
Theoretical Computer Science 126 (1994) 53-75

Elsevier

53

Monadic second-order definable
graph transductions: a survey*

Bruno Courcelle
Laboratoire d’lnformatique ** Universitt Bordeaux-l, 351 Cows de la Lib&ation, 33405 Talence, ,
France

Abstract

Courcelle, B., Monadic second-order definable graph transductions: a survey, Theoretical

Computer Science 126 (1994) 53-75.

Formulas of monadic second-order logic can be used to specify graph transductions, i.e., multi-

valued functions from graphs to graphs. We obtain in this way classes of graph transductions, called

monadic second-order definable graph transductions (or, more simply, d&able transductions) that are

closed under composition and preserve the two known classes of context-free sets of graphs, namely

the class of hyperedge replacement (HR) and the class of vertex replacement (VR) sets. These two

classes can be characterized in terms of definable transductions and recognizable sets of finite trees,

independently of the rewriting mechanisms used to define the HR and VR grammars. When

restricted to words, the definable transductions are strictly more powerful than the rational

transductions such that the image of every finite word is finite; they do not preserve context-free

languages. We also describe the sets of discrete (edgeless) labelled graphs that are the images of HR
and VR sets under definable transductions: this gives a version of Parikh’s theorem (i.e., the

characterization of the commutative images of context-free languages) which extends the classical

one and applies to HR and VR sets of graphs.

0. Introduction

The theory of formal languages investigates finite devices defining sets of finite and

countably infinite words and trees, compares their expressive powers, and investigates

the solvability of the associated decision problems. These investigations make an

essential use of transformations from words or trees to words or trees usually called

transductions. Of special importance are the rational (word to word) transductions;

Correspondence to: B. Courcelle, Universitt Bordeaux-l, Laboratoire d’Informatique, 351 Cours de la

Lib&ration, 33405 Talence, France. Email: courcell@labri.u-bordeaux.fr.

*Supported by the ESPRIT Bpsic-Research project “Computing by graph transformation” and by the
“Programme de Recherches CoordonnCes: Mathematiques et Informatique”.

** Unite associke au CNRS no. 1304.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0123-L

54 B. Courcelle

they are closed under composition and inverse, and they preserve the families of

recognizable and context-free languages. Tree transductions are more complicated,

and there is no unique notion that can be considered as the analogue of that of

a rational transduction. For each class of tree transductions, the closure under

composition is a major concern, and so is the preservation of recognizability; we refer

the reader to the survey by Raoult [36]. Another important transduction is yield that

maps derivation trees of context-free grammars to the corresponding words. The

context-free languages can be characterized as the images of the recognizable sets of

(finite) trees under yield mappings.

The study of sets of finite and countably infinite graphs (and hypergraphs) by tools

like grammars, systems of equations and logical formulas is a relatively recent

development in the theory of formal languages. The need for a manageable and

powerful notion of graph transduction appears in constructions dealing with graph

grammars and is of interest on its own. This paper is a survey presenting the notion of

a monadic second-order definable graph transduction (a dejinable transduction for

short), which has been introduced more or less explicitly and sometimes in restricted

forms in several papers [l, 9,10,13,15,22].

We now introduce these transductions informally. The terms “monadic second-

order” refers to a logical language, the monadic second-order logic. We recall the role of

logic for defining sets of graphs (or hypergraphs; all what we shall say concerning

graphs applies to hypergraphs as well). Graphs can be described by relational

structures, i.e., by logical structures with no function symbols. The domain of the

structure representing a graph is the set of its vertices and edges put together; basic

relations describe the incidence of vertices and edges and possible labellings. (This is

actually not the only way to represent a graph; see Sections 1 and 4 for more details.)

Hence, formulas of any appropriate logical language define properties of this graph.

Monadic second-order logic is popular among logicians because of its expressive

power and its decidability properties (see [30] for a survey). For dealing with graphs,

it is very useful because it can express many fundamental properties (like planarity,

connectivity, k-colorability for fixed k) whereas several general decidability results

hold. The sets of words characterized by a property expressible in monadic second-

order logic are exactly the recognizable sets by the results of Biichi [S] and Elgot [20],

presented in [38, Theorem 3.21. The same property holds for finite trees, as established

by Doner [19], see [38, Theorem 11.11. Sets of graphs defined similarly by character-

istic monadic second-order properties behave very much like recognizable sets of

words and trees, in particular in constructions involving context-free graph gram-

mars. Since no notion of finite-state graph automaton is known, monadic second-

order formulas are essential in such constructions.

We now come to graph transductions. Since we have no good (general) notion of

graph automaton, we have no chance to obtain a good notion of graph transduction

based on a finite-state machine model. Alternatively, we propose to define transduc-

tions of graphs (or more generally of relational structures) by means of monadic

second-order formulas. The idea is to transform a structure S into a structure T by

Graph transductions 55

defining T “inside” S by means of such formulas. This is nothing but the classical

notion of semantic interpretation (see for instance [35]), appropriately extended. In

particular, we define T inside an intermediate structure made of k disjoint copies of

S (for some fixed k), equipped with a binary relation saying that two elements replicate

the same element of S. This makes it possible to construct T with a domain larger than

that of S (larger within the factor k).

The family of definable transductions is closed under composition, but not under

inverse. These transductions preserve the so-called HR and VR sets of graphs (namely,

the two known types of context-free sets of graphs), and yield grammar-independent

characterizations of these sets.

This paper is organized as follows. Section 1 reviews relational structures, the way

they represent graphs and hypergraphs, and monadic second-order logic; Section 2

introduces (monadic second-order) definable transductions of relational structures

and presents a collection of basic examples of such transductions of words, trees and

graphs; Section 3 states the main properties of definable transductions of relational

structures; Section 4 presents the relationships between definable transductions and

the classes of VR and HR sets of graphs (and hypergraphs); Section 5 shows how these

transductions make it possible to compare several representations of graphs by

relational structures and to code hypergraphs by graphs in a way that fits well with

context-free graph grammars; Section 6 compares definable transductions with

known transductions of words and trees: Section 7 deals with definable transductions

from graphs to commutative words and gives forms of Parikh’s theorem that apply to

HR and VR graph grammars.

1. Hypergraphs and relational structures

We denote by Card(A) the cardinality of a set A. We denote by [n] the set of

positive integers { 1, . . . , n}.

For a binary relation R c A x B, we write aRb for (a, b)ER. The associated mapping

from A to the powerset of B (also denoted by R and defined by R(u):= {be B 1 uRb}) is

called a transduction from A to B. We consider every b such that uRb as an image

ofu under R, hence we consider R as a multivalued function from A to B. The domain

of R is Dam(R):= (UEA j uRb for some b in B j and the image of R is Im(R):= {beB 1 uRb

for some a in A}. For LsA, the image ofL under R is R(L):= {bEBluRb for some a

in L}. The transduction R-‘, associated with the binary relation {(b, a) / (a, b)sR} is

called the inverse of R. If L is a subset of B, then R-‘(L) is the inverse image of L under R.

We say that R is functional if Card(R({u})) d 1 f or every a in A. We identify functional

relations R E A x B with partial functions R : A-B, and we write b = R(u) instead of

bER(u). The composition of a transduction R from A to B and a transduction S from

B to C is the transduction from A to C, denoted by S 0 R and associated with the

product of the relations R and S, i.e., with the relation {(u, c) 1 (a, b)ER and (b, C)ES for

some b in B}. By a mapping, we shall mean a total function.

