INFORMATION AND COMPUTATION 85, 12-75 (1990)

The Monadic Second-Order Logic of Graphs.
I. Recognizable Sets of Finite Graphs*

BRUNO COURCELLE

Bordeaux I University, Laboratoire d'Informatique,’
351, Cours de la Libération, 33405 Talence, France

The notion of a recognizable set of finite graphs is introduced. Every set of finite
graphs, that is definable in monadic second-order logic is recognizable, but not vice
versa. The monadic second-order theory of a context-free set of graphs is
decidable. © 1990 Academic Press, Inc.

INTRODUCTION

This paper begins an investigation of the monadic second-order logic of
graphs and of sets of graphs, using techniques from universal algebra, and
the theory of formal languages. (By a graph, we mean a finite directed
hyperedge-labelled hypergraph, equipped with a sequence of distinguished
vertices.) A survey of this research can be found in Courcelle [117.

An algebraic structure on the set of graphs (in the above sense) has been
proposed by Bauderon and Courcelle {2, 7]. The notion of a recognizable
set of finite graphs follows, as an instance of the general notion of
recognizability introduced by Mezei and Wright in [25].

A graph can also be considered as a logical structure of a certain type.
Hence, properties of graphs can be written in first-order logic or in second-
order logic. It turns out that monadic second-order logic, where quantifica-
tions over sets of vertices and sets of edges are used, is a reasonably
powerful logical language (in which many usual graph properties can be
written), for which one can obtain decidability results. These decidability
results do not hold for second-order logic, where quantifications over
binary relations can also be used.

Our main theorem states that every definable set of finite graphs
(ie., every set that is the set of finite graphs satisfying a graph property
expressible in monadic second-order logic) is recognizable.

* This work has been supported by the “Programme de Recherches Coordonnées: Mathé-
matiques et Informatique.”

* Unité de Recherche Associée au CNRS n° 726. Electronic mail: courcell@geocub.greco-
prog.fr.

12

0890-5401/90 $3.00

Copyright © 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

RECOGNIZABLE SETS OF FINITE GRAPHS 13

It follows, in particular, that the monadic second-order theory of a
context-free set of graphs is decidable. (The notion of a context-free set of
graphs is introduced in Bauderon and Courcelle [2, 8], by means of
context-free graph-grammars, that are essentially the hyperedge-replacement
graph-grammars of Habel and Kreowski [21]).

It is known that a set of words, or of finite ranked trees, is definable iff
it is recognizable with respect to the appropriate algebraic structure. (These
results have been established respectively by Biichi [4] and Doner [16].
We also refer the reader to Thomas [29]).

In the case of graphs, some recognizable sets are not definable. But we
extend the result of Doner, by proving that a set of unordered unbounded
trees is recognizable iff it is definable. In this extension, the notion of
definability is taken w.r.t. a strict extension of monadic second-order logic,
that we call the counting monadic second-order logic. In this new language,
special atomic formulas are introduced to test whether the cardinality of a
set is equal to p modulo g. Our main theorem is actually proved for this
extended logic.

We now sketch the organization of the paper, and we present its main
definitions and results. Section 1 is devoted to algebraic preliminaries. The
notion of a recognizable set in a many-sorted algebra is introduced. It is an
obvious extension of the notion defined in Mezei and Wright [25] for
one-sorted algebras. The notion of an equational set extends similarily
the notion defined in [25]. The intersection of an equational and a
recognizable set is equational. This result extends the classical one saying
that the intersection of a context-free language with a regular one is
context-free.

Section 2 defines graphs and the operations on graphs. They form the
algebraic structure introduced in Bauderon and Courcelle [2,7]. The
length of the sequence of distinguished vertices of a graph is called its rype.
By means of three infinite sets of operations (defined in terms of three
operation schemes), one obtains a many-sorted algebra of graphs. The set
of sorts is N, and the domain of sort # is the set of graphs of type n.

With respect to this algebraic structure, the equational sets of graphs
coincide with the context-free ones (this is proved in Bauderon and Cour-
celle [2]). The family of recognizable sets of graphs is uncountable and is
incomparable with the family of equational sets. This fact shows a major
difference from the case of words.

In Section 3, graphs are considered as logical structures. The counting
monadic second-order logic and the associated definable sets of graphs are
introduced.

The main result of this paper is proved in Section 4. It says that every
definable set of graphs is recognizable. It follows that, for every graph
property expressible in counting monadic second-order logic, the set of

14 BRUNO COURCELLE

graphs satisfying this property, and belonging to a given context-free set of
graphs forms a context-free set. One can decide whether such a property
holds for all graphs of a given context-free set.

Section 5 deals with unordered unbounded finite trees. These trees should
be contrasted with the finite ordered ranked trees, classically introduced as
graph representations of terms. We prove that a set of finite unordered
unbounded trees is recognizable iff it is definable (in counting monadic
second-order logic).

In Section 6, we prove that the counting monadic second-order logic is
strictly more powerful than the “ordinary” one, in arbitrary logical struc-
tures. The two languages are equally powerful for classes of finite logical
structures where linear orders are definable in monadic second-order logic.
Since such orders are definable in the structures representing words and
ranked trees, the “counting feature” is unnecessary in the proofs of the
afore-mentioned results by Biichi [4] and Doner [16]. On the other hand
it is necessary in the analogous result for unbounded unordered trees, that
we give in Section 5.

These algebraic and logical investigations are extended in Courcelle [13,
15] to countable graphs. Applications are given in Courcelle [12, 14]
concerning finite and countable graphs. Applications to the analysis of
recursive definitions are given in Courcelle [9]. The monadic second-order
theory of the sets of graphs defined by context-free node labeled controlled
graph grammars (a restriction of a class originally defined by Janssens and
Rozenberg) is proved to be decidable by a similar technique by Courcelle

[6].

1. ALGEBRAIC PRELIMINARIES

We first review a few general mathematical notations.

We denote by N the set of non-negative integers, and by N _, the set of
positive ones. We denote by [n] the interval {1, 2, 3, .., n} for n 20 (with
[0]1=). We denote by [i,j] the set {keN/i<k<j}. We write p=n
mod g if p=n+ kg, where 0<n<g, keN.

The domain of a partial mapping f: 4 — B is denoted by Dom(f). The
restriction of f'to a subset A’ of A is denoted by f [4". The partial mapping
with an empty domain is denoted by (¥, as the empty set. If two partial
mappings f: A — B and f': A’ > B coincide on Dom(f)~Dom(f”), we
denote by fuf’ their common extension into a partial mapping:
AU A’ - B with domain Dom(f)u Dom(f").

The cardinality of a set 4 is denoted by Card(A4). The powerset of 4 is
denoted by 2(A4). An equivalence relation is finite if it has finitely many
classes.

RECOGNIZABLE SETS OF FINITE GRAPHS 15

The set of nonempty sequences of elements of a set 4 is denoted by A4+,
and sequences are denoted by (a, .., a,) with commas and parentheses.
The empty sequence is denoted by (), and 4* is A" U {()}. When 4 is
an alphabet, i.e., when its elements are letters, then a sequence (ay, .., a,)
in A" can be written unambiguously a,4,---a,. The empty sequence is
denoted by ¢, a special symbol that is reserved for this purpose. The
elements of 4* are called words. The length of a sequence p is denoted
by |ul.

A set A is effectively given if it is given together with a recursive subset
4]l of N, and a bijection ¢ ,: 4 — || 4]|. From this assumptions, one cannot
decide whether A is finite, but if 4 is given as a finite list of elements, then
it is effectively given.

When we say: “let 4 be a finite set,” we mean that 4 is given as a list
of elements.

A mapping f:4,x ---xA,—> B is computable if A,,.., A, B are
effectively given and f(a, .., a,,)=c;1(HfH(cAl(a1), s C4q(a,))) for all

a,€d,,.,a,€A4,, where |[f] is a given total recursive mapping:
Al x - x| 4, | - [IB].
We shall use := for “equal by definition,” ie., for introducing a new

notation, or a definition. The notation <> will be used similarly for
defining logical conditions.

(1.1} DEFINITION. Many-sorted magmas. As in many other works, we use
the term magma for what is usually called an algebra. The words “algebra”
and “algebraic” are used in many different situations with different
meanings. We prefer to avoid them completely and use fresh words. For a
set we shall use the term “equational” introduced by Mezei and Wright
[25] rather than the term “algebraic” introduced by Eilenberg and Wright
[18].

Many-sorted notions are studied in detail in Ehrig and Mahr [17] and
Wirsing [31]. We mainly review the notations. We shall use infinife sets of
sorts and infinite signatures. For this reason, we need to pay a certain
attention to effectivity questions.

Let & be a set called the set of sorts. An & -signature is a set F given with
two mappings a: F— %* (the arity mapping), and o: F— & (the sort
mapping). The length of a(f) is called the rank of f, and is denoted by
p(f). The profile of f in F is the pair (a(f), 6(f)) written 5, x5, % --- X
s, = o(f), where a(f)= (s, .., 5,).

An F-magma (i.e., an F-algebra in the sense of [17] and [31]) is an
object M= {(M,),c &, (fm);cr), Where M, is a nonempty set, for each s
in &, called the domain of sort s of M, and fy is a total mapping:

643/85:1-2

16 BRUNO COURCELLE

M., ;- M, for each fe F. (For a sequence p= (s, .., 5,) in &, we let
M, =M, xM;x --- xM,.)

It is effectively given if &, F, and the sets M, are effectively given, and
if the mappings «, o, and the mapping associating fy(d,, ..., d;) with every
(f,dys . d) in Fx(U{Mse ¥ })* such that k= p(f) and d,e M, for all
i=1, .., k are computable.

If M and M’ are two F-magmas, a homomorphism Az M—->M' is a
family of mappings (h,),.+ such that h, maps M, into M), and the
operations of F are preserved in a well-known way.

We denote by M(F) the initial F-magma, and by M(F), its domain of
sort 5. This set can be identified with the set of well-formed ground terms
over F. It is effectively given if & and F are effectively given, and if ¢ and
g are computable.

We denote by 4, the unique homomorphism: M(F) - M, where M is an
F-magma. If re M(F),, then the image of ¢ under Ay, is an element of M,
also denoted by ty;. One considers ¢ as an expression denoting ty,, and ty
as the value of t in M. We say that F generates M if every element of M
is the value 7y, of some term ¢ in M(F).

If M is effectively given, then hy, is computable. If, furthermore, M is
generated by F, then a computable mapping ky: M - M(F) defining, for
every element of M a term denoting it, can be defined by the following
algorithm: given 4 in M, one enumerates M(F), and for every term ¢, one
computes ty,. The term ky,(d) is the first one such that ¢y =d.

An F-sorted set of variables is a pair (%, o) consisting of a set Z, and
a sort mapping ¢: & — <. It is more simply denoted by Z. We denote by
M(F, &), the set of well-formed terms of sort s, written with Fu 2. Hence,
M(F, Z),=M(FU Z),.

When % is the set {x, x5, .., X, ..}, we denote by %, the subset
{x1, X3, ., X, } Of X, ordered in this way. If te M(F, %),, we denote by ¢,/ ,
the mapping: M, —» M, (where y = (a(x,), ..., 6(x,))), associated with ¢ in a
classical way. We call it a derived operation of M. If k is known from the
context, we write ¢y, instead of tyy ;.

If te M(F, &), t, .., t,e M(F, &) with a(t;,)=0a(x;) for i=1, .., k, then
t{t,/xy, ., t/x,] denotes the result of the simuitaneous substitution of ¢,
for x,, .., 1, for x, in 1. We also use the notation t[1,, .., £,] if the sequence
Xy, .., X 18 clear from the context. If ¢, .., t, € M(F, Z,), then, for every
F-magma M, we have

e, o b= e ® (Eimns s Lemin)-

For s, re &, we let Ctxt(F),, denote the set of elements of M(F, {u}),
having one and only one occurrence of u, where u is a variable of sort s.
If ce Ctxt(F),, and te M(F, {x,, .., X, }), then ¢[] :=c[¢/u] is an element

RECOGNIZABLE SETS OF FINITE GRAPHS 17

' of M(F, {x,, ..., x;}),. We say that ¢ is a context of t in t'. If M is
an F-magma and ceCtxt(F), ,, then ¢y is a mapping M;—»M, and
c[tlm=cmotm. The specific variable u is irrelevant, and the notation
Ctxt(F),, avoids mentioning it explicitly.

A term is linear if each variable occurs at most once.

When writing terms, we shall use the prefix notation with parentheses
and commas, but we shail frequently omit the parentheses surrounding the
unique argument of a monadic function symbol. Hence we shall use the

simplified notation fg/fh(x, fx) for f(g(f(h(x. f(x))))).

(1.2) DerINITION. Polynomial systems and equational sets. Polynomial
systems have been introduced (under the name of “systems”) in Mezei and
Wright [25]. Let &, F be as above. We augment F into £, by adding, for
every sort s in &, a new symbol + of profile: s x s - 5, and a new constant
Q, of sort s.

With M as above we associate its power-set magma:

PM) = (PM))se o, (fom)rer, 7
where for 4, .., A, cM,,, ... M,:
A+ o As=A4,04, (where s =15, =35,),
Soonf(Ay, o A) ={fulay, .. a)ja, €Ay, .., a € A, }
(where a(f)=(s,, .., 5;}), and
Qipomy=J

Hence #(M) is an F, -magma.

A polynomial system over F is a sequence of equations
S={u=py, ., u,=p,», where U= {u,,..,u,} is the S-sorted set of
unknowns. Each p; is a polynomial, 1.e., a term of the form £, or

{1 +s{2+s~~ +51m

where the ¢/'s (called monomials) belong to M(Fu U),, with s =a(u,). The
subscript s is usually omitted in +, and in Q..

A mapping S, M) P(M, () X -+ X P(M,,,) into itself is associated
with § and M as follows: for 4, =M,,,), ... A, SM (.,

S,J’(M](Alx oy An) =(/la ey A(n)’

where A;=p,pm (4, ... 4,) fori=1, .. n
A solution of § in #(M) is an n-tuple (4,,..,4,) such that

18 BRUNO COURCELLE

(A1, s Ap)=Spm)(4,, .., 4,). Such a system has a least solution in (M)
w.r.t. set inclusion, denoted by (L((S, M), u), ..., L((S, M), u,)). The com-
ponents of the least solution in #(M) of a polymonial system are the
M-equational sets. We denote by Equat(M) the family of M equational sets.

Every set of the form L((S, M), U’) := J{L((S, M), u)/ue U’} where U’
is a set of unknowns all of the same sort, is M-equational. We write
L(S, u;) and L(S, U’) instead of L((S, M(F)), u;) and L((S, M(F)), U’),
respectively. Furthermore, L((S,M),u,)=¢ iff L(S,u)=¢J, and this
property is decidable. We refer the reader to Courcelle [5] for a thorough
study of polynomial systems.

(1.3) DerinITION. Recognizable sets. The notion of a recognizable set is
due to Mezei and Wright [25]. Let F and & be as above. An F-magma A
is locally finite if every domain A, s€ &, is finite.

Let M be an F-magma and se .&. A subset B of M, is M-recognizable if
there exists a locally finite F~-magma A, a homomorphism #: M — A, and a
(finite) subset C of A, such that B=4"'(C). The pair (h, A) is called a
semi-automaton, and the triple (4, A, C) is called an automaton. Intuitively,
C is the set of “final states” of a deterministic automaton.

A set BS M, is effectively M-recognizable if M is effectively given, and
if it is defined by an effectively given automaton, ie., an automaton
(h, A, C), where A and C are effectively given, and h is computable. (These
conditions imply that one can decide whether an element of M, belongs
to B).

We denote by Rec(M), the family of M-recognizable subsets of M.

The recognizable subsets of M(F), where F is a finite signature, can be
characterized by tree-automata of various types (top-down or bottom-up,
deterministic or not; see Gecseg and Steinby [20]). The classical identifica-
tion of terms with finite ordered ranked trees explains the qualification of
“tree”-automaton. But there are several other notions of trees. More
precisely there are several theories of trees as shown in Courcelle [10].
Appropriate notions of tree automata are defined in [10].

Recognizable sets can also be characterized in terms of congruences. A
congruence on M is a family ~ =(~),.,, where ~ is an equivalence
relation on M, for every se%, and such that, for every feF of
profile s, x5, x -+ x5, =1, if dy~, d\,...d,~, d,, then fu(d,,..d,)~,

A classical construction associates with M and ~ as above, a quotient-
magma M/~ , and a surjective homomorphism s: M - M/~ .

A congruence ~ on M is locally finite, if each equivalence relation ~
is finite.

RECOGNIZABLE SETS OF FINITE GRAPHS 19

A subset L of M, is saturated w.r.t. ~ (or ~-saturated) if, for every d,
d'eM,, if d belongs to L and d ~,d’, then d’ also belongs to L.

