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Abstract 

Courcelle, B., Monadic second-order definable graph transductions: a survey, Theoretical 

Computer Science 126 (1994) 53-75. 

Formulas of monadic second-order logic can be used to specify graph transductions, i.e., multi- 

valued functions from graphs to graphs. We obtain in this way classes of graph transductions, called 

monadic second-order definable graph transductions (or, more simply, d&able transductions) that are 

closed under composition and preserve the two known classes of context-free sets of graphs, namely 

the class of hyperedge replacement (HR) and the class of vertex replacement (VR) sets. These two 

classes can be characterized in terms of definable transductions and recognizable sets of finite trees, 

independently of the rewriting mechanisms used to define the HR and VR grammars. When 

restricted to words, the definable transductions are strictly more powerful than the rational 

transductions such that the image of every finite word is finite; they do not preserve context-free 

languages. We also describe the sets of discrete (edgeless) labelled graphs that are the images of HR 
and VR sets under definable transductions: this gives a version of Parikh’s theorem (i.e., the 

characterization of the commutative images of context-free languages) which extends the classical 

one and applies to HR and VR sets of graphs. 

0. Introduction 

The theory of formal languages investigates finite devices defining sets of finite and 

countably infinite words and trees, compares their expressive powers, and investigates 

the solvability of the associated decision problems. These investigations make an 

essential use of transformations from words or trees to words or trees usually called 

transductions. Of special importance are the rational (word to word) transductions; 
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they are closed under composition and inverse, and they preserve the families of 

recognizable and context-free languages. Tree transductions are more complicated, 

and there is no unique notion that can be considered as the analogue of that of 

a rational transduction. For each class of tree transductions, the closure under 

composition is a major concern, and so is the preservation of recognizability; we refer 

the reader to the survey by Raoult [36]. Another important transduction is yield that 

maps derivation trees of context-free grammars to the corresponding words. The 

context-free languages can be characterized as the images of the recognizable sets of 

(finite) trees under yield mappings. 

The study of sets of finite and countably infinite graphs (and hypergraphs) by tools 

like grammars, systems of equations and logical formulas is a relatively recent 

development in the theory of formal languages. The need for a manageable and 

powerful notion of graph transduction appears in constructions dealing with graph 

grammars and is of interest on its own. This paper is a survey presenting the notion of 

a monadic second-order definable graph transduction (a dejinable transduction for 

short), which has been introduced more or less explicitly and sometimes in restricted 

forms in several papers [l, 9,10,13,15,22]. 

We now introduce these transductions informally. The terms “monadic second- 

order” refers to a logical language, the monadic second-order logic. We recall the role of 

logic for defining sets of graphs (or hypergraphs; all what we shall say concerning 

graphs applies to hypergraphs as well). Graphs can be described by relational 

structures, i.e., by logical structures with no function symbols. The domain of the 

structure representing a graph is the set of its vertices and edges put together; basic 

relations describe the incidence of vertices and edges and possible labellings. (This is 

actually not the only way to represent a graph; see Sections 1 and 4 for more details.) 

Hence, formulas of any appropriate logical language define properties of this graph. 

Monadic second-order logic is popular among logicians because of its expressive 

power and its decidability properties (see [30] for a survey). For dealing with graphs, 

it is very useful because it can express many fundamental properties (like planarity, 

connectivity, k-colorability for fixed k) whereas several general decidability results 

hold. The sets of words characterized by a property expressible in monadic second- 

order logic are exactly the recognizable sets by the results of Biichi [S] and Elgot [20], 

presented in [38, Theorem 3.21. The same property holds for finite trees, as established 

by Doner [19], see [38, Theorem 11.11. Sets of graphs defined similarly by character- 

istic monadic second-order properties behave very much like recognizable sets of 

words and trees, in particular in constructions involving context-free graph gram- 

mars. Since no notion of finite-state graph automaton is known, monadic second- 

order formulas are essential in such constructions. 

