that utid~ is not ~ - c o r r e c t , i.e., that S utld~S' does not imply
~' - ~ S. However, this implication does hold if S' is °Y°'(~)-univocal. This idea has
9een developed in [25] for recursive applicative program schemes. We do not recall
:he rather technical results obtained there.

A simple topological condition will be used here to insure the univocality of
~reibach regular systems. It has been used in [1, 2, 10, 12, 14, 24, 26].

$.3. Definition ([26]). Let E be a metric space with distance d. The distance d is
~xtended to E k by d ((x l , . . . , Xk), (X~, . . . , X~,)) = Max{d(x i , x[) l i ~ [k]}.

If a is a mapping E k ...> E, we let

II~ll = Sup{d(a(x) , a (x ')) / d(x , x ') lx , x ' ~ E k, x ~ x'}.

Hence, II a II belongs to the real interval [0, +oo].
The mapping a is contracting if I1~11 < 1. This condition is equivalent to the

existence of a real number c, 0 ~< c < 1 such that

d (a (x l , . . . , Xk), a(X~, . . . , X'k)) <~ C" Max{d(x,, x[)l i s [k]}.

An F-magma M = (M, (fM)/~p) is semicontracting if
(1) M is a complete metric space with distance dM;
(2) d~(x , y) ~< 1 for all x, y in M;

(3) IIf~ll ~< 1 for all f in F.
It is contracting if, fur thermore,

(4) Snp{IIfMIIIf~ F } < 1.

Let 5ech (respectively cCh) be the class of semicontracting (respectively contract-
ing) magmas.

8.4. Lemma. (1) I f t ~ M(F, X) and M e 6ech, then [I tMII <~ 1.
(2) I f t e M (F , X) - X and M ~ ~¢h, then I I t ~ l l < l

Note that l] tMll may be < 1 even if M is not contracting. This justifies the following
definition (where M is any F-magma such that M is a metric space): A regular
system S is M-contracting i f II t, Mll < 1 for all i = 1 , . . . , n. It is M-semicontracting if
IIt, MIt <~ 1 for all i = 1 , . . . , n.

We recall a well-known lemma which justifies our interest in contracting mappings.

8.5. Lemma (Fixpoint Lemma). Let E be a complete metric space. Every contracting

mapping a : E --> E has a unique fixpoint.

The proof is easy (it is given in [26]). For extensions of this lemma, see [62]. In
particular, it suffices that ah is contracting for some h i> 1 to obtain the same result.

8.6. Proposition. (1) Let M be an F-magma such that M is a complete metric space.

I f a regular system is M-contracting, it is M-univocal.

(2) A Greibach system is ~l,-univocal.

48 B. Courcelle

Proof. Part (1) is proved by application of Lemma 8.5 to E = M k and a = SM.
Part (2) is an immediate consequence of part (1) and Lemma 8.4(2). []

8.7. Definition (M~(F) as a metric space [1, 2, 10, 26]). For any two elements t and
t' of M~(F) , let h(t, t') be the first level at which they differ (h(t, t ')=0 if they
differ at the root, h(t, t ') = oo if t = t'). Then we let

0 if t = t',
d(t, t') = 2_h(t , t ,) if t # t'.

It is easy to show that d is a distance on M ~ (F) making it into a complete metric
space. This distance is even ultrametric. It is essentially the same as the distance
that one puts on the ring of formal power series. Note that d(t, t')<~ 1 for all t, t'
in M ~ (F) .

It can be shown that M ~ (F) is compact if and only if F is finite, that Mn(F) ,
the set of finite trees is a dense subset of M ~ (F) and that M~(F) is the topological
completion of Mn(F) [2, 74]. Finally, M ~ (F) is a contracting F-magma.

In the following proposition we assume that F is large enough so that Mn(F) is
infinite. And we denote by S h, h I> 1, the regular system (u~ = th; i e [n]), where t~ = t~
and t h+l ti[h • = t l / u l , . . . , th/u,]. It is clear that S u n f S h.

The following theorem encompasses and reformulates in the present framework
some results of Bloom et al. [11, Proposition 2.8] and Nelson [75, Proposition 2].

8.8. Theorem. Let S be a regular system. The following conditions are equivalent:
(1) S is qgh-univocal,
(2) S is M~(F)-univocal,
(3) S has no singular unknowns,
(4) S runf* S' for some Greibach system S',
(5) S h is a Greibach system for some h >t 1.
(6) There exists h such that, for all M ~ qg~,, S~t is contracting.

Proof. (1)O(2) since M ~ (F) e ~h .
(2) ~ (3) : Let Uk be singular and let t be any finite tree in Mn(F) - T(S) (notation

of Definition 6.5). Let S' be the system (ui = t~; 1 <~ i<~ n) such that t~ = t if ui -->s* Uk
and t~ = ti otherwise. The least solution of S' is also a solution of S and differs from
the least one. Hence, S is not M~(F)-univocal .

(3) 0 (4) : I f P s i n g (S) = 0 and S is not a Greibach system, there exist i, j such
that ti = uj and t i ~ F(M(F, U)), j ~ i. The system S~ obtained by replacing in S the
equation ui = ti by u~ = t~ is such that S runf S1 and Psing(S1)= 0. By iterating this
construction one obtains a Greibach system $' such that S runf* S'.

(4)O(1) since S ' ~ S and S' is ~t ,-univocal by Proposition 8.6.
(5)O(1) is proved by Proposition 8.2(1) with ~g =1~, Proposition 8.6, and the fact

that S unf S h.

Equivalences and transformations of regular systems 49

(3)~ (5) : Let h = 1 + Max{m [u --> ~ u', u, u'~ Unk(S)}. Since Psing(S) = ~t, h ~< n
and S h is a Greibach system.

(5) 0 (6) : This easily follows from Lemma 8.4(2).

(6)O(1): The above-mentioned extension of Lemma 8.5 shows that SM has a
unique fixed point in M n, hence, that S is M-univocal. []

Let us finally mention that Courcelle [24] and Nelson [75] have investigated the
class of all F-magmas where every regular system without singular unknowns has

a unique solution.

9. Recursive applicative program schemes as regular systems

In this section we formalize the ideas sketched in Section 2.8. The example
presented there was only involving binary functions, either base functions or recur-

sively defined ones. Hence, one only had to deal with objects of a single type,

namely the binary functions.

In the presence of functions of various arities, several composition operators (like

eomp) are needed. This can be conveniently handled by means of sorts. The introduc-
tion of sorts in the formalism of regular systems is straightforward. We did not use

sorts in the initial definitions to have simpler notations.

We need some definitions and notations concerning sorts. All results of the

preceding sections extend in an obvious way.

9.1. Sorts and signatures

Let 5¢ be a set of sorts. An q-sorted signature (or simply an b~-signature) is a set

F (of function symbols) given with two mappings:

• a:F-> ,5"* (a (f) is called the arity o f f) ,

• tr: F-> ~ (o-(f) is called the sort o f f) .

The length of a (f) is called the rank of f and is denoted by p(f) as before. If
a (f) = e (we denote by e the empty word of any free monoid X*), then we say

that f is a constant.

Let F be an b~-signature. We define an heterogeneous F-magma as an object

M = ((Ms),~, (fM)f~ ~'),

where Ms is a set, the carrier of sort s and fM a total mapping:

Ms~ x - . - x Ms, ~ Ms, where a (f) = s l . . . sn and o'(f) = s.

If X is an q-sorted set of variables (each x in X has the arity e and a sort in
5e) one can also define M(F, X), the free F-magma generated by X, and M(F, X)s
is identified with the set of well-formed terms written with F and X and which are
of sort s.

50 B. Courcelle

An to-complete F-magma is an object M = ((M ~ L ~ , (± s L ~ , (< ~) ~ , (f ~) / ~) ,
where <~ is an to-complete partial order on Ms with least element _1_~ and the f ~ ' s
are to-continuous as usual.

The concepts of congruences, quotients, ideal completion, and rewriting systems
extend in an obvious way. See [28, 53, 54] for a formal treatment of some of them.

9.2. Derived signatures

Derived signatures have been used in [28, 39, 45, 48]. For every ranked alphabet
F which does not contain the special constant f~, a (F) denotes the derived signature
of F which is defined as follows.

Let K>~Max{p(f) l f~F}; the set Y = { 1 , . . . , K} is taken as set of sorts. The
signature a(F) consists of F u H, where every element f of Fk, k>~O is considered
as a constant of sort k.

The set H consists of the following symbols:
- the new constant ~2k of SOrt k for all k in ~,
- the new constant ~r~.k of sort k for 1 ~< k <~ K and 1 <~j ~< k,
- the new function symbols eompT, for n, k in ~ ; its arity is nkk . . , k (with n times

k) and its sort is k.
Hence, all these definitions depend on K, but we do not make this dependence
explicit in order to simplify the notations. We assume that K is chosen as large as
needed.

With an to-complete F-magma D = (D, ±, ~<, (fD)/~ F), we associate an to-complete

0 (F) -magma M = ((Mk)k~, (±k)k~Y, (<~k)k~, (fM)/~o(F)) as follows:
• Mk = (D k -~ D) is the set of ~o-continuous functions D k - D (with Mo = D);

• a <~ka' if[a (d l , . . . , dk)<~oL'(dl,..., dk) for all d l , . . . , dk in D;
• ±k = ~2kM is the constant function Dk--> D whose value is everywhere 3_;

• fM =fD i f f s F (recall that f is a constant in a (F) and that fMe Mk i f f ~ Fk);
• ~'j, kM is the j th projection D k -> D (~rj.kM belongs to Mk),
• c o m p ~ , M (a , ~ l , . . . , ~ ,) = a o (f l l , . . . , f l ,) for a in (D " ~ D) , f l~ , . . . , f l , in
(D k -~ D).

This definition also applies when n = 0, k ~ 0 , (eomp°M(a) denotes the constant
function D k ~ D yielding the value a, i.e., eomp ° is the natural inclusion Mo-~ Mk),
and when k =0 , n # 0 , (eomp~M(a, /31, . . . , f t ,)= a (/ 3 1 , . . . , ft ,)).

It is classical (and anyway easy to verify) that M is oJ-complete. It is called the
derived magma of D and is denoted by 0(D).

We denote by 0 ~ °' the class {0(D)ID e ~F °'} (for some fixed alphabet F) and by
O°V'(~) the class {O(D)ID~ ~o,(~)}.

9.1. Remark. All these definitions can be restricted to the unordered case by omitting
~2k (and then ao(F) denotes a(F) minus the constants Dk), ±k, <~k and taking for
Mk the set [Dk-~ D] of total functions: Dk-* D. Doing so one defines for every
F-magma D a ao(F)-magma denoted by ao(D). We denote by 0oY the class of all
such derived magmas and by ao°//'(~g) the class {ao(D) lD ~ °V(~)}.

Equivalences and transformations of regular systems 51

Since our purpose here is to deal with recursive program schemes, we have
introduced the to-complete case first. All results of Sections 9.3 and 9.4 can be
restricted to the unordered case and yield interesting corollaries. We shall not
mention them each time.

9.3. beta and its inverse

The elements of M~(O(F))k may be considered as denotations for terms in
M~(F, Xk). The mapping betak" M (a(F)) k --> Ma (F, Xk) associates a term with its
abstract denotation. (It is called yield in many papers [36, 37, 39, 45], but the present
terminology is chosen to recall its similarity with the fl-reduction in A-calculus.)

We shall define an inverse for betak and call it combk, because the elements of
M(O(F))k can be considered as terms of a certain combinatory logic (this notation

is used in [36, 37, 45, 48]).
Let betak:M(O(F))k-> Ma(F, Xk) be defined as follows:

betak(Ok) = O, betak(zrj, k) = xj,

b e t a k (f) = f (x l , . . . , X k) for f i n Fk,

betak (c o m p S (t, t l , • • • , tn)) = b e t a , (t) [b e t a k (t 1)/Xl,... , betak (t .) / x n].

This function is monotone, hence, extends by to-continuity into betak : M~(O(F))k -->
M°~(F, Xk).

We also define combk : Ma(F, Xk) --> M(O(F))k by

eOmbk(/2) = Ok, combk(xj) = =j.k,

c O m b k (f (t l , . . . , h)) = compS(f, cOmbk (h), • • •, combk(h))

and extend it by to-continuity into combk : M~(F, Xk) --> M~(O(F))k.

9.2. Lemma. (1) For all t in M~(F, Xk), betak(eombk(t)) = t.
(2) For every to-complete F-magma D and all t in M~(O(F))k, to<a)= betak(t)D.

Proof . Both assertions can be proved in the same way. They are first established
for finite t 's by structural induction and the equalities extend to infinite t 's by
to-continuity. []

Since comp~ k and qTj, k receive a fixed interpretation, they satisfy some laws. We
precise them in the next section.

9.4. Properties of comp~

We aim to characterize the congruence on M~(O(F)) defined by OY'°' ~ t = t'.
Let ~t_c M(O(F), Y) x M(O(F), Y) be the set of equations:

(9.4.1) compS(Ok, x l , . . . , Xk) = O,,,
(9.4.2) compk(~.k, X l , . . . , Xk) = Xj,

52 B. Courcelle

(9.4.3) compS(f, 7rw, , . . . , 7r,,,,,)=f
(9.4.4) k m comp,(compk (z, Yl, • • •, Ym), x ~ , . . . , xk)

= compm(z, • • . , compk(y/, Xl , Xk) , . . .) ,

for all f in F~, all k, m, n in b ~. One assumes that Y = {z, x ~ , . . . , y~ , . . .} and that
in each equation as above, z is of sort m, y ~ , . . . , y,~ are of sort k, and X l , . . . , Xk

are of sort n.
From the definition of O(D) it is clear that the equations of ~t are valid in every

derived magma 0(D). Hence, t --~ t' implies a°//TM ~ t = t'. (The relation = ~ has been
defined in Section 1.6.)

Let ~f = ~ { ~k [k I> 0} be a set of equations, ~k C_ M (F , Xk) X M (F , Xk) . We define
0(~f) as the set of ground equations {combk(t)=cOmbk(t ')[k ~ > 0, (t, t ')~ ~k}. It is
clear by Lemma 9.2 that the equations of ~(~f) hold in every derived magma 0(D)
for D in ~'~(~f). Hence, t - = ~ (~) t' implies 0o//.,~(~f) ~ t = t'. We aim to prove the
converse which is not trivial since OT'~'(~f) is a proper subclass of T'~'(~w0(~f)) .

9.3. Lemma. l f t ~ M°°(O(F))k, then comp[(t, ~rl,k, • . . , ~rk, k) --=~ t.

Proof. We prove that compk(t, ~ ' l ,k,- .- , ~'~k) ~->* t for all t in M(O(F)) k by struc-
tural induction on t. The various cases to examine are t = ~k , t = Zrj, k, t ~ Fk and
the results follow respectively from (9.4.1), (9.4.2), (9.4.3), and t =

comp~'(t', s ~ , . . . , Sin) and the result follows from (9.4.4) and the induction hypothesis
for sl , . • •, Sin.

By taking the limit of an increasing sequence, one gets the desired result for t in
M°°(O(F))k. []

We could have added the equations

(9.4.5) compkk(x, ~ l . k , . . . , Zrk, k)=X

to our set ~¢, of which (9.4.3) is just a special case. But they are not necessary.

Lemma 9.3 shows that the equations (9.4.5) belong to the inductive oJ-theory of ~¢
(we do not define this concept formally but only appeal to the intuition of the reader
who knows [52, 60, 77], where the inductive theory of a set of equations is
investigated).

9.4. Theorem. For t, t' in M°°(O(F)), OT'*~(~)~ t= t' i f f M u O (~ ,) ~ , t = t' (i f f

t =- -~(~) t').

Proof. The 'if ' part follows from the remark that 0Y'°(~)__ Y'°(s¢ u O(~)).
For the 'only if' part, we construct, for every m~>0, an F-magma D in oy~(g~)

such that, for all t, t' in M°°(O(F))m, if to(a)= t~(v), then t ---~a(~) t'.
Let ~ ' = ~ u O (~) and m be fixed. Let E be the to-complete O(F)-magma

[M(O(F))/<~ %]00 (see Lemma 1.5, the presence of sorts does not create any difficulty).
Hence, t~-~ tE is the canonical O(F)-homomorphism M°°(O(F))->E. Let us recall
from Lemma 1.5 that if t, t ' eM°° (O(F))k , then tE = t~ iff t - ~ , t'.

Equivalences and transformations of regular systems 5 3

We define an to-complete F-magma D by letting its domain D be Em=
IM(O(F))m/<~°,] °° and fD be defined by

(9.4.6) f D (d l , . . . , d k) = c o m p k E (f Z , d ~ , . . . , dk),

['or f ~ Fk, k >~ 0. This function is to-continuous since eompkE is, hence, D is an
~o-complete F-magma.

The following result is an extension of (9.4.6).

Claim 1. For every k,, every t in M ~ (F , Xk), every d l , . . . , d k in D (= Era) ,

ta(dl , . . . , dk) = eomp~e(eombk(t)E, d~, . . . , dk).

Proof. This can be proved for t ~ Mo(F , Xk) by induction on the structure of t. We
3nly consider the case t = f (t l , . . . , t~) and we let d = (d l , . . . , dk)"

to (d) =fo(taD(d), . . . , tlD(d))

= eomp~v(fE, t l l) (d) , . . . , ttD(d))

=comp/v(fE, eompkmz(eombk(tl)E, aT),...) (by induction)

= eompkz(comp~E(fE, cOmbk(tl)z,. • •, eOmbk(t,)E), d)

(since E satisfies (9.4.4)),

~ut eomp~z(fz, cOmbk(tl)z,...,cOmbk(tz)z)=cOmbk(t)z from the definition of
:Ombk, whence the result. This result extends to t in M ~ (F , Xk) by to-continuity. []

Claim 2. D e V"°(~).

Proof. This claim is an immediate consequence of Claim 1 and the fact that
Ee °V°(O(~f)). []

Hence, 8(D) e °F'°(M').

Claim 3. For every n, every s in M°°(O(F)) , , every t l , . . . , t, in M°°(O(F)),~:

compS(s, t l , . . . , t.)E = beta,(s)D(t~E,..., t,E).

ProoL Note that t lE , . . . , t,z~ D, hence, the right-hand side of the equality to be
~stahlished is well-defined. As in Claim 1, we prove Claim 3 for finite s's first and
then for infinite ones by to-continuity.

5 4 B. Courcelle

The case s = f e F n is an immediate consequence of (9.4.6).
eomp,k(s ', s l , . . . , Sk). Then

comp, , (s , h , . , t~)E ~ k t . . = c o m p m (e o m p , (s , s l , . . . , S k) , t ~ , . . . , t ~) E

= comp~(s ' , c o m p ~ (s l , t l , . . . , t ,) , . . .) r

= be tak(s ')a (comp~, (s l ,h , . . . , t~)E, . . .)

= be tak(s ')D(beta , (s l)D(tm, . . . , t , r) , . . .)

= be tak(s ') [be tan(s l) , . . . , be ta , (Sk)]D(t , z , . . . , t,,v.)

= beta,(eomp~(s', s l , . . . , S k)) v (t l r , . . . , t,E)

= b e t a , (s) D (t m , . . . , t,z).

Let s =

The other cases are easier. []

Proof of Theorem 9.4 (contimted). Let t, t'~ M°°(O(F)),,, such that OW'°(~)~ t = t'.
Claim 2 yields t~D)= t~l~), hence,

t o (D) (' r r l , m E , - • • , ~ m , r aE) = beta(t)D('rrl.mE, . . . , 7 r m , n ~)

= compm~(t, ~q ,m, . . . , 1rm, m)E (by Claim 3)

= tz (by Lemma 9.3).

I t I . The same computation for t' gives tE = t~ since taro) tota), hence t -=~¢, []

By restricting this p roof to the unordered case one obtains the following corollary
(with Mo being M minus equation (9.4.1)).

9.5. Corollary. (1) For t, t' in M(0o(F)) , 00°F(g~)~ t= t ' iff M o U O (~) ~ t = t ' iff
t <-'~*o~,O(~) t'.

(2) For every t, t' in M(F , X, .) , t o * t' iff comb, . (t) ~-~*ovO<~)comb,,(t').

Proof. Part (1) is proved by inspecting the proof of Theorem 9.4.
Part (2) follows from part (1) and the remark that t o * t' iff ~ t = t' iff

00°F(~) ~ eombm(t)= comb=(t ') (by the restriction to the unordered case of Lemma
9.2). []

The second part of Corollary 9.5 says that one can simulate an arbitrary rewriting
system by a ground one and a fixed set of nonground rewriting rules. The consequen-
ces of this fact remain to be explored.

We now go back to the main purpose of this section.

Equivalences and transformations of regular systems 55

9.5. Recursive applicative program schemes

9.5.1. Definitions
We recall the basic definitions of these program schemes investigated in various

works [10, 25, 47, 56, 76, 82], to mention a few.
Let F and • be ranked alphabets with rank function p such that F n • = 0,

• = { ~ 1 , . - . , gin}. One lets ki = P(Oi) for all i.
An algebraic system over F with set of unknowns • is an n-tuple of equations

Z = (tPl(xl , . . . , Xk,) = m l , . . . , O, (x l , . . . , Xk~) = m,) such that m, ~ M (F u O, Xk,)
for all i = 1 , . . . , n.

A recursive applicative program scheme is a pair (Z, m) consisting of a system
as above and an element m of M (F u O, Xk) for some k~>0.

Let D be an F-magma. An n-tuple • = (~ , . . . , ~,) of functions t~i:D k' --> D is
a solution of 2; if, for all i in [n], 4S~ = m~i~, where I) is the (F u O) -magma
(D, (fv)y~ , (~) ~) . There may exist no solution for Z in D. If D is to-complete,
then 2; has a least solution Oo = (~bm, . . . , 0,D) in D (where the 0m's are to-
continuous).

If m ~ M (F u O, Xk), then the function defined by (~, m) in D is mo, : Dk --> D,
where D' is the (F u O) -magma associated with OD as I) was with ~.

Finally, if m, m' are both in M (F u O, Xk) and ~ is a set of equations, then
m ~z.~m' if ma,=m~, for all D in ~-,o(~). This relation means that (Z, m) and
(~, m') are equivalent in every interpretation satisfying ~. Its characterization is a

basic result of the theory.

9.5.2. Construction
We now show how to associate a regular system S with Z as above. Let 6e =

{ 1 , . . . , K} be a set of sorts with K I> M a x { p (f) I f E F u O}. We let • be the set of
unknowns of S. If ~ is of rank k in O, it is of sort k as an unknown of S.

We wish to define S i n such a way that the least solution of Z in D, namely
(~bm, . . . , ~,~o) (recall that ~biD is a continuous mapping: D P(*,)-->D), be also the
least solution of S in M = 0 (D) . We define S as the set of regular equations
(ffi=eombk,(mi);l<~i<~ n). Hence, S is a regular system over O(F) with set of
unknowns O. We denote it by a(Z). With these notations we have the following

proposition.

9.6. Proposition. (1) Let D be an F-magma. An n-tuple ~ as in Section 9.5.1 is a

solution of,Y, in D iff it is a solution of O(.,Y) in 0(D).
(2) I f D is w-complete the least solution of ~Y in D is also the least solution of 0(2;)

in J(D).

Proof. Part (1) is an immediate consequence of Lemma 9.2 and the definitions.
Part (2) is an immediate consequence of part (1). []

56 B. CourceUe

9.7. Corollary. L e t ,Y, b e a n a l g e b r a i c s y s t e m a s in S e c t i o n 9.5.1, l e t t, t ' e

M (F u O , X k) , l e t ~g b e a s e t o f e q u a t i o n s . T h e n t ~ z . ~ t ' i f f combk(t) ~a(.~),~o(~)
eombk(t').

This corollary shows that the investigation of the relation ~:r,~ for an algebraic
system 2 reduces to that of the analogous relation for a regular system and for a
different set of equations, namely M u a(4). It does not modify the difficulty of the
decision problem for "z.g (its decidability is open in the case ~ = t~ (see [22, 26])
and it is undecidable in general (see Proposition 13.8)), but it may help to define
correct program transformations in a simpler and more powerful way than in [25,
63, 64]. This last aspect remains unexplored.

10. Powerset magmas

We have seen in Section 2.8 that context-free grammars can be considered as
regular systems to be solved in ~(X*) equipped with the operation of union together
with an operation of concatenation which is inherited from X*. Following Mezei
and Wright [73] we want to generalize this situation to the case of ~(M), where
M is an arbitrary F-magma (possibly assumed to be in some ~(~)) and 9 (M) is
also equipped with set union (denoted by +) together with F-operations inherited
from M in a standard way.

Hence, our purpose is to investigate the regular systems of which the right-hand
sides are p o l y n o m i a l s , i.e., terms of the form t~+ t2+""" + tk , where t~, /2 , . . . , tk

M (F , U) (and U is the set of unknowns), their sets of solutions and their least
solutions in the powerset magmas ~(M) for M in some variety Y'(~f). Most of the
results of Sections 2 to 7 will be applicable and new results will appear corresponding
to the specific properties of set-union in ~(M).

This section is devoted to algebraic preliminaries concerning powerset magmas.