We prove below (Proposition (1.5)) that a subset L of M, is
M-recognizable iff it is saturated w.r.t. a locally finite congruence on M.
This generalizes a well-known characterization of recognizable languages.
The notion of syntactic congruence can also be generalized to arbitrary
subsets of M, and yields another characterization of M-recognizable sets.

Let L=M,. We associate with L a congruence ~, =(~,),.» on M
as follows:

for d, d' e M;:
d~,,d iff

for all n, for all linear term ¢ in M(F, {x,, .., X, }), such that a(x,) =s,
forall 4,,..,d,in M,(,,, ..M

olxn)

tnld, doy o d) € L tpg(d", dy, . d,) €L

The congruence ~ ; is called the syntactic congruence of L. In the special
case where F generates M, the elements d,, .., d, are defined by terms,
hence, they can be “merged in ¢.” In other words

d~,,d’ iff, for all 1€ Cext(F), ,: tm(d)e L <ty (d') e L.

(1.4) DerINITION. Inductive sets of predicates. By a predicate on a set A,
we mean a mapping 4 — {true, false}. If M is a many-sorted F-magma
with set of sorts &, a family of predicates on M is an indexed set { p/pe P},
such that each p in P has a sort o(p) in &, and each j is a predicate on
M, - Such a family will also be denoted by P. For peP, we let
L,={deM,,/p(d)=true}.

The family P is locally finite if, for each se &, the set { pe P/o(p)=s}
1s finite.

It is F'-inductive, where F'<F, if for every f in F’' of profile
sy x5, x --- x5, s, for every pe P of sort s, there exist m, .., m, in N,
there exists an (m,; + --- + m,)-place Boolean expression B, and a sequence
of (m;+ --- +m,) elements of P, (Py 1, Dimis P2, 15 <o Paomnys = Promy)>
such that:

(1) o(p;;)=sforall j=1,..m,
(2) foralld, eM,,..,d,eM,:
Afmldy, s d))=BLP1 (), s Brm(@1), Po,m(a)seves Py ()]

The sequence (B, py), Poises Pum,) 18 called a decomposition of p
w.rt. f.

20 BRUNO COURCELLE

In words, the existence of such a decomposition means that the validity
of p for any object of the form fy(d,, .., d,) can be determined from the
truth values for d,, ..., d, of finitely many predicates of P, in a way that
depends only on p and f.

(1.5) PROPOSITION. Let M be an F-magma. For every se &, for every
subset L of M, the following conditions are equivalent:
(1) L is M-recognizable,
(i) L is saturated w.r.t. a locally finite congruence on M,
(iii) the syntactic congruence of L is locally finite,

(iv) L=L, for some predicate p belonging to a locally finite, F-induc-
tive family of predicates on M.

Proof. (i)=(iv) Let L=h '(C)<=M, for some automaton (A, A, C).
We can assume that the domains of A are pairwise disjoint. We let then
P=U{Ajie S U {p}.

Each element a of A, is of sort ¢ (considered as a member of P), and p
is of sort 5. For deM,, and ae A,, we let:

a(d) = true if A(d)=a,
= false otherwise.
For deM,, we let
pld) = true if h(dyeC,
= false otherwise.

It is clear that P is locally finite. It is not hard to prove that it is F-induc-
tive, and, clearly, L=L,.

(iv)=(ii) Let P be a locally finite F-inductive family of predicates.
The relations such that

d~,d e d d eMy, p(d)=p(d’) for all pe P of sort s

are equivalence relations on the sets M. Each of them has finitely many
classes since P is locally finite. The family ~ =(~,),., is a congruence
since P is F-inductive (the verification is straightforward), and, for every p
in P, the set L, is saturated w.r.t. ~.

(ii) = (i) If L is saturated w.r.t. a locally finite congruence ~ on M, then
one takes (h, M/~, h(L)) as an automaton defining L, where h is the
canonical surjective homomorphism: M - M/ ~.

RECOGNIZABLE SETS OF FINITE GRAPHS 21

(iii) = (ii) Holds trivially.

(il) = (iii) If L is ~-saturated, then ~ < ~,. Hence ~, is locally finite
if Lis. |

A locally finite and F-inductive family of predicates P on an F-magma M
is effectively locally finite and F-inductive if the following conditions hold:

(1) M and P are effectively given,

1 1

(2) the mappings ¢ and ¢ ' (¢ ' is such that ¢ '(s)=

{pe P/o(p)=s}) are computable,
(3) the mapping: Px (J{M,/se &} — {true, false} associating p(d)
with pe P and de M, is computable.

(4) there exists an algorithm producing a decomposition of p w.r.t. f,
for every fin F and p in P.

(1.6) PROPOSITION. Let M be an effectively given F-magma. An
M-recognizable subset L of M, is effectively M-recognizable iff L=L,, for
some predicate p of sort s belonging to an effectively locally finite and
F-inductive family of predicates on M.

Proof. Only if. By (i) = (iv) of the proof of Proposition (1.5).

If. Let P be an effectively locally finite and F-inductive family of
predicates on M.

For every se ¥, we let P, be the finite set o ~'(s), we let @, be the set
of all functions: P, — {true, false}, and we let tv be the mapping M, — 6,
such that tv(m) is the mapping p+ p(m), for all me M, pe P,.

From the hypothesis that P is effectively F-inductive, it follows that one
can determine for every fe F, a mapping f such that:

tv(fvl(my, ..., me)) =fo(tv(m,), ..., tv(m,)) for all (m,,..,m;)eM,.,.

Hence ©={(0,),.4, (fo)er) 15 an F-magma and tv 1s a
homomorphism M — &. Hence (tv, @) is a semi-automaton, since & is
locally finite. We have L,=tv~'(@’), where @'={0c®6/0(p)=true}.
Hence L, is effectively M-recognizable. |

(1.7) PrOPOSITION. Let M be generated by F. A subset L of M, is
M-recognizable iff hy'(L) is M(F)-recognizable. Furthermore, if M is
effectively given, and if L is effectively M-recognizable then hy,'(L) is
effectively M(F)-recognizable. The converse holds if F is finite.

Proof. We first prove the “only if” directions. If L=#A""(C) for some
homomorphism h:M— A, where A is locally finite, then hy'(L)=
(hohp) ™ Y(C), and, since hohy is a homomorphism: M(F) — A, the set

22 BRUNO COURCELLE

hy'(L) is M(F)-recognizable. If h is computable, then so are hy; as
observed in Definition (1.1), and hohy,. Hence hy'(L) is effectively given
in L is.

Let conversely L =M, be such that T=hy'(L) is M(F)-recognizable.
We have T=h, '(C), where A is the locally finite F-magma M(F)/~ ., and
C is some subset of A,.

Let a, a’eM,. Then a~, ,a' iff for all ce Ctxt(F),,:

cmla)e Le>cpyla’)e L.

But, for every te M, such that ¢y, =gq,

em(a)eLe>c[t]ehy' (L)=T.

Hence for any two terms ¢ and ¢ such that 7y, =a and 1y, =4/,

?

a~,,a iff t~, 1.

This proves that ~, ; and ~ ., have the same number of classes. Hence
L is recognizable, and furthermore M(F)/~ ; is isomorphic to M/~ .

If, furthermore, F is finite, then M(F)/ ~ ; is computable and defines an
automaton recognizing L. |

(1.8) PROPOSITION. The emptiness of an effectively given M-recognizable
set is not decidable in general. It is decidable under the additional conditions
that the signature F is finite and generates M.

Proof. We first establish the decidability result. Let M be effectively
given and generated by a finite signature F. If L € Rec(M),, then hy'(L) is
an effectively given recognizable subset of M(F). Its emptiness can be
decided by a classical algorithm on tree-automata (see, for instance, Gecseg
and Steinby [20]), and this also decides the emptiness of L.

We now consider the undecidability. We give two examples showing that
none of the two hypotheses can be omitted. We consider the infinite one-
sort signature F consisting of a constant, a, and of monadic functions f,,
for all ne N. Let g be a total recursive mapping N — {0, 1}.

Let A be the finite F-magma be associated with g as

A={0,1}, a,=0, f.l)=1 f.(0)=gn)

Let B=h,'({1})=M(F). 1t is effectively M(F)-recognizable. It is clear
that B# (J iff g(n)=1 for some ne N, and this not decidable.

Here is the second example. We let F’' be reduced to the constant a.
Let M= (N, ay» with ay :=0. (It is not generated by F'). Let A and g

RECOGNIZABLE SETS OF FINITE GRAPHS 23

be as above. The mapping » such that h(0)=0, h(i)=g(i) if i=1, is
a homomorphism: M —A. Hence A '({1}) is an effectively given
M-recognizable set. It is nonempty iff g(i)=1 for some i> 1. And this is
not decidable. ||

In the next two propositions, M is an arbitrary F-magma, and s is one
of its sorts.

(1.9) ProposITION. The family of sets Rec(M), contains &, M,, and is
closed under union, intersection, and difference.

Proof (Sketch). If L, is recognized by (#;, A;, C;), i=1, 2, then, L, and
L, are both recognized by the semi-automaton (#, x h,, A| X A,), with
respective sets of “final states” C,x A, and A4, x C,. The closure under
union, intersection, and difference follows immediately. The other assertions
are easy to verify. |

(1.10) ProrosITION. If KeRec(M), and L Equat(M), then L Ke
Equat(M),.

Proof. Tt follows from Mezei and Wright [25] or Courcelle [5, Section
147 that we can assume that L= L((S, M), U’), where S is a uniform poly-
nomial system over F with set of unknowns U, and U’ € U. (A polynomial
system is uniform if its equations are of the form u=¢ 4+, + .- +1,,
where each ¢, is of the form f(u,,u,,..,u;,) for some feF, some
Uy, ooy U € U).

Let F’ < F be the finite set of symbols occurring in S, and let ¥’ < % be
the finite set of sorts of the symbols occurring in S. Hence F’ is an
&’-signature. Let -:M —> A be a homomorphism (with A locally finite),
such that K=#h"!(C) for some C<A,.

For every ue U, we let L, :=L((S, M), u). Let W be the new set of
unknowns {[u, al/ue U, acA,,,}. It is finitec. We shall define a system S,
with set of unknowns W, such that

LUS M), [u,a])=L,nh Ya)

for all [u,ale W.

Let ue U and ac A, ,,- Let us assume that the defining equation of « in
Sis of the form u=+¢,+ --- +¢,.

Consider one of the monomials, say #,. Let us assume that it is of the
form f(u,, ..., u,).

For every a, €A s - a,€ A, such that f,(a,, .., a,)=a, we form
the monomial f({u,,a,], ... [u,, a,]), and we let f, denote the sum of
these monomials. If no such n-tuple (a,,.., a,) exists, then #, is defined
as Q.

24 BRUNO COURCELLE

The defining equation of [«, a] in ' is taken as
[u, a]=fl+f2+ "’fk.

It is clear from this construction that the W-indexed family of sets
(L,"h~ (@) ayew is a solution of S’ in #(M). Hence L,nh '(a)2
L, ., where (L, ,)u.4)cw denotes the least solution of S’ in Z(M).

In order to establish the opposite inclusion, we define from L, , the sets
L,=U{L,./acA,,} for ue U. Then (L), is a solution of S in M (this
is easy to verify). Hence L, < L, for all u.

For all ae A, ,,, we have

L.nh YaysL,nh "(a)=(U{L,.JacA})nh™'(a)

The latter set is equal to L, ,nh"(a), since L, ,SL,nh"'(a’) and,
h~Ya)nh Ya')= for all q, a’ with a#a’. Hence L,nh~ (@)=L, ,. By
the first part of the proof, we have an equality, and (L, nA" (@) tuarew

is the least solution of S’ in Z2(M). Finally, we have
LaK=(J{L,JueU})nh'(C)
=U{L((S, M), [u,a])ue U, acC}.
Hence L n Ke Equat(M),. |

The above construction is effective if K is effectively given, and L is
defined by a given system. Hence since the emptiness of an equational set
(defined by a system of equations) is decidable, we have the following
corollary that can be contrasted with the undecidability result of Proposi-
tion (1.8).

(1.11) CoroLLARY. If K is an effectively given M-recognizable set, and
if L is an M-equational set, one can test whether LN K= (J, or whether
LcK

The following result is due to Mezei and Wright [25].

(1.12) PROPOSITION. A subset L of M, is M-equational iff L = hy(T) for
some TeRec(M(F')),, and some finite subset F' of F.

In the following coroliary, Rec(M)< Equat(M) means: Rec(M) <
Equat(M), for all s in &.

(1.13) CorOLLARY. Let M be generated by F. Then Rec(M) <= Equat(M)
iff for every se, there exists a finite subset F' of F such that
hM(M(F’)s):MA

RECOGNIZABLE SETS OF FINITE GRAPHS 25

Proof. 1If. Let LeRec(M), let F’ be such that hy(M(F’),)=M,. Then
T=hy'(L)nM(F’),eRec(M(F’)), (since hy'(L)eRec(M(F)),, and by
Proposition (1.9)). Hence L = hy(T), and is M-equational.

Only if. Let Rec{M) < Equat(M). Then M, € Equat(M) and M, = Ay (T")
for some 7'eRec(M(F')), with F’ finite, F'<F Hence M, =
hm(M(F')),. 1l

(1.14) CoroLLARY. Rec(M(F))=Equat(M(F)) if F is finite.

In the following proposition we assume that F and F’ are two signatures
over a same set of sorts ., that F’' < F, that M is an F-magma, and that
M’ is a sub-F'-magma of M (we write this M'cM). If G is a new
&-signature disjoint from F, and P be a G-magma with the same family of
domains as M, such that gp is a derived operation of M, we say that P is
a derived magma of M.

(1.15) PROPOSITION. Let F' < F and M' =M. For every s &

(1) LAM,eRec(M'), for all LeRec(M),.
If P is a derived magma of M, then for every se &:
(2) Rec(M), < Rec(P),.

We omit the proof which is a straightforward verification from the defini-
tions. The inclusions are strict in general, and M is not necessarily in
Rec(M),. Note also that, if M, =M, in (1), then

Rec(M), < Rec(M')..

2. GraPHS, GRAPH OPERATIONS, AND GRAPH EXPRESSIONS

As in [2,7-9,11,13-15], we deal with labeled, directed hypergraphs,
equipped with a sequence of distinguished vertices called the sequence of
sources.

The labels are chosen in a ranked alphabet, i.c., in a finite set A4, each ele-
ment of which has an associated nonnegative integer, that we call its type.
The type is defined by a mapping 7: 4 - N. The type of the label of an
hyperedge must be equal to the length of its sequence of vertices. This type
may be 0. In order to shorten the statements, we shall simply call graphs
these hypergraphs, and edges their hyperedges.

(2.1) DerINITION. Graphs. Let 4 and t as above, let e N. A concrete
n-graph is a quintuple

G=<V., Eg,lab., vert;, src;),

26 BRUNO COURCELLE

where

— V, is a set whose elements are the vertices of the graph;
— E; is a set whose elements are the edges;
— lab;: E; — A defines the label of an edge;

— vert; : E; — V¥ associates with every edge e of G, the sequence of
its vertices, a sequence of length t(e):=1t(labs(e)); its ith element is
denoted by vertgl(e, i);

— sreg is a sequence of length n in V§, or equivalently, a mapping:
[n]— V. Hence, srcg(i) denotes the ith element of the sequence srcg. It
is called a source. If n=0, then G has no source. “Source” is just an easy
sounding word for “distinguished vertex.” There is no notion of flow
involved. The integer »n is the type of G.

Whenever we need to specify the alphabet A, we say that G is a concrete
n-graph over A. A concrete graph is a concrete n-graph for some n > 0.

A vertex v belongs to an edge e if v=vertg(e, i) for some i. A vertex is
isolated if it belongs to no edge. An edge e is binary if it is of type 2. If this
is the case then vert(e, i) is called the origin of e, and vertg(e, 2) is called
its rarget. An internal vertex of G is a vertex that does not appear in the
sequence Sre .

A concrete n-graph G and a concrete n'-graph H (both over A4) are
isomorphic if n’ = n, and if there exist bijective mappings 4y and hg,

hy: VgV,
hg Eq > Eg,,

such that

lab o hg =labg;,
hy(vertg(e, i) = vert,(hg(e), i) for all ie [t(e)], all e in Eg,
hy(sres(i)) = sre (i) for all ie [n].

A graph is the isomorphism class of a concrete graph. A graph G is finite
if V,; and E, are finite. By a graph, we shall mean a finite graph in the
present paper. Infinite countable graphs are considered in Courcelle
[11,13-15].

We denote by FCG(A4), (resp. by FCG(A4)) (resp. by FG(4),) (resp. by
FG(4)), the sets of concrete n-graphs (resp. of concrete graphs) (resp. of
n-graphs) (resp of graphs) over A.

