
INFORMATION AND COMPUTATION 85, 12-75 (1990) 

The Monadic Second-Order Logic of Graphs. 
I. Recognizable Sets of Finite Graphs* 
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The notion of a recognizable sef offinite graphs is introduced. Every set of finite 
graphs, that is definable in monadic second-order logic is recognizable, but not vice 
versa. The monadic second-order theory of a context-free set of graphs is 
decidable. 0 19W Academic Press. Inc. 

This paper begins an investigation of the monadic second-order logic of 
graphs and of sets of graphs, using techniques from universal algebra, and 
the theory of formal languages. (By a graph, we mean a finite directed 
hyperedge-labelled hypergraph, equipped with a sequence of distinguished 
vertices.) A survey of this research can be found in Courcelle [ 111. 

An algebraic structure on the set of graphs (in the above sense) has been 
proposed by Bauderon and Courcelle [2,7]. The notion of a recognizable 
set of finite graphs follows, as an instance of the general notion of 
recognizability introduced by Mezei and Wright in [25]. 

A graph can also be considered as a logical structure of a certain type. 
Hence, properties of graphs can be written in first-order logic or in second- 
order logic. It turns out that monadic second-order logic, where quantifica- 
tions over sets of vertices and sets of edges are used, is a reasonably 
powerful logical language (in which many usual graph properties can be 
written), for which one can obtain decidability results. These decidability 
results do not hold for second-order logic, where quantifications over 
binary relations can also be used. 

Our main theorem states that every definable set of finite graphs 
(i.e., every set that is the set of finite graphs satisfying a graph property 
expressible in monadic second-order logic) is recognizable. 

* This work has been supported by the “Programme de Recherches Coordonntes: Mathe- 
matiques et Informatique.” 

’ Unite de Recherche Associee au CNRS no 726. Electronic mail: courcell@geocub.greco- 
prog.fr. 

12 
0890-54O1/90 $3.00 
Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



RECOGNIZABLE SETS OF FINITE GRAPHS 13 

It follows, in particular, that the monadic second-order theory of a 
context-free set of graphs is decidable. (The notion of a context-free set of 
graphs is introduced in Bauderon and Courcelle [2,8], by means of 
context-free graph-grammars, that are essentially the hyperedge-replacement 
graph-grammars of Habel and Kreowski [21 I). 

It is known that a set of words, or of finite ranked trees, is definable iff 
it is recognizable with respect to the appropriate algebraic structure. (These 
results have been established respectively by Biichi [4] and Doner [16]. 
We also refer the reader to Thomas [29]). 

In the case of graphs, some recognizable sets are not definable. But we 
extend the result of Doner, by proving that a set of unordered unbounded 
trees is recognizable iff it is definable. In this extension, the notion of 
definability is taken w.r.t. a strict extension of monadic second-order logic, 
that we call the counting monadic second-order logic. In this new language, 
special atomic formulas are introduced to test whether the cardinality of a 
set is equal to p modulo q. Our main theorem is actually proved for this 
extended logic. 

We now sketch the organization of the paper, and we present its main 
definitions and results. Section 1 is devoted to algebraic preliminaries. The 
notion of a recognizable set in a many-sorted algebra is introduced. It is an 
obvious extension of the notion defined in Mezei and Wright [25] for 
one-sorted algebras. The notion of an equational set extends similarily 
the notion defined in [25]. The intersection of an equational and a 
recognizable set is equational. This result extends the classical one saying 
that the intersection of a context-free language with a regular one is 
context-free. 

Section 2 defines graphs and the operations on graphs. They form the 
algebraic structure introduced in Bauderon and Courcelle [2, 71. The 
length of the sequence of distinguished vertices of a graph is called its type. 
By means of three infinite sets of operations (defined in terms of three 
operation schemes), one obtains a many-sorted algebra of graphs. The set 
of sorts is N, and the domain of sort n is the set of graphs of type n. 

With respect to this algebraic structure, the equational sets of graphs 
coincide with the context-free ones (this is proved in Bauderon and Cour- 
celle [2]). The family of recognizable sets of graphs is uncountable and is 
incomparable with the family of equational sets. This fact shows a major 
difference from the case of words. 

In Section 3, graphs are considered as logical structures. The counting 
monadic second-order logic and the associated definable sets of graphs are 
introduced. 

The main result of this paper is proved in Section 4. It says that every 
definable set of graphs is recognizable. It follows that, for every graph 
property expressible in counting monadic second-order logic, the set of 
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graphs satisfying this property, and belonging to a given context-free set of 
graphs forms a context-free set. One can decide whether such a property 
holds for all graphs of a given context-free set. 

Section 5 deals with unordered unboundedfinite trees. These trees should 
be contrasted with the finite ordered ranked trees, classically introduced as 
graph representations of terms. We prove that a set of finite unordered 
unbounded trees is recognizable iff it is definable (in counting monadic 
second-order logic). 

In Section 6, we prove that the counting monadic second-order logic is 
strictly more powerful than the “ordinary” one, in arbitrary logical struc- 
tures. The two languages are equally powerful for classes of finite logical 
structures where linear orders are definable in monadic second-order logic. 
Since such orders are definable in the structures representing words and 
ranked trees, the “counting feature” is unnecessary in the proofs of the 
afore-mentioned results by Biichi [4] and Doner [ 161. On the other hand 
it is necessary in the analogous result for unbounded unordered trees, that 
we give in Section 5. 

These algebraic and logical investigations are extended in Courcelle [ 13, 
151 to countable graphs. Applications are given in Courcelle [12, 141 
concerning finite and countable graphs. Applications to the analysis of 
recursive definitions are given in Courcelle [9]. The monadic second-order 
theory of the sets of graphs defined by context-free node labeled controlled 
graph grammars (a restriction of a class originally defined by Janssens and 
Rozenberg) is proved to be decidable by a similar technique by Courcelle 
C61. 

1. ALGEBRAIC PRELIMINARIES 

We first review a few general mathematical notations. 
We denote by N the set of non-negative integers, and by N +, the set of 

positive ones. We denote by [n] the interval { 1, 2, 3, . . . . n> for n B 0 (with 
[0] = a). We denote by [i,j] the set {k E N/i < k <j}. We write p = n 
modq ifp=n+kq, where O<n<q, kEN. 

The domain of a partial mapping f: A + B is denoted by Dam(f). The 
restriction off to a subset A’ of A is denoted byf rA’. The partial mapping 
with an empty domain is denoted by 0, as the empty set. If two partial 
mappings f: A -+ B and f ': A’ + B coincide on Dam(f) n Dom(f ‘), we 
denote by f  uf’ their common extension into a partial mapping: 
A u A’ + B with domain Dom( f) u Dom( f '). 

The cardinality of a set A is denoted by Card(A). The powerset of A is 
denoted by S(A). An equivalence relation is finite if it has finitely many 
classes. 
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The set of nonempty sequences of elements of a set A is denoted by A +, 
and sequences are denoted by (a,, . . . . a,) with commas and parentheses. 
The empty sequence is denoted by ( ), and A* is A + u (( )}. When A is 
an alphabet, i.e., when its elements are letters, then a sequence (a,, . . . . a,) 
in A+ can be written unambiguously u1u2 ... a,,. The empty sequence is 
denoted by E, a special symbol that is reserved for this purpose. The 
elements of A* are called words. The length of a sequence p is denoted 
by IPI. 

A set A is effectively given if it is given together with a recursive subset 
IjAIl of N, and a bijection cA : A -+ lIA/l. From this assumptions, one cannot 
decide whether A is finite, but if A is given as a finite list of elements, then 
it is effectively given. 

When we say: “let A be a finite set,” we mean that A is given as a list 
of elements. 

A mapping f :A, x ... x A,,+ B is computable if A,, . . . . A,,, B are 
effectively given and f(u, , . . . . a,) = ce’( IlfII(cA,(u,), . . . . ~,,,(a,))) for all 
a, E A , , . . . . a, E A,, where I/f II is a given total recursive mapping: 
IIA, II x ... x IIAn II -+ IIBII. 

We shall use := for “equal by definition,” i.e., for introducing a new 
notation, or a definition. The notation :CS will be used similarly for 
defining logical conditions. 

(1.1) DEFINITION. Many-sorted magmas. As in many other works, we use 
the term magma for what is usually called an algebra. The words “algebra” 
and “algebraic” are used in many different situations with different 
meanings. We prefer to avoid them completely and use fresh words. For a 
set we shall use the term “equational” introduced by Mezei and Wright 
[25] rather than the term “algebraic” introduced by Eilenberg and Wright 
Cl81. 

Many-sorted notions are studied in detail in Ehrig and Mahr [ 171 and 
Wirsing [ 3 11. We mainly review the notations. We shall use infinite sets of 
sorts and infinite signatures. For this reason, we need to pay a certain 
attention to effectivity questions. 

Let Y be a set called the set of sorts. An Y-signature is a set I; given with 
two mappings ~1: F+ ,Y* (the urity mapping), and c F-+ Y (the sort 
mapping). The length of cc(f) is called the rank off, and is denoted by 
p(f). The profile of ,f in F is the pair (cc(f), a(f)) written sI x s2 x . . . x 
s, --+ a(f), where CC(~) = (sl, . . . . 3,). 

An F-magma (i.e., an F-algebra in the sense of [ 173 and [ 311) is an 
object M = ((M,),, .4r, (fM)EF)), where M, is a nonempty set, for each s 
in Y, called the domain of sort s of M, and fM is a total mapping: 
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M U) -+ Mm for each f~ F. (For a sequence p = (sl, . . . . s,) in 9’ + , we let 
M, := M,, x M,, x . . . x MSn.) 

It is effectively given if Y, F, and the sets M, are effectively given, and 
if the mappings a, (T, and the mapping associating f,(d,, . . . . dk) with every 
(f, 4, . . . . 4) in Fx (U{W~EY))* such that k = p(f) and di E M, for all 
i= 1, . . . . k are computable. 

If M and M’ are two F-magmas, a homomorphism h: M -+ M’ is a 
family of mappings (hs)sE,Y. such that h, maps M,Y into M:, and the 
operations of F are preserved in a well-known way. 

We denote by M(F) the initial F-magma, and by M(F), its domain of 
sort S. This set can be identified with the set of weil-formed ground terms 
over F. It is effectively given if Y and F are effectively given, and if a and 
c are computable. 

We denote by h, the unique homomorphism: M(F) --f M, where M is an 
F-magma. If t E M(F),, then the image of t under h, is an element of M,?, 
also denoted by t,. One considers t as an expression denoting tM, and t, 

as the value of t in M. W’e say that F generates M if every element of M 
is the value tM of some term t in M(F). 

If M is effectively given, then h, is computable. If, furthermore, M is 
generated by F, then a computable mapping k,: M -+ M(F) defining, for 
every element of M a term denoting it, can be defined by the following 
algorithm: given d in M, one enumerates M(F), and for every term t, one 
computes t, . The term k,(d) is the first one such that tM = d. 

An Y-sorted set of variables is a pair (X, IJ) consisting of a set X, and 
a sort mapping c: X -+ 9’. It is more simply denoted by 9. We denote by 
M(F, X), the set of well-formed terms of sort s, written with Fu LE. Hence, 
M(F, X), = M(Fu X),. 

When X is the set {x1, x2, . . . . x,, . . . ), we denote by X, the subset 
{.X1> x2, ..., x,} of X, ordered in this way. If t E M(F, Xk)s, we denote by t,,, 

the mapping: M, -+ M, (where p = (a(~,), . . . . I)), associated with t in a 
classical way. We call it a derived operation of M. If k is known from the 
context, we write 1, instead of t,,,. 

If tEM(F, !&), t,, . . . . t, E M(F, X) with a(t,) = a(~,) for i= 1, . . . . k, then 
tCt,lx,, ...> tk/xk] denotes the result of the simultaneous substitution of t, 

for x1, . . . . tk for xk in t. We also use the notation t[t,, . . . . tk] if the sequence 
X I, . . . . xk is clear from the context. If t, , . . . . t, E M(F, Xn), then, for every 
F-magma M, we have 

tCt,> ...> tklM,n= tM,k”(tlM,n, ...) tkM.n). 

For s, r E 9, we let Ctxt(F),, denote the set of elements of M(F, {u})~ 
having one and only one occurrence of u, where u is a variable of sort s. 
If c~Ctxt(F),,, and tEM(F, {x,, . . . . x~))~ then c[t] :=c[t/u] is an element 
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t’ of M(F, {x,, . . . . xk}),.. We say that c is a context of t in t’. If M is 
an F-magma and CE Ctxt(F),T,,, then c, is a mapping M, -+ M, and 
c[tlm = clvIo tM. The specific variable u is irrelevant, and the notation 
Ctxt(F),, avoids mentioning it explicitly. 

A term is Linear if each variable occurs at most once. 
When writing terms, we shall use the prefix notation with parentheses 

and commas, but we shall frequently omit the parentheses surrounding the 
unique argument of a monadic function symbol. Hence we shall use the 
simplified notation fgfh(x,fjc) for f( g(f(h(x,f(x))))). 

(1.2) DEFINITION. Polynomial systems and equational sets. Polynomial 
systems have been introduced (under the name of “systems”) in Mezei and 
Wright [25]. Let 9, F be as above. We augment F into F, by adding, for 
every sort s in 9, a new symbol + s of profile: s x s --* s, and a new constant 
Q, of sort s. 

With M as above we associate its power-set magma: 

where for A , , . . . . Ak c M,$, , . . . . M,T, : 

A,+ J.e(,w,Az:==A, uAz (where s = s, =sJ, 

fAM)(A1, . . . . Ak) := {fM(a,, . . . . ak)/al E A,, . . . . akE Ak} 

(where oz(f) = (s,, . . . . So)), and 

Hence g(M) is an F+-magma. 
A polynomial system over F is a sequence of equations 

S= (u, =pI, . . . . un=pn), where U= {u,, . . . . u,} is the Y-sorted set of 
unknowns. Each pi is a polynomial, i.e., a term of the form SL, or 

t, +>t,+,... f,f, 

where the t,‘s (called monomials) belong to M(Fu U),, with s = a(~,). The 
subscript s is usually omitted in +,s and in Q,Y. 

A mapping S,(,,: ~PL,,, )x . . x Y(M,,,,) into itself is associated 
with S and M as follows: for A, c M,(,,), . . . . A,, c MOcUnJ, 

%(,)(A,, ..., A,) = (Ai, . . . . A;), 

where A:=piPcMj(Al, . . . . A,,) for i= 1, . . . . n. 
A solution of S in B(M) is an n-tuple (A,, . . . . A,,) such that 



18 BRUNO COURCELLE 

(A 1, . . . . A,) = hq~)(A,, . . . . A,). Such a system has a least solution in B(M) 
w.r.t. set inclusion, denoted by (L((S, M), ur), . . . . L((S, M), u,)). The com- 
ponents of the least solution in P(M) of a polymonial system are the 
M-equational sets. We denote by Equat(M) the family of M equational sets. 

Every set of the form L((S, M), U’) := U (L((S, M), u)/u E U’> where U’ 
is a set of unknowns all of the same sort, is M-equational. We write 
L(S, ui) and L(S, U’) instead of L((S, M(F)), ui) and L((S, M(F)), U’), 
respectively. Furthermore, L((S, M), ui) = 0 iff L(S, ui) = 0, and this 
property is decidable. We refer the reader to Courcelle [S] for a thorough 
study of polynomial systems. 

(1.3) DEFINITION. Recognizable sets. The notion of a recognizable set is 
due to Mezei and Wright [25]. Let F and Y be as above. An F-magma A 
is locally finite if every domain A,v, s E Y, is finite. 

Let M be an F-magma and s E Y. A subset B of M, is M-recognizable if 
there exists a locally finite F-magma A, a homomorphism h: M + A, and a 
(finite) subset C of A, such that B = h-‘(C). The pair (h, A) is called a 
semi-automaton, and the triple (h, A, C) is called an automaton. Intuitively, 
C is the set of “final states” of a deterministic automaton. 

A set BE M, is effectively M-recognizable if M is effectively given, and 
if it is delined by an effectively given automaton, i.e., an automaton 
(h, A, C), where A and C are effectively given, and h is computable. (These 
conditions imply that one can decide whether an element of M, belongs 
to B). 

We denote by Ret(M), the family of M-recognizable subsets of M,. 
The recognizable subsets of M(F), where F is a finite signature, can be 

characterized by tree-automata of various types (top-down or bottom-up, 
deterministic or not; see Gecseg and Steinby [20]). The classical identifica- 
tion of terms with finite ordered ranked trees explains the qualification of 
“tree’‘-automaton. But there are several other notions of trees. More 
precisely there are several theories of trees as shown in Courcelle [lo]. 
Appropriate notions of tree automata are defined in [lo]. 