We now come to graph transductions. Since we have no good (general) notion of 

graph automaton, we have no chance to obtain a good notion of graph transduction 

based on a finite-state machine model. Alternatively, we propose to define transduc- 

tions of graphs (or more generally of relational structures) by means of monadic 

second-order formulas. The idea is to transform a structure S into a structure T by 
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defining T “inside” S by means of such formulas. This is nothing but the classical 

notion of semantic interpretation (see for instance [35]), appropriately extended. In 

particular, we define T inside an intermediate structure made of k disjoint copies of 

S (for some fixed k), equipped with a binary relation saying that two elements replicate 

the same element of S. This makes it possible to construct T with a domain larger than 

that of S (larger within the factor k). 

The family of definable transductions is closed under composition, but not under 

inverse. These transductions preserve the so-called HR and VR sets of graphs (namely, 

the two known types of context-free sets of graphs), and yield grammar-independent 

characterizations of these sets. 

This paper is organized as follows. Section 1 reviews relational structures, the way 

they represent graphs and hypergraphs, and monadic second-order logic; Section 2 

introduces (monadic second-order) definable transductions of relational structures 

and presents a collection of basic examples of such transductions of words, trees and 

graphs; Section 3 states the main properties of definable transductions of relational 

structures; Section 4 presents the relationships between definable transductions and 

the classes of VR and HR sets of graphs (and hypergraphs); Section 5 shows how these 

transductions make it possible to compare several representations of graphs by 

relational structures and to code hypergraphs by graphs in a way that fits well with 

context-free graph grammars; Section 6 compares definable transductions with 

known transductions of words and trees: Section 7 deals with definable transductions 

from graphs to commutative words and gives forms of Parikh’s theorem that apply to 

HR and VR graph grammars. 

1. Hypergraphs and relational structures 

We denote by Card(A) the cardinality of a set A. We denote by [n] the set of 

positive integers { 1, . . . , n}. 

For a binary relation R c A x B, we write aRb for (a, b)ER. The associated mapping 

from A to the powerset of B (also denoted by R and defined by R(u):= {be B 1 uRb}) is 

called a transduction from A to B. We consider every b such that uRb as an image 

ofu under R, hence we consider R as a multivalued function from A to B. The domain 

of R is Dam(R):= (UEA j uRb for some b in B j and the image of R is Im(R):= {beB 1 uRb 

for some a in A}. For LsA, the image ofL under R is R(L):= {bEBluRb for some a 

in L}. The transduction R-‘, associated with the binary relation {(b, a) / (a, b)sR} is 

called the inverse of R. If L is a subset of B, then R-‘(L) is the inverse image of L under R. 

We say that R is functional if Card(R( {u})) d 1 f or every a in A. We identify functional 

relations R E A x B with partial functions R : A-B, and we write b = R(u) instead of 

bER(u). The composition of a transduction R from A to B and a transduction S from 

B to C is the transduction from A to C, denoted by S 0 R and associated with the 

product of the relations R and S, i.e., with the relation {(u, c) 1 (a, b)ER and (b, C)ES for 

some b in B}. By a mapping, we shall mean a total function. 
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1 .I. Hypergraphs 

We shall deal with labelled, directed hypergraphs. The labels (intended to label 

hyperedges) are chosen in a finite ranked alphabet A, i.e., a finite alphabet A given with 

a rank mapping p: A-+ N. The rank of the label of a hyperedge must be equal to the 

length of its sequence of incident vertices. This rank may be 0, i.e., we allow hyperedges 

with no vertex. Graphs appear as a special case where all labels are of rank 2 or 1. 

A hyperedge of length 2 is a (usual) labelled directed edge. It is a loop if its two ends are 

identical. A hyperedge of length 1 can be considered as a piece of information attached 

to a vertex, hence as a vertex label. However, one may have several, possibly identical 

labels attached to the same vertex. 