(2.2) ExampLes. The following very simple graphs will be useful to
build nontrivial graphs by means of graph expressions:

RECOGNIZABLE SETS OF FINITE GRAPHS 27

(1) The discrete graph mn, for n>0, is the graph G such that
Ve=1[n], Ec=, labs =, vert; = J, sreg is the sequence (1, 2,..., #). In
particular we have the empty graph 0 which is (necessarily) of type 0.

(2) If b is an element of 4 type n, then b also denotes the graph G
with a single edge ¢ labeled by b, and such that Vo={n], E;= {e},
lab;(e) = b, vert;(e) =src; = (1, 2, ..., n). The graph b is reduced to an edge
with no vertex in the special case where n=0.

(2.3) DerFINITION. Subgraphs. Let G be a concrete graph. A concrete
graph H such that V,<V;, E, < E;, lab, =lab; 'E,,, vert, = vert; [E,,
and sre,, is obtained from src,; by the deletion of the vertices not in H, is
called a subgraph of G. We crite this H < G.

(2.4) DEerFINITION. Quotient graphs. Let G be a concrete graph, let ~ be
an equivalence relation on V;. We denote by [v] the equivalence class
w.rt. ~of a vertex v. Then, we denote by G/~ the concrete graph H such
that V,=V,/~, Ey=E;, lab;=lab,, vert,(e, i)=[vert,(e, i)] for all
ecE, (=E;) and all ie[t(e)], sre,(i) = [sreg(i)] for all ie [1(G)]. We
call G/~ the quotient graph of G by ~. If G is a graph, then G/~ is the
isomorphism class of G/~, where G is any concrete graph in the class G.

(2.5) DerINITION. Graph operations. We recall from [2,7] the
definitions of three operations on graphs (or rather of three families of
operations) making the set of graphs into a many-sorted magma.

The first operation is the disjoint sum. Let G and H be two graphs of
respective types n’ and n”. We can assume that they are the isomorphism
classes of two concrete graphs also denoted by G and H, such that
VenVyu=, EcnE,=. Then G@ H is the isomorphism class of the
concrete (1’ +n")-graph K such that:

Vie=VsuVy,
Ex=E;UE,,
lab, =labg; Ulab,,,
vert . = vert; U vert,,,
SICy = (sreg(1), ..., sreg(n'), sre(1), ..., sre 4 (n")).
Here is the second operation. With a map « from [p] to [n], we
associate the source redefinition map o,: FG(A), - FG(A) , defined as

follows. We let ¢,(G):= (Vg, Eg, labg, vertg, srecoad. If p=0, then « is
necessarily the empty map (always denoted by) and o(G), is the

28 BRUNO COURCELLE

0-graph obtained from G by “forgetting” its sources. We call it the 0-graph
associated with G.

When p is small it is convenient to write g,
by letting i, :=a(j) for j=1, .., p.

The third operation is the source fusion. For every equivalence relation
¢ on [n], we define a mapping 0,;: FG(4), » FG(4), as follows. We let
05(G) be the quotient graph G/~, where ~ is the equivalence relation on
V; such that

;(G) instead of ¢,(G),

B2

vy <« v=0 or {v=sregli), v’ =sreg(), and (i, j)ed}.

If 6 is the equivalence relation on [n] generated by the single pair (i, j),
then we denote 6; by 6, ;. It is clear that if 6 is the equivalence relation
generated by a set of pairs {(iy,/,), ., (ix, i)} then

66=6 "‘06'

it © b ket

(2.6) DEFINITION. The many-sorted magma FG(A4). Let N be con-
sidered as a set of sorts. We define an N-signature H, consisting of the
following symbols:

@, of profile nxm—n+mfor all n,meN

05, of profile: n — n for all ne N, all equivalence relations é on [#n].
Oy p.n» Of profile: n— p for all n, pe N, all mappings a:[p] - [n].

In addition, we put in H, the following symbols:

a, a constant of sort t(a), for all a in A4,

0, a constant of sort 0,
1, a constant of sort 1.

We obtain an H ,-magma FG(A). Its domain of sort n is FG(A4),,, the set
of graphs of type n. The functions associated with the symbols @, ,,. 0.,
and g, ,, are defined in Definition (2.5). The graphs associated with the
constants a, 0, and 1 are defined in Examples (2.2). It is clear that FG(A4)
is effectively given.

(2.7) DerNITION. Graph expressions. An element of FE(A) :=M(H) is
called a graph expression. Every graph expression ¢ defines a unique finite
graph tgg 4, also denoted by val(z) and called its value. The following
proposition says that H , generates FG(A).

(2.8) PrOPOSITION ([21). Every graph in ¥G(A) is the value of a graph
expression.

RECOGNIZABLE SETS OF FINITE GRAPHS 29

When writing expressions we shall omit the subscripts #, m, in the sym-
bols @, m» G nm» 05, Provided the sorts of the variables appearing in an
expression are known, its sort can be computed and its well-formedness
can be checked.

Since @ is associative (more precisely G®,,, ., (G’ D,,G")=
((G®,.n G)y np G") for all graphs G, G', G of respective types m, n, p),
we denote it as an infix operator and we omit parentheses.

(2.9) DeriNITION. The width of a graph. For every k, we let HF) be the
[0, k1-signature consisting of the symbols of H , having their sort in [0, k],
and their arity in [0, £]*.

We denote by FE(A)¥! the set M(HY), and call it the set of graph
expressions over A, of type n, and of width at most k (this is meaningful if
k > n). Hence FE(A), is equal to |J{FE(4)*1/k = n}.

Whereas H , generates FG(A4), the set FG(4)!*) of values of expressions
in FE(A)[*) is a proper subset of FG(4),. We denote by FG(A)™!
the H*1-magma with domains FG(A4){*), n<k. This magma has finitely
many sorts and operations.

The width of a finite graph G is defined as the minimal & such that
G eFG(A)L*? for some k. It is denoted by wd(G).

(2.10) DerINrTiON. Equational and recognizable sets of graphs. The
FG(A)-equational and the FG(A)-recognizable sets are called the equa-
tional and the recognizable sets of graphs.

The equational sets of graphs are also the context-free sets, ie., the sets
of graphs generated by the context-free graph grammars of Bauderon and
Courcelle [2, 8]. We recall the definition.

A context-free graph-grammar is a 3-tuple I'= {4, U, P>, where A is a
finite ranked set (the terminal alphabet), U= {u,, .., u,} is a finite ranked
set (the nonterminal alphabet), P is a finite set of production rules. A
production rule p is a pair (u, ¢) with u in U and e in FE(4 L U),,,. We
write p:u — e, and we use p as a name, identifying the production rule in
a unique way. We also denote by P the set of names of the production rules
in P.If pru—e if h, e FE(A U U), we write h— , h'" if 4’ is obtained from
h by the substitution of e for u, at one of its occurrences. We write 4 — ,
h' if h—, k" for some p in P. (Hence, we consider P as ground term
rewriting system on FE(4 u U).)

The set of graphs generated by I' from u, is L(I', u;) := {val(h)/he FE(A),
u; Hph}, and we let L(I) := L(T, u;).

A system of equations over 2#(FG(A)) can be associated with I” as
follows:

Sr:: <u|=tl,..., un=tn>’

30 BRUNO COURCELLE

where ¢, is the polynomial e, + --- + ¢, and {e, .., e, } is the set of right-
hand sides of the production rules of I, the left-hand side of which is u,.
It has been proved in [2, Theorem (4.9)] that the least solution of S,
in Z(FG(A)) is the n-tuple (L(I, u,), ..., L(I, u,)).
Conversely, a context-free graph-grammar can be associated with a
polynomial system on #(FG(A4)), and we have the following result [2,
Propositions (4.11) and (4.17)]:

(2.11) PROPOSITION. A set of finite graphs is equational iff it is contexi-
free. The graphs of an equational set are of bounded width.

This proposition is effective: a system of equations can be constructed
from a grammar and conversely. An upper bound on the widths of the
graphs of an equational set can be computed. Since HL is a finite signature,
the sets FG(4)*1, n <k, are all equational.

The following proposition characterizes the recognizable sets in terms
of graph substitutions, rather than in terms of the graph operations of
Definition (2.5).

(2.12) PropoSITION. A subset L of FG(A), is recognizable iff for every
k, the equivalence relation on FG(A), defined by

G=, G iff, for every H in FG(A),, for every edge e of H of type
k, H[G/eleL iff H[G'/e]e L
is finite.
(We denote by H[G/e) the result of the substitution in H of G for the
edge e of H.)

Proof. For every graph H of type n, for every edge e of H of type k,
there exists ¢ in Ctxt(H ,), , such that

H[G/e] = tgg4)(G)

for every graph G in FG(A4),. Conversely, for every context ¢, there exists
H satisfying this for every graph G. (This follows from [2, Lemma (4.15)].)
Hence (=,).. « is the syntactic congruence of L. The result follows. [}

Lengauer and Wanke have introduced in [24] the notion of a finite
graph property. Restating their definition in our terminology, we have that
a property of O-graphs is finite if it is decidable and the equivalences =,
associated with the set of O-graphs satisfying it as in the statement of
Proposition (2.12) are finite. Hence, up to a few minor details, the notion
of a finite graph property is equivalent to that of an effectively given
recognizable set of graphs.

RECOGNIZABLE SETS OF FINITE GRAPHS 31

We now compare the families of equational and recognizable sets of
graphs. It is well known that the family of recognizable languages is
included in the family of context-free ones, and that the inclusion is strict
if the alphabet contains at least two symbols. In short, Rec(X*) (the class
of recognizable languages) is strictly included in Equat(X*) (the class of
context-free languages), provided Card(X)>=2.

An analogous result holds for FG(4)™, for all k, but it does not hold
for FG(A): the families Rec(FG(A4)) and Equat(FG(A4)) are incomparable.

(2.13) PROPOSITION. (1) For every k=0, and n<k, the following inclu-
sion holds:

Rec(FG(A4))), < Equat(FG(4)™%]),.

(2) If A contains at least one symbol of type p strictly larger than 1,
and if k >Max{n, p+ 2}, the above inclusion is strict.

(3) If A is as in (2), then, the families Rec(FG(A)), and
Equat(FG(A)), are incomparable.

Proof. (1) Let K e Rec(FG(4)™*1),. We have K= KN FG(A)¥1, hence K
is equational by Proposition (1.10), since FG(4)* is.

(3) Let us first assume that A4 contains one symbol a of type 2, and two
symbols b and ¢ of type 1. Let L be the set of 0-graphs of the form shown
on Fig. 1, with as many &’s and ¢’s.

They correspond in an obvious way to the words of the language
L'={b"c"/n>1}. It is easy to construct a context-free graph-grammar
generating L. If L would be recognizable, so would be the language L'
(From an automaton defining L, it is not hard to construct an automaton
defining the language L'). But L’ is known to be not recognizable. This
proves that Equat{FG(4)), is not included in Rec(FG(A4)),.

If A contains one symbol d of type p > 2, then one considers

L={G[K,/a, K,/b,K [c]/Ge L}
instead of L, where K,=o0,,(d), K,=0,(d), K.=0,(d). (By G[K,/a,

K, /b, K /c], we denote the result of the simultaneous substitution of K, for
all edges of G labeled by «, and similarily for b and ¢.)

NN

FIGURE 1

643/85/1-3

32 BRUNO COURCELLE

The result of this substitution when p=3, and G corresponds to the
word b%c* and is shown on Fig, 2.

It is easy to construct a context-free graph-grammar generating L, and,
again, from an automaton recognizing L, one could obtain an automaton
recognizing L'. By equipping the graphs of L (and of L) with sources, one
could establish similarily that Equat{FG(A4)), is not included in
Rec(FG(A)), for any n=0.

Proposition (2.14) below says that Rec{FG(A4)), is uncountable. On the
other hand, Equat(FG(A)), is countable since there are countably many
systems of equations (or grammars). Hence one cannot have
Rec(FG(A4)), = Equat(FG(4)), and the families Rec(FG(A4)) and
Equat(FG(A)) are incomparable.

(2) In order to finish the comparison of Rec(FG(A4))!*)), and
Equat(FG(A4)™),, it suffices to observe that a system of equations defining
L (or L) can be constructed with symbols from HUY where
h=Max{n, p+2}. Hence L (or L) belongs to Equat(FG(A)%), for all
k>Max{n, p+2}. We omit the details. |

n

{2.14) PROPOSITION. If A contains at least one symbol of type strictly
larger than 1, then Rec(FC(A)), is uncountable.

The proof of this proposition needs several definitions and lemmas. We
let A consist of one symbol, a, of type 2.

(2.15) DeriNiTION. Grids. We denote by G, the nxn-grid, a graph
belonging to FG(A4). Rather than giving a formal definition, we show
the grid G; on Fig. 3. All its edges are labeled by a, and these labels are
omitted on the drawing.

We let L= {G,/n>=2}. Our purpose is to establish that every subset
L of L; is recognizable. To do so, we shall prove that the syntactic
congruence ~ , of every such set is locally finite.

FIGURE 2

RECOGNIZABLE SETS OF FINITE GRAPHS 33

r——o———30——>@

|

P——0—H>0—)®

IR

r—I30—F0———) @

I

— 30— 0—) 0

FIGURE 3

We denote by d(p, n) the equivalence relation on [p + 2n] generated by
{(p+1, p+n+1), .., (p+n p+2n)} In the following lemma, we let B be
an arbitrary finite ranked alphabet.

(2.16) Lemma. Let M FG(B),,p=0. Let G, G'e FG(B),,, n>0. Then
G ~ ., G iff, for all Ke FG(B)

ntp-
01,2,p(gélp,n)(KG‘) G)) EM<
012 05 KB G)y e M

Proof. By Proposition (1.10), G ~,, G ifl cpgp(G) e M =
crem)(G')e M for all ce Ctxt(H,), ,. It follows from [2, Remark p. 117]
that, for every ¢ in Ctxt(Hy), ,, there exists a graph Ke FG(B),,, such
that, for all Ge FG(B),:

CFG(B)(G) = U1,2.....p(95(p,n)(K® G)).

Conversely, with every graph K, a context ¢ can be associated, such that
this equality holds, for all G in FG(B),. The desired characterization of
~ ., follows immediately. |

We shall use this lemma for p = 0. Hence, we introduce a derived opera-
tion O,,: FG(B),, x FG(B),, » FG(B),, defined by

GDm G’ = U¢(05(O.m)(G @m,mG,))'

This operation on graphs can be described as follows. In order to
construct G[J,, G', one glues G and G’ by fusing srcs(i) and sreg (i) for
all i=1,..,m, and the resulting graph has no source. This operation is
commutative. If m =0, then {1, is the disjoint sum.

We write [J instead of [J,,, when m is known from the context.

34 BRUNO COURCELLE

(2.17) LemMMA. Let n22m+325. Let G, G €¥FG(A),, be such that
GOG' =G,. Then one of G, G, say G, has less than m+m?* vertices, the
other has more than 3m® vertices, and for every G" in FG(A),, if
G"l1G € Lg then G"1G' =G,,.

Proof. Let G and G’ be two concrete disjoint m-graphs such that GOIG’
is isomorphic to G,,.

We let H be the restriction of G to its set of internal vertices. More
precisely:

V , = the set of internal vertices of G

E,, = the set of edges of G having all their vertices in V
vert,, =vert;[E,

lab, =lab; [E,

sreg=1().

Similarily we let H' be the restriction of G’ to its set of internal vertices.

By the isomorphism j: GG’ - G,,, the subgraphs H and H' of G and G’
are isomorphic to disjoint subgraphs H and A’ of G,,. In order to simplify
the notations, we denote H and H' by H and H', respectively.

Hence H and H' are two subgraphs of G,. Note that G, has no edge
linking a vertex of H to a vertex of H', and that an edge of G, linking two
vertices of H (or of H') is in H (or in H').

Let S=V; — (V45U V). Each vertex of S corresponds by j to at least
one source of G and at least one source of G'. Hence Card(S) < m.

Figure 4 below shows an example of such a situation with n=4 (and a
large m). The vertices of H are indicated by o, the vertices of H’' are
indicated by e, the vertices of S are indicated by o.

FIGURE 4

RECOGNIZABLE SETS OF FINITE GRAPHS 35

A path in G, like the one marked with +’s on Fig. 4 is called a complete
horizontal path. A path in G, like the one marked with *’s is called a
complete vertical path. These paths have n+ 1 vertices.

We are now ready to start the proof; we assume that n>2m + 3.

If H and H' both contain a complete vertical path of G,, then all
complete horizontal paths of G, contain vertices from H and from H'.
Hence they all contain vertices from S, and Card(S)>nr+ 1. But we have
proved what Card(S)<m, and we have assumed that »>2m+ 3. This
gives a contradiction.