Recognizable sets can also be characterized in terms of congruences. A 
congruence on M is a family - = ( - ,),, Y, where ws is an equivalence 
relation on M, for every SE 9, and such that, for every fE F of 
profile s, x s2 x . . . x s, -+ t, if d, ws, &,, . . . . d, -$” di, then f,(d,, . . . . d,) -! 
Mdl, . . . . 4). 

A classical construction associates with M and N as above, a quotient- 
magma Ml-, and a surjective homomorphism h: M + M/- . 

A congruence - on M is locally finite, if each equivalence relation ws 
is finite. 
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A subset L of M, is saturated w.r.t. - (or ---saturated) if, for every d, 
d’ E M,, if d belongs to L and d w s d’, then d’ also belongs to L. 

We prove below (Proposition (1.5)) that a subset L of M, is 
M-recognizable iff it is saturated w.r.t. a locally finite congruence on M. 
This generalizes a well-known characterization of recognizable languages. 
The notion of syntactic congruence can also be generalized to arbitrary 
subsets of M, and yields another characterization of M-recognizable sets. 

Let L EM,. We associate with L a congruence w  L = (w L,s)sG y on M 
as follows: 

for d, d/EM,: 
dwL,., d’ iff 
for all n, for all linear term t in M(F, {x,, . . . . x,}), such that a(xl) =s, 
for all d2, . . . . d, in MOcyZj, . . . . M,,,nj : 

tddr 4, . . . . d,) E Lo tM(d’, d,, . . . . d,) E L. 

The congruence N L is called the syntactic congruence of L. In the special 
case where F generates M, the elements d,, ,.., d,, are defined by terms, 
hence, they can be “merged in t.” In other words 

d-d’ iff, for all t E Ctxt(F),,: t&d) EL o tM(d’) E L. 

(1.4) DEFINITION. Inductive sets of predicates. By a predicate on a set A, 
we mean a mapping A -+ (true, false). If M is a many-sorted F-magma 
with set of sorts Y, a family of predicates on M is an indexed set {p/p E P}, 
such that each p in P has a sort a(p) in Y, and each fi is a predicate on 
M o(pj. Such a family will also be denoted by P. For pi P, we let 
L, = {de M,,,,/fi(d) = true}. 

The family P is locally finite if, for each s E Y, the set (p E P/a(p) = s} 
is finite. 

It is F’-inductiue, where F’ E F, if for every f in F’ of profile 
s,xs2x ... xs,-+s, for every pEP of sort s, there exist m,,...,m, in N, 
there exists an (m, + . . . + m,)-place Boolean expression B, and a sequence 
of Cm,+ ... +m,) elements of P, (P~,,~...,P~,~,~P~.,,...,P~,~~,...,P~,~,), 
such that: 

(1) ~(p,~)=s~for allj=l,...,mj 

(2) for all d, E M,Y,, . . . . d, E M,#: 

$(fidd, 3 . . . . 4,)) = WJ.,(dtL . ..y B,,,,(4), B2,m~(4L D,,mn(dn)l. 

The sequence (4 pl, 1 ,..., pz. 1 ,..., P,,,,) is called a decomposition of p 
w.r. t. f: 
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In words, the existence of such a decomposition means that the validity 
of p for any object of the form f,(di, . . . . d,) can be determined from the 
truth values for d r, . . . . d,, of finitely many predicates of P, in a way that 
depends only on p and f: 

(1.5) PROPOSITION. Let M be an F-magma. For every SE Y, for every 
subset L of M,Y, the following conditions are equivalent: 

(i) L is M-recognizable, 

(ii) L is saturated w.r.t. a locally finite congruence on M, 

(iii) the syntactic congruence of L is locally finite, 

(iv) L = L, for some predicate p belonging to a locally finite, F-induc- 
tive family of predicates on M. 

Proof: (i) =+ (iv) Let L = h-‘(C) c M, for some automaton (h, A, C). 
We can assume that the, domains of A are pairwise disjoint. We let then 
P= UCWW u (~1. 

Each element a of A, is of sort t (considered as a member of P), and p 
is of sort S. For dE M,, and a E A,, we let: 

d(d) = true if h(d)=a, 

= false otherwise. 

For dEM,, we let 

d(d) = true if h(d)E C, 

= false otherwise. 

It is clear that P is locally finite. It is not hard to prove that it is F-induc- 
tive, and, clearly, L = L,. 

(iv) =S (ii) Let P be a locally finite F-inductive family of predicates. 
The relations such that 

dNSd’:~d,d’~M,,j3(d)=~(d’) for all p E P of sort s 

are equivalence relations on the sets M,. Each of them has finitely many 
classes since P is locally finite. The family - = (-,),, y is a congruence 
since P is F-inductive (the verification is straightforward), and, for every p 
in P, the set L, is saturated w.r.t. -. 

(ii) => (i) If L is saturated w.r.t. a locally finite congruence - on M, then 
one takes (h, M/-, h(L)) as an automaton defining L, where h is the 
canonical surjective homomorphism: M + M/- . 
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(iii) * (ii) Holds trivially. 

(ii) s (iii) If L is --saturated, then - c wL. Hence -L is locally finite 
if L is. 1 

A locally finite and F-inductive family of predicates P on an F-magma M 
is effectively locally finite and F-inductive if the following conditions hold: 

(1) M and P are effectively given, 

(2) the mappings CT and 0-I (a-’ is such that C’(S)= 
{ p E P/a(p) = s} ) are computable, 

(3) the mapping: P x u { M,/s E Y} + {true, false) associating b(d) 
with p E P and dE Mo,pJ is computable. 

(4) there exists an algorithm producing a decomposition of p w.r.t. JI 
for every f in F and p in P. 

(1.6) PROPOSITION. Let M be an effectively given F-magma. An 
M-recognizable subset L of M, is effectively M-recognizable ijf L = L,, for 
some predicate p of sort s belonging to an effectively locally finite and 
F-inductive family of predicates on M. 

Proof. Only if. By (i) =z. (iv) of the proof of Proposition (1.5). 
If. Let P be an effectively locally finite and F-inductive family of 

predicates on M. 
For every SEY, we let P, be the finite set C’(S), we let 0, be the set 

of all functions: P, -+ {true, false}, and we let tv be the mapping M, -+ 0, 
such that tv(m) is the mapping p HP(m), for all m E M,, p E P,. 

From the hypothesis that P is effectively F-inductive, it follows that one 
can determine for every f E F, a mapping fs such that: 

tv(fdm,, . . . . mk)) =f&tv(mI ), . . . . tv(m,)) for all (m,, . . . . mk) E MN{/,. 

Hence 0 = ((O,),, Y, (f,)f,F) is an F-magma and tv is a 
homomorphism M --) 0. Hence (tv, 0) is a semi-automaton, since 0 is 
locally finite. We have L, = tv-I(@‘), where 0’ = (0 E O/O(p) = true}. 
Hence L, is effectively M-recognizable. 1 

(1.7) PROPOSITION. Let M be generated by F. A subset L of M, is 
M-recognizable iff h,‘(L) is M(F)-recognizable. Furthermore, if M is 
effectively given, and if L is effectively M-recognizable then h,‘(L) is 
effectively M(F)-recognizable. The converse holds if F is finite. 

Proof: We first prove the “only if’ directions. If L = h-‘(C) for some 
homomorphism h: M.+ A, where A is locally finite, then h,‘(L) = 
(hoh,)-l(C), and, since hoh, is a homomorphism: M(F) + A, the set 
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h;‘(L) is M(F)-recognizable. If h is computable, then so are h, as 
observed in Definition ( 1.1 ), and hoh,. Hence h,‘(L) is effectively given 
in L is. 

Let conversely L c M, be such that T=hhl’(L) is M(F)-recognizable. 
We have T= hi i(C), where A is the locally finite F-magma M(F)/- 7, and 
C is some subset of A,. 

Let a, a’ E M,Y. Then a -L,s a’ iff for all c E Ctxt(F),,: 

CM(U) E L 0 c,(a’) E L. 

But, for every t E M, such that t, = a, 

c,(u)ELoc[t]Eh,‘(L)= T. 

Hence for any two terms t and t’ such that t, = a and t;M = a’, 

a -L.s a’ iff t-r,* t’. 

This proves that - L,s and - T..s have the same number of classes. Hence 
L is recognizable, and furthermore M(F)/ - T is isomorphic to M/ -L. 

If, furthermore, F is finite, then M(F)/ - T is computable and defines an 
automaton recognizing L. 1 

(1.8) PROPOSITION. The emptiness of an effectively given M-recognizable 
set is not decidable in general. It is decidable under the additional conditions 
that the signature F is finite and generates M. 

ProoJ We first establish the decidability result. Let M be effectively 
given and generated by a finite signature F. If L E Ret(M),, then h,‘(L) is 
an effectively given recognizable subset of M(F). Its emptiness can be 
decided by a classical algorithm on tree-automata (see, for instance, Gecseg 
and Steinby [20]), and this also decides the emptiness of L. 

We now consider the undecidability. We give two examples showing that 
none of the two hypotheses can be omitted. We consider the inlinite one- 
sort signature F consisting of a constant, a, and of monadic functions f,, 
for all n E N. Let g be a total recursive mapping N + (0, 11. 

Let A be the finite F-magma be associated with g as 

A= (0, l}, uA=O, f&4(1)= 1, fnA(0)=g(n). 

Let B= h,‘( { l}) 5 M(F). It is effectively M(F)-recognizable. It is clear 
that B # QI iff g(n) = 1 for some n E N, and this not decidable. 

Here is the second example. We let F’ be reduced to the constant a. 
Let M = (N, uM) with uM := 0. (It is not generated by F’). Let A and g 
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be as above. The mapping h such that h(O) = 0, h(i) = g(i) if i 21, is 
a homomorphism: M + A. Hence h - ‘( { 11) is an effectively given 
M-recognizable set. It is nonempty iff g(i) = 1 for some i 3 1. And this is 
not decidable. l 

In the next two propositions, M is an arbitrary F-magma, and s is one 
of its sorts. 

(1.9) PROPOSITION. The family of sets Ret(M), contains 0, M,, and is 
closed under union, intersection, and difference. 

Proof (Sketch). If Li is recognized by (hi, Ai, C,), i= 1, 2, then, L, and 
L2 are both recognized by the semi-automaton (h, x h,, A, x A*), with 
respective sets of “final states” C, x A, and A I x C,. The closure under 
union, intersection, and difference follows immediately. The other assertions 
are easy to verify. 1 

(1.10) PROPOSITION. If KcRec(M), and L~Equat(M), therz Ln KE 
Equat(M),. 

Proof: It follows from Mezei and Wright [25] or Courcelle [5, Section 
141 that we can assume that L = L((S, M), U’), where S is a uniform poly- 
nomial system over F with set of unknowns U, and U’ E U. (A polynomial 
system is uniform if its equations are of the form u = t, + t, + ... + t,,, 
where each ti is of the form f (ul, u2, . . . . uk) for some f G F, some 
u, ) . ..) Uk E U). 

Let F’ c F be the finite set of symbols occurring in S, and let Y’ c Y be 
the finite set of sorts of the symbols occurring in S. Hence F’ is an 
Y-signature. Let h: M + A be a homomorphism (with A locally finite), 
such that K=h-‘(C) for some C’sA,. 

For every u E U, we let L, := L((S, M), u). Let W be the new set of 
unknowns ( [u, al/u E U, a E A,(,, }. It is finite. We shall define a system s’, 
with set of unknowns W, such that 

L((S’,M), [u,aJ)=L,nh-‘(a) 

for all [u, a] E W. 
Let u E U and a E A,(,,. Let us assume that the defining equation of u in 

Sisoftheformu=t,+...+t,. 
Consider one of the monomials, say tj. Let us assume that it is of the 

form f (u,, . . . . ~4~). 
For every al E A,,,,,, ..-, a, E A,,,nj such that fA(al, .,., a,,) = a, we form 

the monomial f( [u,, a,], . . . . [Us, a,]), and we let ii denote the sum of 
these monomials. If no such n-tuple (a,, . . . . a,) exists, then ii is defined 
as 52. 
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The defining equation of [u, a] in S’ is taken as 

[u, a] = i, + i, + . . . fk. 

It is clear from this construction that the W-indexed family of sets 
Wunh-‘(4)Cu,a7EW is a solution of s’ in P(M). Hence L, n h ~ ‘(a) z 
L l&U? where Wu..)~u,.~. w denotes the least solution of s’ in P(M). 

In order to establish the opposite inclusion, we define from L,, the sets 
L: = U (L,,,/u E A,,,,) for u E U. Then (L:),, U is a solution of S in M (this 
is easy to verify). Hence L,E L: for all U. 

For all a E A,,,,, we have 

L,nhp’(a)GLLnh-‘(u)=(U(L,,,/uEA})nh-’(a). 

The latter set is equal to L,,nh-‘(a), since L,,,, 5 L,n !~-‘(a’) and, 
h-‘(u)nh-‘(a’)=@ f or all a, a’ with a #a’. Hence L, n h-'(u) c L,,. By 
the first part of the proof, we have an equality, and (L,nh-‘(a))~,,,,. ,+, 
is the least solution of s’ in P(M). Finally, we have 

Ln K= (u{L,/u~ U’})nhh’(C) 

= lJ(L((s’, M), [u, U])/UE u’, UE C}. 

Hence L n KE Equat(M),. 1 

The above construction is effective if K is effectively given, and L is 
defined by a given system. Hence since the emptiness of an equational set 
(defined by a system of equations) is decidable, we have the following 
corollary that can be contrasted with the undecidability result of Proposi- 
tion ( 1 A). 

(1.11) COROLLARY. Zf K is an effectively given M-recognizable set, and 
if L is an M-equational set, one can test whether L n K = 0, or whether 
L E K. 

The following result is due to Mezei and Wright [25]. 

(1.12) PROPOSITION. A subset L of M, is M-equational i f f  L = hhl( T) for 
some TE Rec(M(F’)),, and some finite subset F’ of F. 

In the following corollary, Ret(M) E Equat(M) means: Ret(M), G 
Equat(M), for all s in 9’. 

(1.13) COROLLARY. Let M be generated by F. Then Rec(M)zEquat(M) 
i f f  for every SE 9, there exists a finite subset F’ of F such that 
h,(M(F’),) = M,. 
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Pro05 If. Let L E Ret(M), let F’ be such that h,(M(F’),) = M,. Then 
T= Hal n M(F’),e Rec(M(F’)), (since Hal E Rec(M(F)),, and by 
Proposition (1.9)). Hence L = hM(T), and is M-equational. 

Only if. Let Ret(M) E Equat(M). Then M, E Equat(M) and M, = &M( T’) 
for some T’ E Rec(M(F’)), with F’ finite, F’ c F. Hence MS= 
MWf”)L I 

(1.14) COROLLARY. Rec(M(F)) = Equat(M(F)) if F is finite. 

In the following proposition we assume that F and F’ are two signatures 
over a same set of sorts 9, that F’ c F, that M is an F-magma, and that 
M’ is a sub-F/-magma of M (we write this M’ E M). If G is a new 
Y-signature disjoint from F, and P be a G-magma with the same family of 
domains as M, such that g, is a derived operation of M, we say that P is 
a derived magma of M. 

(1.15) PROPOSITION. Let F’ 5 F and M’ E M. For every s E Y: 

(1) LnM:~Rec(M’),jbr all LER~c(M),. 

If P is a derived magma of M, then for every s E Y: 

(2) Ret(M), & Ret(P),. 

We omit the proof which is a straightforward verification from the defini- 
tions. The inclusions are strict in general, and M: is not necessarily in 
Ret(M),. Note also that, if M: = M, in (l), then 

Ret(M), c Rec(M’),?. 

2. GRAPHS, GRAPH OPERATIONS, AND GRAPH EXPRESSIONS 

As in [2, 7-9, 11, 13-153, we deal with labeled, directed hypergraphs, 
equipped with a sequence of distinguished vertices called the sequence of 
sources. 

The labels are chosen in a ranked alphabet, i.e., in a finite set A, each ele- 
ment of which has an associated nonnegative integer, that we call its type. 
The type is defined by a mapping T: A + N. The type of the label of an 
hyperedge must be equal to the length of its sequence of vertices. This type 
may be 0. In order to shorten the statements, we shall simply call graphs 
these hypergraphs, and edges their hyperedges. 