A concrete hypergraph over A is a 4-tuple G = ( VF, E,, labG, vert,), where VG is the 

finite set of vertices, EG is the finite set of (hyper) edges, disjoint with V, (its elements 

will hereafter be called edges for short), labG is a mapping E,+A that defines the label 

of an edge, and vertG is a mapping that associates with every edge e the sequence of its 

vertices; this sequence must be of length p(e):=p(lab,(e)) (called the rank of the edge) 

and its ith element is denoted by vertG(e, i). A concrete hypergraph G is simple if, for all 

e, e’ in E,: if vertG(e) = vert,(e’) and lab,(e) = lab,(e’), then e = e’. By a hypergraph, we 

mean the isomorphism class of a concrete hypergraph. We denote by HG(A) the set of 

hypergraphs over A. 

1.2. Monadic second-order logic 

Let R be a finite ranked set of symbols where each element r in R has a rank p(r) in 

N,. A symbol r in R is considered as a p(r)-ary relation symbol. An R-(relational) 

structure is a tuple S = (D,, (rS)rER), where Ds is a finite (possibly empty) set, called the 

domain of S, and rs is a subset of D $(‘) for each r in R. We denote by Y(R) the class of 

R-structures. 

We review monadic second-order logic briefly. Its formulas (called MS formulas 

for short), intended to describe the properties of structures S as above, are written 

with variables of two types, namely lower-case symbols x, x’, y, called object 

variables, denoting elements of Ds, and upper-case symbols X, Y, Y’, . . called set 

variables, denoting subsets of Ds. The atomic formulas are of the forms x=y, 

r(xl, . . . ,x,) (where r is in R and n=p(r)), and XEX, and formulas are formed 

with propositional connectives and quantifications over the two kinds of 

variables. For every finite set W of object and set variables, we denote by Y(R, W) 

the set of all formulas that are written with relational symbols from R and have 

their free variables in W; we also let _!Z’(R):=LZ(R, 8) denote the set of closed 

formulas. 

Let S be an R-structure, let cp~9(R, IV), and let y be a W-assignment in S (i.e., y(X) 

is a subset of Ds for every set variable X in IV, and y(x)~D, for every object variable 

x in IV; we write this as y : W-S, to be short). We write (S, y) I= q if and only if q holds 

in S for y. We write S j= cp in the case where CP has no free variable. A set of R-structures 
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L is definable if there is a formula cp in 3’(R) such that L is the set of all R-structures 

S such that Sl=cp. 

A hypergraph G in HG(A) can be represented by an R,-structure, where 

R,:=(edg,ja~A) with P(edg,):=p(a)+ 1. The structure representing G is IG12:= 

(DG, (edgac)asA), where D,:= V,u EG (let us recall that Vcn Eo =@), 
edgoG(x, y,, . ,y,):ox~E~, lab,(x)=a and vert,(x)=(yl, . . . ,y,). Since the domain 

of this structure consists of vertices and edges, quantifications can be done over two 

types of objects or sets of objects. The index 2 refers to these two possibilities, and 

differentiates this structure from another one defined below where quantifications can 

be done over vertices and sets of vertices only. 

Clearly, 1 G I2 is isomorphic to I G' I2 as a relational structure if and only if G = G’ (i.e., 

G is isomorphic to G’). We shall consider any two isomorphic structures as equal, like 

for hypergraphs. 

A hypergraph G can be represented by another structure I G I 1 := ( V,, (edg’,c),,a), 

where edg’,,(y,, . . . . y,) holds if and only if labc(x) = a and vert&x) = ( y,, . . , y,) for 

some edge x in Eo. Clearly, two simple hypergraphs G and G’ are equal if and 

only if ( G I 1 is equal (isomorphic) to I G’ I 1. Hence, simple hypergraphs are unambigu- 

ously represented by these latter structures whereas arbitrary hypergraphs are 

not. 