Hence one of H and H’, say H, does not contain any complete vertical
path. Let K be the set of complete vertical paths of G, that are not
contained in H'. They all have vertices in S. Hence Card(K) < Card(S).
Since Card(S)<m, H' contains at least n+ 1 —m complete vertical paths.
The graph H is contained in the union of the paths of K.

Since H and H' are disjoint, H cannot contain any complete horizontal
path. As above for vertical paths, H' contains at least n + 1 —m complete
horizontal paths, and H is contained in the union of a set K’ of at most
m complete horizontal paths.

Hence Card(V,)<m? Since Card(S)<m, we have Card(V,.)>
(n+ 1)’ —m—m?>=3m? (since n>2m+3). It follows that Card(V.)<
m+m’ and that Card(V ;) > Card(V) > 3m>

Now let G" e FG(A4),, be such that G"(JG’ is isomorphic to G, for some
n' 22, We wish to establish that n=n'".

Let p be an integer >2. Two complete horizontal paths of G, are
neighbours if they are distinct and if there is an edge of G, linking one
vertex of one path the one vertex of the other. A border path is a complete
horizontal path having only one neighbour path. A nonborder path is one
having two neighbour paths. Similar definitions can be given for complete
vertical paths. Let Q, be the (2p + 2)-graph shown on Fig. 5.

—

1 2
L

l

®
ko]

é_.__

e
]

L

|

<«
<«
tc—ec—e<c—e T

+t OEC—0EC——eeEC— 0 W

+
jav)

p+2 p+3

jee)
ey
o

e
+
—
V)

FiGURE 5

36 BRUNO COURCELLE

CLam. If G,=C[Q,] for some Ce Ctxt(A),,, ., then n=p.

Proof. 1f G,=C[Q,], then G, has either two nonborder neighbour
complete horizontal or vertical paths with p edges. Hence n=p. ||

Let us now go back to H' and G’, as in the first part of the proof.

We have established that H’ has at least n+ 1 —m complete horizontal
paths. Hence, it has at least m + 4 such paths, since n>2m+ 3.

At least m + 2 of them are nonborder paths. If two of these paths are not
neighbour, there is between them, either a complete horizontal path of G,,,
totally in H', or at least one vertex of S. Since Card(S) < m, there are in
H' at least two nonborder neighbour paths.

It follows that G'=C'[Q,] for some C’ in Ctxt(A4),,, ;. Since G"[]G’
is isomorphic to G, , there exists a context C in Ctxt(A4),,, o such that
G,=C[0Q,]. It follows from the claim that »'=n, and this completes the
proof of Lemma (2.17). |

The proof of Proposition (2.14) will use another lemma.

(2.18) LemMMA. Let E and B be sets, let f be a commutative mapping:
Ex E— B. With L = B we associate an equivalence relation on E defined by:
axda iff for all deE, f(a,d)e L<f(a',d)e L. Then,xis finite if there
exist E, € E, and C < B satisfying the following conditions:

{1) L—C and E, are finite,

(2) for every a,a’ € E such that f(a,a’)e C: either ac Ey, a' e E— E,,
and for all d in E, if f(d,a')eC then f(d, a')=f(a,a'), or a €k,
acE—E,, and for all d in E, if f(a, d)e C, then f(a,d)=f(a, a').

(3) for every be B, there exist finitely many pairs (a, a’) in Ex E such
that f(a,a’)=b.

Proof. From condition (2) the condition
ae E— E,, and there exists de E, such that f(a,d)=ceC 4)

defines ¢ in a unique way from a. Let us write ¢ =g(a), where g is the
partial mapping: E — C defined by (4).

We now prove that =~ is finite.

We let E' :={a€e E/f(a,d)¢ LU C for all de E}. The elements of E' are
pairwise equivalent w.r.t. &; hence they define a single class.

We now let E” := Eju {ae E/f(a, d)e L — C for some de E}. By condi-
tions (1) and (3), the set E” is finite; hence its elements define finitely many
classes.

Let finally E” :={ae E— Ey/f(a,d)eC for some deE,}. For every
ae E”, let us define K(a)= {a' € Ey/f(a, a’)=g(a)}. Note that K(a) is not

RECOGNIZABLE SETS OF FINITE GRAPHS 37

empty. We now claim that for ¢, b in E”, if K(a)=K(b), and if
gla)e L<g(b)e L, then axb.

Let deE. Assume that f(a,d)e L. By condition (2), deE, (since
ac E— E;). Furthermore, g{a)e L and de K(a). Since we assume that
g(b)e L and K(b)= K(a), we also have de K(b); hence f(b, d)=g(b) and
f(b,d)e L. This proves that a~b.

Since E, is finite, there are finitely many sets K{(a); hence the elements of
E™ define finitely many classes.

Since E is the union of E, E’, and E”, we have proved that = is
finite. |

Proof of Proposition (2.14). We first assume that 4 consists of one
symbol a, of type 2. Let L< L and m> 1. By Lemma (2.16), the syntactic
equivalence relation ~; ,, is characterized by

G~ ,, G iff for every KeFG(A),,, GOKeL <« G'UKe L.

We shall prove that this equivalence relation is finite.

We apply Lemma (2.18) by letting E=FG(A4),,, B=FG(4),, f=01,,,
C={G,/m=z22m+3}, x=~,,, E,={GeFG(4),/GOG eL; for some
G'€FG(4),,, and Card(V;) <m+m?}.

Condition (1) of Lemma (2.18) clearly holds. Condition (2) is proved in
Lemma (2.17), and Condition (3) is easy to establish. Hence Lemma (2.18)
shows that ~, . is finite for m> 1.

Consider finally the special case where m=0. Then GOG' =GP G
Since the grids are connected, if GI1G' e L, then one and only one of G
and G’ is the empty graph 0. This means that ~, , has exactly two classes:
L and FG(A),— L. Hence L is recognizable.

If A4 does not contain any symbol of type 2, but one symbol, say d, of
type >2, then for every subset L of L, the set L' :={G[K,/a}/GeL},
where K, is as in the proof of Proposition (2.13), is also recognizable; the
above proof can be adapted. |I

3. WRITING GRAPH PROPERTIES IN MONADIC SECOND-ORDER LoGiC

A graph can be considered as a logical structure with two domains, the
set of vertices and the set of edges. Hence logical formulas can express
properties of graphs. First-order formulas can express local properties of
graphs, as proved by Gaifmann [19]. Monadic second-order formulas
written with quantifications over sets of edges and sets of vertices are much
more powerful.

We establish that every monadic second-order definable set of graphs is
recognizable and that the monadic second-order theory of a context-free set

38 BRUNO COURCELLE

of graphs is decidable. These results do not hold if quantifications over
binary relations are also used.

In addition to the usual features of monadic second-order logic, we
introduce atomic formulas testing whether the cardinality of a set is equal
to n modulo p, where n and p are integers such that 0<n<p and p>=2.
This extension of the usual language is called the counting monadic second-
order logic. Tt yields an extension of the result of Doner [16] saying that
a subset of M(F) (considered as a set of trees) is recognizable iff it is
definable in monadic second-order logic, to the class of unordered finite
trees with no bound on the degrees of nodes. This result is established in
Section 5.

(3.1) DeriNITION. Graphs as logical structures. In order to express
properties of graphs in FG(A4), we define the symbois:

v: the vertex sort,
e: the edge sort,
s;, a constant of sort v, for each i, 1 <i<k,

edg,, a predicate symbol of arity evv.--v (with t(a) occurrences of v),
for each a, ae A.

With GeFG(4), we associate the logical structure |G|=(Vg, E;,
(Sic)ic k7> (€d8,6),c 4, Where V; is the domain of sort v, E;; is the domain
of sort e,s,; is the ith source of G, and edg, (e, vy, .., v,)=true iff
lab(e) =a and vert;(e) = (v, ..., v,).

(3.2) DeriNiTiON. Counting monadic second-order logic. We shali build
formulas by using object variables u, x, y, z, u', ... of sort v or e, denoting
respectively vertices or edges, and set variables U, X, Y, Z, U’ of sort v or
e, denoting respectively sets of vertices or sets of edges. Since the graphs we
consider are finite, the set variables always represent finite sets.

Let # be a sorted set of variables {u, u, .., U, U’, ..} each of them
having a sort a(u), a(u'), ... a(U), 6(U’), ... in {v, e}. We denote by #; the
set # U {s, .., s, . (Uppercase letters denote set variables and lowercase
letters denote the remaining elements of #,i.c., object variables or
constants).

The set ., (#") of atomic formulas consists of:

u=u' with w, u' e W, a(u)=0(u’),
uelU with u, Ue ¥, o(u)=0a(U),
edg, (u, u, ..., u,) with w, ul, .., u,e ¥,
glu)y=e,o(u))= --- =o(u,)=v,

card, ,(U) with Ue#,0<n<p 2<p<yqg.

RECOGNIZABLE SETS OF FINITE GRAPHS 39

If U denotes a set X, then
card, ,(U) = true iff Card(X)=nmod p.

The meaning of the other atomic formulas is clear or has been already
defined.

The language of counting monadic second-order logic is the set of logical
formulas formed with the above atomic formulas together with the Boolean
connectives A, v, 7, the object quantifications Vi, Ju (over vertices or
edges), and the set quantifications YU, AU (over sets of vertices or sets of
edges).

The language of monadic second-order logic is the set of such formulas
that do not use the atomic formulas card, ,(U).

We denote by £ (#') the set of formulas inductively defined as
follows:

0ebL Y, W) if @esdy (W),

DI APy @V @y, '—'(Ple(gy(j,)k,q(w) if ¢, ‘PzEng(Ah,)k,q(W),
Jup, YVup e 6L G (W) if e €L (W U {u})ug W,
U, VU@ e L (LW)i 06 LY (WU}, U¢W.

The least 4 such that 0 e €LY, (¥#') is called the height of ¢ (this
integer is the maximal depth of nested quantifications in ¢). We let

CLa i W) =U{6L L, (W)h=0]},
and
CLy (W) :=U{CLy s (#)g=2}.

In many cases the subscripts 4, k, and g can be omitted.

Similar sets of formulas, where the atomic formulas card, ,(U) are
not used, are denoted by £, (#'), LLW(#), etc. (the parameter g is
irrelevant).

(3.3) DeriNiTION. Definability of graph properties. Let #” be a finite set
of variables. Let G be a graph in FG(A4),. A # -assignment in G is a map-
ping v associating with every variable in #” a vertex, or an edge, or a set
of vertices, or a set of edges of G, depending on its sort and case (lower or
upper).

If oe$%, #), then for each G and v as above, ¢ is either true or
false in |G| for v. The classical notation in the former case is (|G|, v)E¢
and we say that ¢ holds in G for v. We shall also use ¢/;(v) as a Boolean
value, that is equal to true if ¢ holds in G for v, and equal to false
otherwise.

40 BRUNO COURCELLE

If ¢ is closed, then v disappears, and ¢ is either equal to true or to false.

A property of graphs in FG (A4), is ¥-definable (resp. definable) if there
exists a closed formula ¢ in &, , (resp. in 4.%, ;) such that G satisfies this
property iff ¢ holds in G. A set LSFG(A4), is L-definable (resp. is
definable) if the membership in L is so. The set of graphs defined by ¢ is
the set of graphs G where ¢ holds, and it is denoted by L.

More generally, a property P of a graph G taking as parameters vertices,
edges, sets of vertices, sets of edges, denoted by variables from a finite set
W, is L-definable (or definable) iff there is a formula ¢ in Z (%) (or in
€L (W) such that, for every # -assignment v in G, ¢ holds in G for v iff
P holds in G for the values v(x), xe %", of the parameters. For example,
we shall see below that the property reading: “there is a simple path from
x to y, the set of edges of which is U,” where x and y are vertices and U
is a set of edges, is £-definable.

In Section 6, we shall prove that ¥.¢ is more powerful than %, i.e., that
certain graph properties are definable without being #-definable.

We now give a few examples of definable graph properties.

(3.4) ExampLE. Colorability. Let 4 consist of symbols of type 2.
The existence of a coloring of the vertices of a graph G in FG(4), using
at most m colors, can be expressed as follows:

There exist sets of vertices X,,..X, such that
X,u - uX, =V, X,nX,= for i#j, and the two vertices
of any edge do not belong both to X, for any i

From this formulation a formula ¢ in &, , can be constructed such that
¢ holds in G iff G is m-colorable. Hence, the m-colorability of a graph is
Z-definable.

(3.5) ExampLE. Flows. Let A be as in Example (3.4), and Ge FG(4),.
Let M= (M, +, —, 0> be an abelian group.

An M-flow on G is a mapping 0: E; —» M such that for every vertex
veV:

Z{0(e)/ecin(v)} = Z{0(e)/e € out(v)},

where in(v) := {e/vertg(e, 2)=v} and out(v) := {e/verts(e, 1)=v}.

A flow 6 is nowhere-zero if 6(e) #0 for all ec E;. A k-flow is a Z-flow 6
such that —k <8(e)<k for all ec E.

There exists a formula ¢, , in &£, , such that, for every Ge FG(4), such
that Max{Card (in(v)) + Card(out(v))/veVs;} <n:

GE@,.« iff G has a nowhere-zero k-flow.

RECOGNIZABLE SETS OF FINITE GRAPHS 41

The limitation to graphs of degree at most » is due to the impossibility
to “count in % beyond fixed integers.” In €%, one can “count modulo p.”
It follows that the existence of a nowhere-zero Z/pZ-flow can be expressed
in €%, , , without any limitation on the degree of the considered graphs.

(3.6) DerFNiTIONS. Paths and simple paths. Let G be a graph. Let v, v’
be vertices. A path from v to v’ is a nonempty sequence of binary (ie., type
2) edges ¢4, ..., €, such that vert;{e,, 1)=uv, vert,(e, 2} =verts(e;, , 1) for
all ie [n—1], and vertg(e,, 2)=v". (One may have v=1v".) Such a path is
simple if vert;(e;, 1) # vertg(e;, 1) for i #j. (A more general notion of path,
that concerns graphs with edges of type larger than 2, can be found in
Courcelle [9, 15].)

(3.7) LeMMA. The transitive closure of an ¥-definable binary relation is
P-definable.

Proof. (Sketch). Let R be a binary relation on a set D. A subset X of D
is R-closed if, for every x in X and every pair (x, y) in R, the element y
belongs to X. A pair (x,y) belongs to R* iff it belongs to the smallest
R-closed subset of D containing x. (“Smallest” is taken w.r.t. set inclusion).
From this observation it is easy to construct a monadic second-order
formula defining R* from one defining R. |

(3.8) ProPoSITION. The following properties of a graph G are
ZF-definable:
(1) A given set of edges is the set of edges of a simple path linking two
given vertices.
(2) G is connected,
(3) G has k connected components (for some fixed k),
(4) G is strongly connected,
(5) G has a Hamiltonian circuit.
Proof. Let G be a graph. Let U be a set variable of sort e. Let x, y be
object variables of sort v. Let ¢ express that there is in U an edge e such
that vert;(e) = (x, y). By using Lemma (3.7), one can construct a formula

6 in Z({x, y, U}) saying that there exists a path from x to y, all edges of
which are in U. Then, the formula u defined as

OAYWI WS U” A B[WU =“W=U"]

says that U is the set of edges of a simple path from x to y. (Formulas can
easily be constructed to express what is written inside quotes. We denote
by [W/U] the result of the substitution in # of W for U, after some

42 BRUNO COURCELLE

possibly necessary renamings of bound variables.) This proves (1). The
other assertions follow more or less easily.

Consider, for instance, the existence of a Hamiltonian circuit. This
property can be written

AU, x,y,e[p A x#y A “eis an edge from y to x” A
“every vertex belongs to some edge in U”].

“Forbidden configurations” can be expressed in monadic second-order
logic. Some properties of sets of graphs defined by forbidden configurations
are investigated in Courcelle [11, 12, 14]. |

(3.9) ProPOSITION. Let A contain at least two symbols, one of which is
of type 2. The following properties of a graph G over A are not definable:

(1) G has a nontrivial automorphism.

(2) G has as many edges labeled by a as by b, where a, be A.

The proof uses results to be established below. It will be given at the end
of Section 5. (Note that it is easy to express these two properties in second-
order logic, by formulas using quantifications on binary relations.)

In order to obtain a relatively short proof for the result of the next
section, we define a syntactical variant of the language ¥.%, that we shall
denote by €2. This new language has a simpler syntax than ¥.%¢, but the
formulas are not easily readable.

(3.10) DeFiNITION. The language €2. The language €2 is a variant of
%< using set variables only (still denoted by uppercase letters), of the two
possible sorts v and e.

Let # be a {v, e}-sorted set of set variables, U, U’, V, W, ... Let ke N.
A term of sort e is either a variable U, of sort e, or the constant ¢. A rerm
of sort v is an expression of the two possible forms S,(¢) and S,(U), where
U is a variable of sort v, and [is a subset of [k]. The set of these terms
is denoted by 3,.(#).