56 B. Courcelle

1 .I. Hypergraphs

We shall deal with labelled, directed hypergraphs. The labels (intended to label

hyperedges) are chosen in a finite ranked alphabet A, i.e., a finite alphabet A given with

a rank mapping p: A-+ N. The rank of the label of a hyperedge must be equal to the

length of its sequence of incident vertices. This rank may be 0, i.e., we allow hyperedges

with no vertex. Graphs appear as a special case where all labels are of rank 2 or 1.

A hyperedge of length 2 is a (usual) labelled directed edge. It is a loop if its two ends are

identical. A hyperedge of length 1 can be considered as a piece of information attached

to a vertex, hence as a vertex label. However, one may have several, possibly identical

labels attached to the same vertex.

A concrete hypergraph over A is a 4-tuple G = (VF, E,, labG, vert,), where VG is the

finite set of vertices, EG is the finite set of (hyper) edges, disjoint with V, (its elements

will hereafter be called edges for short), labG is a mapping E,+A that defines the label

of an edge, and vertG is a mapping that associates with every edge e the sequence of its

vertices; this sequence must be of length p(e):=p(lab,(e)) (called the rank of the edge)

and its ith element is denoted by vertG(e, i). A concrete hypergraph G is simple if, for all

e, e’ in E,: if vertG(e) = vert,(e’) and lab,(e) = lab,(e’), then e = e’. By a hypergraph, we

mean the isomorphism class of a concrete hypergraph. We denote by HG(A) the set of

hypergraphs over A.

1.2. Monadic second-order logic

Let R be a finite ranked set of symbols where each element r in R has a rank p(r) in

N,. A symbol r in R is considered as a p(r)-ary relation symbol. An R-(relational)

structure is a tuple S = (D,, (rS)rER), where Ds is a finite (possibly empty) set, called the

domain of S, and rs is a subset of D $(‘) for each r in R. We denote by Y(R) the class of

R-structures.

We review monadic second-order logic briefly. Its formulas (called MS formulas

for short), intended to describe the properties of structures S as above, are written

with variables of two types, namely lower-case symbols x, x’, y, called object

variables, denoting elements of Ds, and upper-case symbols X, Y, Y’, . . called set

variables, denoting subsets of Ds. The atomic formulas are of the forms x=y,

r(xl, . . . ,x,) (where r is in R and n=p(r)), and XEX, and formulas are formed

with propositional connectives and quantifications over the two kinds of

variables. For every finite set W of object and set variables, we denote by Y(R, W)

the set of all formulas that are written with relational symbols from R and have

their free variables in W; we also let _!Z’(R):=LZ(R, 8) denote the set of closed

formulas.

Let S be an R-structure, let cp~9(R, IV), and let y be a W-assignment in S (i.e., y(X)

is a subset of Ds for every set variable X in IV, and y(x)~D, for every object variable

x in IV; we write this as y : W-S, to be short). We write (S, y) I= q if and only if q holds

in S for y. We write S j= cp in the case where CP has no free variable. A set of R-structures

Graph transductions 51

L is definable if there is a formula cp in 3’(R) such that L is the set of all R-structures

S such that Sl=cp.

A hypergraph G in HG(A) can be represented by an R,-structure, where

R,:=(edg,ja~A) with P(edg,):=p(a)+ 1. The structure representing G is IG12:=

(DG, (edgac)asA), where D,:= V,u EG (let us recall that Vcn Eo =@),
edgoG(x, y,, . ,y,):ox~E~, lab,(x)=a and vert,(x)=(yl, . . . ,y,). Since the domain

of this structure consists of vertices and edges, quantifications can be done over two

types of objects or sets of objects. The index 2 refers to these two possibilities, and

differentiates this structure from another one defined below where quantifications can

be done over vertices and sets of vertices only.

Clearly, 1 G I2 is isomorphic to I G' I2 as a relational structure if and only if G = G’ (i.e.,

G is isomorphic to G’). We shall consider any two isomorphic structures as equal, like

for hypergraphs.

A hypergraph G can be represented by another structure I G I 1 := (V,, (edg’,c),,a),

where edg’,,(y,, y,) holds if and only if labc(x) = a and vert&x) = (y,, . . , y,) for

some edge x in Eo. Clearly, two simple hypergraphs G and G’ are equal if and

only if (G I 1 is equal (isomorphic) to I G’ I 1. Hence, simple hypergraphs are unambigu-

ously represented by these latter structures whereas arbitrary hypergraphs are

not.

The representation of hypergraphs by logical structures makes it possible to express

their properties by logical formulas. We shall say that a property P of the hypergraphs

G of a class % can be expressed by a logical formula cp via a representation / G I if, for

every G in %?, P(G) holds if and only if / G I + cp.
A property of hypergraphs is i-dejinable (where i is 1 or 2) if it is expressible by an

MS formula, relative to the representation I-Ii. For example, the following formula

expresses that a graph G represented by the structure 1 G I 1 is connected:

vxvyvx[xEx A VUV’v((UEX A I&, u) =- VEX) * YEX)],

where $(u, v) is the disjunction of the formulas edg’Ju, u) V edg’,(v, U) extended to all

labels a (this formula expresses that 1.4 and v are the two ends of some edge). (All labels

are assumed to be of rank 2.)

The structure I GI 1 is less expressive than I Cl2 for representing properties of

a hypergraph G by MS formulas for the obvious reason that one cannot express in

) Cl1 properties dealing with multiple edges. However, this is also the case if G is

assumed to be simple. For instance, the existence of a Hamiltonian circuit in a simple

graph is a 2-definable property that is not l-definable. Some results comparing the

expressive powers of MS formulas in the two cases are recalled in Section 4.

2. Monadic second-order definable transductions

We first define transductions of relational structures. Let R and Q be two finite

ranked sets of relation symbols. Let W be a finite set of set variables, called here the set

58 B. Courcelle

of parameters. (It is not a loss of generality to assume that all parameters are set

variables.) A (Q, R)-dejnition scheme is a tuple of formulas of the form

where

k>O, Q*k:={(q,J)Iq~Q,JE[k]P(Y)S,

cp~y(R, W>

$iEY(R, WU{X,~) for i= 1, . ,k,

~,EP’(R, Wu{x,, ,xPCl,}), for w=(q,J)EQ*k.

These formulas are intended to define a structure Tin 9’(Q) from a structure S in

9’(R), and will be used in the following way. The formula cp defines the domain of the

corresponding transduction, namely, T is defined only if cp holds true in S. Assuming

this condition fulfilled, the formulas $I) . . . , tik, define the domain of T as the disjoint

union of the sets D,, . . . , Dk, where Di is the set of elements in the domain of S that

satisfy tii. Finally, the formulas 0, for w =(q,j),J~[k] p(q) define the relation qT. Here

are the formal definitions.

Let SEY(R), let y be a W-assignment in S. A Q-structure T with domain

DT L Ds x [k] is defined in (S, y) by A if

(i) 6% Y) I= cp,
(ii) &={(d, i)ldE&, ie[kl, (S, Y, d)l=$i}

(iii) for each q in Q:

qT={(&, il), . . . > (d,,i,))ED~I(S,Y,dl,...,dt)I=e(q,j)},

where J= (ii , . . , i,) and t = p(q).

By(S,xdl,... , d,)l= I!I(~,J, we mean (S, ?‘)I= (&j,, where y’ is the assignment extend-

ing y, such that ?;‘(xi) = di for all i= 1, . . . , , t’ a similar convention is used for

(ST Y, d) k $i).
Since T is associated in a unique way with S, y and A whenever it is defined, i.e.,

whenever (S, y) + 40, we can use the functional notation def, (S, y) for T.