The representation of hypergraphs by logical structures makes it possible to express 

their properties by logical formulas. We shall say that a property P of the hypergraphs 

G of a class % can be expressed by a logical formula cp via a representation / G I if, for 

every G in %?, P(G) holds if and only if / G I + cp. 
A property of hypergraphs is i-dejinable (where i is 1 or 2) if it is expressible by an 

MS formula, relative to the representation I-Ii. For example, the following formula 

expresses that a graph G represented by the structure 1 G I 1 is connected: 

vxvyvx[xEx A VUV’v((UEX A I&, u) =- VEX) * YEX)], 

where $(u, v) is the disjunction of the formulas edg’Ju, u) V edg’,(v, U) extended to all 

labels a (this formula expresses that 1.4 and v are the two ends of some edge). (All labels 

are assumed to be of rank 2.) 

The structure I GI 1 is less expressive than I Cl2 for representing properties of 

a hypergraph G by MS formulas for the obvious reason that one cannot express in 

) Cl1 properties dealing with multiple edges. However, this is also the case if G is 

assumed to be simple. For instance, the existence of a Hamiltonian circuit in a simple 

graph is a 2-definable property that is not l-definable. Some results comparing the 

expressive powers of MS formulas in the two cases are recalled in Section 4. 

2. Monadic second-order definable transductions 

We first define transductions of relational structures. Let R and Q be two finite 

ranked sets of relation symbols. Let W be a finite set of set variables, called here the set 
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of parameters. (It is not a loss of generality to assume that all parameters are set 

variables.) A (Q, R)-dejnition scheme is a tuple of formulas of the form 

where 

k>O, Q*k:={(q,J)Iq~Q,JE[k]P(Y)S, 

cp~y(R, W> 

$iEY(R, WU{X,~) for i= 1, . ,k, 

~,EP’(R, Wu{x,, ,xPCl,}), for w=(q,J)EQ*k. 

These formulas are intended to define a structure Tin 9’(Q) from a structure S in 

9’(R), and will be used in the following way. The formula cp defines the domain of the 

corresponding transduction, namely, T is defined only if cp holds true in S. Assuming 

this condition fulfilled, the formulas $I) . . . , tik, define the domain of T as the disjoint 

union of the sets D,, . . . , Dk, where Di is the set of elements in the domain of S that 

satisfy tii. Finally, the formulas 0, for w =(q,j),J~[k] p(q) define the relation qT. Here 

are the formal definitions. 

Let SEY(R), let y be a W-assignment in S. A Q-structure T with domain 

DT L Ds x [k] is defined in (S, y) by A if 

(i) 6% Y) I= cp, 
(ii) &={(d, i)ldE&, ie[kl, (S, Y, d)l=$i} 

(iii) for each q in Q: 

qT={(&, il), . . . > (d,,i,))ED~I(S,Y,dl,...,dt)I=e(q,j)}, 

where J= (ii , . . , i,) and t = p(q). 

By(S,xdl,... , d,)l= I!I(~,J, we mean (S, ?‘)I= (&j,, where y’ is the assignment extend- 

ing y, such that ?;‘(xi) = di for all i= 1, . . . , , t’ a similar convention is used for 

(ST Y, d) k $i). 
Since T is associated in a unique way with S, y and A whenever it is defined, i.e., 

whenever (S, y) + 40, we can use the functional notation def, (S, y) for T. 

The transduction defined by A is the relation def,:= {(S, T) I T=def,(S, y) for some 

W-assignment ‘J in S} c Y(R) x Y(Q). A transductionfz Y(R) x 9’(Q) is definable if it 

is equal to def, for some (Q, R)-definition scheme A. In the case where IV=@, we say 

thatfis de$nable without parameters (note that it is functional). We shall refer to the 

integer k by saying that def, is k-copying. In the special case where k = 1, we shall 

say that def, is noncopying and we can write more simply D as (cp, $, (O,),,,). In 

this case: 

DT={dd’sI(S,y,d)l=$f 
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and for each q in Q: 
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where t = p(q). 

Before applying these definitions to general hypergraphs, we give three examples. 