(2.1) DEFINITION. Graphs. Let A and t as above, let n E N. A concrete 
n-graph is a quintuple 

G = (V,, E,, lab,, vert,, WC,), 
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where 

- V, is a set whose elements are the vertices of the graph; 
- E, is a set whose elements are the edges; 

- lab,: E, -+ A defines the label of an edge; 
- vert G : E, + Vg associates with every edge e of G, the sequence of 

its vertices, a sequence of length t(e) := r(lab,(e)); its ith element is 
denoted by vert,(e, i); 

- srcG is a sequence of length n in VT,, or equivalently, a mapping: 
[n] +V,. Hence, src,(i) denotes the ith element of the sequence srcG. It 
is called a source. If n = 0, then G has no source. “Source” is just an easy 
sounding word for “distinguished vertex.” There is no notion of flow 
involved. The integer n is the type of G. 

Whenever we need to specify the alphabet A, we say that G is a concrete 
n-graph over A. A concrete graph is a concrete n-graph for some n > 0. 

A vertex u belongs to an edge e if v = vert,(e, i) for some i. A vertex is 
isolated if it belongs to no edge. An edge e is binary if it is of type 2. If this 
is the case then vert,(e, i) is called the origin of e, and vertG(e, 2) is called 
its target. An internal vertex of G is a vertex that does not appear in the 
sequence srcG. 

A concrete n-graph G and a concrete n/-graph H (both over A) are 
isomorphic if n’ = n, and if there exist bijective mappings h, and h,, 

h,:V,-+Vu 

h,: E, -+ E,, 

such that 

lab,oh,=lab,, 
hv(vert,(e, i)) = vert,(h,(e), i) for all in [r(e)], all e in E,, 
hv(src,(i)) = src,(i) for all iE [n]. 

A graph is the isomorphism class of a concrete graph. A graph G is finite 
if V, and E, are finite. By a graph, we shall mean a finite graph in the 
present paper. Infinite countable graphs are considered in Courcelle 
[ 11, 13-151. 

We denote by FCG(A), (resp. by FCG( A)) (resp. by FG(A),) (resp. by 
FG(A)), the sets of concrete n-graphs (resp. of concrete graphs) (resp. of 
n-graphs) (resp of graphs) over A. 

(2.2) EXAMPLES. The following very simple graphs will be useful to 
build nontrivial graphs by means of graph expressions: 
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(1) The discrete graph n, for n > 0, is the graph G such that 
V, = [n], E, = 0, lab, = 0, vert, = 0, srcG is the sequence (1,2 ,..., n). In 
particular we have the empty graph 0 which is (necessarily) of type 0. 

(2) If b is an element of A type n, then b also denotes the graph G 
with a single edge e labeled by b, and such that V, = [n], E, = (e), 
lab,(e) = 6, vert,(e) = srcG = (1,2, . . . . n). The graph b is reduced to an edge 
with no vertex in the special case where II = 0. 

(2.3) DEFINITION. Subgraphs. Let G be a concrete graph. A concrete 
graph H such that V, c V,, E, c E,, lab, = lab, rEH, vert, = vert, rEH, 
and srcH is obtained from srcG by the deletion of the vertices not in H, is 
called a subgruph of G. We trite this H c G. 

(2.4) DEFINITION. Quotient graphs. Let G be a concrete graph, let N be 
an equivalence relation on V,. We denote by [v] the equivalence class 
w.r.t. z of a vertex v. Then, we denote by G/z the concrete graph H such 
that V,=V,JN, E,=E,, lab, = lab,, vert,(e, i) = [vert,(e, i)] for all 
eeE, ( =EG) and all in [z(e)], src,(i)= [srcJi)] for all in [z(G)], We 
call G/z the quotient graph of G by ‘v. If G is a graph, then G/- is the 
isomorphism class of C/z, where G is any concrete graph in the class G. 

(2.5) DEFINITION. Graph operations. We recall from [2, 7] the 
definitions of three operations on graphs (or rather of three families of 
operations) making the set of graphs into a many-sorted magma. 

The first operation is the disjoint sum. Let G and H be two graphs of 
respective types n’ and n”. We can assume that they are the isomorphism 
classes of two concrete graphs also denoted by G and H, such that 
V, n V, = 0, E, n E, = 0. Then G @ H is the isomorphism class of the 
concrete (n’ + n”)-graph K such that: 

v,=v,uv,, 
E,=E,uE,, 

lab, = lab, u lab,, 

vert K = vert G u vert “, 

srcK = (src& 1 ), . . . . src,(n’) , src”( 1 ), . . . . src,(n”)). 

Here is the second operation. With a map c1 from [p] to [n], we 
associate the source rede$nition map 0,: FG(A), -+ FG(A), defined as 
follows. We let a,(G) := (V,, E,, lab,, vert,, src,oa). If p = 0, then a is 
necessarily the empty map (always denoted by 0) and a&G), is the 
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O-graph obtained from G by “forgetting” its sources. We call it the O-graph 
associated with G. 

When p is small it is convenient to write nil, ;*,.,,, JG) instead of a,(G), 
by letting ii := u(j) for j= 1, . . . . p. 

The third operation is the source fusion. For every equivalence relation 
6 on [n], we define a mapping 8,: FG(A), + FG(A), as follows. We let 
Q,(G) be the quotient graph G/E, where N is the equivalence relation on 
V, such that 

u 1: u’ o v = v’ or {v = src,(i), u’ = src,(j), and (i,j) E S}. 

If 6 is the equivalence relation on [n] generated by the single pair (i,j), 
then we denote 8, by 8,,j. It is clear that if 6 is the equivalence relation 
generated by a set of pairs { (i,,j,), . . . . (ik,jk)} then 

8, = ei ,.,, o . . o eik,,k. 

(2.6) DEFINITION. The many-sorted magma FG(A). Let N be con- 
sidered as a set of sorts. We define an N-signature H,,, consisting of the 
following symbols: 

on,*> of profile n x m --+ n + m for all n, m E N 

8 S,n9 of profile: 12 + n for all it fz N, all equivalence relations 6 on [n]. 

CT cr,p,n, of profile: n -+p for all n, p E N, all mappings a:[~] -+ [n]. 

In addition, we put in H, the following symbols: 

a, a constant of sort t(a), for all a in A, 

0, a constant of sort 0, 
1, a constant of sort 1. 

We obtain an HA-magma FG(A). Its domain of sort n is FG(A),, the set 
of graphs of type n. The functions associated with the symbols en M, es,, 

and oa,p,n are delined in Definition (2.5). The graphs associated with the 
constants u, 0, and 1 are defined in Examples (2.2). It is clear that FG(A) 
is effectively given. 

(2.7) DEFINITION. Graph expressions. An element of FE(A) := M(H,) is 
called a graph expression. Every graph expression t defines a unique finite 
graph fFGcAj, also denoted by val(t) and called its value. The following 
proposition says that H, generates FG(A). 

(2.8) PROPOSITION ([2]). Every graph in FG(A) is the ualue of a graph 
expression. 
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When writing expressions we shall omit the subscripts n, M, in the sym- 
bols On,,, ~,,,,rn, flaw Provided the sorts of the variables appearing in an 
expression are known, its sort can be computed and its well-formedness 
can be checked. 

Since @ is associative (more precisely G @m.n+p (G’ O,, G”) = 
((GO,,, G’L,+..p G”) for all graphs G, G’, G” of respective types m, n, p), 
we denote it as an infix operator and we omit parentheses. 

(2.9) DEFINITION. The width of a graph. For every k, we let Hi’] be the 
[0, k]-signature consisting of the symbols of H, having their sort in [0, k], 
and their arity in [O, k]*. 

We denote by FE(A), rkl the set M(Hy’),, and call it the set of graph 
expressions over A, of type n, and of width at most k (this is meaningful if 
k > n). Hence FE(A), is equal to U {FE(A)Lkl/k 3 n}. 

Whereas H, generates FG(A), the set FG(A)kkl of values of expressions 
in FE(A)Lkl is a proper subset of FG(A),. We denote by FG(A)Ckl 
the Hy’- magma with domains FG(A)Lkl, n <k. This magma has finitely 
many sorts and operations. 

The width of a finite graph G is defined as the minimal k such that 
GE FG(A)Lkl for some k. It is denoted by wd(G). 

(2.10) DEFINITION. Equational and recognizable sets of graphs. The 
FG(A)-equational and the FG(A)-recognizable sets are called the equa- 
tional and the recognizable sets of graphs. 

The equational sets of graphs are also the context-free sets, i.e., the sets 
of graphs generated by the context-free graph grammars of Bauderon and 
Courcelle [2, 81. We recall the definition. 

A context-free graph-grammar is a 3-tuple r= (A, U, P>, where A is a 
finite ranked set (the terminal alphabet), U= {u,, . . . . u,} is a finite ranked 
set (the nonterminal alphabet), P is a finite set of production rules. A 
production rule p is a pair (u, e) with u in U and e in FE(A u U)+,. We 
write p: u + e, and we use p as a name, identifying the production rule in 
a unique way. We also denote by P the set of names of the production rules 
in P. If p: u --, e, if h, h’ E FE(A u U), we write h jp h’ if h’ is obtained from 
h by the substitution of e for U, at one of its occurrences. We write h dp 
h’ if h-t p h’ for some p in P. (Hence, we consider P as ground term 
rewriting system on FE(A u U).) 

The set of graphs generated by rfrom ui is L(f, ui) := {val(h)/h E FE(A), 
ui sp h), and we let L(T) := L(T, u,). 

A system of equations over p(FG(A)) can be associated with r as 
follows: 

Sr:=(U,=tj ) . . . )  u ,= t , ) ,  
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where ti is the polynomial e, + ... + ek and {er , . . . . ek} is the set of right- 
hand sides of the production rules of r, the left-hand side of which is ui. 

It has been proved in [2, Theorem (4.9)] that the least solution of S, 
in 9(FG(A)) is the n-tuple (L(T, u,), . . . . L(T, u,)). 

Conversely, a context-free graph-grammar can be associated with a 
polynomial system on B(FG(A)), and we have the following result [2, 
Propositions (4.11) and (4.17)]: 

(2.11) PROPOSITION. A set of finite graphs is equational iff it is context- 
free. The graphs of an equational set are of bounded width. 

This proposition is effective: a system of equations can be constructed 
from a grammar and conversely. An upper bound on the widths of the 
graphs of an equational set can be computed. Since H Lk] is a finite signature, 
the sets FG(A)Lkl, n <k, are all equational. 

The following proposition characterizes the recognizable sets in terms 
of graph substitutions, rather than in terms of the graph operations of 
Definition (2.5). 

(2.12) PROPOSITION. A subset L of FG(A), is recognizable ijjf for every 
k, the equivalence relation on FG(A)k defined by 

G Ek G’ iff, for every H in FG(A),, for every edge e of H of type 
k, H[G/e] EL ifs H[G’/e] EL 

is finite. 

(We denote by H[G/e) the result of the substitution in H of G for the 
edge e of H.) 

Proof. For every graph H of type n, for every edge e of H of type k, 
there exists t in Ctxt(H,)k,n such that 

for every graph G in FG(A)k. Conversely, for every context t, there exists 
H satisfying this for every graph G. (This follows from [2, Lemma (4.15)-j.) 
Hence (=k)ksN is the syntactic congruence of L. The result follows. 1 

Lengauer and Wanke have introduced in [24] the notion of a finite 
graph property. Restating their definition in our terminology, we have that 
a property of O-graphs is finite if it is decidable and the equivalences =k 
associated with the set of O-graphs satisfying it as in the statement of 
Proposition (2.12) are finite. Hence, up to a few minor details, the notion 
of a finite graph property is equivalent to that of an effectively given 
recognizable set of graphs. 



RECOGNIZABLE SETS OF FINITE GRAPHS 31 

We now compare the families of equational and recognizable sets of 
graphs. It is well known that the family of recognizable languages is 
included in the family of context-free ones, and that the inclusion is strict 
if the alphabet contains at least two symbols. In short, Rec(X*) (the class 
of recognizable languages) is strictly included in Equat(X*) (the class of 
context-free languages), provided Card(X) 3 2. 

An analogous result holds for FG(A) rkl for all k, but it does not hold , 
for FG(A): the families Rec(FG(A)) and Equat(FG(A)) are incomparable. 

(2.13) PROPOSITION. (1) For every k > 0, and n <k, the following inclu- 
sion holds: 

(2) If A contains at least one svmbol of type p strictly larger than 1, 
and if k 2 Max {n, p + 2}, the above inclusion is strict. 

(3) Zf A is as in (2), then, the .famiiies Rec(FG(A)), and 
Equat(FG(A)), are incomparable. 

ProoJ (1) Let KER@FG(A)[~‘),. We have K= Kn FG(A)Lkl, hence K 
is equational by Proposition (1.10) since FG(A)hkl is. 

(3) Let us first assume that A contains one symbol a of type 2, and two 
symbols b and c of type 1. Let L be the set of O-graphs of the form shown 
on Fig. 1, with as many b’s and c’s. 

They correspond in an obvious way to the words of the language 
L’ = {b”c”/n 3 1). It is easy to construct a context-free graph-grammar 
generating L. If L would be recognizable, so would be the language L’. 
(From an automaton defining L, it is not hard to construct an automaton 
defining the language L’). But L’ is known to be not recognizable. This 
proves that Equat(FG(A)), is not included in Rec(FG(A)),. 

If A contains one symbol d of type p 2 2, then one considers 

L= (G[K,/a, K,/b, K,./c]/GE Lc> 

instead of L, where Ku = ol,Jd), Kb = al(d), KC= a,(d). (By G[K,Ia, 
K,/b, KC/c], we denote the result of the simultaneous substitution of K, for 
all edges of G labeled by a, and similarily for b and c.) 

FIGURE 1 

643 ‘RS’I-3 
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The result of this substitution when p = 3, and G corresponds to the 
word b2c2 and is shown on Fig. 2. 

It is easy to construct a context-free graph-grammar generating e, and, 
again, from an automaton recognizing E, one could obtain an automaton 
recognizing L’. By equipping the graphs of L (and of E) with sources, one 
could establish similarily that Equat(FG(A)), is not included in 
Rec(FG(A)), for any 12 20. 

Proposition (2.14) below says that Rec(FG(A)), is uncountable. On the 
other hand, Equat(FG(A)), is countable since there are countably many 
systems of equations (or grammars). Hence one cannot have 
Rec(FG(A)), s Equat(FG(A)), and the families Rec(FG(A)) and 
Equat(FG(A)) are incomparable. 

(2) In order to finish the comparison of Rec(FG(A))Ckl), and 
Equat(FG(A)[“l),, it suffices to observe that a system of equations defining 
L (or L) can be constructed with symbols from Hy’ where 
h =Max{n, p + 2). Hence L (or L) belongs to Equat(FG(A)Ckl), for all 
k>Max{n,p+2 >. We omit the details. 1 

(2.14) PROPOSITION. Zf A contains at least one symbol of type srrictly 
larger than 1, then Rec(FC(A)), is uncountable. 

The proof of this proposition needs several definitions and lemmas. We 
let A consist of one symbol, a, of type 2. 

(2.15) DEFINITION. Grids. We denote by G, the n x n-grid, a graph 
belonging to FG(A). Rather than giving a formal definition, we show 
the grid G, on Fig. 3. All its edges are labeled by a, and these labels are 
omitted on the drawing. 

We let L, = { G,/n 3 2). Our purpose is to establish that every subset 
L of L, is recognizable. To do so, we shall prove that the syntactic 
congruence - L of every such set is locally finite. 

FIGURE 2 
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FIGURE 3 

We denote by 6(p, n) the equivalence relation on [p + 2n] generated by 
{(p + 1, p + n + 1 ), . . . . (p + n, p + 2n)). In the following lemma, we let B be 
an arbitrary finite ranked alphabet. 

(2.16) LEMMA. Let MsFG(B),,pgO. Let G, G’EFG(B),, n>O. Then 
G- M-n G’ iff; for all KEFG(B),+~: 

a1.2. . p(kvp,n,WO G)) E Me 

aI. 2. . . . p(&,p,n, (K@G’))EM 

Proof: By Proposition (l.lO), G -M,n G’ iff c,,&G) E M o 
cFGcB,(G’)~ M for all CE Ctxt(H,),,. It follows from [2, Remark p. 1171 
that, for every c in Ctxt(H,),.,, there exists a graph KE FG(B),+ n such 
that, for all G E FG( B), : 

cmw)(G) = a,,z....,p(escp.,,(KO G)). 

Conversely, with every graph K, a context c can be associated, such that 
this equality holds, for all G in FG(B),. The desired characterization of 
- L,n follows immediately. 1 

We shall use this lemma for p = 0. Hence, we introduce a derived opera- 
tion 0,: FG(B), x FG(B), + FG(B),, defined by 

Gn,G’=a,(e,,,,,(GO,,,G’)). 

This operation on graphs can be described as follows. In order to 
construct GO, G’, one glues G and G’ by fusing SK,(~) and src,(i) for 
all i = 1, . . . . m, and the resulting graph has no source. This operation is 
commutative. If m = 0, then Cl, is the disjoint sum. 