The transduction defined by A is the relation def,:= {(S, T) I T=def,(S, y) for some

W-assignment ‘J in S} c Y(R) x Y(Q). A transductionfz Y(R) x 9’(Q) is definable if it

is equal to def, for some (Q, R)-definition scheme A. In the case where IV=@, we say

thatfis de$nable without parameters (note that it is functional). We shall refer to the

integer k by saying that def, is k-copying. In the special case where k = 1, we shall

say that def, is noncopying and we can write more simply D as (cp, $, (O,),,,). In

this case:

DT={dd’sI(S,y,d)l=$f

Graph transductions

and for each q in Q:

59

where t = p(q).

Before applying these definitions to general hypergraphs, we give three examples.

Our first example is the transduction that associates with a graph the set of

its connected components. We consider directed unlabelled graphs. Such a graph

G is represented by the structure I Cl2 = (DG, edg,), where D, = F’,uE, and edg

is a ternary relation symbol. (Since edges have no labels, we use a single relation edg

instead of several relations edg, as in the definition of Section 1.) The definition

scheme A given below uses a parameter X. It is constructed in such a way that

def,(IGI,, {x}) is the structure IG’lz, where G’ is the connected component of

G containing the vertex x. We let (CJJ, $, oedg) be the noncopying definition scheme

where

cp is a formula with free variable X expressing that X consists of a unique vertex,

II/ is a formula with free variables X and x expressing that x is a vertex linked

by a path (where edges can be traversed in either direction) to the vertex in

X, or that x is an edge, one end of which is linked by such a path to the vertex

in X.

eedg is the formula edg(x,, x2, x3).

It is then straightforward to verify that A is as desired. It follows in particular

from Theorem 4.1(3) that the set of connected components of a HR set of graphs

is HR.

Our second example is the functional transduction that maps a word u in {a, b} ’ to

the word u3. (We denote by {a, b}+ the set of nonempty words written with a and b.)

In order to define it as a transduction of structures, we represent the words in {a, b}+

as structures in the following way. If u has length n, then the associated structure II u /I

is ({1,2, n}, suc,p,,~~), where

the domain { 1,2,. . , n} is the set of positions of letters in U,

pa(i) holds if and only if a is the letter at ith position,

pb(i) holds if and only if b is the letter at ith position,

suc(i, j) holds if and only if j = i + 1.

We let A be the 3-copying definition scheme without parameter (cp, $i, $2, tij,

(~c~~~, i,,))i, j= t, 2,3,7 (@~p~,r,)t= I, 2,3 (e,p,.t,),= I, 2,3) such that

cp expresses that the input structure indeed represents a word in {a, b}+,

til, t+h2, t+h3 are identical to the Boolean constant true,

8(suc.,j, (XI, x2) is Suc(x~, x2) if i=j,

~6"C.iJ) (Xl, x2) expresses that x1 is the last position and that x2 is the first one if i = 1

and j=2, or if i=2 and j=3,

H (SUE, t, J) (Xl, x2) is the constant false otherwise,

$P._,j (xi) is p,(x,) for i= 1,2, 3,

,pb.I,(~l)is~h(~l)for i=l,2,3.

60 B. Courcelle

We claim that def, (S) = T if and only if S is a structure of the form 11 u 11 and T is the

corresponding structure I/ u3 11. To take a simple example, if S= ((1,2, 3,4},

suqp,, pb) representing the word abba, then def,(S) is the structure.

T=({l,,2,, 31>41> 12,22, 32942, 13,239 33,43},SUC’,Pb,P6),

where we write ij instead of (i, j), so that ij is the jth copy of i for j= 1, 2, 3, and

suc’(ij, k,) holds if and only if k, is the successor of ij in the above enumeration of

the domain of T,

Pb(ij) holds if iE(l, 4}, jE{l, 2, 3) and

PL(ij) holds otherwise.

This is an example of a definable transduction from words to words that is not

rational. (This transduction will also be used as a counterexample in Proposition 3.4.)

Our last example is the product of a finite-state automaton ~2 by a$xed finite-state

automaton 98. A finite-state automaton is defined as a 5-tuple d = (X, Q, M, I, F),

where X is the input alphabet (here we take X = (a, b}), Q is the set of states, M is the

transition relation which is a subset of Q x X x Q because we consider nondeterminis-

tic automata without a-transitions, I is the set of initial states and F is that of final

states. The language it recognizes is denoted by L(d). The automaton &’ is repres-

ented by the relational structure: Id) = (Q, tram,, trans,, initial, final), where trans,

and tranq are binary relation symbols, initial and final are unary relation symbols and

trans,(p, q) holds if and only if (p, a, q)EM,

transb(p, q) holds if and only if (p, b, q)E M,

initial(p) holds if and only if PEI,

final(p) holds if and only if ~EF.

Let G9 = (X, Q’, M’, I’, F’) be a similar automaton, and d x 98 = (X, Q x Q’, M”,

Ix I’, F x F’) be the product automaton intended to define the language

L(,EZ)~L(B). We let Q’ be {l,..., k} (let us recall that 99 is fixed). We let d be the

k-copying definition scheme (q, G1, . , t,bk, (OW)weR *J, where R = (trans,, trans,, in-

itial, final} and:

cp is the constant true (every structure in Y(R) represents an automaton that may

have inaccessible states and useless transitions),

$r, . . , tik are the constant true,

0 mans., k/l (x,, x2) is the formula trans,(x,, x2) if (i, a, j) is a transition of 9 and is the

constant false otherwise,

l3 (trans,, ,,,) is defined similarly,

t?(initia,,I) (x1) is the formula initial(xi) if i is an initial state of B and is false otherwise,

t?(fina,, ,) (x 1) is defined similarly.

It is not hard to check that I d x ~29) = def,(I&I). Note that the language defined by

an automaton JZ! is nonempty if and only if there exists a path in r;4 from some initial

state to some final state. This latter property is expressible in monadic second-order

logic. Hence, it follows from Proposition 3.2(l) that, for a fixed rational language K,

the set of structures representing an automata &’ such that L(d)nK is nonempty is

definable.

Graph transductions 61

The definitions concerning definable transductions of structures apply to hyper-

graphs via their representation by relational structures as explained above. However,

since we have two representations of hypergraphs by logical structures, we must be

more precise. We say that a hypergraph transduction, i.e., a binary relation f on

hypergraphs is (i,j)-definable, where i and j belong to { 1,2} if and only if the

transduction of structures {(I G Ii, 1 G’ lj) I (G, G’)E~} is definable. We shall also use

transductions from trees to hypergraphs. Since a tree t is a graph, it can be represented

by either I tll or) t12. However, both structures are equally powerful for expressing

monadic second-order properties of trees, and definable transductions from trees to

trees and from trees to graphs. (This follows from Theorem 5.1). When we specify

a transduction involving trees (or words which are special trees) as input or output we

shall use the symbol * instead of the integers 1 and 2, in order to recall that the choice

of representation is not important in these cases. We shall use de$nable for (*, *)-

definable.

Here are a few facts concerning definable transductions of structures.

Fact 2.1. If f is a definable transduction, there exists an integer k such that,

Card(&) d k. Card(&) whenever T belongs to f(S).

Fact 2.2. The domain of a definable transduction is definable.

Proof. Let A be a definition scheme as in the general definition with W= {X,, . . , , X,}.

Then Dom(defd)={S\S(=3X,,...,3X,cp). 0

Proposition 2.3 states that every k-copying definable transduction is the composi-

tion of a noncopying transduction and a k-copying “standard” one which we now

define. For k > 1, we let Qk:= {si 11 <i < k} u (br}, where the Si’S are unary relation

symbols and br is a binary one. For every S in 9’(R), we let cop,(S) be the (R u Qk)-

structure T constructed as follows:

D,={(d, i)ld&s, iE[k]}

for each r in R of arity t:

rT=(((4,iL . . . ,M, i))l(d,, . . . ,4krS, iECkl),

siT:={(d, i)IdEDs},

brT:={((d, i),(d,j))jd~Ds, 1 <i,j<k}.