Our first example is the transduction that associates with a graph the set of 

its connected components. We consider directed unlabelled graphs. Such a graph 

G is represented by the structure I Cl2 = (DG, edg,), where D, = F’,uE, and edg 

is a ternary relation symbol. (Since edges have no labels, we use a single relation edg 

instead of several relations edg, as in the definition of Section 1.) The definition 

scheme A given below uses a parameter X. It is constructed in such a way that 

def,(IGI,, {x}) is the structure IG’lz, where G’ is the connected component of 

G containing the vertex x. We let (CJJ, $, oedg) be the noncopying definition scheme 

where 

cp is a formula with free variable X expressing that X consists of a unique vertex, 

II/ is a formula with free variables X and x expressing that x is a vertex linked 

by a path (where edges can be traversed in either direction) to the vertex in 

X, or that x is an edge, one end of which is linked by such a path to the vertex 

in X. 

eedg is the formula edg(x,, x2, x3). 

It is then straightforward to verify that A is as desired. It follows in particular 

from Theorem 4.1(3) that the set of connected components of a HR set of graphs 

is HR. 

Our second example is the functional transduction that maps a word u in {a, b} ’ to 

the word u3. (We denote by {a, b}+ the set of nonempty words written with a and b.) 

In order to define it as a transduction of structures, we represent the words in {a, b}+ 

as structures in the following way. If u has length n, then the associated structure II u /I 

is ({1,2, . . . . n}, suc,p,,~~), where 

the domain { 1,2,. . , n} is the set of positions of letters in U, 

pa(i) holds if and only if a is the letter at ith position, 

pb(i) holds if and only if b is the letter at ith position, 

suc(i, j) holds if and only if j = i + 1. 

We let A be the 3-copying definition scheme without parameter (cp, $i, $2, tij, 

(~c~~~, i,,))i, j= t, 2,3,7 (@~p~,r,)t= I, 2,3 (e,p,.t,),= I, 2,3) such that 

cp expresses that the input structure indeed represents a word in {a, b}+, 

til, t+h2, t+h3 are identical to the Boolean constant true, 

8(suc.,j, (XI, x2) is Suc(x~, x2) if i=j, 

~6"C.iJ) (Xl, x2) expresses that x1 is the last position and that x2 is the first one if i = 1 

and j=2, or if i=2 and j=3, 

H (SUE, t, J) (Xl, x2) is the constant false otherwise, 

$P._,j (xi) is p,(x,) for i= 1,2, 3, 

,pb.I,(~l)is~h(~l)for i=l,2,3. 
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We claim that def, (S) = T if and only if S is a structure of the form 11 u 11 and T is the 

corresponding structure I/ u3 11. To take a simple example, if S= ((1,2, 3,4}, 

suqp,, pb) representing the word abba, then def,(S) is the structure. 

T=({l,,2,, 31>41> 12,22, 32942, 13,239 33,43},SUC’,Pb,P6), 

where we write ij instead of (i, j), so that ij is the jth copy of i for j= 1, 2, 3, and 

suc’(ij, k,) holds if and only if k, is the successor of ij in the above enumeration of 

the domain of T, 

Pb(ij) holds if iE(l, 4}, jE{l, 2, 3) and 

PL(ij) holds otherwise. 

This is an example of a definable transduction from words to words that is not 

rational. (This transduction will also be used as a counterexample in Proposition 3.4.) 

Our last example is the product of a finite-state automaton ~2 by a$xed finite-state 

automaton 98. A finite-state automaton is defined as a 5-tuple d = (X, Q, M, I, F), 

where X is the input alphabet (here we take X = (a, b}), Q is the set of states, M is the 

transition relation which is a subset of Q x X x Q because we consider nondeterminis- 

tic automata without a-transitions, I is the set of initial states and F is that of final 

states. The language it recognizes is denoted by L(d). The automaton &’ is repres- 

ented by the relational structure: Id) = (Q, tram,, trans,, initial, final), where trans, 

and tranq are binary relation symbols, initial and final are unary relation symbols and 

trans,( p, q) holds if and only if ( p, a, q)EM, 

transb( p, q) holds if and only if ( p, b, q)E M, 

initial(p) holds if and only if PEI, 

final(p) holds if and only if ~EF. 