For every # -assignment v in a graph G =(V, Eg, labg, vertg, src;)
of type k, we state that:
a term of the form ¢ denotes ¢,
a term of the form U denotes v(U),
a term of the form S,(¢) denotes {srcq(i)/iel},
a term of the form S,(U) denotes w(U) L {sreg(i)/iel}.

We let v(X) be the set denoted by a term X. We shall use ¢ and U as

RECOGNIZABLE SETS OF FINITE GRAPHS 43

shorthands for S,(¢) and S,(U), respectively. Hence ¢ is a constant of both
sorts v and e, but this will not create any difficulty.

The set U, , (#") consists of the following atomic formulas, where by a
term, we mean an element of 3,(#"):

(1) X< Y for terms X, Y of the same sort,
(2) sgl(U) for a variable U of sort e,

(3) edg (U, X,,..X,) for a variable U in # of sort e, and terms
X, ... X, of sort v, where ae A and n=1(a),
(4) card, (X)for 0<p<r<gqg,r=2, and a term X.

For every # -assignment v in a graph G, these formulas hold true iff, one
has, respectively,

(1) v(X)sv(Y),

(2) w(U) is a singleton,

(3) v(U) is a singleton {e}, labg(e) =a and vert;(e)ev(X,)x - x
v(X,)

(4) Card(v(X))=pmod r.

Finally, we denote by €€ ,, (#") the set of formulas formed from
u,, (#) by Boolean combinations and existential quantifications (over
set variables), having their free variables in %"

The simplified notations €2(#"), €L ,, etc... will be used similarily, as for
%¥. The set (iﬁ‘,f"’k_q("//f) of formulas with at most 4 levels of nested
quantifications is defined as for ¢.%.

The two languages ¥.¥ and G have the same expressive power as
shown by the following lemma. In its statement, we use the following
notations.

If # a set of object and set variables {u, v, w, ... U, V, W, ...}, we denote
by # the set of set variables {i, 0, W, ..., U, V, W, ...} (where @, &, w, ... are
new set variables associated with w«, v, w, ...).

If v is a # -assignment in a graph G, then we denote by v the % -assign-
ment such that ¥(U)=vw(U), v(a)= {v(u)} for U, u in #".

(3.11) LeMMA. (1) Let ¢ € 6L (#). One can construct a formula ¢ in
CR(#") such that, for every graph G, and every W -assignment v in G-
(G.VEe if (GV)Ee.

(2) Conversely, if W consists of set variables, and yr e €L(W"), one can
construct ' in €L (W) such that, for every W -assignment v in G,

Gy iff (Gy)EV.

44 BRUNO COURCELLE

Proof (Sketch). (2) Each formula in ¥, (#") can be easily translated
into a formula in %, , ,(#"). The result follows immediately.

(1) Every object variable u, v, ... of ¢ can be represented by the set
variable #,7,.., subject to the additional condition that # denotes a
singleton.

Here are the main steps of the translation of ¢ into ¢:

Juy is 3a[sgl(a) A 1.

If u is of sort v then sgl(u) is not an atomic formula, but stands for the
following formula (expressing that # denotes a singleton):

30, [Uican(ucsU)] A [3U,AU U, €U, AU,c0
A (U, U) A (acsU,)]

Then
Yuy is 3 [sgl(a) A]

The transiations of the atomic formulas are

i
In

u=1v Iis T AUCSU,

uelU s ucU,

edg, (w, v, .., v,) is edg (W, 0y, .., 1T,)
card, (U) is card, (U),

where u, w, v,, .., v, are object variables of the appropriate sorts. If any of
these variables, say u, is the constant s,, then 4 is the term S ,,(¢). We omit
the remaining definitions and verifications. ||

4. THE MAIN THEOREM

We establish that every definable set of graphs is recognizable. By
Lemma (3.11), every definable set is defined by a closed formuia in €&. In
our proof, we shall use this syntactical variant of ¢.%.

(4.1) DermniTION. Tautological equivalence. Two formulas ¢ and ¢’ of
CL(#") are rautologically equivalent if ¢ can be transformed into ¢’ by
finitely many renamings of bound variabies, and applications of the
Boolean laws on v, A, 1, true, false like ¢ v ¢ =¢ and 719 =0.

Hence in particular, if @ is finite, there are finitely many tautologically
inequivalent Boolean combinations of formulas of @.

RECOGNIZABLE SETS OF FINITE GRAPHS 45

It is clear that for every two tautologically equivalent formulas ¢ and ¢’
in €8, , (#), for every graph GeFG(A4),, for every # -assignment v
in G

(Gv)Eg <« (Gv)Fo.

For every subset @ of €2, we denote by & the quotient set of @ w.r.t.
tautological equivalence.

In the following lemma we fix a finite ranked alphabet 4, an integer ¢,
and we denote by €2{"(#") the set €L, (#).

(4.2) LeMMA. For every k and h in N, for every finite set of variables W',
the set €L (W) is finite.

Proof. By induction on h. Let #=0. It is clear that A, , (#") is finite.
Since €2(#") is the set of Boolean combinations of formulas in
A, , (#), it is finite, up to tautological equivalence.

Let h=h'+1. Since €2{"(# U {U}) is finite up to tautological equiv-
alence, so is the set of formulas in €2{"’(%") that are of the forms 3U¢, and
so is €2 (%) that is the set of Boolean combinations of formulas of this
latter form. |J

Since one can decide whether two formulas are tautologicaly equivalent,
the finite set €2 (%) can be effectively constructed.

We now make (€8,),. v into a family of predicates. For every ¢ in €2,,
we let k& be the sort of ¢, and ¢ be the predicate on FG(A4), defined by:

P(G)=true : < G o.

We shall establish the following result:

(4.3) PropoSITION. For everyv h=0, the family of predicates

DM = {p/pe €L, k>=0} is effectively locally-finite and H ,-inductive.
The main result of this paper is an immediate consequence of this
proposition. We state it immediately.

(4.4.) THEOREM. Every definable subset of FG(A), is an effectively given
recognizable set of graphs.

Proof. Let LSFG(A), be defined by a formula ¢ in €2, . There
exist 20 and g such that ¢ e@ﬁﬂ,",'k_q. The set A and the integer ¢ being
fixed, we can apply Propositions (4.3), and (1.5). They yield that L=L, is
FG(A)-recognizable.

Since the family of predicates &' is effectively locally-finite and
H ,inductive, the set L is effectively recognizable by Proposition (1.6). |

46 BRUNO COURCELLE

The proof of Proposition (4.3) is based on three lemmas, stating that the
family of predicates @ is inductive w.r.t. the sets of operations

(@, /mm=0}, {0,,/1<i,j<n, n=>1}, and {o,,,/0:[p]-[n],
n, p =0}, respectively.

These lemmas will be proved by induction on formulas with free
variables, in order to handle quantifications. Hence, we need a few more
technical notations.

Let % be a finite set of set variables. If v’ is a % -assignment in
G' €FG(A),, if v" is a # -assignment in G" € FG(4),-, then, we denote by
v:=v' Uv” the # -assignment in G'® G” defined by v(U)=v'(U)uv"(U)
for all Uin #".

Letting k =k’ + k", we have
(4.5) LEMMA. Given ¢ in €Q(W), one can construct a finite sequence
of formulas @', ..., @), in €L (W), a finite sequence of formulas @7, .., ¢,
in €QLN (W), and an (n+ m)-place Boolean expression B such that, for every
k'-graph G', for every k"-graph G”, for every W -assignment v' in G', for
every W -assignment v" in G”:
P oc(VUV')=BL@16(V), s @ue (V) @16V, s (V)] (%)
Proof. The proof is by induction on the structure of ¢.

First Case. ¢ is atomic. The various possibilities are as follows: (In each
case, we write the equality corresponding to () of the statement.)

(1) If@is X< Y for terms X and Y of sort e, then

P o (VUV)=0s(V) A @a (V")
(1) If @ is SU)=S,(U') with U, U" in # v {$} of sort v, then
Peac(VUV)=06(V) A @e(v),
where ¢’ is S, (U)<S,(U"),
with I' :=In[k'] and J' :=Jn [k'],
and ¢" is: S,.(U)<S,(U"),
with I" := {ie [k"]/i+k'eI} and J" := {ie[k"]/i+k'eJ}.
(2) 1If @ is edg, (U, S{X), S(Y)), then
P oe(vVUV')=[edg (U, S;(X), S,(Y))e(V) A (US)s-(v')]
v TS) (V) A edg (U, S, (X),S,(Y))s-(v")],

where I', I”, J', J" are as in (1').

RECOGNIZABLE SETS OF FINITE GRAPHS 47

(In order to simplify the writing, we have assumed that the symbol « is
of type 2; the general case is similar.)

(3) If ¢ is sgl(U), where U is a variable of sort e, then
P eV UV)=[sgl(U)e(v) A (US§)s(v")]
v (U=) (V') A sgl(U)g(v")].
(4) If ¢ is card, (U), then
¢G’@G"(V/U V”)
=W WrgoV) A6 (v)0<r<gq,0<s<q,r+s=pmodq},

where ¥ , is the atomic formula card, (V).

In order to understand case (4), one should remember that
V(U)Ynv"(U)=J. The validity of the stated equality follows, since for
disjoint sets X and Y, Card(X u Y) = Card(X) + Card(Y). The verifications
of the other cases are easy from the definitions.

Second Case. ¢ is 71, or Y A5, 0r ¥, v i¥,. We only consider the
case where ¢ is ¥/, A ,. The other ones are similar. We can assume that
we have constructed B,[¢},,...¥],..], such that ¥, ..eCL(¥),
Wi, ..eCRW(#) and

Vigoe (VO)= BilY16(V), s Y1607, ...]
for i=1, 2. Then, clearly,
Veee(VOV)=B,[¥1 (V) .1 A B[Yh (V). .]
This gives the desired decomposition of ¢.

Third Case. ¢ is 3Uy, with ¢ in €L~ V(# 0w {U}), and U not in %",
Without loss of generality, we can assume that U is of sort v.

If X"V, and v’ is a # -assignment in G’, we denote by v/ its extension
into the (#" U {U})-assignment in G’, defined by taking X’ as value of U,
and similarly for v5., if X" = V... Hence

(AU)6 g (v W V") =true
iff
wG‘eG"(v:\” U V) = true

for some subsets X" and X”, of V. and V..

643/85:1-4

48 BRUNO COURCELLE

By the induction hypothesis, one can assume that one has defined
B[y, .. ¥}, ..] such that y,..e @4~ w u {U}), ¥/, ..€
€e-Y(w L {U}), and

Voo (VyUvy)= B[(V)s v Yig- (Vi) o]

We can write the right-hand side of this equality as a disjunction
C,[--]v -+ v C,[---] of formulas C,[---] of the form

Vit (V) AWiac Oy A o Adlig(Vie) A ae (Vi) A oy

where each y; ; is either a formula, or the negation of a formula in {y}, ...},
and similarly for ¥ ,. Hence

Qg gc(v)=true
iff there exist X’ = V., and X" & V. such that
C[--]v -~ v C,[--]=true.
The ith element of this disjunction is equivalent to
X' SVe¥iic(Vy) A - 1A X" SV Yl (Vi) A -]
ie., to

QU0 (") A BU 8])6(v"),

where 6/ is the formula ¥}, A Y, A --- (in €LY~ V(# U {U}) and 67 is
defined similarily as ¥/, A Y/, A -+~ (in €LLE)W U {U}).

Hence ¢g g ¢-(v) is equivalent to a Boolean combination of formulas in
CLP (W)L CLEN(W), expressing properties of v/ in G', and of v in G". |}

The next lemma expresses the validity in 8, (H) of a formula ¢, in terms
of the validity in H of a formula ¢’ constructed from ¢. Let us recall that
the graph G =0, (H) is the result of the fusion of the two vertices sre (i)
and sre,(j). Formally, it is defined by a surjective mapping f:V, -V,
where Vo=V /~, and ~ is the equivalence relation on V, generated by
the pair (src (i), srey(f)).

For every # -assignment v’ in H, we define the assignment v =0, ,(v') in
G by letting

v(U) :=v'(U) for U of sort e,
v(U) :=f('(D)) =1 f)vev'(U)} for U of sort v.

RECOGNIZABLE SETS OF FINITE GRAPHS 49

As in the proof of the last lemma, we use v, to denote the extension of
a W-assignment v into a ¥ u {U}-assignment, in such a way that
vy(U)=X (where U is not in #").

(4.6) LEMMA. Given @ eCL/(W') and i je[k], one can construct
a formula ¢ €CLM (W) such that, for every HeFG(A),, for every
W -assignment v' in H, if G=0, (H) and v=0, (v'), then
@a(v)= @y (v').
Proof. By induction on the structure of @.
First Case. ¢ is atomic.
(1) Ifgis X<, oris card, (U) for X, Y, U of sort e, then, we let
¢’ be ¢, and we have
oc(vV)=@u(v).
(2) If ¢ is §;(X)=S,(Y), then, we let ¢’ be
SAXNSSY) v (SAX)=8,(Y) A p, (T)),
where
J"=Ju{ij},
J' :=ifiorjisin J then J" else J,

and p;(Y) is the formula: S,,(Y)= Y v S, (Y)Y expressing that ¥
contains at least one of the two sources of H that are being fused.

(3) If ¢ is edg,(U, S(X), S,(Y)), then ¢’ is the disjunction of the
following four formulas:
edg, (U, S,(X),S,(Y))
edg, (U, S,(X), S,(Y)) A p, AY)
edg, (U, 8,.(X), S,(Y)) A p; (X)
edg (U, S, (X), S, (Y)) A pi (X) A p, fT),

(We have only considered the case of a symbol a of type 2; for a symbol
of type n, ¢’ is a disjunction of 2" formulas, that are straightforward to
write; J* and J” are as in (2); [’ and /" are similar.)

(4) If ¢ is card, ,(X) for a term X of sort v, then ¢’ is

(card,, , (X) A Y) Vv (card, (X) A 1Y),

50 BRUNO COURCELLE

where y is the formula

Sid)S X AS () =X A 2 [Si(d) =S4,

expressing that the ith and jth sources are two distinct vertices of X.

Second Case. ¢ is @, A ¢, Or @, vV ¢, Or T1¢,. Assuming that ¢}, @5
have already been constructed, then one takes for ¢’ respectively @] A ¢}
or @ v @3, O T19}.

Third Case. ¢ is AUy, where Yy e €2V~ (% U {U}), U not in #". We
assume that U is of sort v. Let ¢’ be obtained from . Then

@s(v)=true iff Yg(vy)=true for some XSV,
iff ¢'y(vy)=true for some YV,

iff QU Y)4(v') = true,

since for all YSV,,0, (vVy)=v,y, and f is surjective. Hence ¢’ is the
formula U .

This completes the proof of Lemma (4.6). §

The next lemma deals similarily with the source redefinition map
o, FG(4), - FG(4),.

(4.7) LEMMA. Given @ € €2(W), and a: [k] — [n], one can construct
a formula ¢ €CLY(W) such that, for every HeFG(A),, for every
W -assignment v in H, if G=o0,(H) then ¢5(v)= @y(v).

Proof. For every formula ¢, we let ¢’ be the result of the simultaneous
substitution in ¢ of S, (X), for every occurrence of S,(X) (where X is
either a variable or ¢), for all 7< [k]. It is easy to see that

@6(v) = @ulv).
It is clear that ¢’ e €2 (#). |
Proof of Proposition (4.3).

For % = &, Lemmas (4.5) and (4.7) yield that & is inductive with
respect to {@D,, ,/m, neN}u {o,, /n peN, a:[p]—> [n]}. Lemma (4.6)
yields similarily that &® is inductive w.r.t. {6,,,/n1>0, i, je [n]}. But
every operation €;, can be written as a composition of at most n opera-
tions of the form 6, ;,, with 1<, j, <n. The appropriate extension of
Lemma (4.6) holds and yields the desired result.

Finally, H, also contains constants 0, 1, and a for all ae 4. These

RECOGNIZABLE SETS OF FINITE GRAPHS 51

constants define finite graphs. For every closed formula ¢ and every finite
graph G, one can decide whether ¢ holds in G. This means that one can
determine whether ¢, = true, or ¢, = false. This gives (trivial) decomposi-
tions for formula ¢ w.r.t. the constants 0,1, and q,ac 4. |}

Our main theorem has the following consequences.

(4.8) CorOLLARY. Let L=FG(A), be a context-free set of graphs, and
let e BL, .

(1) The set Ln L, is context-free and a context-free graph-grammar
can be constructed to generate it.

(2) The following properties are decidable:
(2.1) ¢ holds in all graphs G in L (i€, LS L),
(2.2) @ holds in some graph G in L (ie., LnL,# &).