The unary relation sir(x) holds if and only if x is “an ith son” (the ith son of d such

that x =(d, i)); the binary relation br,(x, y) holds if and only if x and y are “brothers”,

i.e., are two “sons” of the same d, with x possibly equal to y.

Proposition 2.3. A transduction is definable if and only if it is the compositionfocop,

of cop, for some k and of some definable noncopying transductionf:

62 B. Courcelle

Proof. It is clear that cop, is definable and k-copying. If f is a definable, then

Proposition 3.2 yields that fi copk is definable and k-copying.

Let us now consider y defined by d = (q, i/j 1, , t,bk, (d,,,),.,, * k) with set of parameters

W={Xr, . . . ,X,}. We aim to construct A’=($, t+V, (@,),,,) such that

def, = def,, 0 copk. We shall describe the intended meaning of the formulas that form d’

(rather than writing them explicitly). Let S be an R-structure, and T be any structure

isomorphic to cop,(S). We let T’ be the R-structure defined as the restriction of T to

the set of elements of T that satisfy sr. Hence, T’ is isomorphic to S.

The formula q’ (with free variables in W) expresses (in T) that X 1, . , X, are subsets

of the domain Dr. of T’ and that q(Xr , . . . , X,) holds in T’; the formula $’ with free

variables in (Xi, . . . , X,)u{x} expresses (in T) that q(x) holds for some i in [k] and

that there exists y in Dr. such that br(x, y) holds in T and $i(Xi, . . ,X,, y) holds

in T’; for each q in Q of arity t, the formula t& has its free variables in

{Xi >...’ Xn}U{-%...JJ and expresses (in T) that there exist il, . , i, in [k] such

that sil(xi),si.(xr) hold and there exist y,, . . , y, in D7. such that

br(x,, yl), . . . , br(x,, yt) hold in T and 8,(X,, . ,X,, yi, . . . ,yt) holds in T’, where

w = (q, (iI, , i,)). It is easy to verify that if d’ = (q’, $‘, (Oh),,e), where cp’, I/, t$ are as

above, then def, = def,, 3 copk. C

The next three propositions list examples of transductions of words and trees that

are definable.

Proposition 2.4. The ,following mappings are dejnable transductions: (1) word homo-

morphisms, (2) inverse nonerasing word homomorphisms, (3) gsm mappings, (4) the mirror-

image mapping on words, (5) the mapping Au. [u”] (where u is a word and n a$xed integer),

(6) the mapping yield that maps a derivation tree relative to ajixed context-free grammar

to the generated word, (7) linear root-toTfrontier or frontier-to-root tree transductions.

Proof. The proofs are easy to do. Let us recall that a gsm mapping is a transduction

from words to words defined by a generalized sequential machine, i.e., a (possibly

nondeterministic) transducer that reads at least one input symbol on each move.

A special case of (5) has been constructed in detail in our second example before

Fact 2.1 (See [29] or the survey by Raoult [36] for tree transductions). 0

Fact 2.1 which limits the sizes of the output structures, shows that certain transduc-

tions are not definable. This is the case of inverse erasing word homomorphisms and of

ground tree transducers except in degenerated cases (see Dauchet et al. [18] or [36]

on ground tree transducers).

Proposition 2.5. The transductions that associate with a graph G: (1) its spanningforests,

(2) its connected components, (3) its subgraphs satisfying somefixed 2-definable property,

(4) its maximal subgraphs satisfying some fixed 2-dejnable property (maximal for

subgraph inclusion), (5) the graph consisting of the union of two disjoint copies of G, (6) its

Graph transductions 63

minors, are all (2,2)-dejinable. The mapping associating with a graph its line graph is

(2, I)-dejinable but not (2,2)-dejinable.

We recall that the line graph of a graph G has Eo as set of vertices and has

undirected edges between any two vertices representing edges sharing a vertex (in G).

Proof. Assertions (l))(6) are easy consequences of the existence of an MS formula

expressing that two given vertices are linked by some path; see [7,8]. Assertion (6) is

proved in [12]. The last assertion is an easy consequence of the definition of a line

graph. The non-(2,2)-definability is proved in [1.5]. 0

3. Properties of definable transductions of relational structures

The following proposition is the basic fact behind the notion of semantic interpreta-

tion [35]. It says that if S= def,(T, p) i.e., if S is defined in (7’, ,u) by d, then the

monadic second-order properties of S can be expressed as monadic second-order

properties of (T, p).

Let d =(cp, $1, . . . ,*k, (hJrtQI~) be a (Q, R)-definition scheme, written with a set of

parameters W. Let V be a set of set variables disjoint from W. For every variable X in

V,foreveryi=l,...,k,weletXibeanewvariable.Welet V’:={Xi/XEV,i=l,...,k).

For every mapping v: V”+g(D), we let y^k: V+Y(Dx [k]) be defined by:

y^k(X)=q(X,) x {l} u ... u q(X,) x (k}. With these notations we can state the

following proposition.

Proposition 3.1. For every formula /I in dp(Q, V), one can construct a formula p’ in

L?(R, Vu W) such that, for every T in 9’(R), for every assignment ,u: W-+ T, for every

assignment 4: V-T, we have

def,(T, ,LL) is defined (if it is, we denote it by S), nAk is a V-assignment in S, and

(ST n*.k)!=P

fund only if (T, nup)I=/3’.

Note that, even if S is well-defined, the mapping nAk is not necessarily a V-

assignment in S, because y^ k(X) is not necessarily a subset of the domain of S which is

a possibly proper subset of D x [k].

Proof (sketch). Let us first consider the case where def, is noncopying. In order to

transform /3 into fl’, one replaces every atomic formula q(ul, . . . , u,) by the formula

R?(u 1, ... 2 u,) which defines it in terms of the relations of T. One also restricts

quantifications to the domain of S, i.e. one replaces 3x[p] by 3x[$(x) A ~1 and

ClX[p] by 3X[Vx{x~X~$(x)} An]. In the case where k> 1, one replaces YX[n]

by a formula of the form 3X1, 3X2,... ,3X,[$], where $ is an appropriate

64 B. Courcelie

transformation of p based on the fact that X=X1 x {l} u ..(uX, x {k}. The reader

will find a complete construction in [lo, Proposition 2.5, p. 1661. 0

From this proposition, we get easily the following proposition.

Proposition 3.2. (1) The inverse image of a definable set of structures under a dejinable
transduction is definable.

(2) The composition of two dejinable transductions is dejinable.

Proof. (1) Let L G 9(Q) be defined by a closed formula /I and def, be a transduction as

in Proposition 3.1. Then defi ’ (L) c 9(R), is defined by the formula 3 Y1 , . . . ,3 Y, C/J’],

where Yi, . . , Y,, are the parameters and p is constructed from fl as in Proposition 3.1.

(2) Let A=(cP,$~,...,$~, (RAterk) be a k-copying definition scheme and

A’=(#, @l, .‘. , t&d, Rv),,,*,~) be k-copying such that def, is a transduction from

9(R) to 9(Q) and def,, is a transduction from Y(Q) to 9’(P). Let f be the trans-

duction def,. odef, from Y(R) to Y(P): we shall construct a definition scheme A” for

it. Just to simplify the notation we shall assume that the parameters of A are Y and Y

and that those of A’ are Z and Z’. We shall also assume that the relations of P are all

binary. The general case will be an obvious extension.