Let G9 = (X, Q’, M’, I’, F’) be a similar automaton, and d x 98 = (X, Q x Q’, M”, 

Ix I’, F x F’) be the product automaton intended to define the language 

L(,EZ)~L(B). We let Q’ be {l,..., k} (let us recall that 99 is fixed). We let d be the 

k-copying definition scheme (q, G1, . , t,bk, (OW)weR *J, where R = (trans,, trans,, in- 

itial, final} and: 

cp is the constant true (every structure in Y(R) represents an automaton that may 

have inaccessible states and useless transitions), 

$r, . . , tik are the constant true, 

0 mans., k/l (x,, x2) is the formula trans,(x,, x2) if (i, a, j) is a transition of 9 and is the 

constant false otherwise, 

l3 (trans,, ,,,) is defined similarly, 

t?(initia,,I) (x1) is the formula initial(xi) if i is an initial state of B and is false otherwise, 

t?(fina,, ,) (x 1 ) is defined similarly. 

It is not hard to check that I d x ~29) = def,( I&I). Note that the language defined by 

an automaton JZ! is nonempty if and only if there exists a path in r;4 from some initial 

state to some final state. This latter property is expressible in monadic second-order 

logic. Hence, it follows from Proposition 3.2(l) that, for a fixed rational language K, 

the set of structures representing an automata &’ such that L(d)nK is nonempty is 

definable. 
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The definitions concerning definable transductions of structures apply to hyper- 

graphs via their representation by relational structures as explained above. However, 

since we have two representations of hypergraphs by logical structures, we must be 

more precise. We say that a hypergraph transduction, i.e., a binary relation f on 

hypergraphs is (i,j)-definable, where i and j belong to { 1,2} if and only if the 

transduction of structures {(I G Ii, 1 G’ lj) I (G, G’)E~} is definable. We shall also use 

transductions from trees to hypergraphs. Since a tree t is a graph, it can be represented 

by either I tll or ) t12. However, both structures are equally powerful for expressing 

monadic second-order properties of trees, and definable transductions from trees to 

trees and from trees to graphs. (This follows from Theorem 5.1). When we specify 

a transduction involving trees (or words which are special trees) as input or output we 

shall use the symbol * instead of the integers 1 and 2, in order to recall that the choice 

of representation is not important in these cases. We shall use de$nable for (*, *)- 

definable. 

Here are a few facts concerning definable transductions of structures. 

Fact 2.1. If f is a definable transduction, there exists an integer k such that, 

Card(&) d k. Card(&) whenever T belongs to f(S). 

Fact 2.2. The domain of a definable transduction is definable. 

Proof. Let A be a definition scheme as in the general definition with W= {X,, . . , , X,}. 

Then Dom(defd)={S\S(=3X,,...,3X,cp). 0 

Proposition 2.3 states that every k-copying definable transduction is the composi- 

tion of a noncopying transduction and a k-copying “standard” one which we now 

define. For k > 1, we let Qk:= {si 11 <i < k} u (br}, where the Si’S are unary relation 

symbols and br is a binary one. For every S in 9’(R), we let cop,(S) be the (R u Qk)- 

structure T constructed as follows: 

D,={(d, i)ld&s, iE[k]} 

for each r in R of arity t: 

rT=(((4,iL . . . ,M, i))l(d,, . . . ,4krS, iECkl), 

siT:={(d, i)IdEDs}, 

brT:={((d, i),(d,j))jd~Ds, 1 <i,j<k}. 

The unary relation sir(x) holds if and only if x is “an ith son” (the ith son of d such 

that x =(d, i)); the binary relation br,(x, y) holds if and only if x and y are “brothers”, 

i.e., are two “sons” of the same d, with x possibly equal to y. 