10.1. Definition. Let F be a ranked alphabet which d o e s n o t contain the special
constant/2. We denote by F+ the ranked alphabet F u { + , / 2 } , where + is binary
(we shall always use the infix notation for it) and 12 is nullary (it will be used as
in Section 1.5).

A d i s t r i b u t i v e F-magma P is an F+-magma satisfying the following set ~ of
equations:

xl + (x2 + x3) = (xl + x2) + x3,

Xl + /2 = Xl , XI+XI--X1,

f (x l , x 2 , . . . , O , . . . , x k) = O ,

X 1 "~- X 2 = X2-Jt - X, 1 ,

I
f (X l , X2 , . . . , Xi + X~, . . . , Xk) = f (x l , . . . , Xk) + f (x , , . . . , X , _ , , X , . . . , Xk)

(for all k I> 1, all f e F k) .

Equivalences and transformations of regular systems 57

I fA is a finite subset { a l , . . . , an} of the domain of P, we use ~ A as an abbreviation
of a l + a2+""" +a,, (due to the associativity and commutativity of + the order in
which A is enumerated is irrelevant). If A = 0, then ~ A stands for Op.

Let M = (M, (fM)f~F) be an F-magma. Its powerset F - m a g m a is the F+-magma

P = (~ (M) , +e, Op, (fP)SeF) such that, for all A ~ , . . . , Ak ~_ M , A~ + c A 2 = A! u A2 ,

Op = ~), fp(A l , . . . , Ak) = { fM(al , . . . , ak) l a, ~ A1, . . . , ak E Ak} f o r f ~ Fk, k t> 1 and

fv = {fM} for f ~ Fo.

It is easy to verify that P is a distributive F-magma. We shall denote it by ~ (M)

in order to emphasize its dependence on M.

We shall also use ~ f (M) (where ~ (M) is replaced by ~ f (M) , the set of finite

subsets of M) and ~,o(M) (where ~ (M) is replaced by ~,o(M) the set of countable

subsets of M).
We shall denote by ~ the class of all powerset F-magmas and by ~ (~) the

class of all powerset F-magmas ~ (M) for M in 'F'(~). The notations ~f~ , ~ f ~ (~) ,
~,o//., ~ , ~ (~) will also be used (their meaning is clear).

10.2. Definition. Let X be a set of variables. A monomia l is an element of M (F , X) .

We assume that M (F , X) is linearly ordered by a strict order < in a fixed way such

that t < t' whenever t ~ X and t' E F (M (F , X)) . (This technical assumption will be

used in Lemma 14.13.)
A p o l y n o m i a l is an element of M(F÷, X) o f the two possible forms O or tl +" • • + t,

with t l , . . . , t, ~ M (F , X) and tl < t2 <" • • < tn.

We denote by M + (F , X) the set of polynomials.
If A is a finite subset o f M(F , X), we denote by Y. A the polynomial tl + t2 +" • • + tk,

where A = { h , . . - , tk} with t~ < t2 <" " " < tk, and the polynomial/ '2 if A = t~.

Every term t of M (F ÷ , X) can be transformed into a polynomial by means of

the following mapping Dev associating with t a finite subset Dev(t) of M (F , X) , as

follows

Dev(K~) = 0, Dev(f) = { f } if f ~ Fo u X,

Dev(h + t2) = Dev(h) w Dev(t2),

D e v (f (h , . • •, tk)) = f(Dev(t~) , . . . , Dev(tk))

='{ f (wl , . . . , Wk) [Wl ~ D e v (h) , . . . , Wk ~ Dev(tk)}.

We denote by Pol(t) the polynomial Y~ Dev(t). The mapping Dev corresponds to

the development of a factorized expression.

10.3. [,emma. For t, t' in M (F + , X) , the fo l lowing holds

(I) t <-->~ Pol(t) ,
(2) t <-->* t' i f and only i f Dev(t) = Dev(t') i f and only i f Pol(t) = Pol(t ') .

58 B. Courcelle

Proof. Part (1) is proved by easy formal manipulations.
(2) One can prove that t ~ e t' implies Dev(t)=Dev(t ') by induction on the

structure of t. The result now follows. []

A consequence of this lemma is that the word problem for ~ is decidable.

10.4. Definition. A distributive F-magma P can be canonically ordered as follows:

d<~d ' <=~ d ' = d + d ' .

This condition is equivalent to

:~d"sP, d ' = d + d "

since, for given such d", we have

d + d ' = d + d + d " = d + d " = d ' .

It is easy to verify that <~ is a partial order with least element/2p and that the fp's
are monotone. Note that P is not necessarily w-complete. If P is ~f(M), ~o,(M),
or ~(M), this ordering is nothing else than set inclusion-and P is w-complete in
the last two cases.

We conclude these preliminaries by noting that the mapping Dev: M(F÷, X)->
~ (M (F , X)) (Definition 10.2) is monotone, i.e., that t < t' implies Dev(t)~ Dev(t')
(this is easy to prove by induction on the structure of t). Hence, Dev extends to
M~(F+, X) by oJ-continuity, i.e., by Dev(t)= [,_J{Dev(t') I t '< t, t is finite}. Note in
particular that Dev(t) = 0 if t ~ M : (F , X) - M(F, X) since every finite term t' such
that t '< t has at least one occurrence of O which yields Dev(t ')=0.

If M is an F-magma and t ~ M(F, Xk), we also denote by tM the extension of t~
to sets, i.e., if A 1 , . . . , Ak ~ M,

tM(A1 , . . . , As) = { t M (a , , . . . , ak) I al ~ A1, • • . , as 6 As}.

10.5. Lemma. Let P= ~ (M) or ~,o(M), let A ~ , . . . , As be subsets of M, let t E

M~(F+ , Xk) -

(1) t p (A ~ , . . . , A k) = [. . J { s p (A ~ , . . . , A k) l s s D e v (t) } .

(2) I f M = M(F) , then tp (Ax, . . . , Ak) = Dev(t)[oIA~/xl , . . . , Ak/x~].

(3) I f t ~ M ~ (F , X k) - M (F , Xk), then t e (A ~ , . . . ,A k)=O.

(4) I f t ~ M(F, Xk) and if, for all i= l , . . . , k,

(i)

(ii)

then

(iii)

Card(Ai) = 0 implies It[x, > 0,

Card(Ai) 1> 2 implies Itlx, ~ 1,

t p (A l , . . . , A s) = t M (A I , . . . , A k) .

Assertion (4) also holds if P = ~f(M) and A1, . . . , As are finite.

Equivalences and transformations of regular systems 59

Since if M = M (F) , tM(A~, . . . , Ak)= t [mAf fx~ , . . . ,Ak /Xk] , part (4) of this
lemma states conditions under which the IO-substitution and the OI-substitution

give the same result.

Proof of Lemma 10.5. (1) The property follows from Lemma 10.3(1) for t in
M(F+, Xk). It extends by continuity to the case where t is infinite.

(3) If t s M ~ (F , X k) - M (F , Xk), then Dev(t)=0, hence, t i , (A t , . . . , A k) = O

by (1).
(2) If t ~ M(F, Xk), then tF(A t , . . . , Ak)= t[oiAff Xl, . . . , Ak/Xk] (by structural

induction on t and the definition of OI-substitution). The result then follows

from (1).
(4) We first assume that Ai # 0 for all i. It is easy to prove that t p (A t , . . . , Ak) D_

t M (A t , . . . , Ak) for all t in M(F, Xk) even if (ii) does not hold.
We now prove that (i i)~ (iv) , where

(iv) t i , (A t , . . . , Ak) c_ tM(A t , . . . , Ak),

by induction on t. If t ~ Xk U Fo, then (ii) and (iv) both hold (since Ai # 0 for all

i). Let t - - f (t l , . • . , tn) be such that (ii) holds. Hence, (ii) holds for h , . . . , tn, hence,
so does (iv) by the induction hypothesis.

So let a ~ h , (A t , . . . , Ak). This means that a =fM(at , • • . , an) for some a t , . . . , an
with a~ ~ ta , (A t , . . . , Ak) for all i. By the induction hypothesis, a~ ~ t~M(A1,.. •, Ak),
hence,

i i (v) ai tiM(a~,. . . ,a~) for some al in A 1 , . . . , a k in Ak.

i 1 for i in [HI. If Card(Aj) = 1, then aj = a~
If Card(Aj) > 1, then xj occurs in at most one of the t~'s, say ti~, hence, one can

i ~ ~ for replace aj by a) in the equalities of form (v), i.e., one can assume that aj = aj
all i in [n]. Hence, a, -- tiM(a~,.. . , a~) for all i in [n] and a = tM(a] , . . . , alk). Since
a~ ~ A~, for i = 1 , . . . , k, a ~ t M (A t , . . . , Ak) and we are done.

Let us now assume that A~ = 0 for some i. Hence, t M (A t , . . . , Ak) = 0 . By condition

(i), x~ occurs in t, hence, tp (A~, . . . , Ak) = 0 since f p (. . . , 0 , . . .) = 0 for all f in F.
Hence, (iii) also holds in this case. []

Our purpose is to solve polynomial systems (formally defined in the next section)
in powerset magmas ~ (M) for M in OF(~). In order to use the results of Sections
2 to 8, we want to consider a polynomial system to be solved in ~ (M) for M in
o//.(~) as a regular system to be solved in a magma belonging to ° t~(~ ') for some

set of equations ~', in such a way that ~' describes ~ (M) as well as possible. A
natural candidate is clearly ~' = ~ u ~, but this only works if ~ (M) e OF(~) for all

M in OF(~g). The following result due to Gautam [49] (see also [79]) shows that
cannot be arbitrary.

10.6. Proposition. Let ~ be a variety. Then ~ (M) ~ c£ for all M in ~ iff ~ = °F(~)
for some set ~ of linear and balanced equations.

60 B. Courcelle

Proof. We shall only need the ' if ' par t which is an immediate consequence of Lemma

10.5(4). See [79] for the 'only if ' par t of the statement. []

10.7. Examples. The variety of monoids (F = { . , e } and ~ g = { (x . y) . z = x . (y . z) ,
x. e = x, e. x = x}) and the variety of monad ic algebras (F consists of unary symbols

and a constant e, ~ = 0) are two useful examples in language theory (see Sections

2.8, 11.4.1, and 11.4.2).

The variety of monoids with a zero a such that x. a = a and a. x = a or the variety

of groups are not closed by the powerset operation. (In the case of monoids with

zero one has 0 . { a } = 0 so that the equat ion x . {a}= {a} is not valid as it should be
if this variety were closed under powerset .)

Our next purpose is to characterize the relation ~ W (~) ~ t = t'. For a set ~ of

linear and balanced equations, we shall prove that ~ V (~) ~ t = t' iff °V°'(~ u ~') ~ t =

t', i.e., that the to-equational theory of ~ ' V (*) is the same as that of 3r ' ° (~ u ~)

al though ~°V(~) is strictly included in °V'° (~ u ~). This p roof needs some technical
definitions.

For every t in Mo(F, X) we denote by [t] , the equivalence class of t modulo

~-->* and for T c Mo(F, X) , we denote by I T] , the set { [t] ,] t~ T}. In the following
proposit ion we omit the subscript *.

10.8. Proposition. Let Sg be a set o f linear and balanced equations. For all t, t' in
M (F ÷ , X) ,

(1) t <-->*~,~ t' iff [Dev(t)] = [Dev(t ')] ,

_<0 t r (2) t --~ , , . , , /ff [Dev(t)] _ [Dev(t ')] .

For t, t' in M°°(F+, X) ,

(3) t < ~ t ' /ff [D e v (t)] _ [D e v (t ')] ,

(4) t = - ~ t ' iff [Dev(t)]=[Dev(t ')] .

Proof. (1) I f [Dev(t)] = [Dev(t ')] , then t *->* Pol(t) , - ->*~ Pol(t ') <-->* t', hence,
t <-->*u~ t'.

Conversely, if t <-->~ t', then D e v (t) = Dev(t ') .

Let us consider the case of t <-->~ t'. We do the proof by induction on the structure
of t.

Case 1: t = f (t l , . . . , tk), t' = f (t ~ , . . . , t'k) and ti *->~ t[for some i, say i = 1, and
tj = tj for j = 2 , . . . , k. Then

[Dev(t)] = {[w] [w ~ f (Dev(t 1), • . . , Dev(tk)) }

= {fM([w,],..., [wk]) l w, ~ Dev(t,),..., wk ~ Dev(tk)}

=f~) ([Dev(t~)] , . . . , [Dev(tk)]),

where M = M (F) / o * .

Equivalences and transformations of regular systems 61

From a similar characterization of [Dev(t')] and the equality [Dev(tl)] = [Dev(t~)],
one gets [Dev(t)] = [Dev(t')].

If t = tl + t2, t' = t'~ + t~ with t~, t[as above, the proof is similar.
Case 2: t = s [q , . . . , t k] , t ' = s ' [q , . . . , t k] for some (s , s ') s ~ (with Var(s)=

Var(s') = Xk) and some q , . . . , tk in M(F+, X) . It is easy to prove that

Dev(t) = { s [w l , . . . , w k]] W 1 E D e v (q) , . . . , wk ~ De','(tk)}

(this uses the linearity of s and the fact that Var(s) = Xk) and similarly for t'. This
gives the desired equality: [Dev(t)] = [Dev(t')].

(2) If [Dev(t)]_c[Dev(t')], then t.-->* e o i (t) + O (<w.-->~,~)*eol(t ').-->* t'.
~ 0 t r. .<0 r Hence, t --: ~ . ~ Conversely, if t --: ~ ,~ t , then one shows that [Dev(t)] _ [Dev(t')]

by an extension of the proof of part (1) using the extra case where t = gt for which
Dev(t) = 0 _c Dev(t'), whatever t' might be.

Parts (3) and (4) easily follow from (2) and the various definitions. []

10.9. Example. We show that Proposition 10.8(1) is false if ~ is not linear or not
balanced. Let ~f = {g(x) = a}. Then a ~->~ gO ~ O and [Dev(a)] = {[a]} # 0,
whereas [Dev(O)] = 0. If ~'= {f(x, x) = gx}, then

t = g (a + b) ~ , f (a + b , a + b) = t',

[Dev(t)] = { [g a], [gb]},

[Dev(t')] = {[f(a, a)], [f(b, b)], [f(a, b)], [f(b, a)]} ~ Dev(t)

since [f(a, b)] = {f(a, b)}, hence, does not belong to [Dev(t)].

The following is a corollary of Proposition 10.8.

10.10. Corollary. (1) M(F÷, X) / *-> * ~ is isomorphic to ~f(M(F, X) / ~--> *).
(2) M~°(F+, X) / = ~ is isomorphic to ~o,(M(F, X) / o *) .

Proof. (1) Let h be the mapping M (F ÷ , X) - ->~f (M(F,X) / . ->*) such that h (t) =
[Dev(t)]. By Proposition 10.8(1), h(t) = h(t ') iff t ~ * ~ t'. Hence, h factors through
M(•÷, * X) / ~ , ~ and this defines the required isomorphism.

(2) Similar argument with h ' : M°~ (F+ , X)--> ~o, (M (F, X) / .-> *) such that h ' (t) =
[Dev(t)] by using Proposition 10.8(4). For the surjectivity, let A =
{ [w l] , [w2] , . . . , [w ,] , . . . } be a countable subset o f M (F , X) / ~ * , let a =
w l + w 2 + " . + w , + . . . (a is an element of M°°(F+,X)) . Hence, h ' (a)=A. []

10.11.
(1)

(i)
(ii)

(iii)
(iv)

Theorem. Let ~ be a set o f linear and balanced equations.
For t, t' in M(F+, X) the following conditions are equivalent:
~T'(~) ~ t = t',
~f°F(~) ~ t = t',
~ u ~ t = t ' ,
t . - > * ~ , ~ t ' .

62 B. Courcelle

(2) For t, t' in M°°(F+, X) , the following conditions are equivalent:
(i) [9"//'(~)~ t= t',

(ii) ~,o°l/'(g')~ t= t ',
(iii) ~ u ~ ~,o t = t',
(iv) t - = ~ t'.

Proof. (1) (i)~(i i) since ~f(M) is a subobject of ~ (M) with respect to the structure
of a distributive F-magma.

(i i)~(iv) : Let M = M(F, X)/~--~* and M ' = ~f(M). Let xi = {[x~]} for all i (note
that ~ ~ M'). By Lemma 10.5, one has, for all s in M(F, Xk),

SM'('~I,''', "~k)=SM('~I,..., Xk) ={XM([X1],--., [Xk])} ={[S]}-

If t z M(F+, Xk), then

tM'(:f,, • • •, Xk) = [_]{SM'(:X,, • • •, Xk)IS E Dev(t)}

= [._J{ {Is]} I s ~ Dev(t)} = [Dev(t)].

If t, t ' s M (F + , X k) and ~f° / / ' (~)~ t= t', then tM,=t~, and [Dev(t)]=[Dev(t')].
Hence, t ~->*u~ t' by Proposition 10.8(1).

(iv)c=> (iii) is proved by Lemma 1.4.
(i i i)~(i) follows from Proposition 10.6.
(2) The proof is similar. For the implication (i i)~(iv) , one takes M ' = ~o,(M)

instead of fi~f(M), and one uses Proposition 10.8(4) to conclude that t - ~ u ~ t' if
[Dev(t)] = [Dev(t')]. []

11. Polynomial regular systems

We now define the polynomial (regular) systems and the relations associated with
them.

1 I. 1. Definition of polynomial systems

11.1. Definition. A polynomial regular system of equations over F (or more shortly
a polynomial system) is a regular system over F+, S=(u i = ti ; 1 <<. i<~ n) such that
each t~ is a polynomial.

Regular systems over F+ will be more shortly called +-regular systems. It follows
from I.emma 10.3 that for every +-regular system S there exists a unique polynomial
system S' such that S rewr~ S'. We shall denote it by PoI(S). It is clear that
PoI(S) ~ S, hence, since polynomial and +-regular systems will always be solved
in distributive magmas, there is nearly no difference between them. Nevertheless
the distinction will be useful for making precise statements (and proofs) concerning
transformations of systems in Sections 12, 13, 14 below.

Equivalences and transformations of regular systems 63

The generic polynomial system will be S = (ui =p~; 1 <<- i<<. n), where pi is a poly-

nomial in M+(F, Unk(S)). If S is a +-regular system and M is an F-magma, we
denote by PsolM(S) the set of all its solutions in ~ (M) . Since ~ (M) is to-complete,
S also has a least solution denoted by/x-Psol~(S). Such least solutions have been
investigated in [41, 73]. A subset A of M is equational if it is a component of
tz-PsolM(S) for some polynomial system S (or equivalently, some +-regular system
S) (some results concerning equational sets can be found in [67] and the articles

cited there).

11.2. Polynomial systems of special types

In Definition 11.1, we consider a polynomial system as a regular system over an
alphabet of a special type, to be solved in a restricted class of magmas (namely
~V'). We can also consider a regular system as a polynomial system, where neither

+ no r /2 occurs. But the class of magmas where a regular system is solved, namely
°V or °V'° is larger than ~ . Hence, this latter point of view is purely syntactical. It
will nevertheless guide the following definitions which extend the one given in

Section 2.1.

11.2. Definition. Let S be a polynomial system (ui=pi;l<~i<~n), let U =
{Ul,. . •, u,}. It is uniform if Dev(pi) _ F (U) for all i. It is quasi-uniform if Dev(pi) c_
F (U) u U for all i. It satisfies the Greibach condition (or is a Greibach system) if

Dev(p,) _c F(M(F, U)) for all i.

Hence, in the first two cases, S is not necessarily uniform or quasi-uniform as a
regular system over F+.

11.3. Equivalences and preorders on +-regular systems

Let S and S' be two +-regular systems with the same set of unknowns U and let
be a class of F-magmas. We shall investigate the following relations:

t ~ P.~ t' iff t~M)(m) = t'~(M)(m) for all M in ~ and all m ~ PsolM(S),

S ~< p S' iff PsolM(S) ~ PsolM(S') for all M in c¢,

S = p S' iff PsolM(S) = PsolM(S') for all M in ~.

The superscript p recalls that one deals with +-regular systems to be solved in
powerset magmas.

Similar definitions can be given for least solutions:

t ~ ~ t' iff t~)(/ . t -PsolM(S)) = t~,~)(/.~-PsolM(S')) for all M in ~,

S <~P S' iff /~-PsolM(S) e PsolM(S') for all M in ~, i.e.,

iff /~-Psol~(S')~/~-Psol~(S') for all M in ~,

S ~ S' iff /~-Psol~(S) =/~-PsolM(S') for all M in

(i.e., iff S ~< ~ S' and vice versa).

64 B. Courcelle

As before we replace the subscript c¢ by M, by ~, or delete it if c¢ = {M}, c~ = oV(~)

or ~ = °V, respectively.

As for ~ , <~ ~, ~ , and ~<~ some implications immediately follow from the
definitions:

(11.3.1)

(11.3.2)

(11.3.3)

(11.3.4)

(11.3.5)

t ~P,~ t' implies t ~ . ~ t',

S < p S' implies S ~< p S',

S ~ p S' implies S ~ p S',

S < ~ S ' iff Pi=P,~P[for a l l i = l , . . . , n ,

S <~P~ S ' iff p~ ~P,~ p~ f o r a l l i = l , . . . , n .

If we now assume that ~ is a set of l inear and balanced equations, then

t ' (11.3.6) t ~ s , ~ implies t ~ P ~ t',

(11.3.7) S < ~ S' implies S < ~ S',

and similarly for ~ ~ ~ ~, - s,~ ~ ~, <~ ~ u ~, and - ~u ~. This means that every t ransforma-

tion which is correct w.r.t. ~ ~ ~ (respectively - ~ ~) is correct w.r.t. ~ ~ (respectively

The completeness of such rules w.r.t. ~ (or - P) depends on the converse

implications of (11.3.6) and (11.3.7) which are not obvious either. These questions

will be the subject of the next sections. We now define several algebraic structures

allowing to apply these notions to finite state au tomata and context-free grammars.

11.4. Examples

11.4.1. Finite-state automata
With every finite a lphabet T we associate the ranked alphabet Tu = T u {e} with

p(a) = 1 for a in T and p(e) = O. We let UT denote the Tu-magma with domain T*,

e as value of e and the function u --> ua as the unary function associated with a for

a in T. Actual ly U r is isomorphic to M(Tu).

We define an automaton over T as a 4-tuple (T, Q, ~, Q~), where Q is the finite

set of states, QI C _ Q is the set of initial states and ~-_c Q x (T w { e }) x Q is the

transit ion table. For every q in Q, we denote by L(A, q) the language of all words

of T* corresponding to some computat ion of A starting at some state in Q1 and

ending at q. The language accepted by (A, QF), where Q F - Q is a set of final states,

is L(A, QF) = [,.J{ L(A, q)l q ~ QF}.
With an au tomaton A as above we associate a polynomial system SA defined as

follows. Its set of unknowns is U = {uqlq ~ Q}. Its equations are Uq = ~ Pc, where
Pq is the set of all terms of the following three forms:

(i) a(uq,) for all a ~ T, q ' e Q such that (q' , a, q) e T,

(ii) uq, for all q '~ Q such that (q', e, q) e ~',
(iii) e whenever q ~ QI.

Equivalences and transformations of regular systems 65

It is a classical result that the least solution of SA in ~(UT) is nothing else than
the Card(Q)-tuple (L(A, q)) ~ o (where L(A, q) is the value of u~).

It is clear that a polynomial system over T~ is of the form SA for some automaton
A (respectively for some automaton A without e-transition) iff it is quasi-uniform
(respectively uniform).

11.4.2. Context-free grammars
With every finite alphabet T (such that e ~ T), we associate the ranked alphabets

Ts = T w {. } and Tm- Ts w (e}. We let ~s be the set of equations {(x.y). z = x. (y. z)}
and ~m = ~ W {X. e = X, e. x = x}. Hence, °V(~s) is the variety of semigroups and
°V(~,,,) is the variety of monoids. We denote by T + (respectively by T*) the free
semigroup (respectively the free monoid) generated by T.

We have shown in Section 2.8 how a +-regular system can be associated with a
context-free grammar G = (N, T, P). From now on, we shall denote by S~ the unique
polynomial system corresponding to this regular system as explained in Section
11.1. It is clear that G has no e-rule iff Sc is a polynomial system over Ts.

The N-tuple L(G, u).,~N of languages generated by G is the least solution of SG
in ~(T*) (or in ~ (T +) if G has no e-rule). Hence, L(G, u) = L(G, u') if and only

if u ~Sc,,~(T*) U'.

Conversely, let S = (u = t.,;u ~ N) be a +-regular system over Tm (respectively
over T~). There exists a unique context-free grammar (respectively a unique e-free
context-free grammar) G such that S~ = Poi(S).

Hence, all our results concerning +-regular systems and their solutions in ~(T*)
(or ~(T+)) or, more generally, in P(M) for M in T'(~m) (or M in T ' (~)) can be
formulated in terms of context-free grammars. In Section 17 we shall show that,
conversely, many results on context-free grammars can be conveniently reformulated
and proved in terms of polynomial systems and transformations of such systems.

12. Polynomial systems and their sets of solutions

Most of this chapter will be devoted to the proof of the following theorem.