We write •i instead of El,, when m is known from the context. 
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(2.17) LEMMA. Let n>2m+ 3 25. Let G, G’E FG(A), be such that 
GO G’ = G,. Then one of G, G’, say G, has less than m + m2 vertices, the 
other has more than 3m2 vertices, and for every G” in FG(A),, if 
G”OG’E L, then G”OG’= G,. 

Proof. Let G and G’ be two concrete disjoint m-graphs such that GCIG’ 
is isomorphic to G,. 

We let H be the restriction of G to its set of internal vertices. More 
precisely: 

V, = the set of internal vertices of G 

E, = the set of edges of G having all their vertices in V, 

vert, = vert, r E, 

lab, = lab, PE, 

srcH = ( ). 

Similarily we let H’ be the restriction of G’ to its set of internal vertices. 
By the isomorphism i: G 0 G’ + G,, the subgraphs H and H’ of G and G’ 

are isomorphic to disjoint subgraphs R and R’ of G,. In order to simplify 
the notations, we denote B and R’ by H and H’, respectively. 

Hence H and H’ are two subgraphs of G,. Note that G, has no edge 
linking a vertex of H to a vertex of H’, and that an edge of G, linking two 
vertices of H (or of H’) is in H (or in H’). 

Let S= VGn- (V,uV,,). Each vertex of S corresponds by j to at least 
one source of G and at least one source of G’. Hence Card(S) d m. 

Figure 4 below shows an example of such a situation with n = 4 (and a 
large m). The vertices of H are indicated by o, the vertices of H’ are 
indicated by 0, the vertices of S are indicated by 0. 

FIGURE 4 
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A path in G, like the one marked with +‘s on Fig. 4 is called a complete 
horizontal path. A path in G, like the one marked with *‘s is called a 
complete vertical path. These paths have n + 1 vertices. 

We are now ready to start the proof; we assume that n 2 2m + 3. 
If H and H’ both contain a complete vertical path of G,, then all 

complete horizontal paths of G, contain vertices from H and from H’. 
Hence they all contain vertices from S, and Card(S) 2 n + 1. But we have 
proved what Card(S) Gm, and we have assumed that n > 2m f3. This 
gives a contradiction. 

Hence one of H and H’, say H, does not contain any complete vertical 
path. Let K be the set of complete vertical paths of G, that are not 
contained in H’. They all have vertices in S. Hence Card(K) < Card(S). 
Since Card(S) < m, H’ contains at least n + 1 - m complete vertical paths. 
The graph H is contained in the union of the paths of K. 

Since H and H’ are disjoint, H cannot contain any complete horizontal 
path. As above for vertical paths, H’ contains at least n + 1 -m complete 
horizontal paths, and H is contained in the union of a set K’ of at most 
m complete horizontal paths. 

Hence Card(V,,) < m2. Since Card(S) dm, we have Card(V,.) 3 
(n+ I)*-m-m2>3m2 (since n32m+ 3). It follows that Card(V,)d 
m + m* and that Card(V,,) 2 Card(V,,) 2 3m*. 

Now let G” E FG(A), be such that G”OG’ is isomorphic to G,. for some 
n’ > 2. We wish to establish that n = n’. 

Let p be an integer 22. Two complete horizontal paths of G, are 
neighbours if they are distinct and if there is an edge of G, linking one 
vertex of one path the one vertex of the other. A border path is a complete 
horizontal path having only one neighbour path. A nonborder path is one 
having two neighbour paths. Similar definitions can be given for complete 
vertical paths. Let Q, be the (2~ + 2)-graph shown on Fig. 5. 

1 2 3 P P+l 
0 . l . . . . 0 . 

. 
P+2 

. 
P+3 

l . . . . . l 

P+4 2p+l 2pt2 

FIGURE 5 
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CLAIM. ZfG,= C[Q,]for some CE Ctxt(A)2p+2,0, then n=p. 

Proof: If G, = C[Q,], then G, has either two nonborder neighbour 
complete horizontal or vertical paths with p edges. Hence n =p. 1 

Let us now go back to H’ and G’, as in the first part of the proof. 
We have established that H’ has at least n + 1 -m complete horizontal 

paths. Hence, it has at least m + 4 such paths, since n > 2m + 3. 
At least m + 2 of them are nonborder paths. If two of these paths are not 

neighbour, there is between them, either a complete horizontal path of G,, 
totally in H’, or at least one vertex of S. Since Card(S) <m, there are in 
H’ at least two nonborder neighbour paths. 

It foliows that G’= C”[Qn] for some c’ in Ctxt(A),,+z,o. Since G”O G’ 
is isomorphic to G,., there exists a context C in Ctxt(A)2n+2,0 such that 
G,, = C[Q,]. It follows from the claim that n’ = n, and this completes the 
proof of Lemma (2.17). 1 

The proof of Proposition (2.14) will use another lemma. 

(2.18) LEMMA. Let E and B be sets, let f be a commutative mapping: 
E x E + B. With L c B we associate an equivalence relation on E defined by: 
a % a’ iff for all d E E, f (a, d) E L of (a’, d) E L. Then, z is finite if there 
exist EO 2 E, and C E B satisfying the following conditions: 

(1) L - C and EO are finite, 

(2) for every a, a’ E E such that f (a, a’) E C: either a E EO, a’ E E - E,, 
and for all d in E, if f (d, a’) E C then f (d, a’) =f(a, a’), or a’ E E,, 
aEE-EO, andforalldin E, iff(a,d)EC, thenf(a,d)=f(a,a’). 

(3) for every b E B, there exist finitely many pairs (a, a’) in E x E such 
that f (a, a’) = b. 

Proof: From condition (2) the condition 

a E E - E,, and there exists d E E, such that f (a, d) = c E C (4) 

defines c in a unique way from a. Let us write c =g(a), where g is the 
partial mapping: E + C defined by (4). 

We now prove that 2 is finite. 
We let E’ := {a E E/f (a, d) $ L u C for all d E E 1. The elements of E’ are 

pairwise equivalent w.r.t. z ; hence they define a single class. 
Wenow let E”:=E,u{aEE/f(a,d)EL-Cfor somedEE}. Bycondi- 

tions (1) and (3), the set E” is finite; hence its elements define finitely many 
classes. 

Let finally E”’ := (aE E - E,/f (a, d)E C for some ds E,}. For every 
a E E”‘, let us define K(a) = (a’ E E,/f ( a, a’) = g(a)}. Note that K(a) is not 
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empty. We now claim that for a, h in E”‘, if K(a) = K(b), and if 
g(a)eLog(b)EL, then aczb. 

Let dg E. Assume that j(a, d)E L. By condition (2), dE E, (since 
UE E- E,). Furthermore, g(u) EL and dE K(a). Since we assume that 
g(b) EL and K(b) = K(a), we also have dE K(b); hence f(b, d) =g(b) and 
f(b, d) E L. This proves that a z b. 

Since E, is finite, there are finitely many sets K(a); hence the elements of 
E”’ define finitely many classes. 

Since E is the union of E, E’, and E”‘, we have proved that z is 
finite. 1 

Proof of Proposition (2.14). We first assume that A consists of one 
symbol a, of type 2. Let L z L, and m > 1. By Lemma (2.16) the syntactic 
equivalence relation - L,m is characterized by 

G- L,mG’ iff for every KEFG(A),,GIJKEL~G’OKEL. 

We shall prove that this equivalence relation is finite. 
We apply Lemma (2.18) by letting E= FG(A),, B= FG(A),, f= q ,, 

C= (G,/n>2m+3f, z = -L,nl, E, = (G tz FG(A),/GOG’E L, for some 
G’ E FG(A),, and Card(V,) -cm + m’}. 

Condition (1) of Lemma (2.18) clearly holds. Condition (2) is proved in 
Lemma (2.17) and Condition (3) is easy to establish. Hence Lemma (2.18) 
shows that No,,, is finite for m 2 1. 

Consider finally the special case where m = 0. Then GOG’= G@ G’. 
Since the grids are connected, if GOG’ E L,, then one and only one of G 
and G’ is the empty graph 0. This means that -t,O has exactly two classes: 
L and FG(A), - L. Hence L is recognizable. 

If A does not contain any symbol of type 2, but one symbol, say d, of 
type >2, then for every subset L of L,, the set L’ := (G[K,/~]/GE L), 
where Ku is as in the proof of Proposition (2.13), is also recognizable; the 
above proof can be adapted. 1 

3. WRITING GRAPH PROPERTIES IN MONADIC SECOND-ORDER LCXX 

A graph can be considered as a logical structure with two domains, the 
set of vertices and the set of edges. Hence logical formulas can express 
properties of graphs. First-order formulas can express local properties of 
graphs, as proved by Gaifmann [ 191. Monadic second-order formulas 
written with quantifications over sets of edges and sets of vertices are much 
more powerful. 

We establish that every monadic second-order definable set of graphs is 
recognizable and that the monadic second-order theory of a context-free set 
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of graphs is decidable. These results do not hold if quantifications over 
binary relations are also used. 

In addition to the usual features of monadic second-order logic, we 
introduce atomic formulas testing whether the cardinality of a set is equal 
to n modulo p, where n and p are integers such that 0 <n <p and p 3 2. 
This extension of the usual language is called the counting monadic second- 
order logic. It yields an extension of the result of Doner [ 161 saying that 
a subset of M(F) (considered as a set of trees) is recognizable iff it is 
definable in monadic second-order logic, to the class of unordered finite 
trees with no bound on the degrees of nodes. This result is established in 
Section 5. 

(3.1) DEFINITION. Graphs as logical structures. In order to express 
properties of graphs in FG(A), we define the symbols: 

v: the vertex sort, 

e: the edge sort, 

sir a constant of sort v, for each i, 1 < i < k, 

edg,, a predicate symbol of arity evv . . . v (with r(a) occurrences of v), 
for each a, a E A. 

With GEFG(A)~ we associate the logical structure IGI = (V,, E,, 

h7)re [k]> (edgaG)aGA), where V, is the domain of sort v, E, is the domain 
of sort e, sic is the ith source of G, and edg,,(e, v, , . . . . v,) = true iff 
lab,(e) = a and vert,(e) = (vl, . . . . v,). 

(3.2) DEFINITION. Counting monadic second-order logic. We shall build 
formulas by using object variables u, x, y, -7, u’, . . . of sort v or e, denoting 
respectively vertices or edges, and set variables U, X, Y, Z, U’ of sort v or 
e, denoting respectively sets of vertices or sets of edges. Since the graphs we 
consider are finite, the set variables always represent finite sets. 

Let dy be a sorted set of variables {u, u’, . . . . U, U’, . ..} each of them 
having a sort o(u), cr(u’), . . . a(U), C( U’), . . . in {v, e}. We denote by ‘% the 
set 7Y u {s,, . . . . sk}. (Uppercase letters denote set variables and lowercase 
letters denote the remaining elements of Y.$, i.e., object variables or 
constants). 

The set JzI~,~JW) of atomic formulas consists of: 

u = 24’ with u, u’ E -II;‘, C(U) = a(~‘), 

UEU with u, U E q, a(u) = CT(U), 

edg,(u, 4, . . . . 4) with u, u’,, . . . . MA E %‘i, 

a(u)=e,a(u;)= ... =a(uk)=v, 

card,,,(u) with UEW‘,O<n<p,2<pdq. 
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If U denotes a set X, then 

card,,(U) = true iff Card(X) = n mod p. 

The meaning of the other atomic formulas is clear or has been already 
defined. 

The language of counting monadic second-order logic is the set of logical 
formulas formed with the above atomic formulas together with the Boolean 
connectives A , v , 1, the object quantifications VU, 3~ (over vertices or 
edges), and the set quantifications VU, 3U (over sets of vertices or sets of 
edges). 

The language of monadic second-order logic is the set of such formulas 
that do not use the atomic formulas card,,,(U). 

We denote by UY>h,\,y (-/lr) the set of formulas inductively defined as 
follows: 

rp E ~~T,i,,(W if cp E 4,k.q(Wv 

(h) (PO, A P2, CPI v 929 -lcpl E~r4,k.q (@7 if vl, (p2 E 97-9f,!,y(W, 

3u(p, v’ucp E %?A! ( , $::)(W) if ~E%Y!$J~VU {u}), u$w-, 

wcp, vuq? E ez ( I T::)(W) if cpE%?Y$$J7Vu {U}), U$w. 

The least h such that 9 l %‘YPjq?)k.~ (w) is called the height of rp (this 
integer is the maximal depth of nested quantifications in q). We let 

and 

In many cases the subscripts A, k, and q can be omitted. 
Similar sets of formulas, where the atomic formulas card,,(U) are 

not used, are denoted by YAJw), U$“i(?P”), etc. (the parameter q is 
irrelevant). 

(3.3) DEFINITION. Definability of graph properties. Let YY be a finite set 
of variables. Let G be a graph in FG(A)k. A W-assignment in G is a map- 
ping v associating with every variable in -fir a vertex, or an edge, or a set 
of vertices, or a set of edges of G, depending on its sort and case (lower or 
upper). 

If cp E (~zZ’~,~,JYK), then for each G and v as above, cp is either true or 
false in /G/ for v. The classical notation in the former case is (/Cl, v)+=cp 
and we say that rp holds in G for v. We shall also use (PIG(V) as a Boolean 
value, that is equal to true if 40 hoids in G for Y, and equal to false 
otherwise. 
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If cp is closed, then v disappears, and cpc is either equal to true or to false. 
A property of graphs in FG (A), is Y-definable (resp. definable) if there 

exists a closed formula rp in 6pA,k (resp. in %?9A,k) such that G satisfies this 
property iff cp holds in G. A set L c FG(A)k is Y-definable (resp. is 
definable) if the membership in L is so. The set of graphs defined by p is 
the set of graphs G where cp holds, and it is denoted by L,. 

More generally, a property P of a graph G taking as parameters vertices, 
edges, sets of vertices, sets of edges, denoted by variables from a finite set 
W, is Y-definable (or definable) iff there is a formula cp in Y(W) (or in 
UZ(W)) such that, for every W-assignment v in G, cp holds in G for v iff 
P holds in G for the values V(X), XE W, of the parameters. For example, 
we shall see below that the property reading: “there is a simple path from 
x to y, the set of edges of which is U,” where x and y are vertices and U 
is a set of edges, is Z-definable. 

In Section 6, we shall prove that VY is more powerful than Y, i.e., that 
certain graph properties are definable without being Y-definable. 

We now give a few examples of definable graph properties. 

(3.4) EXAMPLE. Colorability. Let A consist of symbols of type 2. 
The existence of a coloring of the vertices of a graph G in FG(A), using 

at most m colors, can be expressed as follows: 

There exist sets of vertices X, , . . . . X, such that 
X, u . u X, = V,, Xi n X, = @ for i #j, and the two vertices 
of any edge do not belong both to X, for any i. 

From this formulation a formula cp in ZA,O can be constructed such that 
40 holds in G iff G is m-colorable. Hence, the m-colorability of a graph is 
Y-definable. 

(3.5) EXAMPLE. Flows. Let A be as in Example (3.4), and GE FG(A),. 
Let M = (M, + , - , 0 ) be an abelian group. 

An M-flow on G is a mapping 0: E, + M such that for every vertex 
UEVG: 

Z(e(e)/e E in(u)} = C{ O(e)/e E out(v)}, 

where in(u) := {e/vert,(e, 2) = u} and out(u) := (e/vert,(e, 1) = u}. 
A flow 0 is nowhere-zero if t?(e) # 0 for all e E E,. A k-flow is a Z-flow 6 

such that -k < e(e) < k for all e E E,. 
There exists a formula (P,,~ in 9A,0 such that, for every GE FG(A)O such 

that Max{Card (in(u)) + Card(out(u))/u E V,} Q n: 

Gt=V,.k iff G has a nowhere-zero k-flow. 
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The limitation to graphs of degree at most n is due to the impossibility 
to “count in dp beyond fixed integers.” In %Y, one can “count modulo p.” 
It follows that the existence of a nowhere-zero H/pZ-flow can be expressed 
in g%,o.p without any limitation on the degree of the considered graphs. 

(3.6) DEFINITIONS. Paths and simple paths. Let G be a graph. Let v, v’ 
be vertices. A path from v to v’ is a nonempty sequence of binary (i.e., type 
2) edges e,, . . . . e,, such that vert,(e,, 1) = v, vert,(ei, 2) = vert,(e,+ , , 1) for 
all ie [n - 11, and vert,(e,, 2) = v’. (One may have v = v’.) Such a path is 
simple if vert,(e,, 1) # vert,(e,, 1) for i #j. (A more general notion of path, 
that concerns graphs with edges of type larger than 2, can be found in 
Courcelle [9, 1.51.) 