Proposition 2.3. A transduction is definable if and only if it is the compositionfocop, 

of cop, for some k and of some definable noncopying transductionf: 
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Proof. It is clear that cop, is definable and k-copying. If f is a definable, then 

Proposition 3.2 yields that fi copk is definable and k-copying. 

Let us now consider y defined by d = (q, i/j 1, , t,bk, (d,,,),.,, * k) with set of parameters 

W={Xr, . . . ,X,}. We aim to construct A’=($, t+V, (@,),,,) such that 

def, = def,, 0 copk. We shall describe the intended meaning of the formulas that form d’ 

(rather than writing them explicitly). Let S be an R-structure, and T be any structure 

isomorphic to cop,(S). We let T’ be the R-structure defined as the restriction of T to 

the set of elements of T that satisfy sr. Hence, T’ is isomorphic to S. 

The formula q’ (with free variables in W) expresses (in T) that X 1, . , X, are subsets 

of the domain Dr. of T’ and that q(Xr , . . . , X,) holds in T’; the formula $’ with free 

variables in (Xi, . . . , X,)u{x} expresses (in T) that q(x) holds for some i in [k] and 

that there exists y in Dr. such that br(x, y) holds in T and $i(Xi, . . ,X,, y) holds 

in T’; for each q in Q of arity t, the formula t& has its free variables in 

{Xi >...’ Xn}U{-%...JJ and expresses (in T) that there exist il, . , i, in [k] such 

that sil(xi), . . ..si.(xr) hold and there exist y,, . . , y, in D7. such that 

br(x,, yl), . . . , br(x,, yt) hold in T and 8,(X,, . ,X,, yi, . . . ,yt) holds in T’, where 

w = (q, (iI, , i,)). It is easy to verify that if d’ = (q’, $‘, (Oh),,e), where cp’, I/, t$ are as 

above, then def, = def,, 3 copk. C 

The next three propositions list examples of transductions of words and trees that 

are definable. 

Proposition 2.4. The ,following mappings are dejnable transductions: (1) word homo- 

morphisms, (2) inverse nonerasing word homomorphisms, (3) gsm mappings, (4) the mirror- 

image mapping on words, (5) the mapping Au. [u”] (where u is a word and n a$xed integer), 

(6) the mapping yield that maps a derivation tree relative to ajixed context-free grammar 

to the generated word, (7) linear root-toTfrontier or frontier-to-root tree transductions. 

Proof. The proofs are easy to do. Let us recall that a gsm mapping is a transduction 

from words to words defined by a generalized sequential machine, i.e., a (possibly 

nondeterministic) transducer that reads at least one input symbol on each move. 

A special case of (5) has been constructed in detail in our second example before 

Fact 2.1 (See [29] or the survey by Raoult [36] for tree transductions). 0 

Fact 2.1 which limits the sizes of the output structures, shows that certain transduc- 

tions are not definable. This is the case of inverse erasing word homomorphisms and of 

ground tree transducers except in degenerated cases (see Dauchet et al. [18] or [36] 

on ground tree transducers). 

Proposition 2.5. The transductions that associate with a graph G: (1) its spanningforests, 

(2) its connected components, (3) its subgraphs satisfying somefixed 2-definable property, 

(4) its maximal subgraphs satisfying some fixed 2-dejnable property (maximal for 

subgraph inclusion), (5) the graph consisting of the union of two disjoint copies of G, (6) its 
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minors, are all (2,2)-dejinable. The mapping associating with a graph its line graph is 

(2, I)-dejinable but not (2,2)-dejinable. 

We recall that the line graph of a graph G has Eo as set of vertices and has 

undirected edges between any two vertices representing edges sharing a vertex (in G). 