Proof. By Proposition (2.11), context-free graph-grammars and systems
of equations define the same sets of graphs. In this proof, it is convenient
to describe context-free sets of graphs by systems of equations. The set L,
is an effectively given recognizable set of graphs. Hence, by Proposition
(1.8), one can construct a system of equations defining L n L, (hence also
a context-free graph-grammar). One can test whether L~ L, = ¢JJ. One can
also test whether Ln L, =, ic.,, whether L& L,. |l

As an application, we get that the set of planar (or connected, or
Hamiltonian) graphs belonging to a given context-free set, is context-free,
and that a grammar can be constructed to generate it. One can also decide
whether a context-free set of graphs contains a planar (or a connected, or
a Hamiltonian) graph.

(4.9) Remarks. The algorithms doing these things, that one derives from
Corollary (4.8), are “uniform™ in terms of the graph properties. This uni-
formity is a source of inefficiency: the grammar generating L n L, that one
can contruct in this way has approximately m. exp” * 2(b.4") nonterminass,
where m is the number of nonterminals of the grammar generating L, and
the constants b and n depend polynomialy on Card(4), Max{t(a)/ac A4},
k, and g, where p €L, ., and A is the height of ¢. (We denote 2 by
exp(x) for xe N.)

But Corollary (4.8) provides us with an easily testable decidability
criterion. Furthermore, the notion of an inductive set of predicates yields a
methodology for finding efficient algorithms. If a context-free set L as in
Corollary (4.8), is given by a system of m equations over H1, if ¢ belongs

to €2 | then, in order to contruct a system of equations (or a grammar)
Ang q g

52 BRUNO COURCELLE

defining LN L, it suffices to find a finite H{l-inductive family P of
predicates containing ¢. The number of nonterminals of the context-free
grammar obtained in this way is then at most m.exp(p), where p = card(P).
This number p can be much smaller than Card({{€LY’, /i<k}), that is
precisely the cardinality of the family of predicates used in the proofs of
Theorem (4.4) and of Corollary (4.8). This idea is exploited by Lengauer

and Wanke in [24]. |

We now review a few applications to the logic of graphs and to the
complexity of certain graph decision problems.

Sets of Graphs Having a Decidable Monadic Theory

Let M 2 FG(A), be a set of graphs. The monadic (second-order) theory
of M is the set of formulas th(M):= {p 4%, /G ¢ for all G in M}.

(4.10) CorOLLARY. The following sets of graphs have a decidable
monadic theory:

(1) The set of k-graphs of width at most m, for every k and m >k,
(2) Every context-free set of graphs.

Proof. The set of k-graphs of width at most m is context-free by
Proposition (2.11). The two results follow immediately from Corollary
(4.8), assertion (2.1). |

One cannot hope to break the limitation to sets of graphs of bounded
width, because of the following results:

(4.11) ProprosITION. (1) The first-order theory of the set of all finite
graphs is undecidable.

(2) The monadic theory of a set of graphs L of unbounded width is
undecidable.

Proof. Result (1) is known from Trahtenbrot [30]. It follows in par-
ticular that the monadic theory of the set of all finite graphs is undecidable.
Result (2) is essentially due to Seese [27, 28]. Technical details can be
found in Courcelle [14].]

On the other hand, decidability results can be obtained for noncontext-
free sets of graphs of bounded width, defined by certain controlled context-
free graph-grammars.

Controlied Grammars

Let I" be a context-free graph grammar, let L(J, C) be the set of graphs
in L(I') having a derivation tree in C, where C is a given set of trees. We

RECOGNIZABLE SETS OF FINITE GRAPHS 53

call C a control set, and we say that (I', C) is a controlled (context-free)
graph-grammar. We shall prove that certain controlled graph-grammars
generate sets of graphs having a decidable monadic theory.

If I' is a context-free (word) grammar, and if C is the set of trees having
all their branches of the same length, then L(I, C) is an EOL language.
(Rozenberg and Salomaa [26]). Every EOL language can be considered as
a subset of a context-free language, defined by such a control set.

We now define the derivation trees of a context-free graph grammar,
I'= (A, U, P). We first turn P into a signature. Let p in P name rule u — e.
Let (u;, .., u;) be the sequence of nonterminal symbols occurring in e, in
this order (a same symbol may occur several times in this list). We let
o(p) :=t(u) and a(p) = (t(u;), .., ©(u;)).

We let also p be the monomial p(u,, .., 1,). Hence P is an N-signature,
where N is {t(u)/ue U}.

Let us consider the polynomial system

§F: <u1 zfl’---a U, = n>’

where 7, is the polynomial p, + --- +p,, and {py,.. p.} is the set of
production rules with left-hand side u,. The least solution of S, in
P(M(P)) is an n-tuple of sets of trees. The first component of this tuple is
the set of derivation trees of I'. Tt is denoted by Der(I"). (Let us recall from
(2.10) that L(I')=L([, u,)). It is M(P)-recognizable. Every tree ¢ in
Der(I") defines a graph in L(I"), denoted by yield(z). We characterize the
mapping yield algebraically as the unique homomorphism M(P) - FG,
where FG - is a derived magma of FG(A4) that we now define.

We let (FG[), :=FG(A4), for ne N.

We now define the operation pg¢, for every p in P. Let p name u —e,
let (u;, .., u;) be the sequence of nonterminals of e, let x,,j=1,..,k be a
variable of sort t(u,), let € be the expression in FE(4, X,) obtained by
replacing in e the jth nonterminal symbol by x;. (It follows that é is linear
in X,.) We let pp¢, be the derived operation é€g,,. Hence there is a
unique homomorphism yield: M(P)—> FG, and it easy to verify that
yield(Der(I')) = L(I"). More details on derivation trees can be found in
Courcelle [6].

The following result, is a generalization of a result by Lengauer and
Wanke [24].

(4.12) ProrosITION. Let (I, C) be a controlled context-free graph gram-
mar defining a subset of FG(A),. Let us assume that it can be decided
whether K C= & for every effectively given recognizable set of trees K.
The following properties of a formula ¢ in €%, . can be decided:

54 BRUNO COURCELLE

(1) Gk o for some graph G in L(I', C),
(2) Gk for all graphs G in L(I', C).
Proof. The set K,:={GeFG(4)/GEo} is effectively FG(A4)-
recognizable. Since FG - is a derived magma of FG(4), it is also

FG -recognizable (Proposition (1.15)). Hence yield '(K,) is effectively
M(P)-recognizable by Proposition (1.7). It follows that

L(I, C)n K, =yield(Der(I") nyield " '(K,) ~ C).

Since Der(I") nyield ~'(K,) is effectively recognizable, the emptiness of
this set can be tested. Property (1) holds iff it is nonempty. Property (2)
holds iff the set constructed similarily from — ¢ is empty. [

(4.13) ExampPLE. Let C,,i= 1, be the set of trees all branches of which
are of length i. Let C={J{C/i>1}.

Let us establish that for every recognizable subset K of M(P), one can
decide whether C n K= (5. Without loss of generality, we assume that N is
reduced to only one sort. (The general case is no more difficult.)

Let K=h"'(Q’), where h is a homomorphism: M(P) —» Q, Q is a finite
P-magma, and Q' = Q. For every n, let @, :=h(C,). Then

Q,={h(p)peP, p(p)=0},

n+1—{h /teCn+1J
={h(p(ty, . E)/t1s 0w 1, €C,, p(p) =k}
={Polq1s s 4)/41> s Gx € Qs p(P) =k }.

It follows that the sequence Q,, Q», .., Q,, .. is computable. Since the
sets 0, are subsets of a finite set, there exists ¢ such that @, = Q,, for some
m<gq. Hence KnC# & iff Q' nJ{Q/i<q}# &, and this is decidable.

Hence, for every context-free graph-grammar [, the set of graphs
L(I', C), that is not necessarily context-free, has a decidable monadic
theory. |

Complexity Issues

We present a few applications to the complexity of graph algorithms.
Other results can be found in Courcelle {12, 14].

(4.14) PROPOSITION. Let ¢ be a formula in €%, , .

(1) Let m=k. One can decide in time Q(size(e)) whether ¢ holds in
the graph val(e) defined by a given expression e in FE(A4)[™).

(2) Let I' be a context-free graph-grammar generating a subset L of

RECOGNIZABLE SETS OF FINITE GRAPHS 55

FG(A),. One can decide in time O(length(d)) whether a graph G in L given
by a derivation sequence d of I satisfies .

Proof. (1) From the proofs of Propositions (4.3) and (1.6), one can
contruct a deterministic bottom-up tree-automaton recognizing the set of
graph expressions e of width at most m and of type &, such that val(e) = ¢.
(This set can be considered as a set of trees L <M(HL™),. This tree
automaton is of large but fixed size, depending on ¢, k, and m. It makes
it possible to decide in time Of(size(e)) whether e belongs to L.

(2) Let I be a context-free graph-grammar. Let GeFG(A4), be
generated by I, by means of a derivation sequence d. By the definition we
gave in Section 2 of context-free graph-grammars, this derivation sequences
produces an expression e that defines G. This expression is of size
O(length(d)) and of width at most m, where m is the maximum sort of a
symbol occurring in 7. It can be constructed in linear time from d.

Hence, by the first part of the lemma, one can decide whether val(e) = ¢
in time Of(size(e)), hence, one can decide in time O(length(d)) whether

GEo. 1

(4.15) Remarks. From the above result, it follows that, if a context-free
set of graphs L has a polynomial parsing algorithm, then one can decide
in polynomial time whether a graph G belongs to L, and, if this is the case,
if it satisfies a given monadic second-order formula. Lauteman gives condi-
tions on context-free graph-grammars ensuring the existence of polynomial
parsing algorithms [23].

Monadic second-order formulas can express NP-complete problems.
{The existence of a Hamiltonian circuit in a graph is an example of such
a problem). This gives examples of NP-complete problems, becoming poly-
nomial when restricted to special classes of graphs. Johnson [22] discusses
several such situations.

Arnborg et al [1] introduce a more powerful calculus, called the
extended monadic second-order logic, for which Proposition (4.14) holds.
This logical calculus makes possible a few numerical computations and
comparisons. In particular, one can express that a graph has as many edges
labeled by a and by b. But the set of graphs satisfying this property is not
recognizable. (Otherwise, the set K used below in the proof that the
converse to (4) in Theorem (5.3) would be recognizable, and we shall
prove that it is not.) Hence, Theorem (4.4) does not hold for the extended
monadic second-order logic.

Families of Sets of Graphs. A Comparison

We have established that every definable set of graphs is recognizable. In
the case of words, a theorem by Biichi [4] (also Theorem 3.2 of Thomas

56 BRUNO COURCELLE

[29]) states that a language is recognizable iff it is definable. In the case
of graphs, since there are countably many definable sets of graphs and
uncountably many recognizable ones, some recognizable sets of graphs are
not definable.

Here is an example of such a set. Let K= N be a recursively enumerable
nonrecursive set. Let L={G,/neK, n>2}, where G, is the (nxn)-grid
defined in Definition (2.15). Given a graph H and a closed formula ¢ in
€%, one can decide whether H= ¢ (because H is finite). If L would be
equal to L, for some formula ¢, one could decide whether G, € L, i.e., one
could decide whether n e K. This contradicts the choice of K.

We conclude this section by giving a diagram, comparing the various
families of sets of graphs we have discussed. (On this diagram, shown on
Fig. 6, the scope of a family name is the largest rectangle, at the upper left
corner of which it is written.)

The following families of sets of graphs are compared:

REC, the family of recognizable sets of graphs,
CMSOL, the family of definable sets of graphs,
MSOL, the family of #-definable sets of graphs,
CF, the family of context-free sets of graphs,
B, the family of width-bounded sets of graphs.
Provided the reference alphabet contains at least one symbol of type
at least 2, the families REC and B are uncountable. The other ones are

countable. The inclusions shown on the diagram, are strict, except possibly
the inclusion:

CF nCMSOL = CF ~nREC.
REC L
CMSOL L,UE
MSOL L,
B |cF
E T, T, (A, W@y, RME
S

FIGURE 6

RECOGNIZABLE SETS OF FINITE GRAPHS 57

Whether it is strict raises an open problem, that can be restated as
follows.

Open Problem. Does there exist k and a recognizable set L = FG(4)X
that is not definable (in counting monadic second-order logic)?

Such a set exists iff the shaded area of the diagram is not empty. The
diagram also locates several sets of graphs:

L, the set of square grids,

L, the set of all grids G,, where » is an element of some nonrecursive
subset of N,

E, the set of discrete graphs (all vertices of which are isolated), having
an even number of vertices.

S, the set of graphs corresponding to the language {a"b"/n>0} (see
Proposition (6.9)).

The sets of graphs T(A4), T,(4), W(A4), and R(F) are introduced in
Sections 5 and 6 below. They correspond to certain representations of trees
and words by graphs.

It follows from Proposition (6.2) (and the proof of its Corollary (6.6))
that E belongs to CMSOL-MSOL.

5. RECOGNIZABLE SETS OF TREES

Biichi has proved in [4] that a set of words is recognizable iff it is
Z-definable. A similar result has been proved for sets of ordered ranked
trees (i.e., for subsets of M(F), where F is a finite signature) by Doner in
[16]. (This latter result is essentially contained in Theorems (3.7) and (3.9)
of [16]. See also Thomas [29, Theorem (11.1)] for a formulation closer to
ours than that of Doner.)

In this section, we extend the result of Doner to sets of unordered
unranked trees. This extension makes an essential use of counting monadic
second-order logic. It does not work with the “ordinary” one, as we shall
see in Section 6.

In this section, A is a finite alphabet consisting of symbols of type 1 or
2, and A4, is the set of symbols of 4 of type i

(5.1) DerFINITION. Trees. A tree is (here) a graph G in FG(4), satisfying
the following conditions:

(1) for each vertex v, there is a path from sreg(1) to v; the vertex
sreg(1) is called the root of G;

58 BRUNO COURCELLE

S

FIGURE 7

(2) every vertex different from src;(1) is the target of one and only
one binary edge;

(3) sreg(1) is the target of no edge.

An example of such a tree is shown on Fig. 7. There is no ordering on
the set of edges originating from a same vertex. The vertices may belong to
one, or several, or no unary edge (“unary” means “of type 1”). The graph
1 is also a tree.

It is clear that the set T(A4) of all trees (over A) is #-definable. Hence
it is also recognizable.

(5.2) DerINITION. An algebraic structure on the set of trees. We define a
few derived operations on FG(4),. If G, G'e FG(A4),, we let

G|G :=0,0,,(GDG)).
If GeFG(A4),, and be 4,, then we let
5(G) :=6,(0,5(b®G)).
Figure 8 shows the graphs G||G’ and b(G), respectively, to the left and

to the right.
1
Lb
G G’ o

FIGURE 8

RECOGNIZABLE SETS OF FINITE GRAPHS 59

It is clear that the operation| is associative and commutative. We shall
denote it as an infixed operation, without parentheses. G||G’ and 5(G) are
trees if G and G’ are.

Let K, be the finite one-sort signature {|, 1} U A4, where || is of rank 2,
1is of rank 0, a is of rank 0 if ae 4,, and 4 is of rank 1 if ae A,. By the
above definitions, T(4) is a K ,-magma.

It is clear that K, generates T(A4). Since the operations | and 4 are
defined on FG(A4),, the set T(4) is FG(A4)-equational. It is the least
solution in 2(FG(A),) of the equation E:

L=L|L+Y {B(L)be A} +Y {alac A} +1.

(As in Courcelle [5], +and Y refer to set unions.)

A set of trees can be recognizable or equational, either w.r.t. FG(A4),
or wr.t. T(4). We shall compare the two notions in the following proposi-
tion. Since T(A) is L-definable as a subset of FG(A4),, a subset L of T(A4)
is definable (resp. .#-definable) iff it is definable (resp. #-definable) as a set
of trees, i.e., iff there exists a closed formula ¢ in €% (resp. in .#) such that
L={GeT(A)/GE ¢}. (We shall prove in Section 6 that certain definable
sets are not ¥.%-definable.)

(5.3) THEOREM. Let L < T(A). The following conditions are equivalent:

(1) LeRec(FG(4)),
(2) LeRec(T(4))
(3) L is definable.

The following implications hold, and the converse implications do not:
(4) LeRec(T(A))= LeEquat(T(4))
(5) LeEquat(T(4))= LeEquat(FG(4)),.
Proof. (3)= (1) by Theorem (4.4).
(1)=(2) by Proposition (1.15).
(2)=>(3) by Proposition (5.4) established below.

(4) is an immediate consequence of Proposition (1.13), since the
finite signature K, generates T(A).

(5) holds because it is easy to construct a system of equations
defining L in FG(A) from a system of equations defining L in T(A4).