(3.7) LEMMA. The transitive closure of an Z-definable binary relation is 
Y-definable. 

Proof. (Sketch). Let R be a binary relation on a set D. A subset X of D 
is R-closed if, for every x in X and every pair (x, y) in R, the element y 
belongs to X. A pair (x, y) belongs to R+ iff it belongs to the smallest 
R-closed subset of D containing x. (“Smallest” is taken w.r.t. set inclusion). 
From this observation it is easy to construct a monadic second-order 
formula defining R + from one defining R. 1. 

(3.8) PROPOSITION. The following properties of a graph G are 
Y-definable: 

(1) A given set of edges is the set of edges of a simple path linking two 
given vertices. 

(2) G is connected, 

(3 ) G has k connected components vor some fixed k), 

(4) G is strongly connected, 

(5) G has a Hamiltonian circuit. 

Proof: Let G be a graph. Let U be a set variable of sort e. Let x, y be 
object variables of sort v. Let cp express that there is in U an edge e such 
that vert,(e) = (x, y). By using Lemma (3.7), one can construct a formula 
0 in Y( {x, y, U}) saying that there exists a path from x to y, all edges of 
which are in U. Then, the formula p defined as 

0 A VW[“WC U” A 0[ W/U] =s(‘W= U”] 

says that U is the set of edges of a simple path from x to y. (Formulas can 
easily be constructed to express what is written inside quotes. We denote 
by e[ W/U] the result of the substitution in 0 of W for U, after some 
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possibly necessary renamings of bound variables.) This proves (1). The 
other assertions follow more or less easily. 

Consider, for instance, the existence of a Hamiltonian circuit. This 
property can be written 

3U,x,y,e[~Ax#y~“eisanedgefromy tox”~ 
“every vertex belongs to some edge in U”]. 

“Forbidden configurations” can be expressed in monadic second-order 
logic. Some properties of sets of graphs defined by forbidden configurations 
are investigated in Courcelle [ll, 12, 141. 1 

(3.9) PROPOSITION. Let A contain at least two symbols, one of which is 
of type 2. The following properties of a graph G over A are not definable: 

(1) G has a nontrivial automorphism. 

(2) G has as many edges labeled by a as by b, where a, b E A. 

The proof uses results to be established below. It will be given at the end 
of Section 5. (Note that it is easy to express these two properties in second- 
order logic, by formulas using quantifications on binary relations.) 

In order to obtain a relatively short proof for the result of the next 
section, we define a syntactical variant of the language %?Y, that we shall 
denote by &Q!. This new language has a simpler syntax than %“Y, but the 
formulas are not easily readable. 

(3.10) DEFINITION. The language ($2. The language U? is a variant of 
%‘P’ using set variables only (still denoted by uppercase letters), of the two 
possible sorts v and e. 

Let -Ilr be a {v, e}-sorted set of set variables, U, U’, V, W, . . . . Let k E N. 
A term of sort e is either a variable U, of sort e, or the constant $. A term 
of sort v is an expression of the two possible forms S,(4) and S,(U), where 
U is a variable of sort v, and I is a subset of [k]. The set of these terms 
is denoted by s,(w). 

For every w-assignment v in a graph G= (V,, E,, lab,, vert,, src,) 
of type k, we state that: 

a term of the form Q denotes 0, 

a term of the form U denotes v(U), 

a term of the form S,(Q) denotes {src,(i)/ic Z}, 

a term of the form S,(U) denotes v(U) u (srco(i)/i E Z}. 

We let v(X) be the set denoted by a term X. We shall use Q and U as 
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shorthands for S,(4) and S,(U), respectively. Hence $ is a constant of both 
sorts v and e, but this will not create any difficulty. 

The set k,,,W) consists of the following atomic formulas, where by a 
term, we mean an element of 3k(W): 

(1) Xc Y for terms X, Y of the same sort, 

(2) sgl(U) for a variable U of sort e, 

(3) edg,(U, X, , . . . . X,) for a variable U in W- of sort e, and terms 
X,, . . . . X, of sort v, where a E A and n = s(a), 

(4) card,,(X) for 0 <p < r < q, r > 2, and a term X. 

For every W-assignment v in a graph G, these formulas hold true iff, one 
has, respectively, 

(1) V(X)EV(Y), 
(2) v(U) is a singleton, 

(3) v(U) is a singleton {e>, lab,(e)=a and vert,(e)Ev(X,)x . . . x 

V(X”) 
(4) Card(v(X)) =p mod r. 

Finally, we denote by EL! A.k,y(W’) the set of formulas formed from 
u A,k,y(W) by Boolean combinations and existential quantifications (over 
set variables), having their free variables in W’. 

The simplified notations U?(W), Kg!, , etc... will be used similarily, as for 
WY. The set U?~,~,,(W) of formulas with at most h levels of nested 
quantifications is defined as for V9. 

The two languages %?L? and U? have the same expressive power as 
shown by the following lemma. In its statement, we use the following 
notations. 

If W a set of object and set variables {u, v, W, . . . U, V, W, . ..}. we denote 
by @ the set of set variables (ii, 6, W, . . . . U, I’, W, . . . > (where U, U, W, . . . are 
new set variables associated with U, v, W, . ..). 

If v is a W-assignment in a graph G, then we denote by V the @-assign- 
ment such that V(U) = v(U), V(U) = {V(U)} for U, u in vV‘. 

(3.11) LEMMA. (1) Let cp E %‘Y(%‘“). One can construct a formula @ in 
UZ(??“) such that, for every graph G, and every ^llr-assignment v in G: 

(G, cl t= @ iff (G, v) I= cp. 

(2) Conversely, if%‘” consists of set variables, and $ E QX(IV), one can 
construct $’ in %Y(TV”) such that, for every w-assignment v in G, 

(G, v)kti’ iff (G, v)l= II/, 
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Proof (Sketch). (2) Each formula in U,,,,,(7V) can be easily translated 
into a formula in %AY?‘,~,,(~). Th e result follows immediately. 

(1) Every object variable u, u, . . . of cp can be represented by the set 
variable k, 6, . . . . subject to the additional condition that ii denotes a 
singleton. 

Here are the main steps of the translation of cp into Cp: 

-. 
3ulj 1s 3U[sgl(U)r\ $1. 

If u is of sort v then sgl(U) is not an atomic formula, but stands for the 
following formula (expressing that ii denotes a singleton): 

A l(tuG u,) A l(tiG u,)]. 

Then 
-. 
vUl/$ 1s 1% [Sgl(ti) A 151. 

The translations of the atomic formulas are 

u=v is listi A tiCi& 

UEU is UcU, 

edg,(w, z)~, . . . . u,) is edg,(%, v~, . . . . z?,), 

card, & U) is card,, & U), 

where u, w, u,, . . . . u, are object variables of the appropriate sorts. If any of 
these variables, say u, is the constant si, then 5 is the term St,,($). We omit 
the remaining definitions and verifications. 1 

4. THE MAIN THEOREM 

We establish that every definable set of graphs is recognizable. By 
Lemma (3.11), every definable set is defined by a closed formula in 6% In 
our proof, we shall use this syntactical variant of %Z. 

(4.1) DEFINITION. Tautological equivalence. Two formulas cp and 40’ of 
(E?(W) are tautologically equivalent if cp can be transformed into cp’ by 
finitely many renamings of bound variables, and applications of the 
Boolean laws on v , ~,i,true,falselikecpvcp=cpand iicp=q. 

Hence in particular, if @ is finite, there are finitely many tautologically 
inequivalent Boolean combinations of formulas of @. 
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It is clear that for every two tautologically equivalent formulas 4p and cp’ 
in 62 A,k,p(YY), for every graph GEFG(A)~, for every -ty-assignment v 
in G: 

(G VII== cp * (G v) t= cp’. 

For every subset @ of cF2, we denote by 6 the quotient set of @ w.r.t. 
tautological equivalence. 

In the following lemma we fix a finite ranked alphabet A, an integer q, 
and we denote by KQp’(%‘-) the set CE?~)&YY). 

(4.2) LEMMA. For every k and h in N’, for every finite set of variables W, 
the set WLh’(W) is finite. 

Proof: By induction on h. Let h = 0. It is clear that aIA.,& “w) is finite. 
Since U?jp)(w) is the set of Boolean combinations of formulas in 
2l A,k,y(7Y), it is finite, up to tautological equivalence. 

Let h = h’ + 1. Since CZ~h”(~~ u {VI) is finite up to tautological equiv- 
alence, so is the set of formulas in U?ih’(-lY-) that are of the forms 3Uq, and 
so is C.U!~‘(~w) that is the set of Boolean combinations of formulas of this 
latter form. 1 

Since one can decide whether two formulas are tautologicaly equivalent, 
the finite set CZi?jjl)(%‘“) can be effectively constructed. 

We now make (@k)kEN into a family of predicates. For every (p in mk, 
we let k be the sort of cp, and C$ be the predicate on FG(A), defined by: 

4(G) = true : o GE cp. 

We shall establish the following result: 

(4.3) PROPOSITION. For every h 2 0, the family of predicates 
@‘h’:= {cjqpEmk ) (h) k > 0) is effectively locally-finite and HA-inductive. 

The main result of this paper is an immediate consequence of this 
proposition. We state it immediately. 

(4.4.) THEOREM. Every definable subset of FG(A)k is an effectively given 
recognizable set of graphs. 

ProoJ Let Lc FG(A), be defined by a formula cp in U?A,k,q. There 
exist h 2 0 and q such that cp E KQy,k.,. The set A and the integer q being 
fixed, we can apply Propositions (4.3), and (1.5). They yield that L = L, is 
FG( A )-recognizable. 

Since the family of predicates QCh) is effectively locally-finite and 
HA-inductive, the set L is effectively recognizable by Proposition (1.6). 1 
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The proof of Proposition (4.3) is based on three lemmas, stating that the 
family of predicates QCh) is inductive w.r.t. the sets of operations 
~On,mlm~Ol~ {ei.j,Jl <i,j<n, n> l}, and {u,,,J~: [PI + Cnl, 
12, p 2 0}, respectively. 

These lemmas will be proved by induction on formulas with free 
variables, in order to handle quantifications. Hence, we need a few more 
technical notations. 

Let W be a finite set of set variables. If v’ is a W-assignment in 
G’E FG(A)k, if v” is a W-assignment in G” E FG(A),., then, we denote by 
v := v’ u v” the W-assignment in G’@ G” defined by v(U) = v’(U) u v”(U) 
for all U in W. 

Letting k = k’ + k”, we have 

(4.5) LEMMA. Given cp in E!i?jjl)(W), one can construct a finite sequence 
of formulas cp;, . . . . cpk in (Ei?$)(W), a finite sequence of formulas cp;, . . . . cp: 
in 62$!(W), and an (n + m)-place Boolean expression B such that, for every 
k’-graph G’, for every k”-graph G”, for every W-assignment v’ in G’, for 
every W-assignment v” in G”: 

(P~,~~,,(v’ u v”) = B[c&(v’), . . . . c&&v’), (P;&v”), . . . . (P;&v”)]. (*) 

Proof: The proof is by induction on the structure of cp. 

First Case. cp is atomic. The various possibilities are as follows: (In each 
case, we write the equality corresponding to (*) of the statement.) 

(1) If cp is X E Y for terms X and Y of sort e, then 

qc~ec,,(v’ u v”) = cp&v’) A cp&v”). 

(1’) If cp is S,(U) E S,( U’) with U, U’ in -llr u ($} of sort v, then 

cpc~ec~~(v’ u v”) = &!(V’) A cp$(v”), 

where cp’ is S,.(U) E S,( U’), 

with I’ := In [k’] and J := Jn [k’], 

and cp” is: S,.(U) c S,.( U’), 

with I” := {iE [k”]/i+k’EZ} and J” := {ie [k”]/i+k’EJ}. 

(2) If cp is edg,( U, SAW, SA Y)), then 

~c~~c~~(v’u v”) = [edg,(U, S,.(X), S,( Y)),.(v’) A (U~Q)c,z(v”)] 

v [(U E $Mv’) A edg,( U, S,..(X), S.,4 Y)Mv”)I, 

where I’, I”, J’, J” are as in (1’). 
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(In order to simplify the writing, we have assumed that the symbol a is 
of type 2; the general case is similar.) 

(3) If cp is sgl( U), where U is a variable of sort e, then 

(PG.@G”(V’uV”)= [sgl(U),.(v’) A (UGl$),~~(V”)] 

v [(U !L Q)GJV’) A sgl( U),.( v”)]. 

(4) If cp is card,,(U), then 

cpG.OG’.(V’u v”) 

= w  {$r,q,G’w A Il/s,yG”(v”)/o <r<q,O<s<q,r+s=pmodq}, 

where $l.Y is the atomic formula card,,l.( U). 

In order to understand case (4), one should remember that 
v’(U) n v”( U) = @. The validity of the stated equality follows, since for 
disjoint sets X and Y, Card(Xu Y) = Card(X) + Card( Y). The verifications 
of the other cases are easy from the definitions. 

Second Case. cp is 11(/, or J/, A $z, or $i v J/,. We only consider the 
case where cp is 11/, A ti2. The other ones are similar. We can assume that 
we have constructed Bi[$;.r, . . . . Ic/:I,, . ..I. such that I,&,, . . . ~QX!!jlf)(%‘), 
$:I,, E (X!jjt’(w) and 

*iG,@G’. (v’ u v”) = B;[i);,,c,(v’), . ..) ljqIG~.(V”), . ..] 

for i = 1, 2. Then, clearly, 

cpc~o~.‘(v’uv”)=B,[~;.IG.(v’), . ..I A B*[$;.JG’.(v’), . ..I. 

This gives the desired decomposition of cp. 

Third Case. ~0 is 3U$, with Ic/ in 6L?~-i’(~Yu (U>), and U not in w. 
Without loss of generality, we can assume that U is of sort v. 

If X’ G V, and v’ is a w-assignment in G’, we denote by v;, its extension 
into the (Y&” u { U})-assignment in 6’, defined by taking X’ as value of U, 
and similarly for v’$, if X” G V,.. Hence 

iff 

(3Uti)G~OG”( v’ u v”) = true 

* ,,(vk, G’OG u v>-) = true 

for some subsets x’ and X”, of V,. and V,,.. 

643’85,l.4 
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By the induction hypothesis, one can assume that one has defined 
BC$;, . . . . $;‘, -1 such that $‘,, . . . E CX?!jll-“(w u {U}), IL;‘, . . . E 
U?g-‘)(-ly u (U>), and 

Ic/ G,OG.,(~;. u v'&)= B[$;,Jv&), . . . . I,V,'~~~(V'&), . ..I. 

We can write the right-hand side of this equality as a disjunction 
C,[ . . . ] v . . . v C,[ . . . ] of formulas Ci[ . . . ] of the form 

t,&~(v;(~) A I&~,(v;I,) A ... A I+&,,(V;;,~) A I,&-(V;;,,) A ... , 

where each I& is either a formula, or the negation of a formula in {$;, . ..}. 
and similarly for r+f~y,~. Hence 

~p~.~~.~(v) = true 

iff there exist X’zV.,;and x” EV~,~ such that 

C,[ ...I v . . . v C,[ . ..]=true. 

The ith element of this disjunction is equivalent to 

%?sv,~[$;,~~.(V;.) A ... ] A 3x” &v,,,[ll/&,(V&) A ... 1, 

i.e., to 

where 0:. is the formula I& A I& A . . . (in (X!$!-“(~u {U}) and 0: is 
defined similarily as @ll A t,bF2 A . ..(in 62F,-‘)(wu {U}). 

Hence rp,.@,.(v) is equivalent to a Boolean combination of formulas in 
tU?$)(9Y’) u (S?jlr,,(~Y), expressing properties of v’ in G’, and of v“ in G”. 1 

The next lemma expresses the validity in O,,,(H) of a formula cp, in terms 
of the validity in H of a formula cp’ constructed from cp. Let us recall that 
the graph G = O,.j(H) is the result of the fusion of the two vertices SK,(~) 
and m,(j). Formally, it is defined by a surjective mapping f: V, + V,, 
where V, = V,/-, and - is the equivalence relation on V, generated by 
the pair (src,(i), src,(j)). 

For every w-assignment v’ in H, we define the assignment v = Bj,j(v’) in 
G by letting 

v(U) := v’(U) for U of sort e, 

v(U) :=f(v’( U)) = {f(U)/UE v’( U,} for U of sort v. 
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As in the proof of the last lemma, we use vX to denote the extension of 
a w-assignment v into a w  u (U}-assignment, in such a way that 
v.~( U) =X (where U is not in w). 