In order to describe A” we shall denote by Tan R-structure, we shall denote by S the

Q-structure def,(T, Y, Y’), where Y and Y’ are subsets of D, and we denote by U the

P-structure def,,(S, Z, Z’), where Z and Z’ are subsets of D,. Hence Ds is a subset of

D, x [k], and Du is a subset of DT x [k] x [k’] which is canonically isomorphic to

a subset of D, x [kk’]. Hence A” will be kk’-copying.

The parameters Z and Z’ represent sets of the respective forms

Z=Z, x {l}u~~~uZkx {k} and Z’=Z; x (1) u ... uZ; x {k). Hence, the definition

scheme A” will be written in terms of parameters Y, Y’, Zi, . . . , Zk, Z;, . . . , Z;. It will

be of the form

(q”> ($I: j)it[kl,t[k'l, (B~,~,~'),~,,,'))~~P,~,i'~[kl,,.,'c[k'l)~

so that the domain of D, will be handled as a subset of DT x [k] x [k’] and not of

D, x [kk’]. The formulas forming A” will be obtained from those forming A’ by the

transformation of Proposition 3.1. We first consider c$’ which should express that

def,(T, Y, Y’) is defined, i.e., that (T, Y, Y’)+cp,

and that ifZ=Z1x{l}u...uZkx{k} andZ’=Z’lx{l}u~~~uZ~x{k}, then

def,,(S, Z, Z’) is defined, i.e., that (S, Z, Z’)l= @,

which is equivalent to:

(T, Y, Y’, Zi, Zk, Z’i, Z;)l=t,

where z is obtained from rp’ by the transformation of Proposition 3.1. Hence, cp” is the

conjunction of cp and r. We omit the constructions of the other formulas because they

are quite similar. 0

Graph transductions 65

We could define more powerful transductions by which a structure S would be

constructed “inside” T x T instead of “inside” a structure formed of a fixed number of

disjoint copies of T linked as explained in the definition of cop, used in Proposition

2.3. However, with this variant, one could construct a second-order formula p’ as in

Proposition 3.1 (with quantifications on binary relations), but not a monadic second-

order one (at least in general). We wish to avoid (full) second-order logic because most

constructions and decidability results (like those of [S]) break down. In the third

example given before Fact 2.1, we have shown that the transduction associating the

automaton &’ x ~$9 with an automaton d is definable (via the chosen representation of

finite-state automata by relational structures) for fixed 99’.

Here are some other closure properties of the class of definable transductions.

Proposition 3.3. The union of two definable transductions is a definable transduction. So

is the intersection of a definable transduction with a transduction of the form A x B,

where A and B are definable sets.

Proof. See [9] for the first assertion and [lo] for the second. 0

Here are now some negative closure properties.

Proposition 3.4. (1) The image of a definable set under a definable transduction is a set

that is not definable in general.

(2) The inverse of a definable transduction is a transduction that is not definable in

general.

(3) The intersection of two definable transductions is a transduction that is not

definable in general.

Proof. (1) The transduction of words that maps a”b to a”ba”ba”b for n > 0 is definable

(this follows from Proposition 3.3 and the second example given before Fact 2.1). The

image of the definable language a*b is a language that is not regular (and even not

context-free), hence not definable by the basic result of Biichi and Elgot ([38,

Theorem 3.21) recalled in the introduction.

(2) The inverse of this transduction is not definable since, if it would be, its domain

would be definable (by Fact 2.2), hence regular, which is not the case.

(3) The intersection of the definable transductions of words that map a”b”’ to c”, and

a”b”’ to cm is the one that maps a”b” to 6’. It is not definable because its domain is not

a definable language. 0

4. Definable transductions and context-free graph grammars

There are two classes of context-free graph (and hypergraph) grammars, the class of

HR (Hyperedge Replacement) and the class of VR (Vertex Replacement) grammars.

66 B. Courcrlle

Both kinds of grammars can be described by rewriting rules: HR grammars (which

generate the HR sets of graphs and hypergraphs) are based on the replacement in

a hypergraph of a hyperedge by a hypergraph: the labels of edges play the role of

terminal and nonterminal symbols in context-free grammars; the VR grammars can be

described by a complicated rewriting of vertices. Grammars of both types are context-

free in the sense of [6]. This means in particular that they are conjuent, i.e., that

independent derivation steps can be permuted and that the equivalence classes of

derivation sequences w.r.t. permutations of independent steps can be characterized by

derivation trees (see [6] for a formal definition). Another characteristic property of

context-free graph grammars is that the generated sets can be characterized as

forming the least solutions of systems of equations canonically associated with the

considered grammar. Grammars of both types can actually be defined in an easier way

as systems of fixed-point equations, written with set union and appropriate operations

on hypergraphs that we need not recall here.

We refer the reader to [2,7, 10,31, 321 for definitions and basic properties of HR

grammars. The relations between HR grammars and definable transductions are

collected in the following theorem.

Theorem 4.1. (1) The mapping yield that associates with a derivation tree of a (jxed)

HR grammar the generated hypergraph is (*, 2)-definable.

(2) A set of hypergraphs is HR if and only if it is the image of a recognizable set

of$nite trees under a (*, 2)-definable transduction.

(3) The class of HR sets of hypergraphs is closed under (2,2)-definable transductions.

Proof. (1) is proved in [lo]; the “if” part of (2) is a difficult theorem established in

[153, whereas the “only if” part follows immediately from (1); (3) follows immediately

from (2) since the composition of a (*, 2)-definable transduction from trees to hyper-

graphs and a (2,2)-definable transduction from hypergraphs to hypergraphs is (*, 2)-

definable. 0

Remark. In Condition (2), one can replace a recognizable set ofjnite trees by the set

B ofjnite binary unlabelled trees, because every recognizable set of finite trees is the

image of B under some (*, *)-definable transduction [15, Lemma 2.41.

Let us say that a HR grammar is linear if each right-hand side of a production rule

has at most one nonterminal, and that a set of hypergraphs is linear HR if there exists

a linear HR grammar generating it. From the constructions establishing Theorem 4.1,

we get that a set of hypergraphs is linear HR if and only if it is the image

of a recognizable language under a (*, 2)-definable transduction, and that the

class LIN-HR of linear HR sets of hypergraphs is closed under (2,2)-definable

transductions.

We now come to the more complex class of VR sets of simple graphs. A few words of

history are in order because the definition of this class has emerged from a sequence of

Graph transductions 61

papers. It comes out of the NLC grammars introduced by Janssens and Rozenberg

[33]; (NLC means “node labelled controlled’). Not all NLC grammars are context-

free because they are not always confluent (independent derivation steps cannot in

general be permuted). The BNLC (“boundary” NLC) grammars form a restriction of

the general case and are confluent [37]. Whereas NLC grammars generate undirected

graphs with unlabelled edges, the more general edNCE grammars can generate

directed labelled graphs, and edge labels can be modified during the rewriting. Only

the confluent ones (the C-edNCE grammars) are context-free. Other types of gram-

mars, the S-HH (“separated handle hypergraph”) grammars, that are always context-

free, generate exactly the same sets of graphs as the C-edNCE grammars and give

more easily equivalent systems of fixed-point equations [16]. See also [26] for more

details and references. A grammar independent characterization of C-edNCE sets of

graphs, slightly weaker than Theorem 4.2(2) is given by Engelfriet in [26].

A VR set of graphs is a set of directed or undirected graphs generated by either

a C-edNCE or a S-HH grammar, or defined as a component of the least solution of

a systems of fixed-point equations written with certain appropriate operations (see

[16]). Actually, the simplest way to define them is by systems of equations (see also

[13, 141 for these systems). Since these grammars are confluent, their derivation

sequences can be represented by derivation trees [6].