12.1. Theorem. Let S be a polynomial regular system and t, t' belong to
M(F+, Unk(S)) . Then t ~Ps t ' if and only if t =s,~ iff t ~->*~ t' t'.

Although this theorem is similar to Theorem 3.2(1), its proof is much more difficult.
The reason is that the F+-magma M(F+, U)/ *-> *.s is not a powerset F-magma.
Hence, the proof method of Theorem 3.2(1) does not apply.

Our proof will use several steps, each of them needing technical constructions
and lemmas. Let us immediately mention that our proof does not extend so as to

* t ' . prove that t ~P~ t' iff t~->s~,~ The characterization of the relation t ~P~ t'
remains an open question (see Question 12.22).

66 B. Courcelle

We begin with the notion of a polynomial system which is reduced w.r.t, the

relation =P. Another one, relative to the relation ---P, will be defined later (see
Definition 14.3).

12.2. Definition. Let S be a polynomial system (as in Section 11.1). We denote by
Unk°(S) the set of unknowns u of S such that u xp /2 , i.e., the value of which is
0 for all solution of S (in a power-set F-magma). We let Unk+(S)=
U n k (S) - U n k ° (S) . A more precise notation would have been Unk°p(S) (or
equivalently, Unk°~(S)) since Unk°(S) does not denote the same set according to
whether S is considered as a regular system or as a polynomial one. But this
simplification in notations will not cause any ambiguity in the sequel.

We say that S is x-reduced if, for all i in [n], p~ ~ M+(F, Unk+(S)), and pi = /2
iff u~ ~ Unk°(S).

We now give an algorithm to compute Unk°(S) and to x-reduce the system S.

Let Uo = 0, U~+~ = U~ u {ujlevery monomial in pj has at least one unknown in U~}
(note that Ul={ujlpj=O}). Let Uoo= Uou U1u U2u ' - . u U~u Since U is
finite, Uoo is computable.

Let S'=(ui=p~;i~[n]), where p~=O if u~Uoo and p'i=~,(Dev(pi)n
M(F, U - U~o)) if u~ ~ Uoo. We shall denote S' by RetL(S). With these notations we
have the following proposition.

12.3. Proposition. (1) Uoo=Unk°(S).
(2) The system S' is ~-reduced and S runf~ S' (hence, S'~- p S).

Proof. (1) It is easy to establish by induction on i the validity of the following claim.

Claim. For all i >I 0, for all uj in Ui, for every powerset F-magma P, for every solution
m = (m l , . . ., mn) of S in P, mj=O.

Hence, u ~ Uoo implies u x $12.

To prove the converse, let M denote the trivial F-magma reduced to a single
element a and let P = ~(M). Then let m = (m l , . . . , m,,), where mj=O if uj~ Uoo
and mj = {a} if uj ~ U~o. It is easy to check that m is a solution of S in P. Hence,
uC~Ps 0 if u~ Uoo.

(2) Let d(S)= Card(Unk°(S)- / .]1) so that if S is x-reduced, then d(S)= 0. If
d(S) # O, let S~ = (ui = p~); 1 <~ i ~ < n), where pl 1)= Pol(pi[12/u; u ~ U~]). It is clear

that Smnf . rewr~S1 and that d(S~)<d(S). Hence, this transformation can be
repeated and gives after at most d(S) steps a x-reduced system S' such that
Srunf* S'. []

In terms of context-free grammars, this transformation consists in eliminating
certain useless productions. Note that we do not eliminate the useless unknowns

Equivalences and transformations of regular systems 67

since we want to obtain a system S' which is =-equivalent to S, hence, which has
the same set of unknowns. The =P-correctness of this transformation is insured by
its expression in terms of runf~.

Remark. Proposition 12.3 is valid with respect to the class of all distributive F-
magmas and not only with respect to ~°F. More precisely, Uoo=
{u ~ Unk (S) lu ~s,~ O} and Red~ (S) = e S.

The following definition and lemma will only be used in the proof of Proposition

12.8 below.

12.4. Definition. Given a polynomial system S we define its h-th iterate S h for h/> 1

as follows:

S h = (u, = Pol(p h) ; 1 <~ i ~< n),

p~=p~ for all i ~ [n] (hence, S~=S) ,

p h + l = p , [p h / u l , . . . , p h / u n] .

It is clear that pi--~*~ ph for all i, hence, that S unf~ S h for all h/> 1.

12.5. Lemma. Let S be a polynomial system. There exists an integer h such that, for

all ui in Unk(S),

u~ e U n k ° (S) /ff p~ ~-~ O.

Proof. Let h be the smal les t j~ > 1 such that U~ = Unk°(S). Note thatj<~ n. We show
by induction on j that, for all j/> 1,

u~e Uj implies p,J."~->/2 forallj '~>j.

By the associativity of substitution,
p,+t j ,

= p , [p ~ / u l , . . . , p J u n] ,

hence, p~ ~ * 0 implies p X" ~ * 0 for j ' ~ j and it suffices to do the proof fo r j ' =j.
This is clear for j = 1. Let us consider the casej + 1. Let ui e U~+1 and p~ = tl + • • • + tk
for t ~ , . . . , tk e M (F , Unk (S)). Since every tm has an occurrence of some uv in Uj,

t m [P ~ I u i , . . . , p ~ I u ,] <

Hence, p{+l ~ , ~.

, tin[p~l U l , . . . , ~OI Ui,,. . .]

Conversely, let j be any integer such that p~ <-->* D. Then ui ~ $J O. Since every
solution of S is a solution of S j, u~ ~Ps O, hence, ui e Unk°(S) . []

68 R Courcelle

Note that S h is not ~--reduced in general and is not ~P-equivalent to S.

12.6. Definition. A polynomial system S (as in Section 11.1) is deterministic if it is
uniform and Dev(p~)ca Dev(p j)=0 for all i, j e In] such that i ~ j .

It is complete deterministic if, furthermore, F (U) = [_J {Dev(p~) [1 ~< i<~ n} (where
U = Unk(S)).

This terminology can be understood with the help of the example in Section

11.4.1: the polynomial system SA associated with a finite automaton A is deterministic
iff A is deterministic (i.e., A has only one initial state, has no e-transition, and its
transition relation r_c Q x T x Q is functional w.r.t, its first two arguments); it is
complete deterministic iff A is (i.e., if A is deterministic and, for all q in Q, a in T,
then there exists q' in Q such that (q, a, q') ~ ~'). The complete deterministic systems

are called 'deterministic' in [73] and the deterministic ones have no special name

in this paper.
We can now start the proof of Theorem 12.1. The following proposition is a just

special case of it.

12.7. Proposition. Let S be a complete deterministic polynomial system. Let A, A ' c
Unk+(S) and t = ~ A, t '=~, A'. Then t ~ t' i f and only if A = A ' , i.e., i f f t= t'.

For later use, note that the stated conditions on t, t' could be formulated as
t, t'e M+(I~, Unk+(S)).

Proof of Proposition 12.7. We define an F-magma M with domain M = U = Unk(S)
and operations defined as follows:

fM(Ui, , . . . , Uik)= U, iff f (u , , , . . . , u,k)e Dev(p,).

Since S is complete deterministic, this properly defines fM for all f in F.
It is easy to verify that the n-tuple m = (ml, • • •, m~), where mi = 0 if ui e Unk°(S)

and m~ = {u~} if u~ e Unk+~(S), is a solution of S in ~ (M) and that, for t, t' as in the
statement, t~(M)(m)=A=Dev(t) and similarly for t'. Hence, t~Pst ' implies

t~ (M)(m) = t ~ (M) (m) , hence, A = A' and t = t' .

The converse is obvious. []

We now use this result to establish another special case of Theorem 12.1, which
includes this one.

12.8. Proposition. Let S be uniform and t, t 'e M+(t~, Unk(S)). Then t ~P t' if and
only if t ~*,~ t'.

Equivalences and transformations o f regular systems 69

The proof of this proposition rests upon a construction of Mezei and Wright [73]
which associates with a uniform system a complete deterministic one and which
generalizes the classical determinization algorithm for finite-state automata.

Construction: Let S be a uniform polynomial system, as in Section 11.1 and let
U = { u ~ , . . . , u ,}=Unk(S) . We introduce a new set of unknowns O in bijection
with ~ (U): We denote by ti the element of 0 associated with a _ U. We do not

identify {u~} with u~. Further, we assume that Oc_ q / fo r every finite subset U of 0-//.
For every k/> 0, every f in Fk, every u i , , . . . , u~k in U, we let f (u ~ , , . . . , ui~) denote

{u~ ~ U [f (u~ , , . . . , u~) e Dev(p~)}. This mapping extends in a standard way to ~ (U) k

by

:(Ofl,""", Ofk)= U {: (n i l , ' ' ' , Uik)lUil ~ O l l ' ' ' " ' Uik ~ Olk}"

We let S=(c i =p,~;6 ~ 0) , where

pa = ~ . { f (a , , . . . , &k)l a l , . . . , &k ~ U , f (a , , . . . , ak) = a}.

Equivalently, f (6 ~ , . . . , 6k) s Dev(p,0 iff tr = {ui ~ U l f (u i , , . . . , u~) ~ Dev(p~) for
some u~, in a l , . . . , u~ k in ak}. It is clear that S is complete deterministic (but not
necessarily ~-reduced). Let also S" denote the set of equations (ui = q~ ; 1 ~< i ~< n),
where qi = ~ {c~ [t~ ~ l], u~ s t r }, and S' = ~q w S". It is clear that ~q is a (large) subsystem

of S'.

12.9. Lemma. S'redef~ (S u g) . Hence, for every P in °V(~), 1rv(Sole(S '))c_

Solp(S).

Proof. We verify conditions (1)-(3) of Definition 5.10. Condition (1) holds since it

reads Pi~ M (F + , U) , for all i in [n].
Condition (2) holds since

q,[O/a; a ~ O] ~ o.

Condition (3) reads:

:g

q,[pal a ; a ~ O] < , p , [q d u , , . . , q~/un]

(since -= ~ coincides with ~-->*) and we shall verify its validity:

Dev(q,[p~/~,;a ~ 0])

=-U {Dev(p~) I u~ ~ a c_ U}

= { / (& l , - - - , &k)[Cq, . . . , a k ~ U, u , ~ f (~ l , . . . , ak)).

70 B. Courcelle

On the other hand,

Dev(p, [q~/ul , . . . , q, / un])

= [..3 {aev(f (q , , , . . . , q,k))] k >I O, f e Fk,

i l , . . . , i k ~ [n] , f (u 6 , . . . , uik)eDev(pi)}

= { f (6 ~ , . . . , 6k)lk>~O,f~ Fk, there exist i~ , . . . , ik such that

f (u i , , . . . , uik) ~ Dev(pi) and uil ~ tel, • . . , u,~ ~ ak}

= Dev(q,[p~/dL ; 6 ~ U]),

by the definition of f Hence, condition (3) holds and S' redef~ (S w ,q).
The second assertion follows from Remark 5.13 and Proposition 4.6(1). []

In [73], the construction of S is immediately followed by the deletion of all
P O: we shall do this in Definition 14.3. unknowns ci such that 6 - g

In the following lemma we denote by Mh(F, X) the subset of M(F, X) defined by

Mo(F,X)=X, Mh+,(F,X)=F(Mh(F,X)).

Note that M~(F, X) = F (X) and Fo C_ Mh(F, X) for all h I> 1.

12.10. Lemma. Let S be a uniform polynomial system, let U = Unk(S), let sh=
(ui = q hi ; i ~ [n]) be its h-th iterate. I f S is complete deterministic, then {Dev(q h) I i e [n],
Dev(qh) #0} is a partition Of Mh(F, U).

The lemma is proved by induction on h. We omit the details.

12.11. Lemma. Let S be uniform, let U=Unk(S) , let ,~=(t i=p,~; t i~ U) be the
complete deterministic system associated with S as above. Let S h=
(u, = Pol(p~) ; i ~ [n]) a n d s h = (a = Pol(p h) ; ti e U) be the h-th iterates of S and g
respectively.

For all t in Mh(F, Xk) which is Xk-linear, for all 6, 6 1 , . . . , 6k in 0 the following
conditions are equivalent:

(1) t [~ l /X l , . . . , fftk/Xk]EDev(pha),

(2) a = {ui~- U] t[u iJx l , . . . , Ui~/Xk]eDev(phi)

for some ui, in a l , . . . , uik in ak}.

This lemma states that gh is 'something like' the complete deterministic system
associated with S h. However, we cannot write gh = (S h) since, for h >>- 2, S h is not
uniform, hence, the above construction does not apply. We only want to point out
the similarity between Lemma 12.11 and the definition of p~.

Equivalences and transformations of regular systems 71

Proof of Lemma 12.11. The proof is by induction on h. The result is trivial if h = 1.
Let us establish the result for h > 1 by assuming that it holds for h - 1. Let

t ~ Mh(F, Xk) be Xk-linear.
(1) ~ (2) : If t [a l , . . . , ak]~Dev(pg), then t = f (t l , . . . , h) and there exist

h--1 f l~ , . . . , fll in ~ (U) such~thatf(/~l,...,/3~) ~ nev(pa) and t;[ffl,. • . , ffk] ~ Dev(p~)
for all j = 1 , . . . , / . By the induction hypothesis,

~j ~-{UiE U] tj[Ufi,..., u,~] e Oev(p h-l) for some ui, in a ~ , . . . , ui~ in Ol~k}. (4)

If ums a, then f (u y , , . . . , u~,) ~ Dev(p,,) for some uj~ in /3~,. . . , u~ in fit. Hence,
f (q , . . . , h) [u ~ , . . . , ui~] ~ Dev(p h) for some u~, in a ~ , . . . , u~ in ak, by (4) and the
linearity of t. Hence, we have proved the ~-par t of (2).

To prove the other inclusion of (2), let u~ belong to the right-hand side of (2)
and u~,,. . . , u~ be the associated elements of 0 t l , . . . , Ot k. Then f (u j ~ , . . . , u~,)
Dev(p~) for some u~ , . . . , u~, such that tm[u i , , . . . , u j ~ Dev(p~ -~) for all m = 1 , . . . , I.
Hence, uj, ~ /31 , . . . , u~, ~ fit. Hence, u~ ~ a since f(/3~,. . . , /3t) s Dev(p~) (and by the
definition of S). Hence, we have shown the _~-part of (2).

(2)~(1) : Let us assume (2) and prove that t [d q / x ~ , . . . , (~k/Xk] ~ Dev(pg).
By Lemma 12.10, t [6 1 , . . . , 6k] belongs to Dev(p~) for some/3 in 0. With the

help of the first part of the proof one obtains a =/3. []

Proof of Proposition 12.8. Let us assume that t = u i , + . . - + u ~ , and that
uj, +" • • + uj,. Let us also assume that we have proved that

u~ m + t' -" ~ t' for all m = 1 , . . . , k,
S,~

t, =

ujm+ t ~ ~ t f o r a l l m = l , . . . , l .
s,~

It is easy to prove (by using 9) that t+ t' <--~*,~ t' and t '+ t,-~*.~ t, whence t~**.~ t'.
Hence, it suffices to establish Proposition 12.8 for t = ui, + t' and t' = uj, + • • • + uj,.
If i l s { j l , . . . , j z } , then t <--->* t'.

We shall assume, without loss of generality, that t = U l + U 2 + " "+uk, t '=
u2+ ' " " +Uk. We also assume that t ~ t'. For i e [n] , let O i = { 6 t 6 0 [u ~ 6 a and

~ Unk+=(S)}. Let m = (ma)a~o be an arbitrary solution of S in ~(M) for some M
in °F.

It uniquely extends to a solution m' of S' since S is a large subsystem of S'. Its
projection m " = zrv(m') defines (by Lemma 12.9) a solution of S, namely m " =
(m~', . . . , m~) with m~' = Y~ {ma 1,~ ~ 0~}. Hence, te,(M)(m')= ~ {ma [1 <~ i<~ k, ~ e 0~}.
Similarly, t'~(m)(m') = ~ {m.~ [2~ < i<~ k, ti 6 0~} = t~(M)(m'). Hence,

since (ma)aeO is an arbitrary solution of S.
Hence, by Proposition 12.7,

72 B. Courcelle

--P~'~ for all a e A , where A = { a c U] u l e a and u~C:a for all This means that 6 - g

i = 2 , . . . , k } .

Let h be the integer associated with S by Lemma 12.5. It follows that p] ~-->*/2
for all a in A. From this, we now prove that

Dev(p h) _c Dev(p2 h) u . . - w Dev(ph). (5)

Let t e Mh(F , Xt) be Xrl inear and let t [u ~ , . . . , u~,] belong to Dev(plh). Assume
that it does not belong to the fight-hand side of (5) and consider t[{~-~,},..., {~'~,}]

which belongs to Dev(p~) for some 13 __ U by Lemma 12.10. Lemma 12.11 shows
that ul e/3 and that u 2 , . . . , Uk~ ft. Hence, /3 e A and Dev(p~) # 0, which is a
contradiction.

Note that u ~ * s p h for all i-- 1 , . . . , k. Hence, it follows from (5) that

U , + ' ' ' + U k , p ~ + . . . + p ~ < > p ~ + . . . + p h , U 2 + ' ' ' + U k ,
s ,~ ~ s ,~

hence, t ~----~*.~ t' as was to be shown.
Note that instead of the integer h of Lemma 12.5 it suffices to take

h = M i n { i l p ~ = / 2 for all a in A},

which is smaller in general. []

We illustrate this complicated proof by an example.

12.12. Example. Let S be the following system:

u = a + b + gu + gv + gw, v = a + gx,

w = b + gv + gw + gx, x = gu + gv.

~ P We shall prove that u + v + w - s v + w and that u + v + w ~->*.~ v + w . To do so,
we construct ~q:

u-F = a, uw = b + g ~ , ux = g-if,

- - t

VW = g x , glOW = g w x ,

uwx = g~ + ~ - ~ + ~ - f f + g-ffff + g u v w ,

uvwx = gux + g - ~ + gh--~ + g-ff-ff~ + g-vff~ + guvwx ,

To simplify the notations we have used ~-~ for {u--~}, etc. and omitted the equations
with fight-hand side/2.

- P / 2 for all a c {u, v, w, x} such that Since a - - p ~ 12, ~ ~ p ~ £2, it follows that ti - ~
u e a and v , w ~ a . Hence, u + v + w ~ - p s v + w. Note that Pa =/2, Po l (p~) # 12, but
Po l (p~) =/2. It follows that h = 2 suffices in the proof of Proposition 12.8 (see the
final remark).

Equivalences and transformations of regular systems 73

Let us verify (5):

Dev(p~) = {a, b, ga, gb, ggu, ggv, ggw, ggx},

Dev(p 2) = {a, ggu, ggv},

Dev(p 2) = {b, ga, ggx, gb, ggv, ggw, ggx, ggu}.

Hence, Dev(p~)~Dev(p2)uDev(p~), whereas Dev(pu) is not included in
2 2 2 Dev(pv) u Dev(pw). Hence, u+ v+ w ~ * ~ p2 +Pv+Pw ~ * P~ +Pw ~*,~ v+ w, and

u -k v + w <--> *s,~ v-F w.

We now extend Proposition 12.8 to the class of quasi-uniform polynomial systems.
The proof will be based on a construction of independent interest (see Lemma
14.13) that we shall present separately.

12.13. Definition. Let S be a polynomial system (as in Section 11.1). Let us associate
with S a binary relation -~ on Unk(S) defined as follows:

ui -> uj iff uj ~ Dev(pi) .

We say that u is cyclic if u --->+ u and we denote by Cyci(S) the set of cyclic unknowns.
We say that S is cycle-free if Cycl(S) = 0. We associate with S a system S' as follows.
We let q i=~(Dev(p i)nU) , r i=Y. (Dev(p i)nF(M(F,U))) and S'=(u~=
Pol(q; + r~) ; 1 <~ i <~ n), where

(1) q;=~ {uj~Cycl(S)lui--->* uj},

(2) r[=Y~{s)]j~[n],u,--->* uj}.

12.14. Lemma. S runf* S'. Hence, S' =P S.

Proof. For every j in [n] we shall define a transformation yj on polynomial systems
with set of unknowns U = { u l , . . . , u,} such that

(1) yj _c runf~,

(2) S3qy2""" y,S'.

Letting S be as in Definition 12.13, and S=(u~ =#~;1 ~< i ~ < n), we write STjS iff
the following conditions hold

(3) pj = pj,

(4) #~=Pol(q,[p~/uj]+r~) i f i # £

where p ' j = pj if uj ~ Cycl(S) and pj = pj + uj if uj e Cyel(S).
It is not difficult to verify that 39 "-runf~) (with the notation of the proof of

Proposition 4.13) which proves (1).
Assertion (2) could be proved by an adaptation of the correctness proof of the

classical o(na)-algorithm for transitive closure. We omit the technical details, but
below we shall give a representative example.

The statements of Lemma 12.14 immediately follow from (1) and (2). []

74 B. Courcelle

12.15. Example. In Table 2, we display S~ such that Sy~ y2" " • %S~ for i = 1 , . . . , 5.

We need not specify r ~ , . . . , r5 which are arbi trary elements of M+(F(M(F, U))).
The cyclic unknowns are Ul, u2, u3, us. As in Example 4.14, if an equat ion of Si+~

is not written, this means that it is exactly as in S~.

~ P p 12.16. Proposit ion. IfSisquasi-uniform, if t, t' ~ M+(O, U) andt - s t , then t *->*s,~ t'.

Proof, Let S' be associated with S by Definit ion 12.13. Without loss of generality,

we can assume that C y e l (S) = { u ~ , . . . , Uk} for some k ~ < n. Let C = { c l , . . . , Ck} be

a set of new constants, let F ' = F w C.

If S'=(u~=Pol(q~+r[);l<~i<<-n) as in Defini t ion 12.13, we let S"=
(u, = Pol(q,'.' + r[); 1 <~ i ~ < n), with q~ = q[[cJu l , . . . , Ck/Uk] for all i in In] . Note that

S and S" are two polynomial systems over F ' with the same set of unknowns.

C l a i m . S " ~ < p S .

This means that every solution of S" in ~ (M) , where M is an F ' -magma, is a

solution of $, equivalently of S' by Lemma 12.14.

Proof o f Claim. Let m = (m ~ , . . . , m,) be a solut ion of S" in ~ (M) , i.e.,

mi = qT(m) u r[(rn) for all i

(instead of q~'M(m) we write q'.',(m) for simplicity). We have to prove that mi =

q[(m)wr[(m).
For the inclusion _ it suffices to prove that q"(m)c_ q[(m). If d ~ qT(m), then

d=c:~ for some j in [k] such that ui-->* uj. However, cjsDev(q~'), hence, d~mj.
And mj ~_ q~(m) since uj e Dev(q[). Hence, d ~ q[(m).

T a b l e 2.

S $1 $2

/21 = U2 q- rl

u2 = u 3 + u 4 + r2

U3= U l + r 3

u4 = us + r4

us = us + r 5

u 3 = u ~ + u 2 + r ~ + r 3

Ul = U2 Jr" U3"~" H4"~- rl -{- g2

u 3 = u I + u 2 + u 3 + u4+r~+rE+r 3

$3 $4 $5 = S'

u I = u 1 + u 2 + u 3 + u a u l = u I + u 2 + u 3 + u 5

+ rt + r2 + r3 + rt + r2 + r3 + r 4

u2 = i d e m u2 = i d e m

u3 = i d e m u3 = i d e m

Ul = UI "~" H2-~- H3-~- U 5
+ r l + r 2 + r 3 + r 4 + r 5

u2 = i d e m

u3 = i d e m

u4 = us + r4 + r S

u 5 = u 5 + r 5

Equivalences and transformations of regular systems 75

For the reverse inclusion ~_, it suffices to prove that q~(m) c_ qT(m) u r~(m). Let
d e q~(m). Hence, d ~ mj for some j in [k] such that ui -->* uj. Hence, d ~ q~'(m) u

r~(m).
Since u~-->*u~ and by the definition of S',Dev(r~)c_Dev(r~) and Dev(q~')~

Dev(q,"). This concludes the proof of the claim. []

u P t'. Proof of Proposition 12.16 (continued). Let now t, t' ~ M+(O, U) be such that t - s
It follows from the claim that t ~-P t'. However, S" is uniform since the cyclic

S u

unknowns of S' have been replaced by constants. Hence, t.->*,,~ t' by Proposition

12.8; let "y:t~->s,,,~tl~-->s,,~t2~-->s,,~'"t' be a sequence of rewritings. Let
0: M(F+ u C, U) --> M(F+, U) be the substitution such that O(w) =

w [c l , . . . , u k / c k] .

It is easy to prove that w <-->~ w' implies O(w) ~-->~ O(w') and that w --> s,' w' implies

O(w) -->s, O(w'). Hence, this gives

t <) 0 (t l) <) 0 (t 2) <) ' ' ' < , t ' .
S ' ,~ S ' ,~ S ' ,~

By Lemma 12.14 and Proposition 4.3, S unf~ S', hence, ui-~*s,~ ql+r[for all i.