(4.6) LEMMA. Given q~ E U?:)(W) and i, jE [k], one can construct 
a formula (P’E (I2r’(W) such that, for every HE FG(A),, for every 
@“-assignment v’ in H, if G = 8, ,(H) and v = tl,.i(v’), then 

cpG(V) = 9X(v’). 

Proof: By induction on the structure of 9. 

First Case. 9 is atomic. 

(1) If 9 is Xc Y, or is card,,,(U) for X, Y, U of sort e, then, we let 
9’ be 9, and we have 

cpG(V) = 9iAv’). 

(2) If 9 is S,(X) c S,( Y), then, we let 9’ be 

sI(x) c sJ’( y, v (s[(x) E s,..(Y) A Pj,j( y)), 

where 

J” := Ju {i,j}, 

J’:=ifiorjisinJthenJ”elseJ, 

and P,,~(Y) is the formula: S{,,( Y)E Y v S,,,( Y)E Y expressing that Y 
contains at least one of the two sources of H that are being fused. 

(3) If 9 is edg,(U, S,(X), S,(Y)), then 9’ is the disjunction of the 
following four formulas: 

edg,( u, WXL %( Y)) 

dga(“3 s,(x)9 sY( y)) A Pi, j( y, 

edg,(V sr,(X), sr( Y)) A Pi,j(W 

edg,( u, SAW, SAY)) A P;. ,(X1 A Pi,,(Y), 

(We have only considered the case of a symbol a of type 2; for a symbol 
of type n, 9’ is a disjunction of 2” formulas, that are straightforward to 
write; J’ and J” are as in (2); I’ and I” are similar.) 

(4) If 9 is card,,(X) for a term X of sort v, then 9’ is 

(card p+ I,,(X) A $1 V (card, ,(x) A l$h 
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where $ is the formula 

expressing that the ith and jth sources are two distinct vertices of X, 

Second Case. cp is cp, A (p2 or ‘pi v vpz or 1 cpi . Assuming that cp’, , cp; 
have already been constructed, then one takes for cp’ respectively cp; A cp; 
or cp; v cp;, or icp;. 

Third Case. cp is 3UI//, where $ E CL! kh-“(W u {U}), U not in -llr. We 
assume that U is of sort v. Let $’ be obtained from $. Then 

fpG(v) = true iff $Jvx)= true for some XcV,, 

iff $)H(v;) = true for some YS.V,, 

iff (3U \I/‘)H(v’) = true, 

since for all YEV,, Oi.j(~‘y)=vfCY) and f is surjective. Hence cp’ is the 
formula 3 U I++‘. 

This completes the proof of Lemma (4.6). i 

The next lemma deals similarily with the source redefinition map 
(i,: FG(A), + FG(A),. 

(4.7) LEMMA. Given q~Kf~“)($+‘~), and a: [k] --) [n], one can construct 
a formula cp’ E (X?:‘)(W) such that, for every HE FG(A),, for every 
W-assignment v in H, if G = o,(H) then cp,Jv) = cp;l(v). 

Proof. For every formula cp, we let cp’ be the result of the simultaneous 
substitution in q of S,,,,(X), for every occurrence of S,(X) (where X is 
either a variable or +), for all Zz [k]. It is easy to see that 

(PG(V) = CPXV). 

It is clear that q’~U!:‘)(w). 1 

Proof of Proposition (4.3). 

For -W = 121, Lemmas (4.5) and (4.7) yield that @@) is inductive with 
respect to { Q,,,/m, nE N} u {o,,,,Jn, PE N, cr:[p] + [n]}. Lemma (4.6) 
yields similarily that QCh) is inductive w.r.t. {Oi,i, ,,/n > 0, i, je [n] }. But 
every operation fib,” can be written as a composition of at most n opera- 
tions of the form 13,,~,~, with 1~ i, j, bn. The appropriate extension of 
Lemma (4.6) holds and yields the desired result. 

Finally, H, also contains constants 0, 1, and a for all aE A. These 



RECOGNIZABLE SETSOFFINITE GRAPHS 51 

constants define finite graphs. For every closed formula cp and every finite 
graph G, one can decide whether cp holds in G. This means that one can 
determine whether cpc = true, or cpc = false. This gives (trivial) decomposi- 
tions for formula cp w.r.t. the constants 0, 1, and a, a E A. 1 

Our main theorem has the following consequences. 

(4.8) COROLLARY. Let L s FG(A), be a context-free set of graphs, and 
let cp E VYA,,. 

(1) The set L n L, is context-free and a context-free graph-grammar 
can be constructed to generate it. 

(2) The following properties are decidable: 

(2.1) rp holds in all graphs G in L (i.e., LS L,), 

(2.2) cp holds in some graph G in L (i.e., L n L, # 0). 

Proof: By Proposition (2.11), context-free graph-grammars and systems 
of equations define the same sets of graphs. In this proof, it is convenient 
to describe context-free sets of graphs by systems of equations. The set L, 
is an effectively given recognizable set of graphs. Hence, by Proposition 
(1.8) one can construct a system of equations defining L n L, (hence also 
a context-free graph-grammar). One can test whether L n L, = 0. One can 
also test whether L n L ++,=@, i.e., whether Lg L,. 1 

As an application, we get that the set of planar (or connected, or 
Hamiltonian) graphs belonging to a given context-free set, is context-free, 
and that a grammar can be constructed to generate it. One can also decide 
whether a context-free set of graphs contains a planar (or a connected, or 
a Hamiltonian) graph. 

(4.9) Remarks. The algorithms doing these things, that one derives from 
Corollary (4.8), are “uniform” in terms of the graph properties. This uni- 
formity is a source of inefficiency: the grammar generating L n L,, that one 
can contruct in this way has approximately m. exph+2(b.h”) nonterminak, 
where m is the number of nonterminals of the grammar generating L, and 
the constants b and n depend polynomialy on Card(A), Max{r(a)/aE A}, 
k, and q, where cp E QX+A.k.qr and h is the height of cp. (We denote 2” by 
exp(x) for XE N.) 

But Corollary (4.8) provides us with an easily testable decidability 
criterion. Furthermore, the notion of an inductive set of predicates yields a 
methodology for finding efficient algorithms. If a context-free set L as in 
Corollary (4.8) is given by a system of m equations over Hyl, if q belongs 
to E.ey.;,,, then, in order to contruct a system of equations (or a grammar) 



52 BRUNOCOURCELLE 

defining L n L,, it suffices to find a finite HL”-inductive family P of 
predicates containing 4. The number of nonterminals of the context-free 
grammar obtained in this way is then at most m.exp(p), where p = card(P). 
This number p can be much smaller than Card( lJ {U!~,{,,/i < k}), that is 
precisely the cardinality of the family of predicates used in the proofs of 
Theorem (4.4) and of Corollary (4.8). This idea is exploited by Lengauer 
and Wanke in [24]. 1 

We now review a few applications to the logic of graphs and to the 
complexity of certain graph decision problems. 

Sets of Graphs Having a Decidable Monadic Theory 

Let MC FG(A), be a set of graphs. The monadic (second-order) theory 
of M is the set of formulas th(M):= (‘p E U9’JG k cp for all G in M}. 

(4.10) COROLLARY. The following sets of graphs have a decidable 
monadic theory: 

(1) The set of k-graphs of width at most m, for every k and m >, k, 

(2) Every context-free set of graphs. 

Proof: The set of k-graphs of width at most m is context-free by 
Proposition (2.11). The two results follow immediately from Corollary 
(4.8), assertion (2.1). 1 

One cannot hope to break the limitation to sets of graphs of bounded 
width, because of the following results: 

(4.11) PROPOSITION. (1) The first-order theory of the set of all finite 
graphs is undecidable. 

(2) The monadic theory of a set of graphs L of unbounded width is 
undecidable. 

ProoJ Result (1) is known from Trahtenbrot [30]. It follows in par- 
ticular that the monadic theory of the set of all finite graphs is undecidable. 
Result (2) is essentially due to Seese [27, 281. Technical details can be 
found in Courcelle [14]. 1 

On the other hand, decidability results can be obtained for noncontext- 
free sets of graphs of bounded width, defined by certain controlled context- 
free graph-grammars. 

Controlled Grammars 

Let f be a context-free graph grammar, let L(f, C) be the set of graphs 
in L(T) having a derivation tree in C, where C is a given set of trees. We 
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call C a control set, and we say that (r, C) is a controlled (context-free) 
graph-grammar. We shall prove that certain controlled graph-grammars 
generate sets of graphs having a decidable monadic theory. 

If r is a context-free (word) grammar, and if C is the set of trees having 
all their branches of the same length, then L(f, C) is an EOL language. 
(Rozenberg and Salomaa [26]). Every EOL language can be considered as 
a subset of a context-free language, defined by such a control set. 

We now define the derivation trees of a context-free graph grammar, 
r= (A, U, P). We first turn P into a signature. Let p in P name rule u + e. 
Let (ui,, . . . . ujk) be the sequence of nonterminal symbols occurring in e, in 
this order (a same symbol may occur several times in this list). We let 
o(p) := z(u) and a(p) := (I, . . . . $uik)). 

We let also j? be the monomial p(ui,, . . . . uJ. Hence P is an N-signature, 
where N is (r(u)/u~ U}. 

Let us consider the polynomial system 

s,= (24, =i I,..., u,=i,), 

where ii is the polynomial pi + ... +fik, and (pl, . . . . pk} is the set of 
production rules with left-hand side ui. The least solution of s, in 
CY(M(P)) is an n-tuple of sets of trees. The first component of this tuple is 
the set of derivation trees of r. It is denoted by Der(r). (Let us recall from 
(2.10) that L(T)=L(T, ui)). It is M(P)-recognizable. Every tree t in 
Der(r) defines a graph in L(T), denoted by yield(t). We characterize the 
mapping yield algebraically as the unique homomorphism M(P) + FG,-, 
where FG,- is a derived magma of FG(A) that we now define. 

We let (FG,), := FG(A), for n EN. 
We now define the operation pFGr for every p in P. Let p name u + e, 

let (ui,, . . . . uc) be the sequence of nonterminals of e, let x,,j= 1, . . . . k be a 
variable of sort z(uJ let .? be the expression in FE(A, X,) obtained by 
replacing in e the jth nonterminal symbol by xj. (It follows that 2 is linear 
in X,.) We let pFGr be the derived operation e,,,,,. Hence there is a 
unique homomorphism yield: M(P) + FGr, and it easy to verify that 
yield(Der(r)) = L(r). More details on derivation trees can be found in 
Courcelle [6]. 

The following result, is a generalization of a result by Lengauer and 
Wanke [24]. 

(4.12) PROPOSITION. Let (r, C) be a controlled context-free graph gram- 
mar defining a subset of FG(A),. Let us assume that it can be decided 
whether K n C= @ for every effectively given recognizable set of trees K. 
The following properties of a formula cp in %?.YA., can be decided: 
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(1) G + cp for some graph G in L(f, C), 

(2) G + cp for all graphs G in L(T, C). 

Proof The set K, := {GE FG(A),/G k ‘p} is effectively FG(A)- 
recognizable. Since FG, is a derived magma of FG(A), it is also 
FG,-recognizable (Proposition ( 1.15)). Hence yield ~ ‘(K,) is effectively 
M(P)-recognizable by Proposition (1.7). It follows that 

L(T, C) n K, = yield(Der(ZJ n yieldp’(K,) n C). 

Since Der( r) n yield - ‘( Klp) is effectively recognizable, the emptiness of 
this set can be tested. Property (1) holds iff it is nonempty. Property (2) 
holds iff the set constructed similarily from -I cp is empty. 1 

(4.13) EXAMPLE. Let Ci, i> 1, be the set of trees all branches of which 
are of length i. Let C = U { Ci/i > 1). 

Let us establish that for every recognizable subset K of M(P), one can 
decide whether C n K = @. Without loss of generality, we assume that N is 
reduced to only one sort. (The general case is no more difficult.) 

Let K = h -‘( Q’), where h is a homomorphism: M(P) + Q, Q is a finite 
P-magma, and Q’ s Q. For every n, let Q, := h(C,). Then 

Ql= (hWp~R P(P)=% 

Q ,,+I = MW~Cn+J 

= (h(p(t,, . . . . fk)W,, “‘7 tkECm p(p)=k) 

= {p&e, ...y qk)lql, -.tqkEQnt p(p)=k). 

It follows that the sequence Q,, Q?, . . . . Q,, . . . is computable. Since the 
sets Qn are subsets of a finite set, there exists q such that Q4 = Qm for some 
m<q. Hence KnC#@ iff Q’n(J{Qi/i<q}#@, and this is decidable. 

Hence, for every context-free graph-grammar f, the set of graphs 
L(T, C), that is not necessarily context-free, has a decidable monadic 
theory. 1 

Complexity Issues 

We present a few applications to the complexity of graph algorithms. 
Other results can be found in Courcelle [12, 143. 

(4.14) PROPOSITION. Let cp be a formula in %?9’4,k,y. 

(1) Let m 2 k. One can decide in time O(size(e)) whether q~ holds in 
the graph val(e) defined by a given expression e in FE(A)i”]. 

(2) Let r be a context-free graph-grammar generating a subset L oj 
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FG(A),. One can decide in time O(length(d)) whether a graph G in L given 
by a derivation sequence d of r satisfies cp. 

Proof (1) From the proofs of Propositions (4.3) and (1.6), one can 
contruct a deterministic bottom-up tree-automaton recognizing the set of 
graph expressions e of width at most m and of type k, such that val(e) /= cp. 
(This set can be considered as a set of trees L s M(H5;“1)k. This tree 
automaton is of large but fixed size, depending on cp, k, and m. It makes 
it possible to decide in time O(size(e)) whether e belongs to L. 

(2) Let r be a context-free graph-grammar. Let GE FG(LI)~ be 
generated by f, by means of a derivation sequence d. By the definition we 
gave in Section 2 of context-free graph-grammars, this derivation sequences 
produces an expression e that defines G. This expression is of size 
O(length(d)) and of width at most m, where m is the maximum sort of a 
symbol occurring in IY It can be constructed in linear time from d. 

Hence, by the first part of the lemma, one can decide whether val(e) k cp 
in time O(size(e)), hence, one can decide in time O(length(d)) whether 
Gi=cp. I 

(4.15) Remarks. From the above result, it follows that, if a context-free 
set of graphs L has a polynomial parsing algorithm, then one can decide 
in polynomial time whether a graph G belongs to L, and, if this is the case, 
if it satisfies a given monadic second-order formula. Lauteman gives condi- 
tions on context-free graph-grammars ensuring the existence of polynomial 
parsing algorithms [23]. 

Monadic second-order formulas can express NP-complete problems. 
(The existence of a Hamiltonian circuit in a graph is an example of such 
a problem). This gives examples of NP-complete problems, becoming poly- 
nomial when restricted to special classes of graphs. Johnson [22] discusses 
several such situations. 

Arnborg et al. [l] introduce a more powerful calculus, called the 
extended monadic second-order logic, for which Proposition (4.14) holds. 
This logical calculus makes possible a few numerical computations and 
comparisons. In particular, one can express that a graph has as many edges 
labeled by a and by b. But the set of graphs satisfying this property is not 
recognizable. (Otherwise, the set K used below in the proof that the 
converse to (4) in Theorem (5.3) would be recognizable, and we shall 
prove that it is not.) Hence, Theorem (4.4) does not hold for the extended 
monadic second-order logic. 

Families of Sets of Graphs: A Comparison 

We have established that every definable set of graphs is recognizable. In 
the case of words, a theorem by Biichi [4] (also Theorem $2 of Thomas 
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[29]) states that a language is recognizable iff it is definable. In the case 
of graphs, since there are countably many definable sets of graphs and 
uncountably many recognizable ones, some recognizable sets of graphs are 
not definable. 

Here is an example of such a set. Let K E N be a recursively enumerable 
nonrecursive set. Let L = (G,/n E K, n 2 2}, where G, is the (n x n)-grid 
defined in Definition (2.15). Given a graph H and a closed formula cp in 
%‘Y, one can decide whether Hk cp (because H is finite). If L would be 
equal to L, for some formula cp, one could decide whether G, E L, i.e., one 
could decide whether n E K. This contradicts the choice of K. 

We conclude this section by giving a diagram, comparing the various 
families of sets of graphs we have discussed. (On this diagram, shown on 
Fig. 6, the scope of a family name is the largest rectangle, at the upper left 
corner of which it is written.) 

The following families of sets of graphs are compared: 

REC, the family of recognizable sets of graphs, 

CMSOL, the family of definable sets of graphs, 

MSOL, the family of dp-definable sets of graphs, 

CF, the family of context-free sets of graphs, 

B, the family of width-bounded sets of graphs. 