Theorem 4.2. (1) The mapping yield that maps a derioation tree qf a$xed C-edNCE or

S-HH grammar to the generated graph is (*, 1)-dejnable.

(2) A set of simple graphs is VR if and only ifit is the image of a recognizable set

ofjinite trees under a (*, 1)-definable transduction.

(3) The class of VR sets of graphs is closed under (l,l)-definable transductions.

Proof. (1) See [131 or [22]. (2) The “if” part is proved in [22] for a restricted notion of

transduction; the full form is Theorem 3.2 of [153, an alternative proof is given in [131.

(3) follows from (2) like do the corresponding assertions of Theorem 4.1. 0

As in Theorem 4.1, and for the very same reason, we can replace in Theorem 4.2(2)

a recognizable set of jinite trees by the set B. Since a (*,2)-definable transduction is

(*, 1)-definable, it follows also from Theorems 4.1(2) and 4.2(2) that every HR set of

simple graphs is VR, which gives another proof of a result known from [16]. As

another consequence we get, using Proposition 2.5, that the set of line graphs of the

graphs of a HR set is VR.

The linear VR sets of graphs, i.e., those defined by linear C-edNCE or S-HH

grammars (with at most one nonterminal in each right-hand side of a production) can

be characterized as the images of recognizable languages under (*, l)-definable trans-

ductions, and their class (let us denote it by LIN-VR) is closed under (1, 1)-definable

transductions.

As another application of Theorem 4.2, we shall establish that the set of chordal

graphs is not VR. A chordal graph is a simple undirected graph in which every cycle of

68 B. Courcelle

length at least 4 has a chord (see [28]). These graphs can also be described as

“tree-shaped” combinations of cliques. Considering also the fact that the set of all

cliques is VR, one might think that the set of chordal graphs is VR. But this is not the

case.

Proposition 4.3. The set of chordal graphs is not VR.

Proof. In the following proof, all graphs are simple loop-free and undirected. Let L be

the set of graphs constructed in the following way. They consist of a clique K having at

least four vertices augmented with a possibly empty set V of additional vertices and

with edges such that every vertex in V is linked to two distinct vertices of K.
For every G in L, we let H:=f(G) be the graph constructed as follows: its vertices

are those of the clique K upon which G is constructed (they are actually the vertices of

G of degree more than two); two such vertices are linked in H if and only if they are

both linked in G to a same vertex u of V (i.e., a vertex of degree two). It follows from

this definition that the transduction

{(IGIl, I~(G)II)IGEL)

is definable. Since every graph in L is chordal and every graph with at least 4 vertices is

f(G) for some G in L, we obtain that the image underfof the set of chordal graphs is

the set of all graphs having at least four vertices. This latter set is not VR (because

every VR set contains at most finitely many square grids by, e.g., [151). It follows from

Theorem 4.2(3) that the set of chordal graphs is not VR either. 0

What about VR sets of simple hypergraphs? We define them as the images of

recognizable sets of finite trees (equivalently of the set of finite binary trees E!) under

(*,l)-definable transductions. Courcelle [13, Theorem 4.61 gives a characterization in

terms of systems of fixed point equations built with appropriate operations. A decid-

able characterization of the VR sets of hypergraphs that are not HR is given in [14]

(and its proof uses definable transductions). Let us finally mention that S-HH

grammars generate certain VR sets of simple hypergraphs, but not all of them [16].

5. Comparing representations of graphs and hypergraphs by relational structures

Transductions of structures can be used for the following two purposes: (1) for

comparing several representations of the same object by relational structures, and (2)

for encodings of hypergraphs by graphs, or more generally, of combinatorial objects

by others. We illustrate successively these two uses.

We have defined two relational structures, I G I i and (G I2 able to represent unam-

biguously simple hypergraphs. For every set %7 of simple hypergraphs, we let tr(%?) be

the transduction: tr(%‘) = { (/ G II, I G 12) / GE%‘}. It is functional since we are dealing

with simple hypergraphs and since any two isomorphic structures are considered as

Graph transductions 69

equal. If %? is the set of all (finite) simple graphs, then k(W) is not definable (otherwise,

by Theorems 4.1 and 4.2, the classes of HR and VR sets of graphs would be the same

which is not the case).

The tree-width of a graph is an integer that characterizes how close it is to be a tree:

forests have tree-width 1, the tree-width of a clique with n vertices is n. The graphs

generated by a HR-grammar have a tree-width bounded by some integer computable

from the grammar (see [7,11,12]).

Theorem 5.1. Let k be an integer. Let %? be either the set of simple graphs of degree at
most k or that of simple graphs of tree-width at most k or that of simple hypergraphs
of tree-width at most k. The transduction tr(%T) is de$nable.

The proof is given in [9] and [15, Lemma 3.81 for graphs, and in [14] for

hypergraphs. This theorem has consequences relevant to the comparison between HR

and VR sets of graphs.

Corollary 5.2. If a VR set of graphs has bounded degree, bounded tree-width, or is
a subset of some HR set, then it is HR. If a VR set of hypergraphs has bounded
tree-width, or is a subset of some HR set, then it is HR.

Proof. Immediate application of Theorems 4.1, 4.2, and the fact that a HR set of

hypergraphs has bounded tree-width. The case of sets of graphs of bounded degree is

also known from [24, 41. q

We now consider encodings of hypergraphs by graphs, along the lines of [25]. For

H in HG(A), we denote by gra(H) the graph G such that

Vc = VH u Eu (recall that V, n Eu = 8),

Eo=((e, i, n)Ie~Eu, u~Vu, u=vert,(e, i)}

u{(e,a)Ie~E,,labH(e)=a}u((v,*)lv~VH},

vert,((e, i, u))=(e, u) and labc((e, i, u))=i,

vert&(e, a)) =(e) and lab,((e, a)) = a, and,

ver&((o, s))=(u) and labc((u, *)) = *.

Thus, gra(H) belongs to HG(A u [m] u {*}), where m is the maximum rank of an

element of A. In this graph, the vertices represent the vertices of H as well as the edges

of H. If vert,(e) = (ul, . . . , u,) then, in gra(H), there is an i-labelled edge from the vertex

representing e to the one representing ui. If lab,(e) = b, then the vertex representing e is

incident with an edge of rank 1 having the label b in gra(H). The vertices of G

representing vertices of H are incident with an edge of rank 1 having the “new” label *.

Note that the mapping gra is injective.

70 B. Courcelle

The following result from [153 is a generalization of [25, Theorem l] and the given

proof is independent of the original one. It shows that the C-edNCE grammars

generate the same sets of hypergraphs (via the coding gra) as the HR grammars.

Theorem 5.3. (1) The transduction gra is injective and (2,2)-definable; the transduction

gra-’ is (1,2)-deJinable.

(2) For every subset L of HG(A), the set gra(L) is VR ifand only ifit is HR if and

only if the set L is HR.

Proof. We have already observed that gra is injective; it is easy to verify that it is

(2,2)-definable. Hence, if L is HR, then the set gra(L) is HR, hence also VR.

Conversely, the transduction gra - ’ is (1,2)-definable. Hence, by Theorems 4.1 and 4.2,

gra- ‘(L’) is HR if L’ is VR. Hence, if gra(L) is VR, the set L = gra- ’ (gra(L)) (because

gra is injective) is HR. 0

6. Definable transductions of words and trees

We review some relations between definable transductions and classical notions in

language theory. The following proposition shows that the class of definable transduc-

tions and that of rational transductions are incomparable.

Proposition 6.1. A rational transduction is dejinable if and only if the image of every

word is a $nite language.