We now consider examples showing that the converses to (4) and (5) do
not hold. Let K be the set of trees of the form:

(BIE) - B é(1))

60 BRUNO COURCELLE

with as many b’s as ¢’s. It is easy to construct an equation defining it in
T(A). Hence K€ Equat(FG(A4)),. Let us assume that K is recognizable in
T(A). Then so is A~ '(K) in M(K ,), where 4 is the unique homomorphism:
M(K ;) - T(A). Let us denote by b" the term

b -1 5(1),

belonging to M(K,), written with n occurrences of b. Let us denote
by ¢" the similar term with ¢ instead of 5. The set of terms
M = {b"||¢"/n, m =1} is recognizable in M(K ,). Hence K' := M nh~}(K)
is recognizable too. But K'= {b”||¢"/n>1}, and it is easy to establish that
it is not recognizable. Hence K is not recognizable in T(A4), and the
converse to (4) does not hold.

Let N be the set of trees in T(A) of the form 5"(¢"(1)), n=0. It is
easy to find a context-free graph grammar generating N. Hence
N € Equat(FG(4)),. If N € Equat(T(4)), then N = A(N') for some
recognizable subset N'-of M(K ,), by Proposition (1.12). From a top-down
tree-automaton that would recognize N', it would not be difficult to
construct an automaton recognizing the set of prefixes of {b"c"/n>0}.
Hence no such recognizable N’ can exist, and N is not in Equat(T(A4)).
Hence, the converse to (5) does not hold. ||

{5.4) ProrosITION. Every T(A)-recognizable set of trees is definable.

Proof. Let L=h"'(C), where h is a homomorphism: T(4) - Q, Q is a
finite K ,-magma, and C is a subset of the domain Q of Q.

The subset Q' = h(T(A)) of Q can be computed (as the least solution in
#(Q) of the equation E introduced in Definition (5.2); an explicit
computation is possible since Q is finite).

For every be A,, the function 5Q maps Q' into Q’, and the function |,
maps Q' x Q' into Q'. Furthermore, for all ¢, ¢’, ¢” in Q":

‘ZHQ 1Q=q
dlod' =49 loq
qllo@' llog)=(qllgq Mo q"

Hence ||, can be extended to finite multisets as follows:

loZ:=q1llpq:llo-llg g

where {q,, .., ¢, } is any enumeration of a finite multiset Z of elements of
Q' (and |l, &I =1,). We also denote by n-g, for g in Q’, nin N, the
object glip qlip---llp g (with n times g). We let 0-g=1,, for every ge Q’.
We have (n-q)|o(n' -g)=(n+n')-q.

RECOGNIZABLE SETS OF FINITE GRAPHS 61

Let o, 41, be an enumeration of Q' without repetitions, such that
Go=1,. For every ge @', we let W, be the set

{(nl’ aers nm)ENm/nl ql”Q “Qnm'qmzq}'

For every sequence w= (o, .., %, B1,..0n,) in N?", we let L(w)=
(o, + A Brs oo s+ Ay B)/Ars s AN} S N

CraM 1. For every qe Q', one can find a finite subset w, of N*" such
that W,={J{L(w)/weWw,}.

Proof of Claim 1. Since Q' is finite, the infinite sequence 0-¢q, 1-gq,
2-q,..,n-q,..1s ultimately periodic. One can determine its period (we let
B, be the length of the periodic factor) and its nonperiodic initial part.
Hence, for every g, ¢'e Q’, the set of integers {neN/n-g=¢q'} can be
written as the union of a finite set, and finitely many sets of the form
{a+AB,/Ae N}, with e N. The result follows then easily. ||

CLAIM 2. For every sequence weN?", one can find a formula in
CL{X,, . X,.}) expressing that (Card(X,), .., Card(X,,)) belongs to L(w).

Proof. 1t suffices to construct ¢, in €Z({X,}) expressing that
card(X;) =a,+ Af; for some AeN.

If B;=0 or 1, then a formula ¢, in Z({X,}) can be constructed. If §,> 2,
then one takes for ¢, the following formula:

Y, Y[“X;=YUY " A YnY' =" A “Card(Y)=0a,” A card,, ;(Y")].
The desired formula is then: ¢, A @, A -+ A @ |

We now go back to the proof of Proposition (5.4). Let GeT(A4) and

ve V.. We denote by D(G, v) the tree H in T(A) such that

V,={v €Vg/v'=v or there is a path in G from v to v'},

E, = {ee Eg;/ all vertices of e are in V,,},

lab,, =1lab;TE,,

vert, =vert; TE,,

sre,, = (v).
If ee E; we denote by D(G, e):

the tree a if labg(e)=ae 4,,

the tree H(D(G, v)) if labg(e) =be A, and v = vert,(e, 2).

62 BRUNO COURCELLE

Let 0 and & be the mappings 0: V; — Q' and 0: E; — Q' such that:

(1) d(v)=h(D(G,v)) forallveVg,
(2) O(e)=h(D(G,e)) forall ecEg;.

They satisfy the properties:
(3) d(e)=ay if labg(e)=aec 4,
(4) 8(e)="by(d(vertgle, 2))) if labg(e) = be A,,
(5) d(v)y=1,=4¢, if D(G,v)=1,
(6) d(w)=llp{0(e)eckEy, vertsle, 1)=v} if D(G, v) is not 1.
By Claim 1, Eq. (6) can be written as
6 (ny,..,n,)e Wy,

where n,=card({ee Eg/vert(e, 1) =0, d(e)=q,}) for ie [m].
If follows then that

(7) h(G)=hD(G, sreg(1))) = d(sreg(1)).

It is not hard to see that Eqgs. (3) to (6) define a unique pair of mappings
d, 0, and this pair of mappings satisfies (1) and (2). Hence, for every tree
G in T(4),

(8) Ge L iff there exists a pair of mappings 4, 0 satisfying (3)-(5) and
(6'), and such that d(srcg(1)) e C.

The required mappings é and ¢ take their values in the finite set
{Go» > Gm}. Hence they can be represented by (m+ 1)-tuples of sets,
Xo, s X,,&Vg, and Yy, .., Y, S Eg, such that X;= {ve V;/d(v)=g,} and
Y,={eeEs/d(e)=g;}. With this coding, and by Claim 2 conditions
(3)-(5) and (6’) can be written in counting monadic second-order logic.
Note that the atomic formulas with card,, , are used to express condition (6).

Hence condition (8) can be rewritten as

GeL iff 3Xq, . X Yo, o Y[¥,

where ¥ is a formula in ¥%,,,({Xo, .. X, Yo, .. ¥,}) and
p=Max{B,, .., B;.}- Hence L is definable. |

Proof of Proposition (3.9). We now complete the proof of Proposition
(3.9) by proving that the set of graphs having a nontrivial automorphism
is not definable.

Let ae A be of type 2. Let L be the set of 0-graphs of the form:

a a a a a
P e ... e —— @ .0 —

RECOGNIZABLE SETS OF FINITE GRAPHS 63

The set L is #-definable. Let L’ be the set of graphs in L having as
many edges pointing to the left and to the right.

Let K be the set of graphs in FG(4), having at least one nontrivial
automorphism. More precisely, K is the set of isomorphism classes of
concrete graphs G such that there exists an isomorphism G — G that is not
the identity.

Let us assume that K is definable. Then L n K is also definable. Hence
L n K is recognizable. But L n K= L'. Hence the set of graph expressions
defining graphs in L’ is recognizable (as a set of ranked trees).

By using a proof technique similar to the one used in Theorem (5.3), to
establish that the converse to (4) does not hold, one obtains a contra-
diction. Hence the existence of a nontrivial automorphism in a graph is not
definable.

If the set of graphs having as many edges labeled by a and by 5 would
be definable then, the set K used in the proof of Theorem (5.3) would be
definable, hence recognizable. We know that this is not the case. This
proves the second part of Proposition (3.9). ||

6. THE EXPRESSIVE POWER OF COUNTING MONADIC SECOND-ORDER LOGIC

We establish that the counting monadic second-order logic is strictly
more powerful than the “ordinary” one. We also prove that, if, in a many-
sorted structure M linear orders on the domains are .#-definable, then
every formula ¢ of ¥ can be translated into a formula ¢ of &, equivalent
to ¢ in M. Hence for words and ranked trees (in which linear orders are
definable), the atomic formulas of the form card, (U) do not add
expressive power to ..

(6.1) DErFINITION. Monadic second-order logic dealing with sets. We shall
consider a one-sorted language without constants (like s, s,, ...), or basic
relations (like edg,). We denote by #(7") the set of monadic second-order
formulas with free variables in ¥". (The atomic formulas are x=y and
x€ X, for object variables x, y and set variable X). Hence £(¥") is the
subset of £ o(¥"), that one would use to express properties of graphs in
FG(),, 1.e., of graphs consisting of finite sets of isolated vertices. It is
clear that the formulas in .Z(=.2({)) can only express conditions on the
cardinalities of the sets in which they are interpreted.

(6.2) PROPOSITION. There is no formula ¢ in £ ({X}) such that for every
finite set V, for every subset X of V, Card(X) is even iff (V, X) = o.

Since the formulas card,,(X) have no equivalent in .#, the counting

643/85/1-5

64 BRUNO COURCELLE

monadic second-order logic €% is strictly more powerful than the
“ordinary” one &.
This proof will use several technical definitions and lemmas.

{(6.3) DerNiTIONs. For every positive integer n, we enrich & into %,
by allowing terms defining subsets of V' (the domain of the logical structure
where the formulas are evaluated), formed with set variables and Boolean
operations |J), (), —, and (the last one denotes the complementation
w.r.t. V). These terms are called set terms. The atomic formulas are as in
£, together with card,(7), and card_ ,(¢) for set terms ¢ and i€ [0, n]. The
meanings of these formulas are respectively “the set defined by ¢ has exactly
i elements” and “the set defined by ¢ has more than i elements.”

It is clear that ¥ and %, have the same power since for set terms ¢ and
t', Card(t)=1i and Card(')> i are definable in . The formulas xe¢ and
t=1"are also definable in %.

We eliminate object variables from %, :

— for every object variable x, we let Z, be a new set variable
— dx--- is replaced by 3Z_, card,(Z,) A ---

— x€ X is replaced by card,(Z,— X)

— x=y is replaced by cardy(Z,— Z,) A cardy(Z,— Z).

Let &, be the set of formuias of .#, without object variables. It follows
from the above remarks that for every formula ¢ in #({X,, .., X;}) one
can find an equivalent formula ¢’ in £{({X, .., X;/}). Our next aim is to
eliminate quantifiers in the formulas of ;.

We let 2, ,, be the set of quantifier-free formulas in LJ({X,, .., X, }). We
also introduce sets 4, , < 9, , of formulas said to be in normal form.

For this purpose, we let J, be the set of set terms of the form
Y,n ---nY,, where each Y, is either X, or X,. We let o, be the set of
atomic formulas of the forms card(¢) or card . ,(¢) for ie {0,n] and re 7,.
We let %, , be the set of basic formulas, i.e., of formulas of the form:

M\ {o/te T},

where for each t€ 7, ¢, is a formula in & , of the form card,(¢) for some
xe{0,1,..,n >n}
Finally, we let .4, , be the set of finite disjunctions of formulas in %, ,,.

(6.4) LEMMA. Let m>n be positive integers. For every formula ¢ in 9, ,
one can construct an equivalent formula ¢ in N, ,,,.

Proof. The formula ¢ is transformed into ¢ by several steps.

RECOGNIZABLE SETS OF FINITE GRAPHS 65

Step 1. One replaces every atomic formula occurring in ¢ that is of
the form card. (z) with i <m by

card,, ,(7) v eard,, ,(¢) v --- v card, (t) v card_ (¢).

This gives ¢, that is equivalent to ¢.

Step 2. Consider an atomic formula in ¢, of the form card (z),
xe {0, 1,..,m, >m} such that 1¢ J,. The term ¢ can be rewritten into an
equivalent term of the form 7, U --- U ¢, where ¢,, .., ¢, are pairwise distinct
terms in .

Then, for i€ {0, 1, .., m}, the atomic formula card,(¢) is replaced by

\Y/ {card, (1) A -+ Acard,(1,)/iy, .. €N i +iy+ - +i =1}
The atomic formula card . ,.(¢) is replaced by

\W/ {card(t;) A - A card (1,)/x,, ..,
x,€{0, 1, .., m, >m}, a(x, Xy, ., X;) >m}.
(In this formula, o(x,, Xx,, ..., X,) denotes the integer x{+ x5+ ---x},
where x;=x; if x;€ {0,.., m}, and x;=m+ 1 if x; is “>m”".)
We do this for all atomic formulas occurring in ¢,, and this gives a

formula ¢,, equivalent to ¢,. This formula is a Boolean combination of
atomic formulas in .« ,,,.

Step 3. We now eliminate the negation. It is sufficient to do this for
atomic formulas. Note that — (card . ,,(¢)) is equivalent to

cardy(7) v --- v card,, (¢)
and that —1(card,(¢)) is equivalent to

cardy(r) v --- v card,_((¢) v card, (1) v --- v card, (¢} v card _,(7),

if ie [0, m]. We can transform ¢, into an equivalent formula ¢,, that is a
disjunction of conjunctions of atomic formulas in %4 ,,.

Step 4. Let the obtained formula ¢ be of the form \}/{y /1 <i<r}.
Each of its composing conjunctions can be simpiified as follows:
If ¥, is of the form

- ncard (t) A oo Acard (£) A -

with x, y€ {0, 1, .., m, >m}, and x 3 y then it can be replaced by false. If
x =y, then one of these two atomic formulas can be deleted.

66 BRUNO COURCELLE

After finitely many steps, ; is transformed into an equivalent formula
W', no two atomic formulas of which concern a same set term in 7.

If every set term ¢ in 7, occurs in ¥/}, then ;€ B, ,,. Otherwise, if some
t does not occur in Y}, then ¥; can be replaced by

(Wi A cardo(2)) v (] A card,(2)) v - v (Y} A card . (1)),

Hence, after finitely many such replacements, ¢, is transformed into an
equivalent formula ¢4 in A ,,. |

(6.5) LEMMA. For every formula ¢ in £'({X,, .., X,}), one can find
meN and a formula ¢ in A, that is equivalent to .

Proof. By induction on the structure of ¢.
(1) If ¢ is atomic (or even quantifier-free) then the existence of m
and ¢ follows from Lemma (6.4).
(2) Let ¢ be of the form 3X,.,¢ (X, .. X, Xiy1) Let
@' € N, 1.m» be associated with ¢’, by way of induction.

Then ¢’ is \X/{0/1 <i<r}, where 0,€ %, , .. Hence ¢ is equivalent to
W{3X,, ;. 0/1<i<r}. Consider 6,. It is of the form

M\ {ujte 7},

where p, is of the form card, (1" X,) A card (1" X, ,) for some
X, x,€{0,1, ., m', >m'}.

Since the sets defined by the various terms ¢ in J, are pairwise disjoint,
3X, .. 0, is equivalent to

/X\{HXkJrl ‘ﬂz/’eg;}'
Now consider now the formula
3X ;. (card (1N X, 1) A cardx;(tﬁ/_/k+)

1t is equivalent to:
card, | (t) if x,xe{0,., m'}
card -, ,{#) if x,and x; are both “>m"™

card_ . (1) if x,€{0,.,m'} and x, is “>m
card ., , (1) if xje{0,..m'}, x is “>m".
Hence ¢ is equivalent to a formula in 9, ,, with m=2m’+ 1. By Lemma

(6.4) this formula can be transformed into an equivalent formula in 4, ,,
as wanted.

RECOGNIZABLE SETS OF FINITE GRAPHS 67

(3) If ¢ is a Boolean combination of formulas ¢, ..., ¢, such that the
associated formulas @, .., @, have been found in A, ., Ny pn,» TESPEC-
tively, then, the existence of @ in A}, with m=Max{m, .., m,} also
follows from Lemma (6.4).

@) If ¢ is YXe 10 (X1, o Xiy Xiiq), then it can be written
=3X, . [T (X, ., Xxi+1)] and the above cases (2) and (3), together
with Lemma (6.4) yield the desired resuit. |

Proof of Proposition (62). If pe L({X,}) defines card,,(X,) then is
equivalent to a formula in /47, for some m by Lemma (6.3), ie., to a
disjunction of formulas of the forms:

card,(X,) or
card _ ,.(X,) or
card (X,) or
card _, (X,).

The atomic formulas of the last three types allow X, to have an odd
number of elements. Hence they cannot appear. Hence ¢ is equivalent to

card, (X,) v --- v card, (X)).

Hence ¢ does not allow sets X, with an even number of elements larger
than Max{i,, .., i, }. This contradicts the initial assumption. ||

(6.6) COROLLARY. There exists a definable set of trees that is not
P-definable.

Proof. Let A consist of one symbol, a, of type 1. Let L= T(A) be the
set of trees of the form ajla| - -- || a with an even positive number of a’s. This
set is definable. Let us assume that it is #-definable. There exists a formula
¢ in #, | such that, for all Ge T(A4):

GEp<=Gel.