Provided the reference alphabet contains at least one symbol of type 
at least 2, the families REC and B are uncountable. The other ones are 
countable. The inclusions shown on the diagram, are strict, except possibly 
the inclusion: 

CF n CMSOL G CF n REC. 

REC L 

CMSOL L,UE 

MSOL LG 

B CF 

E T(A) > T, (A) , W(A) > R(F) 

S 

FIGURE 6 
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Whether it is strict raises an open problem, that can be restated as 
follows. 

Open Problem. Does there exist k and a recognizable set L E FG(A)k 
that is not definable (in counting monadic second-order logic)? 

Such a set exists iff the shaded area of the diagram is not empty. The 
diagram also locates several sets of graphs: 

L,, the set of square grids, 
L, the set of all grids G,, where n is an element of some nonrecursive 

subset of N, 
E, the set of discrete graphs (all vertices of which are isolated), having 

an even number of vertices. 
S, the set of graphs corresponding to the language { a”b”/n > 0) (see 

Proposition (6.9)). 

The sets of graphs T(A), T,(A), W(A), and R(F) are introduced in 
Sections 5 and 6 below. They correspond to certain representations of trees 
and words by graphs. 

It follows from Proposition (6.2) (and the proof of its Corollary (6.6)) 
that E belongs to CMSOL-MSOL. 

5. RECOGNIZABLE SETS OF TREES 

Biichi has proved in [4] that a set of words is recognizable iff it is 
Y-definable. A similar result has been proved for sets of ordered ranked 
trees (i.e., for subsets of M(F), where F is a finite signature) by Doner in 
[ 161. (This latter result is essentially contained in Theorems (3.7) and (3.9) 
of [16]. See also Thomas [29, Theorem (ll.l)] for a formulation closer to 
ours than that of Doner.) 

In this section, we extend the result of Doner to sets of unordered 
unranked trees. This extension makes an essential use of counting monadic 
second-order logic. It does not work with the “ordinary” one, as we shall 
see in Section 6. 

In this section, A is a finite alphabet consisting of symbols of type 1 or 
2, and Ai is the set of symbols of A of type i. 

(5.1) DEFINITION. Trees. A tree is (here) a graph G in FG( A ) i satisfying 
the following conditions: 

(1) for each vertex u, there is a path from srcJ 1) to v; the vertex 
srcJ 1) is called the root of G; 



58 BRUNO COURCELLE 

(2) every vertex different from src,(l) is the target of one and only 
one binary edge; 

(3) srcJ 1) is the target of no edge. 

An example of such a tree is shown on Fig. 7. There is no ordering on 
the set of edges originating from a same vertex. The vertices may belong to 
one, or several, or no unary edge (“unary” means “of type 1”). The graph 
1 is also a tree. 

It is clear that the set T(A) of all trees (over A) is S!-definable. Hence 
it is also recognizable. 

(5.2) DEFINITION. An algebraic structure on the set of trees. We define a 
few derived operations on FG(A),. If G, G’ E FG(A), , we let 

G 11 G’ := a,(O,.,(G@ G’)). 

If GEFG(A),, and btzA,, then we let 

6(G) := o,(8,,,(b@ G)). 

Figure 8 shows the graphs G 11 G’ and 6(G), respectively, to the left and 
to the right. 
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It is clear that the operation )I is associative and commutative. We shall 
denote it as an infixed operation, without parentheses. G 11 G’ and 6(G) are 
trees if G and G’ are. 

Let K, be the finite one-sort signature { 11, 1 } u A, where 11 is of rank 2, 
1 is of rank 0, a is of rank 0 if aEA,, and ci is of rank 1 if aEA,. By the 
above definitions, T(A) is a K,-magma. 

It is clear that K, generates T(A). Since the operations II and ri are 
defined on FG(A),, the set T(A) is FG(A)-equational. It is the least 
solution in p(FG(A),) of the equation E: 

L=LI(L+C {b^(L)/bEA,}+C (u/aEAl}+l. 

(As in Courcelle [S], +and C refer to set unions.) 
A set of trees can be recognizable or equational, either w.r.t. FG(A), 

or w.r.t. T(A). We shall compare the two notions in the following proposi- 
tion. Since T(A) is L-definable as a subset of FG(A),, a subset L of T(A) 
is definable (resp. Y-definable) iff it is definable (resp. 9?-definable) as a set 
of trees, i.e., iff there exists a closed formula cp in V9 (resp. in 9) such that 
L = {GET(A)/G + cp}. (We shall prove in Section 6 that certain definable 
sets are not VY-definable.) 

(5.3) THEOREM. Let L G T(A). The following conditions are equivalent: 

(1) LERec(FG(A)), 

(2) L E Rec(T(A)) 

(3) L is definable. 

The following implications hold, and the converse implications do not: 

(4) LE Rec(T(A)) =z- L E Equat(T(A)) 

(5) LEE~~~~(T(A))=LEE~~~~(FG(A)),. 

ProoJ: (3) * (1) by Theorem (4.4). 

(1) * (2) by Proposition (1.15). 

(2) 3 (3) by Proposition (5.4) established below. 

(4) is an immediate consequence of Proposition ( 1.13), since the 
finite signature K, generates T(A). 

(5) holds because it is easy to construct a system of equations 
defining L in FG(A) from a system of equations defining L in T(A). 

We now consider examples showing that the converses to (4) and (5) do 
not hold. Let K be the set of trees of the form: 
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with as many b’s as c’s. It is easy to construct an equation defining it in 
T(A). Hence KE Equat(FG(A)), . Let us assume that K is recognizable in 
T(A). Then so is h-‘(K) in M(K,), where h is the unique homomorphism: 
M(K,) -+ T(A). Let us denote by b” the term 

belonging to M(K,), written with n occurrences of 6. Let us denote 
by c” the similar term with ? instead of 6. The set of terms 
A4 := (b” 1) cm/n, m > l} is recognizable in M(K,). Hence K’ := M n h-‘(K) 
is recognizable too. But K’ = {b” /I F/n L 11, and it is easy to establish that 
it is not recognizable. Hence K is not recognizable in T(A), and the 
converse to (4) does not hold. 

Let N be the set of trees in T(A) of the form @‘(i?(l)), n ~0. It is 
easy to find a context-free graph grammar generating N. Hence 
N E Equat(FG(A))l. If N E Equat(T(A)), then N = h(N’) for some 
recognizable subset N’.of M(K,), by Proposition (1.12). From a top-down 
tree-automaton that would recognize N’, it would not be difficult to 
construct an automaton recognizing the set of prefixes of {b”c”/n > O}. 
Hence no such recognizable N’ can exist, and N is not in Equat(T(A)). 
Hence, the converse to (5) does not hold. 1 

(5.4) PROPOSITION. Every T(A)-recognizable set of trees is definable. 

Proof: Let L = h - ‘(C), where h is a homomorphism: T(A) -+ Q, Q is a 
finite K,-magma, and C is a subset of the domain Q of Q. 

The subset Q’ = h(T(A)) of Q can be computed (as the least solution in 
S(Q) of the equation E introduced in Definition (5.2); an explicit 
computation is possible since Q is finite). 

For every b EA*, the function ba maps Q’ into Q’, and the function Ilo 
maps Q’ x Q’ into Q’. Furthermore, for all q, q’, q” in Q’: 

4ll&?=q 

4 /IQ 4’ = 4’ 11 Q 4 

4 11 Qb’ It Q 4”) = (4 11 Q @)/I Q d’. 

Hence I /Q can be extended to finite multisets as follows: 

where (ql, . . . . qk} is any enumeration of a finite multiset Z of elements of 
Q’ (and II Q 121 = 1Q). We also denote by 12. q, for q in Q’, n in N + , the 
object q J/Q ql/Q ... )I Q q (with n times q). We let 0. q = 1, for every q E Q’. 
We have (r~.q)ll~(n’.q)=(n+n’).q. 
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Let &, ijl,..., gm be an enumeration of Q’ without repetitions, such that 
cjo = 1,. For every q E Q’, we let IV, be the set 

For every sequence w= (a,, . . . . cz,,, pi, . ..p.) in N(~, we let L(W) = 
((q + A,B1, . . . . a, + A, B,)/E.,, . . . . R,E N > c N”‘. 

CLAIM 1. For every q E Q’, one can find a finite subset WY of N 2m such 
that W,=U{L(W)/WEW~}. 

Proof of Claim 1. Since Q’ is finite, the infinite sequence 0 . q, 1 . q, 
2 . q, ,.., n . q, . . . is ultimately periodic. One can determine its period (we let 
/I, be the length of the periodic factor) and its nonperiodic initial part. 
Hence, for every q, q’ E Q’, the set of integers (n E N/n .q = q’} can be 
written as the union of a finite set, and finitely many sets of the form 
{cz+A/?,/AEN}, with CI E N. The result follows then easily. 1 

CLAIM 2. For every sequence w  E N2m, one can find a formula in 
@a { x, , . ..’ X,)) expressing that (Card(X,), . . . . Card(X,)) belongs to L(w). 

Prooj: It suffices to construct ‘pi in UY( {Xi}) expressing that 
card(X,) = cli + Afli for some A E N. 

If pi = 0 or 1, then a formula (pi in Y( {Xj}) can be constructed. If fli 3 2, 
then one takes for ‘pi the following formula: 

3 Y, Y’[“X, = Yu Y”’ A “Yn Y’ = a” A “Card(Y) = IX,” A card,,p,( Y’)]. 

The desired formula is then: cpl A (p2 A ... A (P,,,. 1 

We now go back to the proof of Proposition (5.4). Let GE T(A) and 
v E V,. We denote by D(G, u) the tree H in T(A) such that 

V, = {v’ E V,/v’ = v or there is a path in G from v to u’}, 

E, = {e E EG/ all vertices of e are in V, ) , 

lab, = lab, IE,, 

vert, = vert, rEH, 

srcH = (v). 

If eGE, we denote by D(G, e): 

the tree a if lab,(e) = a E A,, 

the tree &D(G, v)) if lab,(e) = b E A, and v = vert,(e, 2). 
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Let d and 8 be the mappings a: V, + Q’ and a: E, + Q’ such that: 

(1) a(u)=h(D(G, u)) for all UEV~, 

(2) a(e) =h(D(G, e)) for all eEEG. 

They satisfy the properties: 

(3) a(e)=a, if lab,(e)=aEA,, 

(4) a(e) = hQ(a(vert,(e, 2))) if lab,(e) = b E A,, 

(5) 13(u)=l,=ij, if D(G,u)=l, 

(6) a(u)= IlQ(8e)/eEEGr vert,(e, 1) = U> if D(G, u) is not 1. 

By Claim 1, Eq. (6) can be written as 

(6’) @I 9 . ..t d E wa(vj 

where n;=card((e~E,/vert(e, l)=u, a(e)=qj}) for ig [ml. 

If follows then that 

(7) h(G) = h(D(G, srcG( 1))) = d(src,( 1)). 

It is not hard to see that Eqs. (3) to (6) define a unique pair of mappings 
8, a, and this pair of mappings satisfies (1) and (2). Hence, for every tree 
G in T(A), 

(8) G E L iff there exists a pair of mappings 8, a satisfying (3t( 5) and 
(6’), and such that a(src,( 1)) E C. 

The required mappings 8 and d take their values in the finite set 

(4 0, . . . . qm}. Hence they can be represented by (m + 1)-tuples of sets, 
x 0, . . . . X, E V,, and YO, . . . . Y,,, E E,, such that Xi = {u E V,/C?(U) = qi} and 
Yi = {e E E,/a(e) = qi}. With this coding, and by Claim 2 conditions 
(3~(5) and (6’) can be written in counting monadic second-order logic. 
Note that the atomic formulas with card,,, are used to express condition (6’). 

Hence condition (8) can be rewritten as 

GEL iff 3X,, . . . . X,, YO, . . . . Y,[ !FJ, 

where Y is a formula in Vya. l,p ({A’,, . . . . A’,, Y,,, . . . . Y,,,} ) and 
p = Max { /?,, , . . . . bqm}. Hence L is definable. 1 

Proof of Proposition (3.9). We now complete the proof of Proposition 
(3.9) by proving that the set of graphs having a nontrivial automorphism 
is not definable. 

Let a E A be of type 2. Let L be the set of O-graphs of the form: 

.a\.& . . . .&.‘a. . . . .‘a. 
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The set L is Z-definable. Let L ’ be the set of graphs in L having as 
many edges pointing to the left and to the right. 

Let K be the set of graphs in FG(A), having at least one nontrivial 
automorphism. More precisely, K is the set of isomorphism classes of 
concrete graphs G such that there exists an isomorphism G + G that is not 
the identity. 

Let us assume that K is definable. Then L n K is also definable. Hence 
L n K is recognizable. But L n K = L’. Hence the set of graph expressions 
defining graphs in L’ is recognizable (as a set of ranked trees). 

By using a proof technique similar to the one used in Theorem (5.3), to 
establish that the converse to (4) does not hold, one obtains a contra- 
diction. Hence the existence of a nontrivial automorphism in a graph is not 
definable. 

If the set of graphs having as many edges labeled by CL and by b would 
be definable then, the set K used in the proof of Theorem (5.3) would be 
definable, hence recognizable. We know that this is not the case. This 
proves the second part of Proposition (3.9). a 

6. THE EXPRESSIVE POWER OF COUNTING MONADIC SECOND-ORDER LOGIC 

We establish that the counting monadic second-order logic is strictly 
more powerful than the “ordinary” one. We also prove that, if, in a many- 
sorted structure M linear orders on the domains are 2-definable, then 
every formula CJJ of VJ? can be translated into a formula 4 of A$‘, equivalent 
to cp in M. Hence for words and ranked trees (in which linear orders are 
definable), the atomic formulas of the form card,,(U) do not add 
expressive power to Y. 

(6.1) DEFINITION. Monadic second-order logic dealing with sets. We shall 
consider a one-sorted language without constants (like si, s2, . ..). or basic 
relations (like edg,). We denote by Y(Y) the set of monadic second-order 
formulas with free variables in V. (The atomic formulas are x =y and 
x E X, for object variables x, y and set variable A’). Hence g(V) is the 
subset of Y&V), that one would use to express properties of graphs in 
FG(@),, i.e., of graphs consisting of finite sets of isolated vertices. It is 
clear that the formulas in Y( =2’(a)) can only express conditions on the 
cardinalities of the sets in which they are interpreted. 

(6.2) PROPOSITION. There is no formula cp in U( {X}) such that for every 
finite set V, for every subset X of V, Card(X) is even iff (V, X) + cp. 

Since the formulas card,,(X) have no equivalent in Y, the counting 
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monadic second-order logic V9 is strictly more powerful than the 
“ordinary” one Y. 

This proof will use several technical definitions and lemmas. 

(6.3) DEFINITIONS. For every positive integer n, we enrich 2’ into 2’:, 
by allowing terms defining subsets of V (the domain of the logical structure 
where the formulas are evaluated), formed with set variables and Boolean 
operations lJ, n, -, and - (the last one denotes the complementation 
w.r.t. V). These terms are called set terms. The atomic formulas are as in 
2, together with cardi( and card,i(t) for set terms t and in [0, n]. The 
meanings of these formulas are respectively “the set defined by t has exactly 
i elements” and “the set defined by t has more than i elements.” 

It is clear that 9 and 2’; have the same power since for set terms t and 
t’, Card(t) = i and Card( t’) > i are definable in 9. The formulas x E t and 
t = t’ are also definable in 2’. 

We eliminate object variables from 3;: 

- for every object variable x, we let Z, be a new set variable 

- 3x.. is replaced by 3Z,, card,(Z,) A . . . 

- x E X is replaced by card,(Z, - X) 

- x = y is replaced by card,(Z,K - Z,) A card,(Z,, - Z,). 

Let 2: be the set of formulas of 9; without object variables. It follows 
from the above remarks that for every formula rp in 9( {X,, . . . . X,}) one 
can find an equivalent formula cp’ in J?;( {X,, . . . . A’,}). Our next aim is to 
eliminate quantifiers in the formulas of 9:. 

We let 2& be the set of quantifier-free formulas in 9:( (A’, , . . . . X, 1). We 
also introduce sets JV~,~ c 2?k,n of formulas said to be in normal form. 

For this purpose, we let yk be the set of set terms of the form 
Y, n ... n Y,, where each Yj is either X, or Xi. We let &k,n be the set of 
atomic formulas of the forms card,(t) or card,,(t) for i E [0, n] and t E &. 
We let SYk,n be the set of basic formulas, i.e., of formulas of the form: 

where for each t E &, cpl is a formula in SC& of the form card,(t) for some 
XE (0, 1, . ..) n, >n}. 