Proof. The “only if” part follows from Fact 2.1. Conversely, a rational transduction

such that every word has a finite image is of the form Au. [h(k- ’ (u) n K)], where K is

a recognizable language, h and k are homomorphisms with k nonerasing (i.e., the

image of a letter is not the empty word): see [3, Exercise 7.2, p. 871. It is thus definable

by Propositions 2.4, 3.2 and 3.3. 0

We have observed that yield, the transduction from a derivation tree relative to

some fixed context-free grammar to the generated word, is definable. Its inverse is not

definable in general even if the grammar is unambiguous (otherwise the set of Polish

prefix notations of terms over a finite ranked alphabet would be the domain of a definable

transduction and would be definable whence recognizable which is not the case).

For some (but not all) HR grammars F, there exists a (2, *)-definable transduction

associating with every hypergraph G generated by F one of its derivation tree relative

to F. In other words, for these grammars, the definable transduction yield has

a definable inverse (see [lo]). However, these grammars, analogous to left-linear

context-free (word) grammars, are less powerful than the general HR grammars.

The example used in the proof of Proposition 3.4 shows that the image of a context-

free language under a definable transduction is not context-free. The following is more

precise.

Graph transductions 71

Theorem 6.2. (1) The following classes of languages are identical:

(1.1) the sets of words defined by HR grammars, or, equivalently, by VR grammars,

(1.2) the images of HR (resp. VR) sets of hypergraphs by (2, *)-definable (resp. (1, *)-

definable) transductions from hypergraphs to words.

(2) The following classes of languages are identical:

(2.1) the images of regular languages under definable transductions from words to

words,

(2.2) the languages in LIN-HR, or equivalently, in LIN-VR,

(2.3) the images of LIN-HR (resp. LIN-VR) sets of hypergraphs by (2, *)-definable

(resp. (1, *)-definable) transductions, from hypergraphs to words.

Proof. That (1.1) =(1.2) follows from Theorems 4.1(3) and 4.2(3); the other equalities

follow from previous remarks. 0

The main result of [23] characterizes the HR (or VR) languages as the output

languages of certain transducers from trees to words (namely the deterministic tree-

walking tree-to-word transducers). Another result of the same paper characterizes the

languages in LIN-HR (equivalently, in LIN-VR) as the output languages of determin-

istic 2-way gsm mappings.

Here are some open questions: What is the class of images of context-free languages

under definable (word-to-word) transductions. 7 It is in between the two classes

considered in assertions (1) and (2) of Theorem 6.2, but is it strictly in between? It is

closely related, perhaps identical, to the class of images of context-free languages

under deterministic 2-way gsm mappings. This later class has been considered in [27]

where it is proved (Corollary 4.10) that it equals the class of context-free controlled

ETOL systems offinite index, also considered in [34]. It would also be interesting to

have “machine” characterizations of definable word-to-word transductions (in terms

of 2-way generalized sequential machines or of related devices) and of definable

tree-to-word transductions.

7. Parikh’s theorem and definable transductions from graphs to commutative words

Let A= {aI, . . , a,,} be an alphabet. A commutative word over A, say w, can be

identified with the n-tuple of numbers of occurrences of letters a,, . . . , a,, in w or with

the edgeless, vertex labelled graph with one vertex labelled by ai for each occurrence of

ai in w, for each i = 1, . . . , n. We shall denote by A” the set of such commutative words,

the set of tuples of nonnegative integers and the set of such graphs which are all

canonically isomorphic.

In Theorem 6.2, we have characterized the images of HR and VR sets of hyper-

graphs under definable transductions from hypergraphs to words. We do the same

here for their images under definable transductions from hypergraphs to commutative

words.

72 B. Courcelle

A subset of A’ is semilinear if it is semilinear in the usual sense when considered as

a set of tuples of numbers, i.e., if it is a finite union of sets of the form

{G+~,Z,+~~~S;~~Z~~~~ ,..., &EN}), where G,Zr ,..., &EN”.

From [27, Corollary 3.2.71 saying that the commutative images of the output

languages of deterministic tree-walking tree-to-word transducers are semilinear sets

and the main result of [23], we obtain the following result.

Theorem 7.1. The following classes of sets of commutative words are identical:
(1) the class of semilinear sets,
(2) the class of HR (equivalently of VR) sets of commutative words,
(3) the images of HR (resp. of VR) sets of hypergraphs under (2, *)-definable (resp.

under (1, *)-definable) transductions from hypergraphs to commutative words.

A proof that does not rest on the constructions of [27] can be given with the help of

the following lemma of independent interest. Let cp be a formula in _Y(R, {XI, . . . ,X,})

for some ranked set R of relational symbols. Let S be an R-relational structure.

We define

sat(cp, S):={(X,, . . . ,Xk)lX l,...,XkEDs,(S,X1,...,Xk)l=(P}.

With cp and an n x k matrix B of nonnegative integers, we can form the transduction

fq,B from R-structures to A’ (identified with N”) such that

f&(S):= { (Card(X,), . . , Card(Xk)).B I (X,, . . . ,X,)Esat(q, S)}.

Lemma 7.2. A transduction from structures to commutative words is definable if and

only tf it is of the form fW,B for some cp and B.

Proof. Let P be the set of unary relation symbols p1 , . . . ,p,,. A commutative word over

A will be represented by a P-structure T= (D,,p,,, . . . ,pnT) such that for every d in

D, the relation p&d) holds for exactly one index i. Considering T as a graph with set

of vertices D,, we make RiT(d) hold if and only if d is labelled by ai.

Let cp and B be given as in the statement. Let b be the value of the largest coefficient

Bi, j of B. We shall construct T belonging tof,, B(S) as def, (S, XI, . . . , X,), where d is an

n.k.b-copying definition scheme:

(% ($1,~ t)lc[n,,,c[k,, tt[b]) (‘%hvcPx [n] x [&I x [b] >.

The definition scheme d will be such that

&-={(x, i, j, t)lxsDs, ieCn1, jeCk1, tsCBi,jl, XEXj}, (1)

PiT((X, i’, j, t)) holds if and only if i’ = i. (2)

Since the ith component of the tuple in fW,B(S) associated with X1, . . . ,X, is

Card(X,).Bi, I+ ... +Card(X,). Bi,k, the structure T is actually equal to

def,(S, XI, . ,X,) if it satisfies (1) and (2) for X1, . . . ,X, satisfying 9 in S. Hence, we

Graph transductions 13

need only take $i, j, f to be the formula “x,Xj” if t d Bi,j and the formula false otherwise.

For w = (pi, i’,j, t) we take for 8, the formula true if i = i’ and false otherwise.

We now prove the converse. Given a (P, R)-definition scheme d, we shall construct

cp and B such that fq,B = def,. Let d be m-copying with parameters X1, . , X,. Let cp’

be its first formula, which defines the domain of def,. We shall use the new variables

Yj,j for i = 1, . , m,j = 1, . . . , n. From A it is not hard to construct a formula cp express-

ing the following in any R-structure S:

(X,, . . . ,X,) holds and, for every i and j, Y,,i is the set of elements x of

Ds such that (x, i) belongs to the domain of T where T= def, (S, X1, . . . , X,)

and PjT((X, i)) holds.

The number of elements of T that satisfy pj is thus the sum of cardinalities of the sets

Y ,,,, for i= 1, . . . , m. From this observation follows the definition of B, a (k + mn) x n-

matrix with coefficients in (0, l}. 0

Any set of the form (3) in Theorem 7.1 is thus the image of a recognizable set of trees

under a transduction of the form f,, B. By reduction to Parikh’s theorem for context-

free languages (see [14, Lemma 3.11) one proves that it is semi-linear. This gives

a proof of Theorem 7.1 that does not depend on the results of [27]. Here is an

extension of Parikh’s theorem.