Hence, w~-->s, w' implies W~s*~ w'. And this shows that t~--~s*,~ t'. []

The last step of the proof of Theorem 12.1 will use a construction which transforms
an arbitrary polynomial system into a quasi-uniform (polynomial) one. This con-

struction is an obvious extension of the one of Proposition 7.12 and as we did there,
we denote by Ufm(S) the result of the construction applied to S. Since we want
Ufm(S) to be polynomial and not simply +-regular, some reorderings of the
monomials may be necessary. Hence, we obtain the following proposition.

12.17. Proposition. For every polynomial system S, one can construct a quasi-uniform
polynomial system Ufm(S) such that Sc_eS'rf ld ~ Ufm(S) (for some polynomial
system S'). Hence, S =u.k(s),~ Ufm(S). I f S is a Greibach system, then Ufm(S) is
uniform.

To give an example, the system

S = (ul = u2 +f (u l , g (u2 , f (u l , u2))), u2 = a + h(u2, f (u l , u2)))

is transformed into

Ufm(S) = (u 1 = u2 + f (ul , u3), u2 = a + h(u2, u4), u3 = g(u2, u4),

U4 = f (u l , U2)).

Letting S ' = Ufm(S), we have the following lemma.

12.18. Lemma. If, w, w'~ M(F+, Unk(S)), w~->*,~ w' implies w~-->*,~ w'.

Proof. Let U = Unk(S) and U ' = Unk(S') = { u l , . . . , u,.}, m/> n. For u in U ' - U,
let fi be the unique element of M(F, U) such that u -->s*'r(u'-u) u.

76 B. Courcelle

Let 0 : M (F ÷ , U ') ~ M (F ÷ , U) be the substitution such that O(s)=

s[f f /u ; u ~ U ' - U]. As in the proof of Proposition 12.16, we show that 0 transforms
a sequence of rewritings s*--~*,.~ s' into one of the form O(s)<--~*.~ O(s') (note that
O(w) = w and O(w') = w').

If s ~ s', then O(s) <--~ 0(s'); this is clear since ~ is closed under substitutions.
If s ~s, s', then O(s) -->*,~ 0(s'); this is not so clear since S and S' are ground

rewriting relations and since 0 modifies the elements of U'. In fact, it suffices to do
the proof in the following two cases by letting S '= (u~ =p~; i~ [m]).

Case 1: s = u , s ' = p ~ , l < ~ i < ~ n . In this case, O(s)=u~ and O (s ') ~ * p ~ so that
u, = - , O (s ') .

Case 2: s = ui, s' =p~, i ~ {n + 1 , . . . , m}. In this case, O(s) = O(s') so that the result
trivially holds. []

We can finally prove the main result of this section.

Proof of Theorem 12.1. Let S be a p o l y n o m i a l system (as usual) and U = U n k (S) .

up t'. Let S' be the system S u Let t , t ' ~ M (F + , U) be such that t - s

(un+~ = Poi(t), u,+2 = Pol(t')), where u,+l and u,+2 are two new unknowns. It is clear
~--- P <-">* U~+2, then Pol(t) *-->*,~ Pol(t ') (it suffices to substitute that u,+~ s, un+2. I f u , + l s,,~

Poi(t) for un+~ and Pol(t ') for u,+2 everywhere in the sequence of rewritings
transforming u.+~ into un+2), hence t o * ~ t'.

Hence, it suffices to do the proof of Theorem 12.1 for t, t' in U. Without loss of
generality w e can a s s u m e that t = u~ and t' = u>

If S is quasi-uniform, the result follows from Proposition 12.16. Otherwise, let
S' be the quasi-uniform system associated with S by Proposition 12.17. S ince S' - p - u S ,

~P t'. Hence, t~-->*,~ t' by Proposition 12.16 and t<-->*,~ t' by Lemma one has t ~ s ,
12.18. []

Fact (11.3.4) yields the following characterizations of the relations S ~ P St and
S ~Ps ' .

12.19. Corol lary. For every two polynomial systems S and S' with the same set of
unknowns U, for every t, t' in M(F+, U),

(1) t ~p t ' / f i t ~s,~ t',

(2) s ~ P s t iffS<_~,~ S ,,

(3) S u p S t / f f S ~ S f"

~ P t ~ P 12.20. Corollary. The condition t~-~*~ t' is decidable. Hence, t ~ s t , S S', and
S ~ p S' are decidable.

Equivalences and transformations of regular systems 77

Proof. Let us examine all steps of the proof of Theorem 12.1, and, in particular,
-P t'. That of Proposition 12.7, namely Dev(t)= Dev(t'), the characterizations of t - s

is decidable. The condition (4) of the proof of Lemma 12.11 is also decidable and
the integer h can be computed.

These two conditions are used to characterize t = p t t in the proofs of Proposition s

12.16 and Theorem 12.1 by means of effective transformations of systems. Hence,
the property t = p t' is decidable. []

The results of Corollaries 12.19 and 12.20 also hold for +-regular systems. They
show that the class of distributive F-magmas and its subclass consisting only of
powerset F-magmas yield the same relations on polynomial systems, as well as on

polynomials.
Another consequence is that the transformation rule eq~ (introduced in Definition

3.5) is correct and complete w.r.t, the =P-equivalence of polynomial systems.
But this result raises a few (probably difficult) questions (for which we do not

make any conjecture).

12.21. Question. The transformation rufld~ is =P-correct, is it ~P-complete, or
equivalently, is it =~-complete?

Next comes the investigation of ~ p in the case where ~ is linear and balanced.
The proof of Theorem 12.1 does not positively answer the following question (where
t, t' ~ M(F+, Unk(S))).

~ P i t 12.22. Question. Is it true that t ~s,~ iff t~s .~ ,~* t'? If not, find an alternative
characterization of the relation t =P~ t'. Is it semidecidable?

In order to establish the validity of the 'iff' it suffices to establish it for all uniform
systems S and for all t, t' in M+(0, Unk(S)) since the last steps of the proof of

- P and ~-->s,~u~. Theorem 12.1 can easily be extended to ~
A positive answer to the following question would yield a positive answer to

Question 12.22. As before ~ is linear and balanced.

12.23. Question. Is the =P-correct transformation rufld~u~ also =P-complete? If
not, find a =P-complete set of transformations.

Concerning undecidability we have the following results, which come from the
case of regular systems since a regular system over F can be considered as a
polynomial system over F with no occurrence of +.

12.24. Proposition. Let ~ be a set o f linear and balanced equations, let S be a regular

system over F and w, w'~ M (F , Unk(S)). Then w =Ps,~ w' iff w~-->s,~u~* w' iff
~P t' and * t' w~-->*,~ w'. Hence, the relations t - s , ~ t~-->s,~u~ are undecidable (where ~ is

a finite set as above, S is a polynomial system, and t, t' are in M (F + , Unk(S))).

78 B. Courcelle

* w' - P ' it suffices to Proof. Since w ~ * . , w' implies w*->s.~, which implies w - s .~ w,
~ P p prove that the latter implies w "~->s*,~ w'. So let us assume that w ~ s,, w, U = Unk(S),

and consider M = M (F , U)/~-->s~.* Since ~ is linear and balanced, P = ~ (M)
belongs to W(~). Assuming that U = { u ~ , . . . , u,}, the n-tuple ([u~] , . . . , [u~]) is a
solution of S in M. Hence, the n-tuple m = ({[ul]}, • • . , {[u,]}) is a solution of S in
e. Hence wp(m)=w~,(m). But Lemma 10.5(2) gives us Wp(m)=wM(m)=
{Wm([Ul],. . . ,[u~])}={[w]}, and similarly for w' so that [w]=[w']. Hence,

* W ~" w~-->s~ The second part of the proposition follows then from the undecidability
result of Proposition 3.3. []

Note that this proposition is consistent with positive answers to Questions 12.21
and 12.22.

12.25. Remark. Let us consider the special case of context-free grammars, i.e., of

polynomial systems over Tm in the context of ~m (see Section 11.4.2).
(1) If G and G' are two grammars having the same set of nonterminals, then

P S~, implies SG ~ p S~,, S G ~ ~m ~'(T*)

i.e., the former implies that the systems associated with the two grammars have the
same n-tuples of languages over T as solutions. The converse is not true (although

T* is the free monoid for the reasons given in Remark 3.7).
Consider S~ = (u = au + b) and S~, = (u = aau + ab + b). They have the same

(unique) - solution, namely a*b in ~({a, b}*). But it is not difficult to construct a

monoid M where their sets of solutions are distinct. Since S~ unf~ S~,, this shows
that the transformation unf~ is not ~P-correct.

(2) On the other hand, Berstel has shown in [8, Theorem 1.7] that if in a
polynomial system S one replaces an unknown by the right-hand side of its defining
equation at only one of its occurrences in a right-hand side, then the system S' that
one obtains and the system S have the same solutions in ~(T*) .

One might conjecture that the same holds in the slightly more general situation
where S u n f ~ m S'. However, this is not the case as shown by the example of
S = (u = v+a, v= u+b) and S ' = (u = u + a + b , v= v + a + b) since ({a, b}, {a, b}*)
is a solution of S' which is not a solution of S.

13. Polynomial systems and their least solutions

P t _~P S p ,.~p i Our aim is now to characterize the relations t - s.~ t , S ~ ~ and S ~ S , where
is a set of equations. The characterizations we shall obtain will be based on the

following theorem of Mezei and Wright [73] that we have already stated in a more
general form for regular systems (Lemma 5.3).

13.1. Proposition. Let S be a polynomial system, M and M' be two F-magmas and
h be a homomorphism M->M'. Then I~-PsolM,(S)=h(l~-PsolM(S)), i.e., the least
solution orS in ~ (M ') is the image under h of its least solution in ~(M) .

Equivalences and transformations of regular systems 79

Proof. Let us extend h into a mapping ~(M)--> ~(M') by h(A) = {h(a)[a ~ A} for
A _ M. Then h is a homomorphism of distributive F-magmas which is oJ-continuous.
Since h(0)=0 and h (p m (A 1 , . . . , A ,)) = p M , (h (A l) , . . . , h (A n)) , for every p in
M(F÷, Xn), the conditions of Lemma 5.3 are satisfied and the result immediately

follows. []

13.2. Definition. Let S be a polynomial system with U = Unk(S) = {Ul , . . . , u,}. Its
least solution in ~(M(F)) is an n-tuple of subsets of M(F) (i.e., of sets of trees)
that we denote by L(S) or by (L(S, Ul), . . . , L(S, u,)). For Lc_ M (F) and M in
we denote by LM the set {tM[t S L}, where tM is the value of t in M (or, equivalently,
t ~ tM is the unique homomorphism M(F)-> M).

The following proposition is an immediate consequence of Proposition 13.1.

13.3. Proposition. /~-PsolM(S) = (L (S , U~)M,..., L (S , U,)M).

For t in M(F÷, U), we denote by L(S, t) the set of trees t~(M(F))(L(S)). We now
characterize this set in terms of rewriting sequences. In addition to the ground
rewriting system S on M(F+ u U) we associate with S (as in Section 11.1) a ground
rewriting system on M (F w U) defined as the set of pairs:

Dev(S) = { (ui, t)] i ~ [n], t ~ Dev(Pi) }.

The following lemma states a relation between ->s and -->D,,(s).

13.4. Lemma. Let t~M(F+, U) and w '~M(F, U). Then w'~Dev(t') for some t'
* W r" such that t ->* t' iff there exists a w in Dev(t) such that w ->D,v(s)

We omit the proof which can be done by standard techniques.
The following result is nothing else than an adaptation to the present case of the

theorem of Ginsburg and Rice [51] recalled in Section 2.8.

* w' for some 13.5. Proposition. For t in M(F+, U), L(S, t)={w' ~ M(F)[w->D,v(s)
w in Dev(t)}. Hence, L(S, t)= {w'~ M(F) I Dev(t')for some t' in M(F+, U) such
that t -->* t'}.

The first equality is in fact a corollary of the theorem of Ginsburg and Rice since
if one represents the elements of M(F, U) as words written with the Polish prefix
notation, Dev(S) is a context-free grammar (in the usual sense) with set of nonter-
minals U. Nevertheless, we shall indicate the main steps of the proof for the sake
of completeness.

For w in M(F, U) and k ~> 0 we let Lk(w) = {w'e M(F)[w ->~,(s) w', m ~ k} and
L(w)=U{Lk(w)[k>~O}.

80 B. Courcelle

13.6. Lemma. Let w e M (F , U) . Then, for all k>-O, Lk(w)c_W[oILk(ul)/Ul,
. . . ,Lk(u, ,) /u ,] and L(w)= W[oiL(ul)/ul, . . . ,L(u,,)/u,,].

Proof. One proves the first assertion by induction on k, simultaneously for all w.
The inclusion __ of the second assertion follows. The inclusion ~_ can be easily
proved by structural induction on w. []

Proof of Proposition 13.5. By Lemmas 10.5(2) and 13.6, (L(Ul) , . . . , L(u,)) is a
solution of S in ~ (M(F)) .

Let (L 1 , . . . , L,) be an arbitrary solution of S in ~ (M(F)) . By using Lemmas
13.6, 10.5(2) again, one can prove that Lk(ui)c_Li for all k~>0, all i in [n], by

induction on k: Hence, L(ui) ~ Li and (L(u l) , . . . , L(u,)) is the least solution of S,

i.e., L(ui) = L(S, ui) for all i. Hence, for t in M(F+, U),

L(S, t)= t~(M(F))(L(S, ul),. .. , L(S, u,))

=Dev(t)[L(S, u~) , . . . ,L(S , u,)] (by Lemma 10.5(2))
o!

-- U{w[L(S, Ul), . . . , L(S, u,)]] w ~ Dev(t)}
Ol

=U{L(w) lwsDev(t) } (by Lemma 13.6)

= w ' e M (F) l w De,(s)' for some w in Dev(t .

The second equality follows from Lemma 13.4. []

Proposition 13.5 shows that one can recognize the set of trees L(S, t) by a
nondeterministic, finite-state, bottom-up tree-automaton (see [16, 44, 50]); it is recog-
nizable. It follows, in particular, that properties like L(S, t)= L(S, t') or L(S, t)c~
L(S, t ')= 0 are decidable.

We now want to characterize the relation t --- P.~ t'. Let ~ be a fixed set of equations.

We shall use the following notations:

• [w] for { w ' ~ M (F) l w ~ * w ' } , w ~ M (F) ,
• [L] for {[w][weL}, Lc_M(F),
• [L(S)] for ([L(S, ul)] , . . . , [L(S , u,)]),
• M ° for M(F)/*->*.

13.7. Theorem. Let S be a polynomial system, let ~ be a set of equations, let t, t' be
inM(F+, U). Thent "~'p t ' i fandonlyift up 0 tt ifandonlyif[L(S, t)]=[L(S, t')]. s,~ S,M~

Proof. Let M e ~F(~), let h and h ° be the canonical homomorphisms M ° --> M and
M (F) - > M ° respectively. The same notations will be used for their respective

Equivalences and transformations of regular systems

extensions to ~ (M ~) and ~ (M(F)) . Hence,

and

/.t-PsolMo(S) = h°(L(S)) (by Proposition 13.1)

= [L(S)],

81

t~M%(g-PsoiMo(S)) = h°(t~¢M¢F~)(L(S))) = h°(L(S, t)) = [L(S, t)].

P t' P o t'. t ~s, MO iff [L(S, t)] = [L(S, t')]. It is clear that t ~P,~ t' implies t "-s,M, Hence,
Since t~M~(/x-PsoiM(S))= h(te,~M%(tz-PsoiM°(S))) (by Proposition 13.1), the con-

verse also holds. []

Characterizations of S ~ p S' and S ~ ~ S' immediately follow, but they are undeci-

dable in general.

13.8. Proposition. The relations t ~ s,~ t , S ~ S , and S are undecidable in
general, even if the word problem for ~ is decidable. They are decidable if ~ = 0.

Proof. Let F = Tm and g' = ~ m define the theory of monoids, and assume that t and
P t' is equivalent to [L(S, t)] = [L(S, t')]. t' belong to Unk(S). By Theorem 13.7, t ~s,g

And this is equivalent to the equality of the context-free languages L(G, t) and

L(G, t') if G is the context-free grammar such that Pol(S) = So (see Section 11.4.2).

Hence, the problem of deciding whether L(G, u)= L(G, u') for a context-free
grammar and two of its nonterminals u and u' (which is undecidable) reduces to
the problem of deciding whether t ~ , g t'. The latter problem is undecidable, too.

The undecidability results concerning S <p S' and S up S' follow from

Lemma 3.4.
If g' = t~, deciding whether t - P ~ t' reduces to deciding whether L(S, t) = L(S, t')

and this is decidable since L(S, t) and L(S, t') are both recognizable sets of trees. []

Our next purpose is to compare the relation t ~s,~P t' with the relation t ~ s,~u~ t'.
Clearly, we shall need to assume that ~ is linear and balanced (this was not
necessary in Theorem 13.7).

Let us recall from Section 5 that we denote by (T(S, u l) , . . . , T(S, un)) the least
solution of S (which is a regular system over F÷) in M°°(F+), and by T(S, t) (if
t ~ M (F + , U)) ~ the tree t[T,(S, u l) / u l , . . . , T (S , un)/un] which is equal to

tM°°(F+)(I~-SOIM°°(F÷)(S)).
Since Dev is the unique oJ-continuous homomorphism: Moo(F+)-. ~ (M (F)) , it

follows from Proposition 5.2 that Dev(T(S, ui)) = L(S, ui) for all i e [n], hence, that
Dev(T(S, t))= L(S, t). With the notations of Theorem 13.7 we have the following

corollary.

82 B. Courcelle

13.9. Corollary. Let ~g be a set of linear and balanced equations. Let S be a polynomial
system and t, t' ~ M (F+ , Unk(S)). Then the following properties are equivalent:

P t (i) t--s,~ t ,

(ii) t "s ,~u~ t',

(iii) [L(S, t)]=[L(S, t')],

(iv) T(S, t) - ~ T(S, t').

Proof. (i i)~ (i) follows by the properties stated in Section 11.3 since ~ is linear
and balanced.

(ii) ¢:> (iv) follows from Theorem 5.4.
(i)¢:>(iii) is a consequence of Theorem 13.7.
(iii)¢~(iv) follows from Proposition 10.8(4) (using the fact that ~ is linear and

balanced) and the above remark that Dev(T(S, t)) = L(S, t). []

14. Transformations of polynomial systems and ---equivalence

Following our general program, we now investigate the -P-correctness of system
transformations.

Up to now we know that the following transformations are -~u~-correct:
rufld~u ~, u n f ~ ~, redef~u ~, eunf.

If ~ is linear and balanced, - p coincides with - ~ and these transformations
are -p-correct . However, by Proposition 13.8, this set of transformations is not
-P-complete. Moreover, there cannot exist in general any recursively enumerable
---P-complete set of transformations since the relation - p is not recursively
enumerable.

If ~ = 0, this negative argument breaks down; hence, one can try to find a
-P-complete Set of transformations, but we shall not be able to provide any. We
shall prove a ---P-completeness result where the restriction to a subsystem is used
in addition to the above transformations. And the proof of this result will use a
notion of -P-canonical system based on the determinization introduced in the proof
of Proposition 12.8.

We first introduce a new -~-correct transformation that will help us to transform
a polynomial system into a cycle-free one.

14.1. Definition (elimination of cycles). Let S be a polynomial system (as in Section
11.1). Let j e [n] be such that u~ e Dev(pj) and let S' be the system (ui = p[; 1 ~< i ~< n),
where p[=pi if i # j and Dev(p~)=Dev(pj)-{uj}. We then, write Sncycl S'. It is
clear that CyeI(S') _ Cycl(S).

Equivalences and transformations of regular systems 83

14.2. Proposition. I f S neycl S', then S' ~ ~ S(hence, S' ~ P S).

Proof. If S ncyel S', then S' fld~S since, for any equation of S' of the form u = p,

one has p,-->~ P+P s,*-- u+p.
Hence,/x-Solp(S) <~/z-Solp(S'), but this does not prove the equality since fid~ is

not ~ ~-correct in general (and for this reason we have introduced ncyel as a separate

transformation).
h n However, since P[p<-Pa, for all i, S~,<-Sp and s~,h(_l_~,)<~Sp(±p) for all h~>0.

Hence,/x-Solp(S') <~/z-Solp(S) and the equality holds. []

We now consider the ~-reduction of polynomial systems, which extends the

results at the end of Section 5.

14.3. Definition. Let S be a polynomial system. Let Unk°(S) = {u ~ Unk(S) l
P 12} and Unk+(S) = Unk(S) - Unk°(S) . We say that S is -..-reduced if, for every t / - - S

ui in Unk(S), p~ E M+(F, Unk+(S)) and u~ s Unk° (S) iff pi = 12.

We let S '=(u~=p~; i~[n]) be the system such that p[=Pol(p~[12/u;
u ~ Unk° (S)]) if u~ ~ Unk+(S) and p~ = 12 otherwise. It is also denoted by Red_(S).

These definitions generalize those of Definition 5.15 for regular systems and are
P As in definition fully similar to the ones given in Definition 12.2 with respect to - s .

12.2, a more precise notation would have been Unk%(S) or Unk ° (S), but the
remarks made there apply here as well.

As in Definition 12.2, we can compute the set Unk°(S) . Let U = Unk(S) and let

Uo=O, Ui+l = Uiu{u j~ U l D e v (p j) n M (F , Ui) ~0}.

Hence, U1 is the set of unknowns u such that u ~D,,<s) w for some w in M (F) (in
the case of context-free grammars, this corresponds to the left-hand sides of terminal

productions). In words, U~+I is the set of unknowns uj such that uj s U~ or there
exists a monomial in pj with all its unknowns in U~.

Let U~ = I._.J{ U~li >t 0}. Since Uo__ U1 _ • • • _ U~ _ • • • _ U and U is finite, U~o =
U~ for some i and U~o can be effectively computed.

14.4. Proposition. (1) Unk+_(S)= Uoo.
(2) S redef~ ~ Red_(S). Hence, Red_(S) -.- ~ S and Red_(S) is --reduced.

Proof. (1) It is clear that u ~ Uoo implies L(S, u) # ~, hence, u e Unk+_.(S).

One can apply Scott's Induction Principle to the property P such that

P(x,,..., A{x, =0l u, Unk(S)-

This shows that u ~ Unk+_.(S) if u ~ U~o.
Part (2) is proved by an easy adaptation of the proof of Proposition 5.16. []

84 B. Courcelle

This transformation corresponds to the usual reduction step of context-fre~

grammars consisting in the deletion of nonterminals which do not generate an)
word. Here we do not delete the nonterminals since we want to compare the neg
grammar to the given one by means of an equivalence relation which concerns pair,

of regular systems having the same unknowns.
We now prove some properties of deterministic polynomial system, for they will

play a crucial role in the construction of a -P- (or ---~-)canonical system, and thi.,
construction will give us a ---P- (o r - ~ -) completeness result.

14.5. Lemma. I f S is a deterministic polynomial system, i f u, u' ~ Unk(S), and u' ~ u
then L(S, u) c~ L(S, u') = 0.

Proof. Let us recall from Section 13 that L(S, u) = {t ~ M (F) Iu ->*,,<s) t} for ever)
polynomial system S. Let S be deterministic. Then the ground rewriting systerr
R = Dev(S) -1 has no critical pair (hence, is confluent) and is Noetherian. Hence

every t in M (F , U) (where U = U n k (S)) has a unique R-normal form nfR(t) ant
L(S, u) = {t ~ M (F) [n f R (t) = u). Since nfR(t) is uniquely defined, one cannot haw

simultaneously t in L(S, u) and in L(S, u') if u ' # u. []

14.6. Lemma. Let S and S' be two ~-reduced deterministic polynomial systems. The1

S - ~ S' i f f S = S'.

Proof. Let us consider S. Let s belong to F (U) , say s = f (u ~ , . . . , u~), and let i s In]

Claim. s ~ Dev(p~) iff u~,, . . . , u~ ~ Unk+_.(S) and f (L(S, u~,), . . . , L(S, ui~)) c_ L(S, u~)

Proof. The 'only if ' part immediately follows from the definitions.

Conversely, let u ~ , . . . , u~ k ~ Unk+_.(S) be such that f (L (S , u ~) , . . . , L(S, u~k)) c_
L(S, ui). For each j =-1 , . . . k, let tj be an element of L(S, u~) and t = f (t l , . . . , tk)
Hence, t ~ L(S, ui).

By the proof of Lemma 14.5, tj--->* u~j for all j, hence, t - ->*f(u i~ , . . . , u~). Since
R is confluent and Noetherian, f (u i l , . . . , u~ k) -->* nfR(t)= u~. In fact (since S i:
uniform), f (u ~ , . . . , u ~ k) - - > R u , i.e., f (u ~ , . . . , u ~) s D e v (p i) . This proves the
claim. []

Proof of Lemma 14.6 (continued). Let S and S' be deterministic, - - reduced, am

-~-equiva len t (S is as in Section 11.1 and S '=~ui=p[; l<~i<~n)) . For all i it

[n], Pi = £J iff p[= f2 (since S' ---p S and they are both ----reduced). If pi ~ £2, thei
Dev(pi) ~ 0. The claim and the hypothesis that S' - ~ S (whence L(S' , u i) = L(S, uj
for all j in In]) prove that Dev(p~)__q Dev(p[). By symmetry, the equality holds
Hence, S = S'. (We have an equality since the polynomials in the right-hand side:
of S and S' are ordered in a canonical way.) []

Equivalences and transformations of regular systems 85

14.7. Definition. A polynomial system S is quasi-deterministic if there exist Uo and
U~ such that:

(1) Unk(S) = Uou UI, Uon U~=O,

(2) U~ ~_ Unk+(S),

(3) S ~/.31 is a subsystem of S and is deterministic,

(4) p~ ~ M+(0, U~) for all u~ in Uo.