Finally, we let A$, be the set of finite disjunctions of formulas in gk,“. 

(6.4) LEMMA. Let m 2 n be positive integers. For every formula cp in Skk.n 
one can construct an equivalent formula (p in Jlr,,m. 

ProoJ The formula rp is transformed into (p by several steps. 
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Step 1. One replaces every atomic formula occurring in cp that is of 
the form card,;(t) with i < m by 

card,, ](t) v card,+,(t) v . . . v card,(t) v card,,(t). 

This gives cp,, that is equivalent to cp. 

Step 2. Consider an atomic formula in ‘pi of the form card,(t), 
XE (0, 1, . ..) m, >m> such that t 4 &. The term r can be rewritten into an 
equivalent term of the form t I u . . , u t, where I,, . . . . t, are pairwise distinct 
terms in Fk. 

Then, for in {0, 1, . . . . m}, the atomic formula cardi is replaced by 

W {card,(t,)~ ... ~card,,(t,)/i,,...,i,~~,i~+i~+ ... +i,s=i}. 

The atomic formula card,,(t) is replaced by 

W {card,,(f,) A ... A card,jt,)/x,, .-, 

X,E (0, 1, . ..) m, >m}, 4x1, x2, . . . . x,) > m}. 

(In this formula, (T(x,, x2, . . . . x,) denotes the integer xi + xi + ... x:, 
where x: = xi if xi E { 0, . . . . m}, and xj=m+ 1 if xi is “>m”.) 

We do this for all atomic formulas occurring in (pi, and this gives a 
formula qz, equivalent to cp, . This formula is a Boolean combination of 
atomic formulas in zZ&. 

Step 3. We now eliminate the negation. It is sufficient to do this for 
atomic formulas. Note that 1 (card,,(t)) is equivalent to 

card,(t) v . . . v card,(t) 

and that l(card,(t)) is equivalent to 

card,(t) v ... v card,-,(t) v card,+,(t) v ... v card,(t) v card,,(t), 

if ic [0, m]. We can transform cpz into an equivalent formula cpj, that is a 
disjunction of conjunctions of atomic formulas in &k,m. 

Step 4. Let the obtained formula qp3 be of the form W{Ic/Jl< i 6 I}. 
Each of its composing conjunctions can be simplified as follows: 

If llfi is of the form 

. A card,(t) A ... A card,(t) A ... 

with x, y E (0, 1, . . . . m, >m>, and x # y then it can be replaced by false. If 
x = y, then one of these two atomic formulas can be deleted. 
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After finitely many steps, It/i is transformed into an equivalent formula 
I,&, no two atomic formulas of which concern a same set term in Fk. 

If every set term f in Fk occurs in \i/;, then (C~~ES?~,~. Otherwise, if some 
t does not occur in II/:, then $I can be replaced by 

(I+& A card,(t)) v ($( A card,(r)) v ... v (t+b: A card,,,,(t)). 

Hence, after finitely many such replacements, cp3 is transformed into an 
equivalent formula (p4 in Mk.,. 1 

(6.5) LEMMA. For every formula cp in dpE({X1, . . . . X,}), one can find 
m E N and a formula (p in .A&,, that is equivalent to cp. 

Proof: By induction on the structure of cp. 

(1) If rp is atomic (or even quantifier-free) then the existence of m 
and (p follows from Lemma (6.4). 

(2) Let cp be of the form 3Xk+,cp’(X1 ,..., Xk,Xk+l). Let 
(P’E41+Lm, be associated with cp’, by way of induction. 

Then Cp’ is W(eJl <i<r), where eiE.93k+l,mS. Hence cp is equivalent to 
ww+,. 0Jl < i < r}. Consider 6;. It is of the form 

/&W~~k~? 

where pL, is of the form card,jt nX,+,) A card,,(t nXk+,) for some 
x,, x;E (0, 1, ,,,, m’, >m’}. 

Since the sets defined by the various terms t in Fk are pairwise disjoint, 
3X, + 1 8, is equivalent to 

/y P&+ I ME%). 

Now consider now the formula 

it is equivalent to: 

card,, + ,;(t 1 if xl, X:E {O,..., m’) 

card ,(Zm,+I,(t) if X, and xi are both “>m”’ 

card ,t.y,+,,,s,(t) if X,E (0, . . . . m’} and x,. is “>m” 

card ,cm+x;,(t) if x:E (0, . . . . m’>, x, is “>m”. 

Hence cp is equivalent to a formula in 9,+,, with m = 2m’ + 1. By Lemma 
(6.4) this formula can be transformed into an equivalent formula in J&, 
as wanted. 
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(3) If 4p is a Boolean combination of formulas cp, , . . . . cpI such that the 
associated formulas Cp,, . . . . Cp, have been found in A&,,,, . . . . Nk,,,,, respec- 
tively, then, the existence of @ in .A&,, with m = Max{m,, . . . . m,} also 
follows from Lemma (6.4). 

(4) If cp is VXk+icp’(X1, . . . . X,, X,, i), then it can be written 
~~~,+lc~cp’(~,,...,~,+l )] and the above cases (2) and (3), together 
with Lemma (6.4) yield the desired result. 1 

Proof of Proposition (6.2). If (PE 9’( {Xl>) defines card&X,) then is 
equivalent to a formula in Xi,, for some m by Lemma (6.3) i.e., to a 
disjunction of formulas of the forms: 

cardi or 

card,,(X,) or 

cardj(X,) or 

card,,(X,). 

The atomic formulas of the last three types allow Xi to have an odd 
number of elements. Hence they cannot appear. Hence cp is equivalent to 

cardi, v ... v cardJX,). 

Hence cp does not allow sets A’, with an even number of elements larger 
than Max{ il, . . . . in>. This contradicts the initial assumption. 1 

(6.6) COROLLARY. There exists a definable set of trees that is not 
Y-definable. 

Proof: Let A consist of one symbol, a, of type 1. Let LcT(A) be the 
set of trees of the form a /lull . . . 11 a with an even positive number of a’s. This 
set is definable. Let us assume that it is Y-definable. There exists a formula 
cp in ZA., such that, for all GE T(A): 

Let L’ be the set of trees of the form a II a 11 all . . .[I a, with an arbitrary 
positive number of a’s. If GEL’, then the structure IGI is of the form 
<VG, EC, edgaG, SlG ) with VG = {SIG), E, # 0, edg,(e, s,,) = true for all 
eEEG. Furthermore, GEL iff G b cp iff Card(E,) is even. 

The formula cp can be transformed into a closed formula @ belonging to 
the set Y introduced in Definition (6.1), such that for every G in L’: 

Gl=V iff EGk(P. 
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Hence, for every G E L’, i.e., for every nonempty set E, : 

GEL iff 

card(E,) is even iff 

G+=cp iff 

J&t=@ 

That E, + (p iff card(E,) is even, contradicts Proposition (6.2). Hence L 
is definable, but not y-definable. 1 

We now prove that the languages 599’ and 3 are equally powerful, for 
expressing properties of finite structures, the domains of which are linearly 
ordered by y-definable orderings. In order to avoid the introduction of 
new notations, we state our result for a class of graphs. But its proof can 
be extended to any class of finite many-sorted logical structures. 

We fix A and k, and we let 9’(w) denote yA,Jw), where %” is a finite 
{v, e}-sorted set of object and set variables. 

In the following proposition, we let p E 3’(w u (x, y )), where 
a(x) = o(y) and X, y 4 %‘-. For every G in FG(A),, for every w-assignment 
v in G, we let pc,” be the binary relation on V, (or EG) such that 

(m, m’) E PG.“: -(Gv,m,m’)t=~. 

(In the right-hand side of this definition, we assume that m is assigned 
to x, and that m’ is assigned to y.) 

Finally, we let X be a set variable of sort (T(X). 

(6.7) PROPOSITION. For every p, q E N such that 0 <p -=c q, and q 3 2, 
one can contruct a formula cp in T(W v {X}), such that, for every G 
in FG(A),, for every W-assignment v in G, if pc,” is a linear order on V, 
(or on E,, depending on the sort of X) then for every subset X of V, (or of 

EG): 
Card(X) = p mod q iff (G, v, W t= 40. 

Proof: Without loss of generality, we assume that a(X) = v. Let Y, x’, 
X” be set variables of sort v, that are not in w. 

Let G be such that po,” is a linear order on V,. We denote this order 
by <.IfX,YzV,,andyEY,welet: 

1(X, Y, y) := {x~X/y<x and for all y’~ Y, either y’<y or x<y’}, 

i.e., is the set of elements of X greater than or equal to y and strictly less 
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than the successor of y in Y if it exists. It follows that if y, j E Y, j # y then 
Z(X,Y,y)nW Y,Y)=ia. 

Observe that Card(X) -p mod q iff there exists a partition 
X, u . u X, u X” of X such that Card(X”) =p, and Cara = q for all 
i=l k. 9 . . . . 

Claim. Card(X) -p mod q iff there exist X’, X”, and Y such that 

X=X’uX”, X’ n X” = 0 

Card(X”) =p 

X’ = u {V’, K YVY E y> 
Card(Z(X’, Y, y)) = q for all y E Y. 

The “if” direction follows from the fact that {Z(X’, Y, y)/y E Y} is a 
partition of X’. For the converse, let X be enumerated in increasing order 
as {x1, . . . . xkq+p } for some k>O. Then let X”={X~~+~,...,X~~+~}, 
X=X-X”, and Y= {xl,xytl ,..., x+~)~+~}. Hence Z(X’, Y,xiq+,)= 
{x~,,+~,x~~+~, . . . . xiq+,} for i=O ,..., k- 1. 1 

The conditions of the claim are expressible by a formula 1,4 in 
eY( { X, X’, X”, Y}). H ence the desired formula cp is 3X’, X”, Y[$]. 1 

If 99 is a family of k-graphs such that two formulas p in 9( {x, y}), and 
p’ in 2’( (x’, y’>) with a(x) = o(y) = v, a(x’) = a(y’) = e are such that, for 
every G m 9, plc, is a linear order on V,, and Z& is a linear order on E,, 
then, every formula $ in %5&‘&w) can be translated into a formula 8 in 
L?~.,(%“) such that, for every G in 9, every w-assignment v in G: 

(G v) t= ti - (G v) I= 0. 

It follows, then that, a subset L of 59 is definable iff it is T-definable. 
We shall apply this result to words, to ranked trees and to k-bounded 

unordered unranked trees, but we first use it to compare %79 to the full 
(nonmonadic) second-order logic. 

(6.8) Remark. Every formula of counting monadic second-order logic 
can be translated into a equivalent formula of second-order logic, written 
with existential quantifications over binary relations. 

In order to prove this fact, we introduce two variables R, and R,, 
denoting binary relations on the domains of sorts v and e, respectively. One 
can construct first-order formulas cpU and (Pi expressing that R, and R, are 
linear orders. 

Hence, a formula $ of %9(w) can be translated into the formula 

-,, R,Cv, A cpe A 01 
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of second-order logic, where 8 is the translation of +, done with the 
technique of Proposition (6.7), in terms of the linear orders R, and R,. 

Application to words 

A word in A* is considered as a graph in FG(A ),, where the symbols 
of A are of type 2. The word abac is identified with the graph: 

We denote by W(A) the subset of FG(A),, consisting of all graphs 
corresponding to words in the above sense. Note that W(A) is Z-definable. 
Linear orders on V, and E,, where GE W(A) can be defined as follows. 

A vertex x is “smaller” than a vertex y if there exists a simple path 
from x to y, and this relation is Y-definable by Proposition (3.8). 

An edge e is “smaller” than e’ if vert,(e, 1) is “smaller” than 
vert,( e’, 1). 

Hence Proposition (6.7) can be applied to words. For every L 5 A*, we 
also denote by L the corresponding subset of W(A). 

(6.9) PROPOSITION. For every language L g A*, the following conditions 
are equivalent: 

(1) L is Y-definable, 

(2) L is definable, 

(3) L is A *-recognizable, hence is a regular language, 

(4) L is FG(A)-recognizable. 

Proof (1) o (3) is known by Biichi [4]. 

( 1) o (2) is a consequence of Proposition (6.7). 

(3) F (4): as in Theorem (5.3). 

(1) * (4) follows from Theorem (4.4). 1 

Application to Ranked Trees 

Ranked trees, i.e., terms can be treated in a similar way. Let F be a one- 
sort signature. Each symbol f of F has a rank p(f) in N, i.e., a number of 
arguments. The elements of M(F), called terms, are usually identified with 
finite ordered trees. These trees are not graphs in our sense, but we can 
define a one-to-one mapping making any term t in M(F) into a graph H(t) 
belonging to FG( F) 1 . 
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FIGURE 9 

Let us define the type r(f) off in F as p(f) + 1. We give the inductive 
definition of the graph H(t) associated with an element t of M(F): 

If t = a, p(a) = 0, then H(t) = u. 

If t =f(t1, . ..) fk), k = p(f) 3 1 then H(t) is obtained by connecting 
Wt,), H(b), . ..> H(tk) by their sources by means of a new hyperedge 
labeled by f: The source of H(ti) is identified with the ith vertex of this new 
hyperedge. (The case k = 3 is shown on Fig. 9). 

Formally, this can be written: 

where 6 is the equivalence relation on [2k + l] generated by 
((1, k+ 11, . . . . (k, 24). 

The graph H(S(g(a, a), a)), where p(f) = p(g) = 2, p(a) = 0 is shown on 
Fig. 10. 

We denote by R(F) the set {H(t)/t E M(F)}. It is not hard to prove that 
R(F) is Z-definable. 

FIGURE 10 
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The postorder is the linear order on V, that we can define as follows, for 
G in R(P). If G = H(f(t,, . . . . tk)), if v, v’ E V,, then u < v’ iff: 

either v’ is the source of G or 

v and v’ belong both to H(t;) for some in [k], and U<V’ w.r.t. H(t!) 
or 

v belongs to H(ti), and v’ belongs to H(t,) for some i, j E [k], i <j. 

For edges e and e’ of G, one lets 

e Q e’ iff vert,(e, r(e)) < vert,(e’, r(e’)). 

It is not hard to establish that these relations are linear orders and that 
they are Y-definable. Hence we have the following result, where E denotes 
{ H(t)/t E L) for every subset L of M(F). 

(6.10) PROPOSITION. For every subset L of M(F), the folIowing condi- 
tions are equivalent: 

(1) L is Y-definable, 

(2) L is definable, 

(3) L is M(F)-recognizable, 

(4) I% is FG(A)-recognizable. 

ProoJ (1) o (3) is known from Doner [16] (see Thomas [29, 
Theorem (11.1 )]). The other equivalences are as in Proposition (6.9). 1 

Application to k-bounded (Unordered) Trees 

Let A be as in Section 5. A tree G in T(A) is k-bounded, where k E N + 
if, for every vertex u of G, the set out(u) := {e E E&ert,(e, 1) = u} is of car- 
dinality at most k. We denote by T,(A) the set of k-bounded trees over A. 
This set is Y-definable. 

Let G E T,(A). A partition K of E, in k classes is good, if no two edges 
of any set out(u) belong to the same class. From every good partition 
71 = (X, , . ..) X,) of E,, one can define linear orders on VG and E, as follows: 

v < a’ iff, either there exists a path from v to v’ or 

v=v’ or 

there exist two edges e, e’ such that e E Xi, e’ E X, with i < j, 
vert,(e, 1) =vert,(e’, l), and there exist paths from vert,(e, 2) to v, and 
from vert,(e’, 2) to 0’. 
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e de’ iff, either e = e’ or 

vert,(e, 1) < vert,(e’, 1) or 

vert,(e, l)=vert,(e’, 1) and eEXi, e’EX,, i<j. 

These two linear orders are defined by two formulas, respectively, 
p (belonging to YA,l( { u, u’, X,, . . . . X,})) and p’ (belonging to 
%.l({e, e’, XI, . . . . xk})), w  h ere u, u’ are variables of sort v and e, e’ are 
variables of sort e. 

(6.11) PROPOSITION. For a subset L of T,(A), the following conditions 
are equivalent: 

(1) L is S-definable, 

(2) L is definable, 

(3) L is FG(A)-recognizable. 

Proof (2)* (1) Let LsT,(A) be definable. Let DEWY’.,,, be a 
formula defining it. Let 8 E Z’, r( { J+‘, , . . . . X,}) be a formula expressing that 
(X, t . . . . X,) is a good partition. Let tj E -YA,r( (A’,, . . . . X,>) be the formula 
that translates cp, according Proposition (6.7), by means of p and p’. Then, 
for every GET,(A), 

Gi=Q iff GFIX,, . . . . A’,[0 A $1. 

Hence, L is g-definable. 

(1) = (3) and (3) = (2) are consequences of Theorem (5.3). 1 
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