Let L’ be the set of trees of the form allallal ---||a, with an arbitrary
positive number of a’s. If Ge L', then the structure |G| is of the form
(Vg Eg,edg.,8,c> with Vo= {55}, Eg# J, edg,(e,s,;) =true for all
ee E. Furthermore, Ge L iff G|= ¢ iff Card(E;) is even.

The formula ¢ can be transformed into a closed formula ¢ belonging to
the set & introduced in Definition (6.1), such that for every G in L’

GkEo iff Ecka.

68 BRUNO COURCELLE

Hence, for every Ge L/, i.e., for every nonempty set E:

Gel iff

card(E;) is even iff
GEo iff

Ecko.

That E; = ¢ iff card(E,;) 1s even, contradicts Proposition (6.2). Hence L
is definable, but not #-definable. |

We now prove that the languages €. and # are equally powerful, for
expressing properties of finite structures, the domains of which are linearly
ordered by #-definable orderings. In order to avoid the introduction of
new notations, we state our result for a class of graphs. But its proof can
be extended to any class of finite many-sorted logical structures.

We fix 4 and k, and we let £(#") denote £, ,(#"), where %" is a finite
{v, e}-sorted set of object and set variables.

In the following proposition, we let pe £ (¥ u{x,y}), where
og(x)=0(y)and x, y¢ #". For every G in FG(A4),, for every # -assignment
vin G, we let pg, be the binary relation on V (or E;) such that

{(m,meps,: <(G,v,m m)E=p.

(In the right-hand side of this definition, we assume that m is assigned
to x, and that m’ is assigned to y.)
Finally, we let X be a set variable of sort a(x).

(6.7) PROPOSITION. For every p,qeN such that 0<p<q, and q=2,
one can contruct a formula ¢ in L(W v {X}), such that, for every G
in FG(A),, for every W -assignment v in G, if pg , is a linear order on Vg
(or on Eg, depending on the sort of X) then for every subset X of V (or of
E;):

Card(X)=p mod ¢ iff (G,v, X)Eo.

Proof. Without loss of generality, we assume that o(X)=v. Let Y, X",
X" be set variables of sort v, that are not in #.

Let G be such that p;, is a linear order on V;. We denote this order
by <.If X, YcV,, and ye Y, we let:

I(X,Y,y):={xeX/y<xand for all y'€ Y, either ' <y or x<y'},

i.e., is the set of elements of X greater than or equal to y and strictly less

RECOGNIZABLE SETS OF FINITE GRAPHS 69

than the successor of y in Y if it exists. It follows that if y, ye ¥, 7 y then
IX,Y,y)nI(X, Y,) =.

Observe that Card(X)=p mod ¢ iff there exists a partition
X,u - UX, uX" of X such that Card(X")=p, and Card(X,;)=gq for all
i=1,.,k

Claim. Card(X) = p mod q iff there exist X', X", and Y such that

X=X"UX" X'nX"'=g
Card(X")=p

X =U{IX, Y, y)yeY}

Card(/(X", Y, y))=¢ forall yeV.

The “if” direction follows from the fact that {I(X’,Y,y)/yeY} is a
partition of X', For the converse, let X be enumerated in increasing order
as {Xy, ., Xy, for some k>0. Then let X"= {Xkgs 1> s Xiga p b
X'=X~-X", and Y={x,,%,,1, . X 1441} Hence I(X',Y,x,,)=
{Xigr 1> Xigr2s s Xigy gy for i=0,.,k—1. 11

The conditions of the claim are expressible by a formula ¢ in
L{X, X', X", Y}). Hence the desired formula ¢ is 3X°, X", Y[y]. |}

If % is a family of k-graphs such that two formulas p in #({x, y}), and
p'in L({x’,y'}) with a{x)=0a(y)=v, a(x’)=0a(y’) =e are such that, for
every G in %, p g is a linear order on Vg, and pj, is a linear order on Eg,
then, every formula ¢ in €%, ,(#°) can be translated into a formula 6 in
Z..«(#") such that, for every G in %, every % -assignment v in G:

(G, VY= (G, V)0

It follows, then that, a subset L of ¢ is definable iff it is &-definable.

We shall apply this result to words, to ranked trees and to k-bounded
unordered unranked trees, but we first use it to compare €. to the full
(nonmonadic) second-order logic.

(6.8) Remark. Every formula of counting monadic second-order logic
can be translated into a equivalent formula of second-order logic, written
with existential quantifications over binary relations.

In order to prove this fact, we introduce two variables R, and R,,
denoting binary relations on the domains of sorts v and e, respectively. One
can construct first-order formulas ¢, and ¢, expressing that R, and R, are
linear orders.

Hence, a formula {y of .%(#") can be translated into the formula

HRU’ RF[¢U A (pf A 0]

70 BRUNO COURCELLE

of second-order logic, where 6 is the translation of i, done with the
technique of Proposition (6.7), in terms of the linear orders R, and R,.

Application to words

A word in A* is considered as a graph in FG(A4),, where the symbols
of A are of type 2. The word abac is identified with the graph:

lo—s el re—tse_ 342

We denote by W(4) the subset of FG(4),, consisting of all graphs
corresponding to words in the above sense. Note that W(A4) is #-definable.
Linear orders on V; and E., where G e W(A4) can be defined as follows.

A vertex x is “smaller” than a vertex p if there exists a simple path
from x to y, and this relation is #-definable by Proposition (3.8).

An edge e is “smaller” than e’ if vertg(e, 1) is “smaller” than
vert;(e’, 1).

Hence Proposition (6.7) can be applied to words. For every L < A*, we
also denote by L the corresponding subset of W(A4).

(6.9) PROPOSITION. For every language L = A%, the following conditions
are equivalent:
(1) L is &-definable,
(2) L is definable,
(3) L is A*-recognizable, hence is a regular language,
(4) L is FG(A)-recognizable.

Proof. (1)< (3) is known by Biichi [4].

(1) < (2) is a consequence of Proposition (6.7).
(3) <= (4): as in Theorem (5.3).

(1) = (4) follows from Theorem (4.4). |

Application to Ranked Trees

Ranked trees, 1.e., terms can be treated in a similar way. Let F be a one-
sort signature. Each symbol f of F has a rank p(f) in N, i.e., a number of
arguments. The elements of M(F), called terms, are usually identified with
finite ordered trees. These trees are not graphs in our sense, but we can
define a one-to-one mapping making any term ¢ in M(F) into a graph H(z)
belonging to FG(F),.

RECOGNIZABLE SETS OF FINITE GRAPHS 71

\
. e '
H(t,) H(t,) H(ty)
FiGure 9

Let us define the type t(f) of fin F as p(f)+ 1. We give the inductive
definition of the graph H(t) associated with an element ¢ of M(F):

If t=a, p(a)=0, then H(t)=a.

If t=f(t,...t), k=p(f)=1 then H(¢) is obtained by connecting
H(:,), H(z,), .., H(z,) by their sources by means of a new hyperedge
labeled by f. The source of H(t;) is identified with the ith vertex of this new
hyperedge. {The case k =3 is shown on Fig. 9).

Formally, this can be written:
H(t) =0y 1(85(H(1;)® --- ®H(1,) /),

where § is the equivalence relation on [2k+1] generated by
{(1k+1), ..., (k 2k)}.

The graph H(f{g{a, a), a)), where p(f)=p(g)=2, p(a)=0is shown on
Fig. 10.

We denote by R(F) the set {H(¢)/te M(F)}. It is not hard to prove that
R(F) 1s ¥-definable.

Oz

b

FiGUure 10

72 BRUNO COURCELLE

The postorder is the linear order on V; that we can define as follows, for
G in R(F). If G=H(f{t,, .., 1)), if v, v €V, then v < v’ iff:

either v’ is the source of G or

v and v’ belong both to H(¢,) for some ie[k], and v <v' w.r.t. H(¢,)
or

v belongs to H(¢;), and v" belongs to H(z,) for some i, je [k], i<}

For edges ¢ and ¢’ of G, one lets

e < e iff vert(e, 1(e)) < vertg(e', t(e')).

It is not hard to establish that these relations are linear orders and that
they are #-definable. Hence we have the following result, where L denotes
{H(?)/te L} for every subset L of M(F).

(6.10) PROPOSITION. For every subset L of M(F), the following condi-
tions are equivalent:

(1Y L is #-definable,

(2) L is definable,

(3) L is M(F)-recognizable,
(4) L is FG(A)-recognizable.

Proof. (1)< (3) is known from Doner [16] (see Thomas [29,
Theorem (11.1)]). The other equivalences are as in Proposition (6.9). ||

Application to k-bounded (Unordered) Trees

Let 4 be as in Section 5. A tree G in T(A) is k-bounded, where ke N |
if, for every vertex v of G, the set out(v) := {ec E/vert (e, 1) =0} is of car-
dinality at most k. We denote by T,(4) the set of k-bounded trees over A.
This set is &-definable.

Let GeT,(A4). A partition = of E; in k classes is good, if no two edges
of any set out(v) belong to the same class. From every good partition
n=(X,,.., X;)of Eg, one can define linear orders on V; and E, as follows:

v< v iff, either there exists a path from v to v’ or
v="0v" or
there exist two edges e, ¢ such that ecX,, e'€X, with i<,

vert.(e, 1) =vertg(e’, 1), and there exist paths from vertg(e, 2) to v, and
from vertg(e’, 2) to v'.

RECOGNIZABLE SETS OF FINITE GRAPHS 73

e< e iff, either e=e¢’ or

vertg(e, 1) < vertg(e’, 1) or

vert;(e, 1)=vertg(e', 1) and ee X, '€ X,

i<j.

These two linear orders are defined by two formulas, respectively,
p (belonging to %, ,({v,v,Xy,..,X,})) and p' (belonging to
Zi({e e, Xy, ..., Xi})), where v, v’ are variables of sort v and e, ¢’ are
variables of sort e.

(6.11) PROPOSITION. For a subset L of T,(A), the following conditions
are equivalent:
(1) L is ¥-definable,
(2) L is definable,
(3) L is FG(A)-recognizable.
Proof. (2)=(1) Let L<T,(A4) be definable. Let %%, ,, be a
formula defining it. Let 6 € %, ,({X, .., X, }) be a formula expressing that
(Xi, .., X;) i1s a good partition. Let ¢ € &, ,({X, .., X, }) be the formula

that translates ¢, according Proposition (6.7), by means of p and p’. Then,
for every GeT,(A),

Geo iff G=3Xy, .. X.[0AY)

Hence, L is ¥-definable.
(1)=(3) and (3) = (2) are consequences of Theorem (5.3). |

ACKNOWLEDGMENTS

I thank J. Engelfriet, F. Jaeger, A. Meyer, G. Rozenberg, D. Seese, W. Thomas, and
E. Welzl, for helpful remarks and suggestions.

REeCEIVED February 27, 1987; FINAL MANUSCRIPT RECEIVED March 7, 1989

REFERENCES

1. ARNBORG, S., LAGERGREN, J., AND SEESE D. (1988), Problems easy for tree decomposable
graphs, in “Proceedings, ICALP 88, Tampere,” Lecture Notes in Computer Science,
Springer-Verlag, Berlin/New York. Vol. 317, pp. 38-51.

2. BAUDERON, M., anD CoURCELLE, B. (1987), Graph expressions and graph rewritings,
Math. Systems Theory 20, 83-127.

3. BopLAENDER, H. (1988}, Dynamic programming on graphs with bounded tree width, i
“Proceedings, ICALP '88, Tampere,” Lect. Notes Comput. Sci., Vol. 317, pp. T05-118.

74

10.

11.

12.

13.

14.

20.
21.

22,

23.

24,

BRUNO COURCELLE

. BUchi, J. (1960), Weak 2nd order logic and finite automata, Z. Math. Logik Griindlag.

Math. 5, 66-92.

. COURCELLE, B. (1986), Equivalences and transformations of regular systems. Applications

to recursive program schemes and grammars, Theorer. Comput. Sci. 42, 1-122.

. COURCELLE, B. (1987), An axiomatic definition of context-free rewriting and its applica-

tion to NLC graph grammars, Theoret. Comput. Sci. 55, 141-181.

. CourceLLE, B. (1987), A representation of graph by algebraic expressions and its use for

graph rewriting systems, in “Proceedings, 3rd International Workshop on Graph
Grammars,” Lect. Notes Comput. Sci., Vol. 291, pp. 112-132, Springer-Verlag, Berlin/
New York.

. COURCELLE, B. (1987), On context-free sets of graphs and their monadic second-order

theory, Lect. Notes Comput. Sci, Vol. 291, pp. 133-146, Springer-Verlag, Berlin/
New York.

. COURCELLE, B. (1988), On using context-free graph grammars for analyzing recursive

definitions, in “Programming of Future Generation Computers II” (K. Fuchi and L. Kott,
Eds.), pp. 83-122, North-Holland-Elsevier, Amsterdam.

CoUrciLLE, B. (1989), On recognizable sets and tree automata, in “Resolution of
Equations in Algebraic Structures” (H. Ait-Kaci and M. Nivat, Eds.), Academic Press,
New York.

CoOURCELLE, B. (in press), Graph rewriting: an algebraic and logical approach, in
“Handbook of Theoretical Computer Science” (J. Van Leeuwen, Ed.), Elsevier, Amsterdam.
CoURCELLE, B. (1989), The monadic second-order logic of graphs: Definable sets of finite
graphs, in “Workshop on Graph Theoretical Concepts in Computer Science, Amsterdam,
June 1988,” Lect. Notes Comput. Sci., Vol. 344, pp. 30-53, Springer-Verlag, New York/
Berlin.

CouRrceLLE, B. (1989), The monadic second-order logic of graphs. IL. Infinite graphs of
bounded width, Math. Systems Theory 21, 187-221.

CourceLLE, B. (1988), “The Monadic Second-Order Logic of Graphs. III. Tree-
Width, Forbidden Minors and Complexity Issues,” Report 8852, Bordeaux-1 University,
submitted for publication.

. COURCELLE, B. (1988), “The Monadic Second-Order Logic of Graphs. IV. Every Equa-

tional Graph Is Definable,” Research Report 8830, submitted for publication.

. DONER, J. (1970), Tree acceptors and some of their applications, J. Comput. System Sci.

4, 406451,

. EdriG, H., AND MAHR, B. (1985), “Fundamentals of Algebraic Specification,” Springer-

Verlag, Berlin.

. EILENBERG, S., AND WRIGHT, J. (1967), Automata in general algebras, Inform. and Control

11, 52-70.

. GalFMaNN, H. (1981), Local and non-local properties, “Logic Colloquium (Herbrand

Symposium)” (J. Steen, Ed.), pp. 105-135, North-Holland, Amsterdam.

GEecseG, F., AND STEINBY, M. (1984), “Tree Automata,” Akad. Kiado, Budapest.

HABEL, A., AND KREOWSKI, H. J. (1987), May we introduce to you, Hyperedge replace-
ment, Lect. Notes Comput. Sci., Vol. 291, pp. 15-26, Springer-Verlag, Berlin.

Jounson, D. (1985), The NP-completeness column: An on-going guide (16th),” J. Algo-
rithms 6, 434451,

LAUTEMANN, C. (1988), Efficient algorithms on context-free graph grammars, in
“Proceedings, I[CALP ’88,” Lect. Notes Comput. Sci,, Vol. 317, pp. 362-378, Springer-
Verlag, Berlin/New York.

LENGAUER, T., AND WANKE, E. (1988), Efficient analysis of graph properties on context-
free graph languages, in “Proceedings, ICALP 88, Lect. Notes Comput. Sci.,, Vol. 317,
pp. 379-393.

25.

26.

27.

28.

30.

31

RECOGNIZABLE SETS OF FINITE GRAPHS 75

MEzEl, 3., AND WRIGHT, J. (1967), Algebraic automata and context-free sets, Inform. and
Control 11, 3-29.

RozENBERG, G. AND SaLomaa, A. (1980), “The Mathematical Theory of L Systems,”
Academic Press, New York.

Seese, D. (1975), Ein Unentscheidbarkeitskriterium, Wiss. Z. Humbold-Univ. Berlin
Math.-Natur. Reich. 24, 772-780.

Seesg, D. (in press), The structure of the models of decidable monadic theories of graphs,
Annals of Pure Appl. Logic.

. THoMAS, W. (in press), Automata on infinite objects, in “Handbook of Theoretical Com-

puter Science” (J. Van Leeuwen, Ed.), Elsevier, Amsterdam.

TRAHTENBROT, B. (1950), Impossibility of an algorithm for the decision problem on finite
classes, Doki. Nauk. SSSR 70, 569-572.

WIRSING, M. (in press), Algebraic specification, in “Handbook of Theoretical Computer
Science” (J. Van Leeuwen, Ed.), Elsevier, Amsterdam.

643/85/1-6