Hence, a quasi-deterministic system is quasi-uniform and has no cyclic unknown.

It is easy to verify whether a given system is quasi-deterministic (the verification
of condition (2) uses Proposition 14.4) and there exists at most one pair (U0, U1)
satisfying conditions (1)-(4). Note that by conditions (2) and (4), S r U1 and S are
necessarily --reduced.

We now modify the construction in Section 12 in order to associate a quasi-
deterministic system with a uniform system S.
Construction. Let S be a uniform system, let S be the associated deterministic
system (cf. the construction in Section 12). Let now O+ = Unk+_.(S) and S÷ be the
system Red_(S) I 0+. Let S" be the set of equations (u~ = q i ; 1 ~< i ~< n) , where q~ =
Y~{til6~ U+, u ~ a} for i in [hi and let S ' = S " w S + . The system S' is quasi-
deterministic (for the partition (U, 0÷) of its set of unknowns). Let us denote S'
by Qdet(S). With these notations, we have the following proposition.

14.8. Proposition. Let S be a uniform polynomial system. Then Qdet(S) redef~(Su

S+) and S ~ ~,U,k(S) Qdet(S).

Proof. We verify conditions (1)-(3) of Definition 5.10 as in the proof of Lemma
12.9, where S+ is the subsystem which is common to Qdet(S) and (S u S+).

Condition (1) holds from the definition of Qdet(S) and so does condition (2),
exactly as in the proof of Lemma 12.9.

The computations done in the proof of Lemma 12.9 for proving condition (3)
can be adapted as follows (with S+=(6 =p~ ;~ ~ 0+)):

Dev(q,[p~/ 6 ; 6 ~ 0+]

= U { f (6 , , . . . , d k) l d l , . . . , 6 k C O+ and u,e a, ci~ 0+,

where a = f (a l , . . . , ak)},

Dev(p,[q,/UI,... , q.I u.])

= {f(c /1 , . . . , ~k) ik >I O, f~ Fk, there exist i l , . . . , ik such that

f (u i , , . . . , uik) e Dev(pi), u~, ~ a l , . . . , uik ~ ak and 6L , . . . , C~k ~ 0+}

= Dev(q~[p~/ 6 ; 6t ~ U+]),

86 R Courcelle

by the definition of f (a ~ , . . . , Olk) (see the construction in Section 12) and the fact
that 6~ , . . . , 61, ~ U+ and a = f (a ~ , . . . , ak) implies 6 ~ /.7+ (this follows from the
definition of,q). Hence, condition (3) holds and Qdet(S) redef~ (S u S+). The second
assertion follows from Corollary 5.12. []

The following lemma will help us to prove that Qdet(S) is nearly -P-canonical
(it is not exactly since Qdet(S) is not ~ P-equivalent to S since their sets of unknowns
are different; furthermore, Qdet(S) is defined only if S is uniform).

14.9. Lemma. For every

L(S, u)lu Unk(S)- }
6 in U, L(S, 6) = N { L (S , u) l u s a} n N { M (F) -

Proof. From Lemma 12.9, it follows that

L(S, u) = U { L (S , 6) [6~ U, u~a}.

Hence,

L(,.~, 6) _ N{L(S, u)lu ~ a}

and since L(,~ 6,)n L(S,/3) =0, f o r / ~ O , /3#a ,
t

L(S, u) n L(S, /3)=0

whenever 13 c_ U, u ~/3.
Hence,

L(S, 6) _c N{L(S, u) lu ~ a} n n { M (F) - L(S, u)l u ~ a}. (6)

The collection of all sets L(S, 6) for a c_ U forms a partition of U{L(S, u) lu
Unk(S)} and so do the right-hand sides of the inequalities of the form (6) (for all
a ___ U). Hence, the equality holds in (6) for all a c_ U. []

St 14.10. Proposition. Let S and S' be uniform. Then S ~ /ff Qdet(S) = Qdet(S').

Proof. Let S and S' be uniform systems such that S ---~ S' (and let U = Unk(S)=
Unk(S')). They have the same least solution in M(F), i.e., L(S, u) = L(S', u) for all
u in U. Hence, L(S, 6) = L(S', ci) for all a _~ U (by Lemma 14.9), hence, S ---~ S'.

-,
It follows that S÷ ~ S÷. Since they are --reduced, they are equal by Lemma 14.6.
Hence, Qdet(S) = Qdet(S'). []

14.11. Example. Let S = (u = f u + a + b , v = f v + a) and S ' = (u = f u + f v + a + b , v=
f v + a). The system S is (with the notational convention of Example 12.12)

S = (ff = f f i + b, ~-~ = f u v + a, ~ = f~, O = ff)).

One then obtains (after the ----reduction step)

Qdet(S) =(u = ff + uv, v = uv, u = f a + b,-a-f= uf~+ a).

Equivalences and transformations of regular systems 87

For S' one obtains

S ' = (ff = f a + b, ~-~ = f ~ + f ~ + a, ~- -0 , fl= fO)

(note that S ' ~ S), but after the - - reduct ion steps which eliminates ~ and 0, one
obtains Qdet (S ')= Qdet(S). This shows that S - ~ S'.

The following corollary of Proposition 14.10 shows the -P-completeness (in a
limited sense) of the set of transformations {redef~, redef~l}.

14.12. Corollary. Let S and S' be two uniform polynomial systems having the same

set o f unknowns. Then S ~ S' iff there exist two quasi-uniform systems S~ and $2

such that

S ~_~ S 1 rede f~ ~ . redef~ $2 __ S'.

Proof. Let U = Unk(S) = Unk(S'). If S~ and $2 are as in the statement, then S~ - ~ $2,

hence, $1 ~,u $2 and S - ~ , v S', i.e., S - ~
Conversely, i f S - ~ S,' then one can take $1 = S u S+ and $2 = S ? w S+.-' Proposition

14.10 shows that Qdet(S~)=Qdet (S2) and the result follows from Proposition

14.8. []

14.13. Lemma. Let S be a polynomial system. One can construct a system R and a

uniform system T such that S c_ R~*o T, where ~o = {rufld~, ncycl}.

Proof. The proof will use two main steps by which S is successively transformed
into a quasi-uniform system $1 and then into a uniform system T.

First step: For the first step we let $1 = Ufm(S) so that there exists R such that
S c__eR rfld~ SI and St ~ . u S by Proposition 12.17.

Second step: Let S~ be the system associated with $I by Definition 12.13 and such
that S~ runf* S~ (by Lemma 12.14). Its set of unknowns is U' and, for every two

+ U t + equations u = p and u ' = p ' such that u -~l),,(s~) ~v,,(sl) u, one has p =p ' (since
polynomials are ordered in a canonical way).

Let U~ be a subset of Cycl(S~) of the form Ul={U'[U ' + ' + • ' ' ~D,,(S0 U ~w, (s ,) U'} for
some u in Cyel(S~) and such that Card(U~) ~> 2. Without loss of generality we can

assume that U[= {ul , . • . , uk} and S~ = (ui = pi ; 1 <- i <~ n). Hence, P2 = Pk = P~
and Pl = u l+u2 + " "" + u k + r for some r in M+(F, U) such that Dev(r) c~ U[=0.

We have S[rfld 7"1 runf~ T~, where T~ is as S[except that the equation ui =Um
replaces the equation ui = pi for every i = 2, 3 , . . . , k and where T~ is as 7"1 except

that the equation ul = Pol(u~+ r [u~ /u2 , . . . , U~/Uk]) replaces the equation u~ = P l .
Hence, S~ m i l d * T~.

This transformation can be applied to T[yielding T~ such that T[mild* T~ and
to T~, etc., until one obtains a system T~, where all sets like U[above are singletons.
Let S[' = T~, so that S[m i l d * S[' and, in St', an unknown ui is cyclic iff u, ~ Dev(p),

88 B. Courcelle

where p is the right-hand side of its defining equation in S~'. Hence, there exists a
" ¢ " (the cyclic unknowns of S~' are made cycle-free system ~,~c" such that $1 neycl* ~,1

noncyclic by several applications of neyel). An obvious adaptation of the proof of
(3)~ (4) of Theorem 8.8 to polynomial systems yields a uniform system T such
that c,,, runf* T. ~'1

To summarize, we have

$1 rufld*, neycl*, runf* T
(hence T - ~ S~, but due to the presence of ncycl, T ~ , S~ in general). Hence, we

have S _ Rff~o T. []

We shall now extend Corollary 14.12 to pairs of polynomial systems which are
not uniform. It will not be more difficult to formulate this extension for systems S
and S' such that S - ~ , w S' for some W___ Unk(S) c~ Unk(S') so that we shall also
obtain an extension of Proposition 7.5.

14.14. Theorem. Let S and S' be two polynomial systems and W be a subset of
Unk(S) n Unk(S'). Then S "~,w S' i f and only i f there exist a renaming a and two
polynomial systems R and R' such that a is the identity on W, Unk(a(S)) c~ Unk(S') =
W, and a(S) c_ Rf f*R ' ~_ S', where ~ = {rufld~, ncycl, ncyc1-1, redef~, redef~l}.

Proof. The 'if ' part is an immediate consequence of various preceding results. We
only prove the other direction.

Let S and S' be such that S - p S'. We first assume that W = Unk(S) c~ Unk(S') ~,W

and we let a be the identity. By Lemma 14.13, there exist systems $1, $2, S~, S~
such that $2 and S~ are uniform and

S ~ $1 ff~o 82, S' _c S~ ff~o S~, Unk(S2) n Unk(S~) = W,

(where fro is as in Lemma 14.13). This implies that $2 -~ .w S~.
The construction of Proposition 7.5 can be applied to $2 and S~ and produces

uniform systems $3 and S~ such that

$2~$3 (say, S3=S2u T2),

S~ ~ S~ (say, S~ = S~ u T[),

$3 - ~ S~.

From Propositions 14.10 and 14.8, it follows that

Hence,

Qdet(S3) = Qdet(S~),

Qdet(S3) redef~(S3 u T3)

Qdet(S~) redef~ (S~ u T~)

(where T3 = $3+ (cf. the construction)),

(where T~= S~+).

Sc_ (S ,u T2u T3),~o ($2 u T2u T3)redef~ ~ Qdet(S3)

Equivalences and transformations of regular systems 89

and similarly for S' so that the result holds with R = S~ u T2 u T3 and R ' = S~ u T~ u

T~.
I f W c Unk(S)r~Unk(S ') one defines a as in the proof of Proposition 7.5 and

the above proof works with ct(S) instead of S. []

14.15. Open problem. Is the set consisting of the transformations rufld~, unf~, eunf,
redef~, ncycl, and their inverses ---~- (equivalently ---P-) complete? I f it is, this means
that if S u P S', one can transform S into S' by using these transformations and

without introducing auxiliary unknowns as we do in Theorem 14.14, even if W =

Unk(S) = Unk(S') . If it is not, the problem is to find another one which is.

15. Polynomial systems having a unique solution

We shall give sufficient conditions insuring that a polynomial system has a unique

solution in some powerset magma ~ (M) . We shall obtain necessary and sufficient

conditions for the cases where M = T* and M = T ÷ which arise from the study of

context-free grammars.

15.1. Definitions. Let M be a set and ~: be a set of total polyadic operations on M.

Let --> be the binary relation on M such that

m--> m' iff m = or(m1, . . . , m,, m', m i+b . . . , mk)

for some k-ary a in ~: and some m ~ , . . . , mk.

We say that M is well-founded with respect to ~ if there is no infinite sequence

ml -> mE -> " " " - > m n - > m n + l " " "

Let S = (ui =p~; 1 <~ i<~ n) be a polynomial system over F and M be an F-magma.
For every element t of M(F, U), let Tbe the unique element of M(F, Xk) such that

(i) Var(t-) = Xk and /" is Xk-linear,

(ii) t = [[u j x l , . . . , UJXk] for some i~ , . . . , ik,

(iii) X~ is to the left of x~+l in ~ (assumed to be linearly written) for 1 ~< i < k:

Note that k = [t[v. By tM we mean the total mapping: Mk-> M, associated with ~.
Hence, the arity of tM is equal to [t[u.

Let ~ (M , S) = {tM[t e Dev(p~), i ~ [n]}. We say that M is well-founded with respect

to S if M is well-founded with respect to ~ (M , S). These definitions are motivated
by the following result:

15.2. Proposition. Let S be a polynomial system over F, let M be an F-magma which
is well-founded w.r.t. S. Then S is ~(M)-univocal.

90 B . C o u r c e l l e

Proof. Let (A ~ , . . . , A,) be the least solution of S in ~(M). Let us assume the

existence of another solution (B I , . . . , Bn) of S in ~(M) . Necessarily, Ai ~ B~ for
all i in [n].

Assume that for some i there exists an m in B~-Ai. There exists a t in Dev(p~)
such that

-- !
m = tM(mb. . . , m'~),

m~ ~ Bij for all j = 1 , . . . , k,

where (i l , . . . , ik) is such that

t = u , , / x l , . . . , U,k/Xk].

For at least one j in [k], m~ e B~j - A~, otherwise, m e Ai contradicting the initial
assumption. Hence, if one lets m~ = m~ for such a j , one has

ml~Bi , -Ai , for some i'~[n],

m - - ~ m l ,

where ~ is defined over M with respect to ~ (M , S).

The same argument can be repeated for m~ instead of m yielding m 2 and then
for m2, etc. so that one gets an infinite sequence:

m - - > m l - > m 2 - - > . . . - > m i - > . . .

contradicting the hypothesis that M is well-founded w.r.t. $.
Hence, Ai = Bi for all i in [n], i.e., the least solution of S in ~ (M) is the only

one. []

An F-magma M = (M, (fM)y~F) is well-founded i f M is well-founded with respect
to {fMlfe F}. We denote by off" the class of well-founded F-magmas and by ~o/¢
the class { ~ (M) [M e og/,}.

15.3. Proposition. Every Greibach polynomial system is ~°W-univocal.

Proof. It is easy to verify that if M is well-founded, then it is well-founded with
respect to {tM]k~>0, te F(M(F, Xk)), Var(t) = Xk}.

The result then follows from Proposition 15.2. []

Here is an important class of well-founded magmas:

15.4. Definition. Let M = (M, (fM)/~) be such that every m in M has a length
Iml I> 0. We say that a mapping a" M k --> M is spanning if [a (ml, m2, . . . , mk)[> Im, I
for all i in [k], all m~, . . . , mk in M. We say that M is spanning if eachfM is spanning.

Equivalences and transformations of regular systems 91

It is clear that M is well-founded w.r.t, any set ~: of spanning functions, and that
M is well-founded if it is spanning. Hence, a Greibach system is ~(M)-univocal if
M is spanning. This result can also be established as a corollary of Proposition
8.6(2) as follows.

One defines a distance on ~ (M) by letting, for A, A ' _ M,

d (A , a ') = 2 -n where n = M i n { l m [l m ~ (a - a ') w (A ' - a) } .

One can prove that ~ (M) is complete and that if M is spanning, every Greibach
polynomial system is ~(M)-contracting, hence, has a unique solution. This proof
technique has been used in [14, 78] for polynomial systems associated with context-

free grammars. See also Examples 15.7 and 15.9.
If M is spanning, then, for all m,

?1

h(m)=Max{n lm- -> m' for some m'~ M}< lml.
Hence, M is well-founded. Conversely, if M is well-founded and is such that h(m)
is finite for all m in M, then it is spanning w.r.t, the mapping h:M--> N taken as a
length. However, M may be well-founded without h being finite, i.e., without being
spanning. Hence, Proposition 15.3 is more powerful than the topological argument.

15.5. Remark. A polynomial system may be ~(M)-univocal without M being well-
founded w.r.t, it. It suffices to consider the system S =(u = f u + a) and M with
domain {a, b, c} such that fM(a) = b and fM(b) =fM(C) = a. The unique solution of
S is {a, b}, but a-->b-->a->b--> . . •

The following theorem is similar to Theorem 8.8 and most steps of its proof will
be adapted from the corresponding ones in that of Theorem 8.8.

15.6. Theorem. Let S be a polynomial system and M be a well-founded F-magma
such that M contains at least one element outside the components of p-PSOIM(S). The
following conditions are equivalent:

(1) S is ~t/'-univocal,
(2) S is ~(M)-univocal,
(3) S has no cyclic unknowns,
(4) S runf* S' for some Greibach polynomial system S',
(5) S h is a Greibach polynomial system for some h >1 1.

Proof. (1) ~ (2) is trivial.
(2)0(3) : This is easily adapted from Theorem 8.8. Let uk be cyclic and let d e M

be outside all components of/z- PSOlM(S). Let m = (m 1, • • •, mn) be such that mj = { d }
whenever * uj--->v,~s) Uk and m s = ¢ otherwise. It is easy to verify that m ~ S~,(M)(m).
Hence, the sequence i I> 0, is increasing and its least upper bound defines
a solution of S in ~(M) which differs from the least one, which gives a contradiction.

92 B. Courcelle

(3) ~ (4): This is an easy adaptation from the corresponding case of Theorem 8.8.

(4) 0 (1): This follows from Proposition 15.3 and the fact that S runf* S' implies
S t ~ -Ps .

(5)O(1) : This follows from Proposition 8.2(1) with ~ = ~, from Proposition 15.3
and the fact that S unf~ S h.

(3)0 (5)" This is proved as in Theorem 8.8 with h = l + M a x { m [u--->"oe,(s) u',
u, u '~ Unk(S)}. []

15.7. Example (proper context-free g rammars) . We use the notations of Section 11.4.2.
We consider e-free context-free grammars, with which polynomial systems over T,
are associated. These systems are solved in ~(T+).

A grammar G = (N, T, P) is proper if, for every rule u--> m in P, the word m
belongs to (N u T) + - N. Hence, G is proper iff S~ is a Greibach system over T~.

It is clear that T* is spanning (w.r.t. the usual length), hence, well-founded. Hence,
Theorem 15.6 has the following immediate corollary (to state it, we denote by G h,
for h i> 2, the unique context-free grammar G' such that S~, = (S~)h) .

15.8. Corollary. Let G be an e-free context- free grammar. The fol lowing conditions

are equivalent:

(1) S~ is ~(T+)-univocal ,

(2) Sc runf*~ ~s S~,, f o r some proper context-free g r a m m a r G' ,

(3) the g r a mma r G h is proper f o r s o m e h >>- 1.

For example, if G = (u --> aub, u --> v, v --> av, v -> b), the grammar G 2 is (u -->

aaubb, u --> avb, u --> av, u --> b, v --> aav, v --> ab, v --> b) and it is proper.

Note that the grammar G' = (u = u. u + a) has a unique solution in ~ (T ÷) (provided
a ~ T) but several solutions in ~(T*): namely a ÷ (the least one), a*, and T'* for
all T ' _ T such that a ~ T'. Note also that G 'h is not proper since it contains the
production rule u --> u 2h for all h I> 1.

15.9. Example (strict context-free g rammars) . We now consider context-free gram-
mars with e-rules. Following Berstel [8], we say that G = (N, T, P) is strict if, for
every rule u-> m in P, either m = e or m contains a terminal symbol.

The Tm-magma T* is not well-founded since e. w = w so that w--> w -> w --> • • •.
However, if G is strict, then T* is well-founded w.r.t. So because of the presence
of a terminal symbol in each nonconstant monomial (actually, S~ is contracting
w.r.t, the usual length of words). Hence, S~ has a unique solution in ~(T*). We
cannot apply Theorem 15.6. Nevertheless, a similar result can be independently
established.

For every context-free grammar G = (N, T, P), we let N~ = { u ~ N [e ~ L (G , u)}.
This set can be computed (see Section 16.6).

Equivalences and transformations of regular systems 93

Let No c_ N~ ___ • • • _c N~ ~ • • • ___ N be the increasing sequence such that

No=0,
N~÷~ = N~ u {u • N I for every p roduc t ion rule u --> m in P,

m • N * w (N w T)*(N~u T - N ~) (N w T)*},

and N~ = [._.J{ Ni] i ~> 0}, N ' = N - N~. It is clear that N~ and N ' can be computed.

Fact. For all u in N', there exists a production rule u--> m in P such that m •

(N~ u N')* N'(N, u N')*.

Proof. Let h be the least integer such that Noo = Nh÷~ = Nh. Let m e (N u T) * -
(N~ u N ') * N ' (N , w N')* . Then either m = e or m contains a terminal symbol or

m • N + but m contains a nonterminal in N - N ' - N~ (which is equal to Nh -- N~)
or m • (N ~ - N ') +c _ N-~. In all cases, m • N * u (N w T)*(NhU T - N ~) (N u T)*.
Hence, if u is such that, for every product ion rule u -~ m in P, m ~ (N, u N')*N'(N~ u
N')* , then u • Nh+ ! = N~. []

Note that G is strict iff Noo = N1.

In the fol lowing proposi t ion, we assume that

(L(G, u,)w . " " w L(G, un)) ~(~.
T is large enough so that T * -

15.10. Proposition. Let G be a context-free grammar. The following conditions are
equivalent:

(1) Sa is ~(T*)-univocal,

(2)

(3) Sa runf~u~m Sa,, for some strict context-free grammar G',

(4) G h is strict for some h >I 1.

Proof. (1) ~ (2) : Let us assume that N ' ~ 0. Let w be a word which does not belong

to L(G, u~), i • [n] . Let L = (L 1 , . . . , L ,) be the n-tuple of languages such that:

Li

[{w, e}

t ~

if u~ • N ' ,

i f ui • N~ - N ' ,

otherwise, i.e., i f u~ • N - N ' - N~.

We first prove tha t L c_ Sa(L), i.e., that Li c pi(L) (where Sa = (ui = Pi ; i • In])). This

is clearly true i f u~ • N - N ' - N~. If u~ • N~ - N ' , there exists a product ion rule of

the form u~-~ m with m in N* , hence, e • pi(L) by the definition of L. If u~ • N ' ,

there exists a product ion rule of the form u ~ mujm' with uj • N ' and m, m 'e
(N ~ u N')*. Hence, e • m(L), e • m'(L), and {w, e } ~ m(L).{w, e}.m'(L). Hence,

{w, e}c_pi(L) as was to be shown.

94 B. Courcelle

S~(L) i + , i _ U{Sa(t)li 0} is a Hence, c So (L) for all i and I> solution of So which

differs from the least one since at least one of its components contains w. Hence,
So is not ~(T*)-univocal.

(2) 0 (3) : Let us define d(G) = Card(Noo- N~) so that G is strict iff d(O) = 0 and
N ' = 0 . Let G be such that N ' = 0 and d (G) # O . Let u j ~ N E - N I . Let G m be the
grammar such that So,) = (ui = p[; 1 <~ i <~ n), where S~ = (u~ = p~ ; 1 <~ i <~ n) and p~ =
Pi if i # j , p j - ' -Pol(p j[pJur; u~,~ N~]). It is clear that So r u n f ~ So,), that the
subset N ~) of N, associated with G <1) as Noo is associated with G, is equal to N
and that d (G (~)) < d(G). Hence, the transformation of G into G m can be applied
t o G (2) and repeated until a grammar G (k) is obtained such that d (G (k)) = 0. Letting

G'--- G (k) o n e then has

S o r u n f * ~ g'm SG'

and G' is strict.
(3)O(1)" Sa, is ~(T*)-univocal since G' is strict. And Sa is ~(T*)-univocal since

~ P S(],. S G ~ ~gm
(4) ~ (1): This is proven by a similar argument with the help of Proposition 8.2(1).
(2) 0 (4) : Let h be the least integer such that Noo = Nh. We prove that G h is strict.

For every i~ [n] , j >>- 1, let P~,j be the set of words m such that ui--> m is a production

rule of C~. It is easy to prove that for j, k 1> 1, PW+k is the result of the (language)
substitution of Pl , k , . . . , P,,.k for u ~ , . . . , un in P~j. We denote this by P~,j+k =
Pi.j[Pl.k, . . . , P,,.k]. Let us prove that, for all i~ [n] , j I> 1,

UiE Nj~Pi , j c A~ (7)

where A = {e} u (N u T)* T (N u T)*.
The proof is by induction on j. I f j = 1; then (7) obviously holds. Let us prove

(7) for j + 1 by assuming it to hold for j. Let ui ~ Nj+I. If u~ e Nj, then P~j ~ A:

Pi, j+l = en, d

c A[PI,~, - • . , P,,~]

A (by the definition of A).