Corollary 7.3. Let L be a HR (resp. VR) set of hypergraphs. Let L’ be the associated set

of structures (of type 2 or 1, resp.). Then fq,B(L') is semilinear.

This result extends the version of Parikh’s theorem of [31] in the sense that it does

not only count vertex or edge labels but cardinalities of sets satisfying MS formulas. It

is used in [14] to decide whether a VR set of hypergraphs is HR.

8. Conclusion

Definable transductions form a quite powerful class of graph transformations, that

is nevertheless manageable, as shown by the closure theorems we have stated above.

We do not review algorithmic aspects here. Let us only mention that these transduc-

tions form a key tool in [l] where testing properties of tree-structured graphs (a

derivation tree relative to a context-free grammar is a typical example of structuring)

is reduced (via the inverse of a definable transduction) to testing properties of trees by

means of finite-state tree automata. Let us also mention that for every input graph

G of tree-width at most some k, an output graph (relative to a fixed definable

transduction) can be constructed in time O(size(G)) by the results of [17].

A natural question is whether the class of definable transductions can be extended

so as to be closed under inverse. The answer is no if one wishes that the extended

transductions preserve the classes HR and VR, because, roughly speaking, the set of

74 B. Courcelle

all finite graphs is neither HR nor VR. This is a striking difference with the case

of words (since the set of all words over a finite alphabet is context-free): there is no

hope to generalize everything from words (or trees) to graphs.

Acknowledgments

I thank A. Arnold, J. Engelfriet, M. Mosbah and J.-C. Raoult for useful remarks and

suggestions on preliminary versions of this paper.

References

[l] S. Arnborg, J. Lagergren and D. Seese, Problems easy for tree-decomposable graphs, J. Alyorithms 12
(1991) 308340.

[2] M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Muth. Systems Theory 20

(1987) 83-127.

[3] J. Berstel, Transductions and Context-j&e Languages (Teubner, Stuttgart, 1979).

[4] F.-J. Brandenburg, The equivalence of boundary and confluent graph grammars on graph languages

with bounded degree, Lecture Notes in Computer Science, Vol. 488 (Springer, Berlin, 1991) 312-322.

[S] J. Biichi, Weak second-order logic and finite automata, Z. Math. Logik Grundlagen Math. 5 (1960)

66-92.

[6] B. Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graph

grammars, Theoret. Cornput. Sci. 55 (1987) 141-181.

[7] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen, ed., Handbook OJ
Theoretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990) 193-242.

[S] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform.
Comput. 85 (1990) 12275.

197 B. Courcelle, The monadic second-order logic of graphs VI: on several representations of graphs by

relational structures, Discrete Appl. Math. to appear; Proc. Logic in Computer Science 1990, Philadel-

phia (1990) 190-196.

[lo] B. Courcelle, The monadic second order logic of graphs V: on closing the gap between definability and

recognizability, Theoret. Comput. Sci. 80 (1991) 153-202.

[1 l] B. Courcelle, Graph grammars, monadic second-order logic and the theory of graph minors, in: N.
Robertson and P. Seymour, eds., Graph Structure Theory, Contemporary Mathematics, Vol. 147

(Amer. Math. Sot., Philadelphia, PA, 1993) 565-590.

1127 B. Courcelle, The monadic second-order logic of graphs III: Tree-decompositions, minors and

complexity issues, Inform. Thhorique Appl. 26 (1992) 257-286.
[13] B. Courcelle, The monadic second-order logic of graphs VII: graphs as relational structures, Theoret.

Comput. Sci. 101 (1992) 3333.
1141 B. Courcelle, Structural properties of context-free sets of graphs generated by vertex replacement,

Research Report 91-44, Bordeaux-l Univ.; Infirm. Comput. (1994), to appear.

[15] B. Courcelle and J. Engelfriet, A logical characterization of the sets of hypergraphs generated by
hyperedge replacement grammars, Research Report 91-41, Bordeaux-l Univ. 1991, Math. Sq~stetns

Theory, to appear.
1161 B. Courcelle, J. Engelfriet and G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput.

System Sci. 46 (1993) 218-270.

[17] B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs,

Theoret. Comput. Sci. 109 (1993) 49-82.
[lS] M. Dauchet, T. Heuillard, P. Lescanne and S. Tison, Decidability of the confluence of finite

ground term rewrite systems and of other related term rewrite systems, Injiirm. Comput. 88 (1990)
187-201.

Graph transductions 75

[19] J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970) 406-451.
[20] C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. AMS 98 (1961)

21-52.

[21] J. Engelfriet, Context-free NCE graph grammars, Proc. FCT’ 89, Lecture Notes in Computer Science,

Vol. 380, (Springer, Berlin, 1989) 1488161.

1221 J. Engelfriet, A characterization of context-free NCE graph languages by monadic second-order logic

on trees, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 199 1) 3 11-327.
1231 J. Engelfriet and L. Heyker, The string generating power of context-free hypergraph grammars,

J. Comput. System Sci. 43 (1991) 3288360.

[24] J. Engelfriet and L. Heyker, Hypergraph languages of bounded degree, Report 91-01, Univ. Leiden,

1991: J. Comput. System Sci., to appear.
1251 J. Engelfriet and G. Rozenberg, A comparison of boundary graph grammars and context-free

hypergraph grammars, Zrzform. Comput. 84 (1990) 163-206.
1261 J. Engelfriet and G. Rozenberg, Graph grammars based on node rewriting: an introduction to NLC

graph grammars, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin, 1991) 12223.

1271 J. Engelfriet, G. Rozenberg and G. Slutzki, Tree transducers, L-systems and two-way machines,

J. Comput. System Sci. 20 (1980) 150-202.
[28] F. Gavril, Algorithms for minimum coloring, maximum clique, and maximum independent set of

a chordal graph, SIAM J. Comput. 1 (1972) 180-187.
[29] F. Gecseg and M. Steinby, Tree Automata (Akademiai Kiado, Budapest, 1984).

[30] Y. Gurevich, Monadic second-order theories, in: J. Barwise and S. Feferman, eds., Model Theoretic
Logic (Springer, Berlin, 1985) 479-506.

[31] A. Habel, Hyperedge replacement: grammars and languages, Lecture Notes in Computer Science,

Vol. 643 (Springer, Berlin, 1992).

[32] A. Habel and H.J. Kreowski, May we introduce to you: hyperedge replacement?, Proc. 3rd Internat.
Workshop on Graph Grammars. Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987)

15526.

[33] D. Janssens and G. Rozenberg, A survey of NLC grammars, Lecture Notes in Computer Science, Vol.

159 (Springer, Berlin, 1983) 1144128.

[34] K.-J. Lange, Context-free controlled ETOL systems, Proc. fOth ICALP, Lecture Notes in Computer

Science, Vol 154 (Springer, Berlin, 1980) 723-733.

[35] M. Rabin, A simple method for undecidability proofs and some applications, in: Y. Bar-Hillel, ed.,

Logic, Methodology and Philosophy oJScience II (North-Holland, Amsterdam, 1965) 58-68.

1361 J.-C. Raoult, A survey of tree transductions, in: M. Nivat and A. Podelski, eds., Tree Automata and
Languages (Elsevier, Amsterdam, 1992) 31 l-326.

[37] G. Rozenberg and E. Welzl, Boundary NLC grammars, basic definitions, normal forms and complex-

ity, Inform. Control 69 (1986) 136-167.
1381 W. Thomas, Automata on infinite objects, in: J. van Leeuwen, ed., Handbook of Theoretical Computer

Science, Vol. B (Elsevier, Amsterdam, 1990) 1333192.