Otherwise, let ui e/Vj+I - Nj. For every m such that ui ~ m is a production rule of
P, either m e N* and since P~,jc_,A for u~ in Nj:

m [P l , j , . . . , Pn, j] c_ (U{ Pu l u, e Nj})*

c_ A * = A ,

or m ~ (N u T)* T(N u T)* and clearly,

m [P , , j , . . . , P , . j] =__ A ,

Equivalences and transformations of regular systems 95

or m ~ (N u T)*{ui,}(Nw T)* for some ur in Nj - N, , whence Pi,,j ~ A -{e} and then

m[Pl,j,...,Pn, j]c_(Nu T) * (A - { e }) (N u T)*c_A.

This shows that P~j+I = P~,I[PI.j, • • •, Pn, j] - A. Hence, if N = No, P~h C_ A for all i
in In], i.e., G h is strict. []

16. Grammars on arbitrary magmas

Mezei and Wright have shown in [73] that context-free languages and finite-state
languages are two instances of a same concept, that of an equational set defined

with respect to two different algebraic structures equipping the set of words T*

(see Sections 11.4.1 and 11.4.2). This idea has not been developed very much and
one of the purposes of this paper is to fill up this lack. Our results concerning
polynomial systems and their least solutions contribute to this task. Further theoreti-
cal developments are presented in this section together with applications to attribute
grammars and tree grammars.

16.1. Definition. A grammar is a pair G = (S, M) consisting of a polynomial system

S over some ranked alphabet F and an F-magma M. If necessary, we shall precise
that G is an M-grammar. We shall also say in a loose way that S 'is' an M-grammar.

Such a grammar is said to define, for every u in Unk(S), a subset of M, L(G, u) =
{tMIt L(S, u)}. This set is also the component corresponding to u of the least
solution of S in ~(M), hence, is equational (see Section 13) with respect to the

algebraic structure on M specified by M, and every equational subset of M is of
this form.

If t ~ L(S, u) and m = tM, then t is called a grammatical denotation of m. Note

that L(G, u)=0 iff L(S, u)=I~.
A context-free grammar G over the terminal alphabet T is nothing else than a

T*-grammar (see Section 11.4.2) and the notation L(G, u) means the same thing in
this definition and in the classical one.

Here is a simple example of a (word) grammar defining a non-context-free
language.

16.2. Example. Let H be the ranked alphabet Tmw {s} (see Section 11.4.2) and s
is a new unary function symbol. Let M be the H-magma consisting of T* extended
with the squaring operation

w) = w w

for all w in T*.

96 B. Courcelle

The M - g r a m m a r consisting of the system reduced to the equation u = a+s(u)
generates the non-context-free language L = {a2"[n I> 0} (more precisely, L(S, u) =
{sn(a)ln>~O} and L(S, U)M= L).

Other more complicated examples can be found in [21].

The notion o f a g rammar always incorporates that of a structured description of

objects. And the structure of an object is represented by a tree, called the derivation
tree. This classical concept easily extends to the present grammars .

16.1. Derivation trees

Let S be a polynomial system (ui = ti;1 ~< i <~ n) such that ti =p~ l+ • • • +p~n, for

some p~ in M(F, U) with U = Unk(S) . If ti = £2, then n~ = 0. Let us consider U as
a set of sorts (cf. Section 9). We associate with S a U-sorted signature Q as follows:

Q = {q,,j I 1 ~< i<~ n, 1 <~j~< hi} ,

~r(q~.j) = u~, a (q , j) = u i u , 2 . . , u, k,

where u~l , . . . , u~ k is the list of unknowns (of S) occurring in Pi, j from left to right

in this order, or, more precisely, a(qi,~)= Lvaru(p~.j), where Lvart: is the mapping
M (F , U)--> U* defined by

L v a r u (p) = e i fp ~ Fo,

Lvar t r (u) = u if u s U,

L v a r t : (f (p l , . . . , Pk)) = L v a r t : (p l) . . . Lvart : (pk) .

Let now 0 be the mapping M (Q) --> M (F) defined as follows (this is a second-order

substitution [26]):

O(q¢j) = & j ifa(q~.s) = e, i.e., i f p t j ~ M(F) ,

O(qi, j(Wl, . . . , Wk))= fii, j[O(wl)/Xl, . . . , O(Wk)/Xk],

w h e r e / ~ j is the unique term in M (F , X) such that (as in Definition 15.1)

p ~ j = p , . j [u , , / x~ , . . . , u , k / x ~] ,

Lvarx (/~i,j) = x l x : . . . Xk.

16.3. Proposition. For all u in U, O(M(Q),,) = L(S, u).

Sketch of proof. One can prove that O(w)e L(S, or(w)) for all w in M (Q) b y

induction on the structure of w. One can prove that every t in L(S, u) is of the form

O(w) for some w in M(Q)~ by induction on the length of a rewriting sequence
.

u--->t~,(s) t (this result will be improved in Proposit ion 16.5). []

Note as a corol lary that M(Q)., ~ 0 iff L(S, u) ~ O.
I f w ~ M (Q) , , and m = O(W)M, we .say that w is a u-derivation tree ofm with respect

to G (or of the grammatical denotat ion O(w) of m). This allows us to define an

Equivalences and transformations of regular systems 97

M-grammar G as above as nonambiguous if, for all u in U, an element m of M has

at most one u-derivation tree. The system S is defined as nonambiguous if, for all
u, 0 r M(Q)., is injective and this is equivalent to saying that the grammar (S, M(F))

is nonambiguous.
In the special case of finite-state automata considered as grammars (cf. Section

11.4.1), the canonical homomorphism M(T,,)-->T* is a bijection. Hence, roughly

speaking, a word coincides with its denotation by a term in M(Tu).
In the case of context-free grammars (cf. Section 11.4.2), T* is isomorphic to

M(Tm)/ <-->*m' hence, a same word has several (actually, infinitely many) distinct
denotations in M(Tin). However, derivations are usually defined in M(Tin, U)/ *'->*m
which is in bijection with (Tmu U)* and not in M(Tm, U) (see Proposition 16.9
for general conditions insuring such a possibility).

Hence (and as in the case of finite state automata), there is no need for distinguish-
ing between a word in L(G, u) and its grammatical denotation. The need for such
a distinction is clear in Example 16.2 in the case of IO-context-free tree languages
examined in Section 16.2, or in the examples considered in [21].

We now examine the case where the derivation trees and the grammatical denota-

tions coincide.

16.4. Definition. Let G = (S, M) be a grammar as in Section 16.1. If S is uniform
and if no symbol of F occurs in more than one monomial p~j, then Q is in bijection
with a subset F ' of F. This means that the mapping 0 of Proposition 16.3 is a mere
relabelling, hence, roughly speaking, this means that a derivation tree coincides
with the corresponding grammatical denotation. If this is the case we shall say that
S is an abstract polynomial system and that G is an abstract grammar.

Note nevertheless that Q is U-sorted and that F ' is not. Hence, 0 is a bijection
M(Q),, ~ L(S, u) and not M(Q),, ~ M(F') .

The following construction shows how an arbitrary polynomial system can be
transformed into an abstract one. Let S be as in Section 16.1. Let S be the polynomial

system over Q, S=(ui=~{~i.j[l<~j<~ni};i~[n]) such that for all i,j, ~ j =
q~j(ui,,..., uik), where a(q~.j)= ui, u~2.., u~ k. Let 1VI be the heterogeneous Q-magma
with domains M., = M for all u in U and such that qi.j~ =/~jM. Let G = (S, 1(/1). It
follows from the definitions that , ~ = SM, hence, that L(G, u) = L(G, u) for all u
in U, and it is clear that t~ is an abstract grammar. This construction is just a
generalization of the classical algebraic presentation of context-free grammars used
in [20, 23, 27, 28, 54].

In the following proposition, 0 is as in Section 16.1, with O(u) = u for u in U.

16.5. Proposition. For all u in U, all t in M(F), and for all derivations of the form

T : u ~ t l) t 2 > ' ' " ~ tk=t,
Dev(S) Dev(S) Dev(S) Dev(S)

98 B. CourceUe

there exists a derivation

~ ' U i)ev(~)) t~ Dev(~)) t~ i>. .(~ ' '" D..<g3' t~, t'

such that t' ~ M (Q) u and 0(t~)= t l , . . . , 0(t~) = tk. It is unique i f v--->o,,(s) v for no

v in Unk(S).

The tree t' is called the derivation tree o f y.

Sketch of proof. If v-'->rj,,(s) v for no v in Unk(S), the comparison of t; and ti+l

defines in a unique way the pair of Dev(S) which is used, and the occurrence where
it is used in the transformation of ti into ti+~. This occurrence is the image of a
unique occurrence in t~. Hence, t~+l exists in a unique way. []

We now examine whether and how context-free tree grammars can be considered
as grammars in our sense.

16.2. Context-free tree grammars: the IO case

Engelfriet and Schmidt [45] have shown that IO- and OI-context-free tree-

languages can be characterized as components of the least solutions of certain
regular systems in appropriate to-complete magmas the domain of which is in both
cases ~ (M(F , X)). This construction uses derived alphabets exactly as the one of
Section 9. A connection between recursive program schemes and IO- and OI-tree
languages can be found in the fundamental paper of Damm [36].

In this section and the next one, we only provide examples, in order to illustrate
the definitions of this chapter. The reader will find general definitions and proofs
in [45].

Let G be the context-free tree grammar with terminal (ranked) alphabet F = {f, a},
nonterminal (ranked) alphabet • = {0}, and a set of productions P as follows:

~(Xl, X2) 4 a, ~b(x,, x2) ~ x2,

~/t(Xl, X2) --~ f (X l , X l) , ~/¢(Xl, X2) --~ O(I~I(X2,Xl),X1).

Two different languages can be defined, namely,

t o l (G, 0 (Xl , x2)) = { t e M(F, X2) l 0(Xl , x2) ' '> t}, P

L,o(G, O(x,,xE))={t~M(F, X2)lO(x,,x2) * , t},
P, IO

where -->*p is the classical rewriting relation on M (F u ~, X) associated with P and
"->*P,o~ is the restriction of-->*p such that O(tl, t2) rewrites into s [t#x~ , tffx2] for
some s such that O(x~, Xu)-> s is a production rule in P only if t~ and t2 are both
in M (F , X) .

Hence, Lio(G,~b(Xl ,X2))cgol(G,~b(xl ,x2)) and the inclusion is strict since
f (a , xl) belongs to LoI(G, 0(x l , x2)) but not to Llo(G, $(x l , x2)).

Equivalences and transformations of regular systems 99

Let H be the ranked alphabet {a,f, 7r~, 7]'2, C}, where c is of arity three and the
other symbols of arity zero. Let M be the H-magma with domain M = M(F, X2)
and such that

a M = a, f ~ = f (x l , x :) ,

37"1M ~ X1, 3T2M ~ X2,

cM(to, t , , t2) = to[tl/x,, t:/x:].

Let P-- ~(M). Note that, by the definitions of Section 1,

cv(To, T1, T2)= To[Tl/ x , , T2/ x2],
IO

for To, 7"1, T2c_M(F, X2).
Let now S be the regular system consisting of the unique equation

i]l:a--]-712-Ji-c(f~ 77"1, 711)--[- c(i]1 , c (O , ,/'r2, 77"1) , 7"/'1).

It follows from [45, Theorem 4.9] that L~o(G, ~(x~, x2)) is the least solution of S
in ~ (M) and that L I o (G , O (x ~ , x 2)) = L (S , ~) M = { t M I t ~ L (S , O) } . Note that
L(S, ~p)c_ M (H) .

The mapping t~- -~tM:M(H)->M(F, X2) is called YIELD in [45] and so is the

mapping L ~ - - ~ L ~ : ~ (M (H)) -) ~ (M (F , X2)) which is its extension to subsets of
M (H) .

Of course, this result extends to arbitrary context-free tree grammars (and their
IO-languages) provided one uses a derived alphabet (namely 0o(F) introduced in
Section 9) which also needs the introduction of sorts. This is formally done in [45].
And the IO-context-free tree languages can be characterized as equational subsets
of ~(M(0o(F))).

The above example is chosen so as to only use one sort (as was the example of
Section 2.9).

As an example, we display some elements of L(S, ~b), their values in M (F , X2),
and their derivation trees (letting Q = {ql, q2, q3, q4} in an obvious way).

q2

q4(q3, q2)

qa(q4(q2, q2), ql)

7r2 x 2

c (c (f , "ah , "ah) , c('rr2, "rr2, 'n'l), "rr~) f (x l , x l)

c(c(7r2, c(~'2, 7r2, ~q), "nh), c(a, ~r2, "n'l), "n'l) a

16.3. Context-free tree grammars: the OI case

An OI-context-free tree language can be characterized as the least solution of a
regular system in an to-complete magma with domain ~(M(F, X)) but which is not
a powerset magma.

100 B. Courcelle

Let G, $, and M be as in Section 16.2. Let P' be the /-/+-magma with domain
P ' = ~ (M) and such that

gv' = {gM} for all g e {a,f, 7rl, ~r2},

~Oe,= fl, Cp,(To, T1, T2)= To [T1/Xl, 7"2/x2],
OI

To q-p, Tl= To u T1,

for To, T1, T2_ M. It can be shown that P' is to-complete with respect to the set
inclusion as ordering. Hence, the equation S has a least solution in P' and this least
solution is precisely Lo~(G, 4,(xl, x2)). Once again this result extends to arbitrary
OI-context-free tree grammars with help of the derived alphabet Oo(F).

Let us note that P' is not distributive since Cp,(To, 7"1 w Ti, T2) properly includes
Cv,(To, T1, T2)u Ca,(To, T~, T2) in general (take To={f(x~,x~)}). It follows that
OI-context-free tree languages are not defined by grammars (in the sense of
Definition 1 6.1) and that they are not equational subsets of M(F, X) for any structure
of 00(F) -magma on this set.

Hence, to summarize, IO-context-free tree grammars can be investigated in terms
of polynomial systems solved in powerset magmas, whereas OI-context-free tree
grammars cannot. Instead, they can be in the more general framework of regular
systems solved in to-complete magmas. (Actually, an intermediate class of structures
lying between powerset magmas and to-complete ones is used in [45] for the OI case).

Going back to the example, let us examine how the tree f (a , xl) which belongs
to LoI(G , ~b(Xl, X2)) - - L I o (G , O(xl, X2)) c o m e s in as an element of L(S, ~b)p,. We are
obliged to go back to the infinite tree T(S, 4,) ~ M=(H+) which can be written in a
loose, but hopefully clear way

T(S, ~b) = a + 7/'2 + c(f, 7rl, 7rl) + c((a + "n'2 + c(f, "n'l, 7;'1.) + ' ' "),

c((a + Tr2 + c (f 71"1, "nh) + . . "), 71"2, 7rl), 7rl).

Since Cv,(To w T~, 7"1, T2)= Cv,(To,/'1, T2)u Cv,(T~, 7"1, T2), one gets

T(S, O)e ~c(c (f , "/~1 , 7rl), c((a + 7r2+.- .), ~r2, Irl), 7rl)v,

. . . . u { f (x , , xl)) [c(a, ¢r2, "rr,)p,U c('n'2, ~r2, "rr,)e,W "" " / x l , {Xl}/X2]
o I

= • • • w { f (x l , x l) } [{ a , x l , . . . } / x l , { x l } / x 2] ~ f (a , x l) .

Letting q~,q2, q3,q4 be as in Section 16.2, one can consider the tree t=
q4(q3, q~ + q2) ~ M(Q+) as a derivation tree off(a , xl). However, t is also a derivation
tree of f (a , a) , f (x l , x l) , and f (x l , a) since its value in P' is { f (a , xO,

f (a , a) , f (x~, x l) , f (xx , a)}. This idea will be developed in a forthcoming paper.

16.4. Derivation sequences

Let G = (S, M) be a grammar. It follows from the results of Section 13 that
L (G , u) = L (S , U)M={tMI U--->*V~,(S) t, t ~ M(F)}. In other words, an element m of

Equivalences and transformations of regular systems 101

L(G, u) can be defined in two steps, the first step consists in producing a grammatical

denotation t and the second one in evaluating t into m = tM.
Let us now assume that M e °F(~) for some set of equations ~. It is a natural

idea to interleave derivation steps (i.e., ---->r~e,<s)) with rewriting steps according to
(i.e., with *-->~). In fact, such an interleaving is done in the usual situation of

context-free grammars where one rewrites aufl into aft if there exists an e-rule
u --> e. This corresponds to a rewriting of aufl into aefl followed by a rewriting of

aefl into aft, corresponding to a use of the equation e. x = x. (Actually, the deriva-
tions of context-free grammars will be more precisely described by Proposition 16.9.)

For every (oriented)rewriting system R _c M(F, X) x M(F, X), we let L(S, R, u) =

{t e M(F)[u---->*,,<s)~R t} and we say that t is obtained by an R-derivation. It is

clear that if R c_ ~ *, L(G, u) c_ L(S, R, u)r~, but the equality does not necessarily
hold. In Example 16.2 it suffices to take R = {(s(x), x. x)} and then to consider the

R-derivation

u ~ s(u)---> u.u ~ a.s(a),
Dev(S) R Dev(S)

which yields a 3 which is not in L(G, u). The difficulty comes from the nonlinearity

of R.
We say that the R-derivations are correct for a grammar G -- (S, M) if L(G, u) =

L(S, R, u)~ for all u in Unk(S).

16.6. Proposition. Let M be an F-magma and R be a rewriting system ~_

M(F, X) x M(F , X) such that M E °Y(R).

(1) I f R is right-linear and Varx(t)c_Varx(t ') for all (t, t') in R, then the R-

derivations are correct for every M-grammar.
(2) I f R is right-linear, then the R-derivations are correct for every grammar (S, M)

such that L(S, u) # ~ for all u in Unk(S).

Proof. (1) Let u--->*e,(s)~R t be an R-derivation. By Lemma 1.7 there exists a t'
* t t such that u -->De,(s) --->* t. By the second condition on R, t ' e M (F) , hence, t ~ e

L(G, u). Since M e °F(R), tM= th. Hence, tMe L(G, u). This proves that
L(S, R, u)M~_ L(G, u), hence, that the equality holds.

(2) As in (1), there exists a t' in M(F, Unk(S)), but we cannot conclude that
t ' e M (F) . Let si be an element of L(S, ui) for each u~ in Unk(S). Then
t' "->D,,<s)* t ' [s ~ / u l , . . . , s , / u ,] . H e n c e , th(s~M, . • •, s,,M)e L(G, u). Since t'--->* t and
M e ~(R), t~(s~M, . . . , s,M) = tm(slM, . . . , s,M) = tM. Hence, tree L(G, u) and this
proves that L(S, R, u)M = L(G, u). []

16.5. Derivation sequences in M(F, U) / ,-> * ~g

An immediate consequence of Proposition 16.6 is that if * is linear and balanced,
the (~ u ~)- l-derivat ions are correct for the M-grammars such that M e o//.(g,) and
Lemma 1.6 yields the following fact.

102 B. Courcelle

16.7. Fact. For all s, t, t' in M(F , U), i f s o * t--->De,(S) t', there exists an s' such that

S' t'. S - - '~Dev(S) ~

We can define a relation ~D~,(s) on M (F , U) / o * by

[t]~ .', [t ']~ iff t ~ t" for some t" in M (F , U) such that t' o t"
Dev(S) Dev(S)

iff (by Fact 16.7) for every s in [t]~
,

there exists an s' such that s , s ' o t'.
Dev(S)

The following fact is an immediate consequence of this definition.

16.8. Fact. Let a ~ , . . . , ak ~ M (F , U) / o * and t I E Ol 1 . Then O~ 1 ~Dev(S) O~2

~D, , (s) • " " ~De,(S) ak iff there exist t2~ a2, • • •, tk ~ ak such that t~ --->l~,,(s) t2

- ' ~ O e v (S) t3 " - > D e v (S) " " " - ' > O e v (S) tk.

Since if t, t ' ~ M (F , U) and t o * t', t ~ M (F) iff t ' ~ M (F) , one can define:

{ * * / [u] .
~ Dev(S)

If M ~ °V(~) and h denotes the unique homomorphism: M (F) / o * -, M, the
following proposition holds.

16.9. Proposition. I f ~ is linear and balanced, i f M ~ ~ (~) and S is a polynomial
system, then

(1) L~(S, u) = [L (S , u)]~ for all u ~Unk(S);
(2) L(G, u)).

Proof. Part (1) is an immediate consequence of Fact 16.8.
Part (2) follows from part (1). []

This result is especially interesting if one knows syntactical objects playing the
role of canonical representatives of the equivalence classes of M (F , U) with respect
to o * . And one possible situation is when o * is equal to o * for some Noetherian
and confluent rewriting system R. In this latter case, ~D~(s) can be defined as a
rewriting relation on the set of R-normal forms of terms in M (F , U). And this is
the case for context-free grammars (with ~g = ~m defined in Section 11.4.2).

Another example will be given later in Example 16.11.

16.10. Remark. In Fact 16.8 and if tl e U, any derivation tree of the derivation
sequence tl --->D~,(s) t2--'>rj,,(s) " " • -->D~,(s) tk can be considered as a derivation tree

Equivalences and transformations of regular systems 103

of the sequence [h] ~D,,~s~ [t2] ~D,,<S)" " " ~ n , , t S) [tk]. But even if u --->D,,<S) U for
no u in Unk(S), there may exist several derivation trees.

Take for example the context-free grammar G = (u --> uu, u --> a) with Q consisting
of q (of arity two) and q' (of arity zero). Then the derivation u --> uu --> uuu --> auu -->
aau--> aaa has the two derivation trees q(q', q(q', q')) and q(q(q', q'), q').

16.11. Example. The nondeterministic, two-tape automata introduced by Elgot and
Mezei [43] can be defined as nondeterministic transition graphs with a set of initial
nodes, a set of final nodes, and arrows labelled by pairs of words (w~, w2) on some
alphabet T (the input alphabet). Such an automaton A defines a subset L(A) of
T* x T*.

We shall assume that T is partitioned into T~ u T2 and that w~ ~ T* and w2 ~ T*
for every pair (w~, w2) so that L(A) c_ T* x T*. Let F = T u {e} with Fo-- {e}, F1 = T
and let ~ be the set of all equations of the form a(b(x)) = b (a (x)) for a in T1 and
b in T2. Let M be the F-magma with domain T* x T* and operations

aM((W,, w2))=(wla , w2) i f a e T1,

bM((wl, w2))=(Wl, w2b) i f b~ T2,

eM= (e, e).

It is clear that M e ~ (~) and, moreover, that the canonical homomorphism
M(F)/~-->~ ---> M is an isomorphism. By replacing in A every label (wl, w2) by wlw2,
one defines a finite-state, one-tape automaton fi~ such that L (A) = [L(.4)]~ (we
identify M (F) with T* and M(F)/~-->* with T* x T2*). And this allows to character-
ize the subsets of T* x T* definable by nondeterministic, two-tape automata as the
equational subsets of T* x T* (w.r.t. the algebraic structure defined by M).

An M-grammar G can be associated with every automaton A (cf. Section 11.4.2,
we omit the technical construction) and since ~ is linear and balanced, the derivation
sequences of G can be defined in M (F w U)/<->*. Note that M (F w U)/~-->* is in
an obvious bijection with

(T~*x T2*x U) u (T~*x T2*),

i.e., with the set of configurations of A since U is in bijection with the set of states
of A~ And the derivation sequences of G in M (F u U)/~->* correspond to the
computation sequences of A, defined as sequences of configurations in a usual way.

We now present in a unified way a family of algorithms on grammars called
iterative algorithms which amount to solving by straightforward iteration the underly-
ing regular systems in a magma which is finite or has a property insuring termination.

104 B. Courcelle

16.6. Iterative algorithms

Let G = (S, M) be a grammar. Let A be a finite set and h : M ~ A be a mapping.
For every u in U the set h(L(G, u)) is finite. Hence, one may wish to compute it

in some effective way. The iterative algorithms presented below (at a theoretical

level) allow to do this.

16.12. Algorithm. Let us assume that, for every k ~ > 0, e v e r y f in Fk, one can define
a computable mapping f A : A k-> A, hence, an F-magma A with domain A, in such

a way that h is a homomorphism M--> A. It then follows from Proposition 13.1 that

h(L(G, u)) = L(G', u), where G' is the grammar (S, A).
S~<A)(0) stabilizes after finitely many Since A is finite the increasing sequence i n

~ i + I [~n'~
iterations, i.e.,/~-PsOlA(S) = S~A)(On), where io is the first i such that ~'~A)~' J =

i n S~A)(0). Since the fA'S are computable, this sequence and io are computable.

Whence the results since /x-PSOlA(S) = (h(L(G, ul)), . . . , h(L(G, u,))).

We sketch an example concerning context-free grammars. Let M = T*, A = {0, 1}

and h : T* ~ A be such that h (e) = 0, h (u) = 1 if u ~ T ÷. We make A into a monoid
A by letting, be the Boolean 'and'. If G is a context-free grammar (S, M), one can

compute h(L(G, u)) by the above method which gives us

L(G, u)#O itt h(L(G, u))~O,

eeL(G,u) iff O~h(L(G,u)).

This is just a reformulation of the classical algorithms for deciding whether L(G, u) =

0 and whether L(G, u) contains the empty word. Here the two things can be done

simultaneously.
Another example concerning IO-context-free tree languages will be given later

(see Section 16.7).

We now present an improvement of Algorithm 16.12.

16.13. Algorithm. Let G, A, and h be as before. In some cases, it is not possible to

define an F-magma structure on A such that h is a homomorphism because A is

too small. A possible remedy to this situation consists in defining a finite set B and
two mappings h' : M --> B and k: B --> A such that h = k o h' and k is computable. If

Algorithm 16.12 is applicable to B and h' in place of A and h, then we can compute

h(L(G, u)) since h(L(G, u)) = k(h'(L(G, u))) = k(L(G', u)), where G' = (S, B).

A slight variant of this algorithm (or of the first one) consists in applying it to

the grammar t~ constructed in Definition 16.4 rather than to G.
Another extension concerns sorted systems. In this case, one must use families

(As)s~s~, (h s) , ~ , (Bs),~s~, etc., where 5e is the set of sorts. This extension is straightfor-
ward and we need not do it formally.

Equivalences and transformations of regular systems 105

As an illustration, we shall reformulate the noncircularity test for attribute gram-

mars as an instance of Algorithm 16.13 (see Section 16.8). However, we first consider
a third algorithm dealing with a slightly different situation (which includes actually

the one of Algorithm 16.12).

16.14. Algorithm. Let S be a regular system over F, let M be an to-complete
F-magma, h be a mapping M ~ A, where A is some countable set. Without loss of
generality, we can assume that A is a subset of N.

The problem is to compute (h (m l) , . . . , h(mn)), where (m l , . . . , m,) --/~-SOlM(S).
For doing this it suffices to define the following:

• an ordering ~<A on A such that ZA----h(ZM) <~A a for all a in A and A has no
infinite strictly increasing chain,

• computable functions fA:AP(/)--->A such that A=(A,<~A, ZA,(fA)f~F) is an to-
complete F-magma and h :M--> A is an to-continuous homomorphism.
If A has been so defined, then Lemma 5.3 shows that (h(m~),..., h(rn,))=

Iz-SOIA(S). Since A has no strictly increasing chains, the increasing sequence Sk(± i)

is constant beyond some finite i0 and S~(± i) =/z-SOIA(S). Since the fA'S are compu-
table so are this sequence and/x-SOlA(S).

As before, if A is too small, one may replace it by some larger set B. And the
extension to the many-sorted case is straightforward.

A good example for this algorithm is the determination of the length of a shortest
word of a context-free language. For this purpose one uses A = N w {~} ordered in
the following way:

OC) ~A a,

a <~A b if[b~a,

for all a, b ~ ~. The appropriate mapping is h" ~ (T*) -~ A such that

h(O)

h(L)=Min{lwllw L) if L~I~.

The definitions of +A and .A follow from the remarks that

h(L1u L2)=Min{h(LI),h(L2)}, h(L1.L2)=h(L1)+(L2)

(with oo + a = a + oo for all a in A)

h({e}) =0, h({a})= 1.

Hence, +A is defined as Min and .A as the addition (on A).

All the verifications are left to the reader. Note that the computation of g-SOIA(So)
also allows us to decide whether L(G, u)=I~ and whether L(G, u) contains the
empty word.

106 B. Courcelle

16.7. The occurrences of variables in IO-context-free tree languages

This section is the continuation of Section 16.2. We fix X = {xl, x2 , . . . , x,,,.. .}
(with Xk = {Xl , . . . , Xk}) as a set of variables and for t ~ M(F, X) , we let Vat(t) =
Varx(t). For T ~ M(F, X) we let VAR(T)= {Var(t)l t ~ T}. For every subset T of
M(F, Xk) the set VAR(T) is a finite set of finite sets that one may wish to compute
from a finitary definition of T by a grammar or an automaton. Let us assume here
that T is an IO-context-free tree language (__. M(F, Xk)). It can be defined as
L(G, ~) for some M-grammar G, where M is as in Section 16.2 (or is a ao(F)-magma

in the general case).
The following facts are clear:

Var(x) = {x} if x ~ X,

V a r (f (t l , . . . , t k)) - - V a r (t l) u - . - u V a r (t k) ,

Var(t [t l / xb . . . , tk /xk])=U{Var(t i) /x i~ Vat(t)} (if t ~ M(F, Xk))

= y Z . (V a t (t) , V a r (t l) , • • . , V a r (t .)) ,

where Yk.n is such that if a c Xk, i l l , . . . , flk C_ X~,

flk)=U{13,1x,
Hence, if Ck.~ is the operation symbol such that Ck,~M(t, t l , . . . , t k) =

t [t l /X~ , . . . , tk/Xk] for t ~ M(F, Xk), t~ , . . . , tk e M(F , X~), then the operations on

A will be defined by

1riA = {xi}, aA = (~ if a e Fo,

fA= {Xl , . . . , Xk} i f f e Fk,

C k • n A ~ "Yk~n

Hence, VAR(LIo(G, ~ (x l , . . . , x ,)))= L((S~, A), tp), where SG is the polynomial
system associated with the grammar G as explained in Section 16.2 (and formally

done in [45]).

16.8. The noncircularity test for attribute grammars

Rather than the noncircularity of usual attribute grammars, we shall consider a
more general property, the noncircularity of attribute dependency schemes. These
objects have been introduced in [27]. Every attribute grammar has an underlying
attribute dependency scheme which is noncircular iff the attribute grammar is.
Below, we shall redefine attribute dependency schemes. They are so close to attribute
grammars that the reader will not have any difficulty to make the correspondence,
especially if (s)he knows [20, 23, 28].

Let Attr be a finite set of symbols called attributes. Let ~t = ~(Attr). If a o , . . . , ak
~t, we denote by H<,~l...,,~,,o) the set of all (isomorphism classes of) finite graphs with
C a r d (a o) + " - + C a r d (a k) distinguished vertices called sources. To be precise,

Equivalences and transformations of regular systems 107

these graphs are of the form g = (V, E, So , . . . , Sk), where V is the finite set of vertices,

E is the finite set of edges, and s~ is a mapping a~ -> V such that, for all i,j, a, b, s~(a) =

sj(b) if[i = j and a = b. We also denote by H~ the set H~.~).

If g ~ H~,...~.~o), gl ~ H ~ , , . . . , gk ~ H ~ , we denote by g [g l , . . . , gk] the graph
(V ' , E ' , s ') i n H~ defined as follows. By taking suitable copies of g l , . . . , gk, one

can assume that

g, = (v , , E, , s,),

E n Vs=O i f l

g = (V , E , s , t , , .

i~ [k] ,

<<.i<j<~k,

• . , tk),

s i (a) = h (a) for all a e ai, all i ~ [k],

V n V i = { s i (a) l a ~ a i } f o r a l l i ~ [k] .

And then one takes V' = V w V1 u • • • w Vk, E ' = E w El w • • • u Ek and s ' = s.
A n attribute dependency scheme is an object T = (N, P, Attr, D) consisting of

• a finite set of sorts N = {u~ , . . . , un},

• a finite N-signature P,
• a finite set of attributes Attr and a mapping 0 associating with every u in N a

subset O(u) of Attr, a mapping D associating with p in P of arity u¢~). . , u ¢k)

and of sort u (with u °) , . . . , I,/(k), U E N) , a graph D (p) in H~o<,~'b o¢,,~k)),o~,,)).

With T as above we associate a P-magma T = ((T ,) , ~ , (Pr)v~v), where

• T . = Ho~.) ,

• if p~ PO,~'L.,,~%0 and gi~ Ho~,"b for all i= 1 , . . . , k, then / r r (g~ , . . . , gk) =

D(p) [g~ , . . . , gk].
Hence, there corresponds to every t in M (P) , a graph tT in He(,).

Letting S be the system (U = ~ { p (u t l) , . . . , u t k)) I p e P , t r (p) = u , a (p) =

U(~).. . U (k)} ; U ~ N) , then G = (S, T) is a grammar which defines for every u in N

a set of graphs L (G , u) c_ Hot,).

The noncircularity problem consists in deciding whether there exists in L((3, u) a

graph having a cycle. To formulate this problem in the terms of Section 16.6, we

define, for all u in N, A,, ={0, 1} and h . , : H o o ,) ~ A , by letting h,,(g) = 0 i f g has no

cycle and h.,(g) -- 1 if g has a cycle. It is not possible (except in some very special

cases) to define PA for p e P such that the family of mappings h = (h,),,~N defines
a homomorphism T-~ A.

Algorithm 16.13 of Section 16.6 suitably extended to a system with sorts is
applicable if one defines

h" (g) = (h. , (g) , (g +)o~.o).

By g+ we mean the transitive closure of g and by (g+)ooo the restriction of g+
to the set of sources of g (this set is in bijection with O(u)). Since the multiplicity
of edges from a vertex a to a vertex b does not matter here (only the existence

108 B. CourceUe

matters), we can consider (g+)o(,,) as a binary relation on 0(u), i.e., as a subset of

We need only define PB: B~,) x . • • × Bu~) --> B~o) (for p in p~,)...~) .,~o~)) such that,

for all g~ in H ~ , , . . . , gk in H ~ (where a~ = O(u(~)), i = 0 , . . . , k) ,

P B (h " ' (g ~) , . . . , h ' ,~)(gk)) = h ' ,o , (pr (g~ , . . . , gk)) .

It suffices to take

with

and

PB((j l , rl), . . . , (jk , r k)) = (J o , to)

r o = ((D (p) [r ~ , . . . , rk])+)c,o

1 if D (p) [r l , . . . , rk] has a cycle or Max{ j~ , . . . , j k } = 1,

J°= 0 otherwise.

The proof that h' is a homomorphism reduces to the mere remark that if p

P(u,~...,(k~,~(o b and, for all i-- 1 , . . . , k, g~ is a graph in H~,, then:
D (p) [(g ~) , ~ , , . . . , (gk)~k] has one, (1) D (p) [g l , . . . , gk] has a cycle iff ÷ +

= . . . , (gk),~])),~, (2) (D (p) [g ~ , . . . , g k] +) = ((D (p) [(g - ~) ~ , , + +
which is straightforward to prove by going back to the definitions.

The iterative algorithm that one deduces from these remarks in the case of a
attribute dependency scheme associated with an attribute grammar is exact ly the

classical noncircularity algorithm (see [40] for this algorithm and its possible
improvements). We just wanted to show its similarity with the classical iterative

algorithms on grammars as the ones taken in examples in Section 16.6.

17. Applications to context-free grammars

In this chapter we formulate some classical transformations of context-free gram-
mars in terms of the -~u~,-correct basic transformations used in Section 14. This
formulation establishes their validity as an immediate corollary of the

~ ~m-correctness of the basic transformations. In classical books on context-free
languages (for instance [57]) their validity is separately proved for each of them by

inductive arguments on the length of derivations.
Let us recall from Section 11.4.2 that there is a one-to-one correspondence between

context-free grammars and polynomial systems which associates with G = (N, T, P)
(terminal alphabet, nonterminal alphabet, set of production rules) a polynomial

system S~ over Tm with set of unknowns N.

1Z1. Dele t ion o f non termina l s which def ine no word

If G = (N, T, P~ and N÷ = {u e N I L(G, u) ~ I~}, then one defines (3;+ = (N÷, T, P÷)
by letting P÷ be the set of production rules u ~ m in P such that u ~ N÷ and

Equivalences and transformations of regular systems 109

m 6 (N÷ u T)*. This construction is effective since N÷ can be computed (see Section

16.6).
It follows from Definitions 14.3 and 16.1 that N÷ =Unk+__(SG) and that SG÷ =

Red_(S~) I N÷. Hence, by Proposition 14.4,

S~+ _c Red_ (S~) redef~ S~

and this establishes that

whence,

L(G+, u) = L((3, u) for all u in N÷.

17.2. Deletion of useless nonterminals

We first give a few definitions. If G = (N , T, P) and G ' = (N ' , T, P') are two
grammars such that N'__q N and p ' c p, one says that G' is a subgrammar of (3.

If, for every rule u-~ m in P with u e N ' , the word m belongs to (N ' w T)* and

P ' is the set of all such rules, then we say that G' is a full subgrammar of G. Hence,

G' is a full subgrammar of G iff S~, is a subsystem of $6 and in this case, since

it follows that

L(G' , u) = L(G, u) for all u in N' .

Let s be a fixed nonterminal of G (usually called the axiom or start symbol); the

set Ns ={u ~ N I s -~* wuw' for some w, w' in (N w T)*} can be easily computed.

The set of equations $6 1 Ns is a subsystem of $6, hence, corresponds to a full

subgrammar G~ of G. In G~ every nonterminal u appears in some derivation sequence

starting from s and L(G~, u) = L(G, u) from the above observation.

A classical construction called reduction associates with (G, s) a grammar G' by

G ' = (G+)~. For every nonterminal u of G' there exists a derivation s ~ * wuw' ~ * w"
for some w" in T* and L(G', s) = L(G, s). This last fact follows the observation that

So, _ Red_ (So) redef~ $6.

17.3. Elimination of e-rules

Let G = (N, T, P) be a context-free grammar. Let N~ _c N be the set ofnonterminals

u such that e s L(G, u). We know from Section 16.6 how to compute N~.
Let G' = (N, T, P') be the context-free grammar such that u ~ w' is a rule in P '

iff w ' # e and there exists in P a rule of the form u ~ w with w = alula2u2. . . Ukak+l,
k I> 0 such that u l , . . . , Uk ~ N~, a l , . . . , ak+l ~ (N u T)*, and w' = a la2 . . , ak. Since
k = 0 is allowed, every rule u ~ w in P with w # e is also in P'.

110 B. Courcelle

Hence, G' has no e-rule, i.e., no rule of the form u ~ e. We say that it is e-free.
By using an induction on derivation sequences, one can prove (see [57, p. 99]) that

(1) L(G ' ,u)=L(G,u) i f u ~ N - N ~ ,

(2) L (G ' , u) = L (G , u) - { e } i fu~N~.

Our purpose is to formulate the transformation of G into G' in terms of our basic
-~U~m-COrrect transformations and obtain (1) and (2) immediately. Let N =
{ti[u s N} (hence ~r c~ N = 0), let a be the renaming which replaces u by a and let
S = a(So,). Let S be the set of equations:

u=~ f o r u ~ N - N ~ ,

u = ~ + e for u ~ N~.

Claim. (S w S) redef~ ~ ~m (So u S).

This claim yields So-N.~,~. , S u a(So,) which immediately implies (1) and (2).

Proof of the claim. For the verification of conditions (1) to (3) of Definition 5.10
we shall use the following notations:

So=(u=p. lu~N), 'J=(a=q~la~N),
S=(u=ru]u~N) .

Condition (1) reduces to the condition: p., has its unknowns in N for all u in N,
which holds from the definitions.

Condition (2) reduces to:

r, ,[O/ft;fie~]-<° p h [O / u . u ~ N] for some h ~>0. 5~u ~gm

The only nontrivial case is when u ~ N , since then the left-hand side is
~--~*~ -equivalent to e. (Otherwise, it collapses to/-2). But in this case, e e L(G, u),
hence, e e Dev(ph,,[O/u ; u ~ N]) for some large enough h by the theorem of Ginsburg
and Rice (see our Proposition 13.5) and the Least Fixed Point Lemma (see Section
2.2)).

Condition (3) reduces to

(3a) qa=-~,~,,p,,[r,,/u;u~N] if u ~ N - N ~ ,

(3b) qa+e=-~ , .p , , [r , , / u ;u~N] ifu~N~,.

For every w in (N u T)*, let P" be the set of words obtained by erasing in w
some occurrences of elements of N~. Let /5- be a (P ') , i.e., the result of the
replacement of ti for u in all the words of P ' . We also identify words in (N u N u T)*
with monomials in M(Tm, N u N) in an obvious way. It follows that 15-=
Dev(w[r.,/u ; u ~ N]). Note also that qa = ~ (Q,, -{e}), where Q,, = U{/5" I u ~ w is
a production of P}. Note finally that e e Q,, iff u ~ N~. These remarks immediately
entail conditions (3a) and (3b). And this completes the proof of the Claim. [-1

Equivalences and transformations of regular systems 111

17.4. Elimination of chain-rules

A production rule of the form u ~ u', where u' is a nonterminal is called a
chain-rule. A grammar is chain-free if it has no chain rule.

17.1. Definition. For every context-free grammar G = (N, T, P) which is e-free the

following classical construction (see [57, p. 101]) defines an equivalent chain-free
grammar G'=(N, T, P'): P ' is the set of rules of the form u->w where w ~ N ,
u ~ * u', and u'--> w is in P for some u' in N.

This definition is effective since the set of pairs (u, u') such that u --->* u' is the
transitive and reflexive closure of the relation P c~ (N x N), hence, can be computed.

It is easy to verify, by adapting the second step of the proof of Lemma 14.13, to

the present case, that

So rufld* ncycl* runf* So,.

Hence Sc ~ So,, i.e.,

L(G', u) = L(G, u) for all u in N.

If G is cycle-free, then So runf* So, and So ~ So,.

17.5. Chomsky normal form

A context-free grammar G = (N, T, P) is in Chomsky normal form if, for every
rule u --> w in P, either w e N 2 or w e T. This implies in particular that G is e-free.

It is clear that an e-free grammar G is in Chomsky normal form iff SG is uniform.
A classical construction (see [57, p. 104]) associates with G = (N, T, P) assumed

to be e-free, a grammar G' = (N ' , T, P') in Chomsky normal form such that N _ N '

and L(G', u) = L(G, u) for all u in N.
Actually, there are several slightly different ways to do that which all consist in

introducing auxiliary nonterminals and production rules. In all cases, $6 is the
result of the elimination in So, of the unknowns of N ' - N, as explained in Proposi-

tion 7.8. Hence, there exists an S' such that

So ~- e S' dld So,.

Hence, So = ~ m , N So,, i.e., So and So, have the same set of solutions in ~(T*)
(and even in ~ (M) for every monoid M such that T _ M). One possible way to
construct G' is by letting

So, = Ufm(So),

where Ufm is the uniformization of systems used in Proposition 12.17.

17.6. Invertible grammars

A context-free grammar G is invertible [57, p. 101] if, for any two production
rules u-> m and u'--> m', m = m' implies u = u'.

112 B. Courcelle

One can transform an arbitrary context-free grammar into an invertible one by
means of an algorithm [57, p. 101] which extends the one given in [71] for parenthesis
grammars and is essentially the construction of a quasi-deterministic system given
in the construction of Section 14, which is actually due to Mezei and Wright [73].

17. 7. Greibach normal f o r m

The construction which transforms an arbitrary context-free grammar G into an
equivalent one G' in Greibach normal form is more complicated. We conjecture
that it cannot be expressed in terms of the basic transformations that we have defined
as are the transformations described in Sections 17.1 to 17.6.

We now want to show that the main step in the transformation of G into G' can
be fairly easily validated by the unique fixed-point technique. This main step is the
following one, formulated in terms of +-regular systems over Ts (i.e., it concerns
e-free grammars)

17.2. Lemma. I f S = (u = u . p + q , v l = r z , . . . , v , = r ,) a n d S ' = (u = q . u ' + q , u ' =

p. u' + p, v~ = rl , . . . , vn = r,), where p, q, rl , . . . , r, are po lynomia l s over Ts such that

q, r l , . . . , r , ~ U = {u, v l , . . . , v ,} , then S ~P+,v S'.

Its proof will use the following lemma.

17.3. Lemma. Le t A , B be two subse ts o f T +. I f A = B A u B, then A B = BA .

Proof. Consider the equation

L = B L u B B . (8)

Its solution in ~(T +) is unique since ~(T +) is spanning and since equation (8) is
contracting (recall that e ~ B). Let Lo be this solution. From the hypothesis A = BA u
B, one obtains AB = BAB u BB. Hence, AB = Lo. Similarly BA = BBA w BB. Hence,
BA= Lo and AB= BA. []

Proof of Lemma 17.2. Let (L, L', L ~ , . . . , L,) be the least solution of S'. Clearly,
L, L', L ~ , . . . , L, are subsets of T +. We prove that (L, L ~ , . . . , L,) is a solution of
S. The last n equations of S obviously hold, so that we need only prove that

i.e., that

L = L . p u (?,

(7.L' u (l = (l . L ' . P U (l .PU Fl, (9)

where/0 denotes px+(L, L I , . . . , L ,) and similarly for q-
Since L ' = ~ . L ' u p , it follows that ~ . L ' = L ' . p , hence, the right-hand side of (9)

evaluates to q./~. L' u ~./~ u ~ = q. (/L L' u/~) u ~ = tTL'u t] which proves (9). From
the hypothesis on q, r~ , . . . , r,, the system S corresponds to a proper grammar,

Equivalences and transformations of regular systems 113

hence, has a unique solution in ~(T+). Hence, (L, L1 , . . . , L,) is its least (and

unique) solution. []

18. More general grammars

Rather than new results, this section introduces some generalizations of the
concept of grammar defined in Section 16 and presents informally some forthcoming
developments.

18.1. Definitions. Starting with the definition of a grammar as a pair (S, M) we can
generalize Definition 16.1 by allowing in M:

Case 1: partial functions fM : MP~f~ ~ M,
Case 2: multivalued functions defined as total functions fM:MP~Y)o ~(M) ,
Case 3: nonstrict partial functions fM which possibly yield a value when some

of their arguments are undefined.
In all these cases, S is solved in the to-complete F+-magma P = ~(M), where fa

is defined as the canonical extension offM to ~(M) pc°
There is still another generalization.
Case 4: The fv's are defined as monotone functions ~(M)P~/)-~ ~ (M) so that it

may happen that fe({d, d'}) is strictly larger that fp({d}) wfe({d'}).

It is clear that Case 4 includes Cases 1 to 3, and that Case 2 includes Case 1.
Some examples of Case 2 have been considered in [21], and the systems associated
with OI-context-free tree grammars are examples of Case 4 (see Section 16.3).

Let °Vp be the class of partial F-magmas (of Case 1), °V m be the class of multivalued
F-magmas (of Case 2) and ~n~ be the class of nonstrict F-magmas (of Case 3).

18.2. Proposition. I f M ~ Y'p or M ~ Y'm, then ~(M) is a distributive F-magma.

The proof can be done by easy verification.
If M e °Fn~, ~ (M) satisfies all equations of ~ except

f(. . . , a , . . .) = a

(iffM is nonstrict).
In Case 4, P satisfies the equations of ~ concerning +, but neither

f (. . . , ~ , . . .) = D

nor the distributivity

114 B. Courcelle

f (. . . , x + x ' , . . .) = f (. . . , x , . . .) + f (. . . , x ' , . . .) .

Letting = o _ p (respectively ~ p ~ P) be the equivalences on polynomial systems p , p , m~

associated with partial magmas in an obvious way (respectively with multivalued
magmas) the following holds.

18.3. Proposition. (1) Every transformation o f polynomial systems which is ~ ~-correct
(or ~ ~ -correct) is ~ P- and ~ Pro" correct (or ~ Pp- correct and ~ Pro- correct).

(2) For polynomial systems S and S',

s' s' s' S ~ i f f S i f f S i f f S = P S ',

S ~ S ' iff S~PmS ' iff S ~p S' iff S - P S '.

Proof. Part (1) is

(2) S =~ S'

an immediate consequence of Proposition 18.2.

implies S = p S'

implies S ~-pP S'

implies S ~ p S'

implies S ~ S'

(by Proposition 18.2)

(since Y'm ~ Y'p)

(since °Fp ~ ~)

(by Theorem 12.1).

A similar argument works for ---~ with the help of Theorem 13.7. []

18.4. Remarks. Here are some remarks concerning derivation trees and grammatical
denotations, which will be developed in a forthcoming paper.

Case 1: Derivations trees and grammatical denotations are defined as in Section
16 but some grammatical denotations have no value.

Case 2: As in Case 1 except that a grammatical denotation may have a (possibly
empty) set of values.

Case 3: Derivation trees must be defined in M (Q w {~}), grammatical denota-
tions in M (F w {0}) and they have at most one value.

Case 4: Derivation trees must be defined in M(Q+) (cf. the end of Section 16.3)
and grammatical denotations in M(F÷). Each of them denotes a (possibly empty)
set of values.

Appendix A. Coherent and simplifiable congruences

We prove some technical properties of rewriting systems associated with regular
systems which were needed in Sections 4 and 6. We present them in a self-contained
chapter (depending only on Sections 1 and 2.1, and Definition 4.11), because we
think that they are interesting by themselves.

E q u i v a l e n c e s a n d t r a n s f o r m a t i o n s o f r e g u l a r s y s t e m s 115

A.1. Definitions. Let F be a finite ranked a lphabet and U = { u l , . . . , un} be a finite

set of constants disjoint from F. An equivalence relation - on M (F u U) is

F-coherent if f (s ~ , . . . , s l) - g (s ~ , . . . , s ') with f, g c F (1 a n d / o r m may be zero)

implies f = g. It is F-simplifiable i f f (s ~ , . . . , st) - f (s ~ , . . . , sI) implies s~ -= s[for all

i = l , . . . , l .

A,2. Proposition. The congruence (--> * on M (F u Unk(S)) associated with a regular

system S is F-coherent and F-simplifiable.

Proof. Let s = f (s l , . . . , Sl) and s ' = g (s ~ , . . . , s ') such that s ~ * s'. We show that

' for all i = 1, l = m. g = f and that si ~ * si . . . ,
We do the p roof by induct ion on k, where k is the smallest integer such that

s ~ ~ s'. The case k = 0 means that s ' = s. The conclus ion follows trivially.

Let k 1> 1. One has

s = f (s , , . . . , s,,,) <-'>s S" ('->ks-' S'.

From the definition of a regular system, one only has two cases to consider:

Case 1: s " = f (s ~ ' , . . . , s~), si (-->* s7 and the result follows by induction.

Case 2: s " = ui and s = t~. The sequence s ~_>k S' is one of the following two possible

forms (with u;, u~, in Unk(S)) :

V sl S <"- U i Ui l ~ Ui2 <"--" " " <- ' -" " " <"-- Uik_l ~--
S S S S S

o r

• . . <..- Uik " ~ <--'-> S t. S <--- U i <'-- Ui l <--" Uik_~ Uik-1 S
S S S S

The first one is impossible since s' is not in Unk(S) and the second one is not of

shortest length, so is impossible too. Hence, the result is proved. []

A.3. Definition. By an s.c. equivalence (respectively s.c. congruence) on M (F u U)

we mean an equivalence (respectively congruence) which is F-simplifiable and

F-coherent .

Let us now fix a l inear order ~< on U and associate with it a partial order ~< on

M(F , U) as defined in Definit ion 4.11. Let < be the associated strict partial order.

It is clear that Itl Icl whenever t ~< t'. It is easy to prove that < is well-founded,

i.e., that there is no infinite sequence in M (F w U) such that t~ > t2> t 3 > - ' ' >

t i ~ • . . .

Let now - be an s.c. congruence on M (F w U). Let 8 be the mapping associating

with s, s ' in M (F u U) such that s=--s ' an element 8(s, s') of M (F u U) defined as

116 B. Courcelle

follows:

F ! (1) ~ (f (S l , . . . , S m) , f (s ~ , . . . , S ~)) : f (~ (S l , S l) , . . . , ~ (S m , Sm)),

(2) 8(s, s') = the smallest of s, s ' w.r.t. <~ if at least one of s, s ' belongs to U.

Since = is assumed to be F-coherent , there is no other case to consider; since it

is assumed F-simplif iable (and by induction), the terms 3(si, sl), i= 1 , . . . , m of

clause (1) are well-defined. By the definition of ~<, s and s' are comparable in

clause (2).
A s t ra ightforward induct ion on the computat ion of 8 can show that the following

lemma holds.

A.4. Lemma. I f =-- is an s.c. congruence on M (F w U), i f s, s' ~ M (F w U) a n d s =- s',

then ~(s, s') = s and 6(s, s') is the greatest lower bound o f {s, s'} w.r.t. <~.

Let <0 be the relat ion on M (F , U) defined by

t ' i f f t < ' t - t ' t < o t , and, for all s such that s - t and t <~ s ~< t', either

s = t o r s = t ' .

A.5. Lemma. I f - is an s.c. congruence, i f u ~ U and i f there exists t =-u such that

u < t, then there exists a unique s such that u <o s.

Proof. Let C = {t ~ M (F , U)] u < t and u --- t}. This set is nonempty. Let C ' be the

set of e lements of C of minimal size. It is finite, hence, it has (by Lemma A.4) a

greatest lower bound s. Hence, u ~< s. If s # u, then s is the desired object, and its

unicity follows.

If C ca U # 0, then s is the least element of C m U by the definition of <~, s e U

and s # u.

If C c_ F (M (F , U)), then the greatest lower bound of any pair of elements of C

is in F (M (F , U)), hence, s is so and s # u. Note tha t s is the least e lement of C' ,

hence, also o f C. []

A.6. Definition. We associate with a s.c. congruence = a regular system S . =

(u~ = t~;1 ~< i ~< n) by the following requirements where U = { u l , . . . , u,} and C~ =

{ t l u i < t , ui=---t}.

(1) t~ = ui if G = 0,

(2) t~ = M i n (G) if G ~ 0 (i.e., t~ is the term s associated with u~ by Lemma

A.5).

Note tha t i f the equivalence class of ui is included in U, then there exists a

sequence i l , • • •,/i, such that ti = ui 1, ti, = u~2 , . . . , t~k_ , = u~, t~ = u~, where ui~ is the

maximal e lement of this class w.r.t. ~ .

E q u i v a l e n c e s a n d t r a n s f o r m a t i o n s o f r e g u l a r s y s t e m s 117

A.7. Lemma. I f t <~ t' and t =- t', then t ---> *s~ t'.

Proof. The lemma is proved by induct ion on the structure of t'. (We let S = S.~).
Case 1: t ' e U. Then t ~ U. There exists a finite sequence t <o tl <o t2 <o" " • <o

t~ <o t' (by Lemma A.5) and necessarily tl, t 2 , . . . , tk ~ U. By the definition of

S , t ---~ s t m " -~ s t2 -'-~ s " " " - -~ s t '.

Case 2: t, t '~ F (M (F , U)). Hence, t = f (h , . . . , tk), t ' = f (t ' l , . . . , t'k) for some

t~, tl such that t~ <~ t[and t~ -= t~. The induct ion hypothesis shows that t~ --~s* t'i. Hence,

t-'>*s t'.
Case 3: t~ U, t ' ~ F (M (F , U)). There exists (as in Case 1) a finite sequence

t = u~o <o u~, <o ui~ <o" • " u~ <o t", where t"~ F (M (F , U)) and t"<~ t'. Since t"-= t',

the p roof of Case 2 gives t"--->*t' and, as in Case 1, t-->sU~l-->s

~i2 "-'> " " " --"> S Ui k "-'~ S t".
Hence, t-->* t' as was to be proved. []

A.8. Theorem. (1) Let ~ be a s.c. congruence on M (F u U) and <~ be a linear order

on U. Then S . is the unique regular system S such that U n k (S) = U, R (S) is left-

irreducible, <~-compatible and such that =- is the congruence generated by S.

(2) Let <~' be another linear order on U and S " be the unique regular system
associated with - and <~' by (1). There exists a renaming t~ such that a (S=)= S ' .

Proof. (1) Let S = S_. By construction, R (S) is <~-compatible and included in -=.

If R (S) is not left-irreducible, there exists an i such that t~--->R' t with R ' =

R (S) - { (t i , ui)}. There are two cases.

Case 1" t ~ U. Hence, t = uj and ti tj for s o m e j ~ i. This implies ui ~ * uj, hence,

u~--- uj. Ei ther ui ~ Cj or uj ~ Ci. In both cases one cannot have Min(Ci) = Min(C~).

Hence, ti ~ tj.
Case 2: t ~ F (M (F , U)). Hence, t<t~, t=t~ since S is included in - . Hence,

u~ < t < ti and this contradicts the definition of ti.

Hence, R (S) is left-irreducible.

We now prove that -= is included in ~-->*. Let s - - s ' and s "= 8(s, s'). By Lemma

A.3, s"<~s, s"<~s ', and s"=-s---s'. Lemma A.7 shows that s ~--* s"---~* s'. Hence,

s <--->* s'. Hence, we have shown that ~ is the congruence generated by S ,

(equivalently by R (S .)) .

In order to prove the unicity result, let S = (u~ = t~ ; 1 ~ i <~ n) be a regular system

such that R (S) is left-irreducible, <~-compatible and such that -= is ~ * .

We must show that, for all i, e i ther u~ <o t~ or ti = u~ and {t I u~ < t, t = ui} = 0. I f

t~ ~ ui, then, since R (S) is <~-compatible, we have ui < ti and ti ~ u~. Let us assume

that ui < s =- u~ for some s. Since R (S) is confluent and Noetherian, s and t~ have

the same normal form w.r.t. R (S) . Hence, there are two sequences (where -->

represents "">ms)):

t i -> U i --> W k ---> W k _ 1 ---> . . .-.> W 1 ,

S "-> S ! "-~ S i _ 1 ~ • • • " ~ S 1 - W 1 .

118 B. Courcelle

By the ~-compat ib i l i ty of R(S) , we have

t i > U i > W k > W k - l > " " " > W1,

s > s t > s l - l > " • • > $1

and by the definition o f <~, w ~ , . . . , W k E U.

Hence, sl ~ U and since S is a regular system, s2 = w2, hence, s 2 E U, s 3 = W3, etc.
By going on, one arrives at ui. Let us compare k and I. If l<~k, then s e

{ui, Wk, Wk-~, . . . , Wl}, but this contradicts the assumption that ui < s. Hence, k < I.
This means that t~ ~ {s, sz, st_~,. . .} and that ti <~ s. This shows that u~ <o t~.

Hence, S coincides with the system S~.

(2) Let <~' be ano ther linear order on U. There exists a unique bijection a : U-> U
such that:

(i) u<~u ' iff o~(u)<~'a(u ') ,

(ii) a (u) = u ,

for all u, u' in U such that u -= u'.

Consider now the system S'= a (S .) . Then R(S') is ~<'-compatible by (i) and

since R (S .) is ~<-compatible, it is left-irreducible since R (S ,) is and a is a bijection.
It follows from (ii) tha t ~-->*, is included in -=. If u, u '~ U and u -= u', then a - l (u) ~

a - l (u ') , hence, a - l (u) ~-->* a-l(u') . And u .->*, u' since S'= a (S ,) . It follows from
this that u -->s. t implies u ~ * , t.

Hence, the congruences =-, ~ * . , and <->*, are the same. By the unicity result of
(1), S' is equal to S ' , . []

A.9. Corollary. Let =- be an s.c. congruence on M (F u U) and <~ be a linear order

on U. There is a unique ground rewriting system which is proper, <~-compatible and
which generates --.

Proof. The rewriting system R (S .) is not necessarily right-irreducible. By replacing

each of its f ight-hand sides by its normal form w.r.t. R (S .) , one obtains a rewriting

system R which is left- and right-irreducible, ~<-compatible and which generates ---

(this is a special case of [72, Theorem 7]). By Proposit ion 1.2, R is the only one
having the required properties. []

As in Theorem A.8, if one uses another linear order <~' on U, then the unique
system R ' associated with it is a renaming of R associated with <~.

A.10. Example. Let S = (ul = u3, u2 = ul, u3 = f (u 2 , g(u4, ul)), u4 = g(u4, u:)) and -
be the congruence <-->*. One has Ul<o u2 <0 u3 <0 f (u l , u4) and u4 <0 g(u4, u~) (since

Equivalences and transformations of regular systems

Ul- u2 =- u3 and u4~ ul). Hence, the regular system S__- is

(U 1 ~--- U2, U2 = U3, u3=f(ul, u4), Ua = g(u4, Ul)).

The rewriting system R associated with S_~ by Corollary A.9 is

R ={u2-> ul, u3 "-> Ul,f(Ul, U4) ''> Ul, g(u4, ul)'-> u4}

and is not R(S') for any regular system S'.

119

A.11. Proposition. Let R be a ground rewriting system on M(F, U). One can decide
whether the congruence <->* is F-coherent and F-simplifiable. I f it is the regular system,
S,~.~ can be effectively constructed.

Proof. We first recall that Brainerd has shown in [17] that the congruence class of
t in M(F, U) modulo ~ * is a regular tree language, for which a tree automaton
can be constructed. Hence, the word problem is decidable (since the nonemptiness
of the intersection of two classes can be decided).

We also recall that the existence of a substitution tr: U ~ M~(F, U) in Unif °~(R),
i.e., such that o'(a) = tr(3) for all (a, fl) in R can be decided [26, Proposition 4.9.5].
This corresponds to the existence of a first-order unifier (in M°~(F, U)) for R
considered as a set of equations.

With every (t, t') in M(F, U)x M(F, U), we associate a subset O(t, t') of U x
M(F, U) as follows:

0 (t , t') =

{(t, t')} i f t~ U,

{(t', t)} i f t~ U, t '~ U,

O (t l , t)kg " " " u O (t k , t 'k) ift=f(tl , . . . , tk),

undefined if t = f (t l , . . . , tk), t'= g(t~ , . . . , t~) and f # g.

We let R'=U{O(a, f l) l (a , f) ~ R } .
We now claim that <--~* is s.c. iff:

(1) O(a, fl) is defined for all (.a, 3) in R,

(2) t o * t' for all (t, t') in R',

(3) Unif~(g') # 0.

Let us assume that <--~* is s.c. Then (1) holds by the F-coherence, (2) holds by
the Fosimplifiability, (3) holds by [26, Proposition 4.9.5].

The converse similarly holds.

120 B. Courcelle

These three properties are decidable by the two results recalled at the beginning
of the proof. Since the word problem is decidable, the construction of Definition
A.6 is effective. []

References

[1] A. Arnold and M. Nivat, Metric interpretations of infinite trees and semantics of nondeterministic
recursive programs, Theoret. Comput. Sci. 11 (1980) 181-205.

[2] A. Arnold and M. Nivat, The metric space of infinite trees. Algebraic and topological properties,
Fund. Inform. III(4) (1980) 445-476.

[3] J. Backus, Can programming be liberated from the Von Neumann style? A functional style and its
algebra of programs, Comm. ACM 21 (1978) 613-641.

[4] J. de Bakker, Least fixed points revisited, Theoret. Comput. ScL 2 (1976) 155-181.
[5] J. de Bakker and D. Scott, A theory of programs, 1969, unpublished.
[6] D. Benson and I. Guessarian, Algebraic solutions to recursion schemes, Rept. CS-81-079, Washing-

ton State University, Pullman, WA, 1981.
[7] G. Berry and J-J. L6vy, Minimal and optimal computations of recursive programs, J. ACM 26

(1979) 148-175.
[8] J. Bcrstel, Transductions and Context-free Languages (Teubncr, Stuttgart, 1979).
[9] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 29 (1935) 433-454.

[10] S. Bloom, All solutions of a system of recursion equations in infinite trees and other contraction
theories, J. Comput. System Sci~ 27 (1983) 225-255.

[11] S. Bloom, C. Elgot and J. Wright, Solutions of the iteration equation and extensions of the scalar
iteration operation, SIAM J. Comput. 9 (1980) 25-45.

[12] S. Bloom and R. Tindcll, Compatible ordcrings on the metric theory of trees, SIAM J. Comput. 9
(1980) 683-691.

[13] S. Bloom and R Tindcll, Varieties of 'if-then-else', SIAM J. Comput. 12 (1983) 677-707.
[14] V. Bodnarchuk, The metrical space of events, Kibernetika 1 (1) (1965) 24-27 and (4) (1965) 22-30

(in English).
[15] R. V. Book, The undecidability of a word problem: On a conjecture of Strong, Maggiolo-Schettini

and Rosen, Inform. Process. Lett. 12 (1981) 121-122.
[16] W. Brainerd, The minimalization of tree automata, Inform. and Control 13 (1968) 484-491.
[17] W. Brainerd, Tree generating regular systems, Inform. and Control 14 (1969) 217-231.
[18] J.P. Braquelaire and B. Courcelle, The solutions of two star-height problems for regular trees,

Theoret. Comput. Sci. 30 (1984) 205-239.
[19] R. Burstall and J. Darlington, A transformation system for developing recursive programs, J. ACM

24 (1977) 44-67.
[20] L. Chirica and D. Martin, An order-algebraic definition of Knuthian semantics, Math. Systems

Theory 13 (1979) 1-27.
[21] L. Chottin, Etude syntaxique de certains langagcs solutions d'6quations avec op6rateurs, Theoret.

Comtmt. Sci. 5 (1977) 51-84.
[22] B. Courcelle, A representation of trees by languages, TheoreL Comput. Sc~ 6 (1978) 255-279 and

7 (1978) 25-55.
[23] B. Courcelle, Attribute grammars: Definitions, analysis of dependencies, proof methods, in: B.

Lorho ed., Methods and Tools for Compiler Construction (Cambridge University Press, 1984).
[24] B. Courcelle, Arbres infinis ct syst6mes d'6quations, RAIRO Inform. Thdor. 13 (1979) 31-48.
[25] B. Courcelle, Infinite trees in normal form and recursive equations having a unique solution, Math.

Systems Theory 13 (1979) 131-180.
[26] B. Courcellc, Fundamental properties of infinite trees, Theoret. Comput. Sc/. 25 (1983) 95-169.
[27] B. Courcellc and P. Deransart, Proofs of partial correctness for attribute grammars and recursive

procedures, INRIA Rept. 322, 1984, submitted for publication.
[28] B. CourceUe and P. Franchi-Zannettacci, Attribute grammars and recursive program schemes, Parts

I-II, Theoret. Comlmt. Sci. 17 (1982) 163-191; 235-257.

Equivalences and transformations of regular systems 121

[29] B. Courcelle and I. Guessarian, On some dases of interpretations, J. Comput. System Sci. 17 (1978)
388-413.

[30] B. Courcelle, G. Kahn and J. Vuillemin, Algorithmes d'rquivalence et de rrduction ~ des expressions
minimales, dans une classe d'rquations rrcursives simples, 2nd Internat. Coll. on Automata,
Languages and Programming, Saarbriicken 1974, Lecture Notes in Computer Science 14 (Springer,
Berlin, 1974) 200-213.

[31] B. Courcelle and M. Nivat, Algebraic families of interpretations, 17th Ann. Syrup. on Foundations
of Computer Science, Houston, TX (1976) 137-146.

[32] B. Courcelle and M. Nivat, The algebraic semantics of recursive program schemes, Math. Found.
of Comput. Sci. 78, Lecture Notes in Computer Science 64 (Springer, Berlin, 1978) 16-30.

[33] B. Courcelle and J. C. Raoult, Completions of ordered magmas, Funt~ Inform. III(1) (1980) 105-116.
[34] B. Courcelle and J. Vuillemin, Completeness results for the equivalence of recursive schemes, J.

Comput. System Sc~ 12 (1976) 179-197.
[35] G. Cousineau, An algebraic definition for control structures, Theoret. Comput. Sci. 12 (1980) 175-192.
[36] W. Damm, The IO- and OI-hierarchies, Theoret. Comput. Sci. 2a (1982) 95-207.
[37] W. Damm, Languages defined by higher program schemes, Lecture Notes in Computer Science 52

(Springer, Berlin, 1977) 164-179.
[38] W. Damm and E. Fehr, On the power of self-application and higher-type recursion, Proc. 4th

Internat. Coll. on Automata, Languages and Programming, Udine, Italy, Lecture Notes in Computer
Science 62 (Springer, Berlin, 1978) 177-191.

[39] W. Datum, E. Fehr and K. Indermark, Higher type recursion and self-application as control
structures, in: E. Neuhold, ed., Formal Descriptions of Programming Concepts (North-Holland,
Amsterdam, 1978) 461-487.

[40] P. Deransart et al., Speeding up circularity tests for attribute grammars, Acta Inform. 20 (1984)
375-391.

[41] S. Eilenberg and J. Wright, Automata in general algebras, Inform. and Control 11 (1967) 52-70.
[42] C. Elgot, Monadic computation and iterative algebraic theories, in: H.E. RoseandJ.C. Shepherdson,

eds., Logic Colloquium '73 (North-Holland, Amsterdam, 1975) 175-230.
[43] C. Elgot and F. Mezei, On relations defined by generalized finite automata, IBM J. Res. Develop.

9 (1965) 47-68.
[44] J. Engelfriet, Bottom-up and top-down tree transformations, a comparison, Math. Systems Theory

9 (1975) 198-231.
[45] J. Engelfriet and E. Schmidt, IO and OI, J. Comput. System Sci. 15 (3) (1977) 328-353 and 16 (1)

(1978) 67-99.
[46] J. H. Gallier, Nondeterministic flowchart programs with recursive procedures, semantics and

correctness II, Theoret. Comput. Sci. 13 (3) (1981) 239-270.
[47] J. H. Gallier, Recursion dosed algebraic theories, J. Comput. System Sci. 23 (1981) 69-105.
[48] J. H. Gallier, N-rational algebras, I: Basic properties and free algebras; II: Varieties and the logic

of inequalities, SIAM J. Comput. 13 (1984) 750-794.
[49] N. Gautam, The validity of equations of complex algebras, Arch. Math. Logik, Grundlag. 3 (1957)

117-124.
[50] F. Gecseg and M. Steinby, Tree-automata (Akademiai Kiado, Budapest, 1984).
[51] S. Ginsburg and H. Rice, Two families of languages related to ALGOL, J. ACM 9 (1962) 350-371.
[52] J. Goguen, How to prove algebraic inductive hypotheses without induction, 5th Conf. on Automated

Deduction, Les Arcs, Lecture Notes in Computer Science 87 (Springer, Berlin, 1980) 356-373.
[53] J. Goguen, J. Thatcher and E. Wagner, An initial algebra approach to the specification, correctness

and implementation of abstract data types, in: R. Yeh, ed., Current Trends in Programming
Methodology (Prentice-Hall, Englewood Cliffs, N J, 1978) 80-149.

[54] J. Goguen, J. Thatcher, E. Wagner and J. Wright, Initial algebra semantic and continuous algebras,
J. ACM 24 (1977) 68-95.

[55] I. Guessarian, Program transformations and algebraic semantics, Theoret. Comput. Sci. 9 (1979)
39-65.

[56] I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science 99 (Springer, Berlin, 1981).
[57] M. A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).
[58] P. Hitchcoek and D. Park, Induction rules and proofs of termination, Proc. 1st Colt on Automata

Languages and Programming (North-Holland, Amsterdam, 1973) 225-251.

122 B. Courcelle

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]
[72]

[73]
[74]

[751
[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

[84]

G. Huet, Confluent reductions: Abstract properties and applications to term rewriting systems, J.
ACM 27 (1980) 797-821.
G. Huet and J. M. Hullot, Proofs by induction in equational theories with constructors, Proc. 21st
Syrup. on Foundations of Computer Science, Syracuse, NY (1980) 96-107.
G. Huet and D. Oppen, Equations and rewrite rules, in: R. V. Book, ed., Formal Languages,
Perspectives and Open Problems (Academic Press, New York/London, 1980). 349-405.
V. Istratescu, Fixed Point Theory (Reidel, Dordrecht, 1981).
L. Kott, About transformation systems, a theoretical study, in: B. Robinet, ed., Transformations de
Programmes (Dunod, Paris, 1978) 232-247.
L. Kott, Unfold/fold program transformations, Proc. Sere. on the Application of Algebra to Language
Definition and Compilation, Fontainebleau, 1982 (Cambridge University Press, 1985).
J.-L. Lassez, V. Nguyen and E. Sonenberg, Fixed points theorems and semantics: A folk tale,
Inform. Process. Lett. 14 (1982) 112-116.
P. Lescanne, Equivalence entre la famiUe des ensembles r6guliers et la famille des ensembles
alg6briques, RAIRO Inform. Th~or. 10 (1976) 57-81.
P. Lescanne, ModUles non d6terministes de types abstraits, RAIRO Inform. Thdor. 16 (1982) 225-244.
Z. Manna and J. Vuillemin, Fixpoint approach to the theory of computation, Comm. ACM 15
(1972) 528-536.
G. Markowsky and B. Rosen, Bases for chain-complete posets, IBM J. Res. Develop. 20 (1976)
138-147.
J. McCarthy, A basis for a mathematical theory of computation, in: P. Braffort and D. Hirschberg,
eds., Computer Programming and Formal Systems (North-Holland, Amsterdam, 1963) 33-70.
R. McNauthton, Parenthesis grammars, J. ACM 14 (1967) 490-500.
Y. M&ivier, About the rewriting systems produced by the Knuth-Bendix completion algorithm,
Inform Process Lett. 16 (1983) 31-34.
J. Mezei and J. Wright, Algebraic automata and context-free sets, Inform. and Control 11 (1967) 3-29.
J. Mycielski and W. Taylor, A compactification of the algebra of terms, Algebra Universalis 6 (1976)
159-163.
E. Nelson, Iterative algebras, Theoret. Comput. Sci. 25 (1983) 67-94.
M. Nivat, On the interpretation of recursive polyadic program schemes, Symposia Mathematica 15
(Academic Press, New York/London, 1975) 255-281.
E. Paul, Proof by induction in equational theories with relations between constructors, in: B.
Courcelle, ed., Proc. 9th Coll. on Trees in Algebra and Programming, Bordeaux (Cambridge University
Press, London, 1984) 211-225.
M. Schiitzenberger, On context-free languages and push-down automata, Inform. and Control 6
(1963) 246-264.
A. Shafaat, On varieties dosed under the construction of power algebras, Bull. Austral. Math. Soc.
11 (1974) 213-218.
R. Tennent, The denotational semantics of programming languages, Comm. ACM 19 (1976) 437-453.
J. Vuillemin, Correct and optimal implementations of recursion in a simple programming language,
J. Comput. System. Sci. 9 (1974) 332-354.
J. Vuillemin, Syntaxe, Sdmantique et Axiomatique d'un Langage de Programmation Simple (Birk-
h~iuser Verlag, Basel/Stuttgart, 1975).
J. Wright, J. Thatcher, E. Wagner and J. Goguen, Rational algebraic theories and fixed point
solutions, 17th Syrup. on Foundations of Computer Science, Houston, TX (1976) 147-158.
J. Wright, E. Wagner and J. Thatcher, A uniform approach to inductive posets and inductive closure,
Theoret. Comput. ScL 7 (1978) 57-77.