Proof. Assertions (l))(6) are easy consequences of the existence of an MS formula 

expressing that two given vertices are linked by some path; see [7,8]. Assertion (6) is 

proved in [12]. The last assertion is an easy consequence of the definition of a line 

graph. The non-(2,2)-definability is proved in [1.5]. 0 

3. Properties of definable transductions of relational structures 

The following proposition is the basic fact behind the notion of semantic interpreta- 

tion [35]. It says that if S= def,(T, p) i.e., if S is defined in (7’, ,u) by d, then the 

monadic second-order properties of S can be expressed as monadic second-order 

properties of (T, p). 

Let d =(cp, $1, . . . ,*k, (hJrtQI~ ) be a (Q, R)-definition scheme, written with a set of 

parameters W. Let V be a set of set variables disjoint from W. For every variable X in 

V,foreveryi=l,...,k,weletXibeanewvariable.Welet V’:={Xi/XEV,i=l,...,k). 

For every mapping v: V”+g(D), we let y^k: V+Y(Dx [k]) be defined by: 

y^k(X)=q(X,) x {l} u ... u q(X,) x (k}. With these notations we can state the 

following proposition. 

Proposition 3.1. For every formula /I in dp(Q, V), one can construct a formula p’ in 

L?(R, Vu W) such that, for every T in 9’(R), for every assignment ,u: W-+ T, for every 

assignment 4: V-T, we have 

def,(T, ,LL) is defined (if it is, we denote it by S), nAk is a V-assignment in S, and 

(ST n*.k)!=P 

fund only if (T, nup)I=/3’. 

Note that, even if S is well-defined, the mapping nAk is not necessarily a V- 

assignment in S, because y^ k(X) is not necessarily a subset of the domain of S which is 

a possibly proper subset of D x [k]. 

Proof (sketch). Let us first consider the case where def, is noncopying. In order to 

transform /3 into fl’, one replaces every atomic formula q(ul, . . . , u,) by the formula 

R?(u 1, ... 2 u,) which defines it in terms of the relations of T. One also restricts 

quantifications to the domain of S, i.e. one replaces 3x[p] by 3x[$(x) A ~1 and 

ClX[p] by 3X[Vx{x~X~$(x)} An]. In the case where k> 1, one replaces YX[n] 

by a formula of the form 3X1, 3X2,... ,3X,[$], where $ is an appropriate 
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transformation of p based on the fact that X=X1 x {l} u ..( uX, x {k}. The reader 

will find a complete construction in [lo, Proposition 2.5, p. 1661. 0 

From this proposition, we get easily the following proposition. 

Proposition 3.2. (1) The inverse image of a definable set of structures under a dejinable 
transduction is definable. 

(2) The composition of two dejinable transductions is dejinable. 

Proof. (1) Let L G 9(Q) be defined by a closed formula /I and def, be a transduction as 

in Proposition 3.1. Then defi ’ (L) c 9(R), is defined by the formula 3 Y1 , . . . ,3 Y, C/J’], 

where Yi, . . , Y,, are the parameters and p is constructed from fl as in Proposition 3.1. 

(2) Let A=(cP,$~,...,$~, (RAterk ) be a k-copying definition scheme and 

A’=(#, @l, .‘. , t&d, Rv),,,*,~ ) be k-copying such that def, is a transduction from 

9(R) to 9(Q) and def,, is a transduction from Y(Q) to 9’(P). Let f be the trans- 

duction def,. odef, from Y(R) to Y(P): we shall construct a definition scheme A” for 

it. Just to simplify the notation we shall assume that the parameters of A are Y and Y 

and that those of A’ are Z and Z’. We shall also assume that the relations of P are all 

binary. The general case will be an obvious extension. 

In order to describe A” we shall denote by Tan R-structure, we shall denote by S the 

Q-structure def,(T, Y, Y’), where Y and Y’ are subsets of D, and we denote by U the 

P-structure def,,(S, Z, Z’), where Z and Z’ are subsets of D,. Hence Ds is a subset of 

D, x [k], and Du is a subset of DT x [k] x [k’] which is canonically isomorphic to 

a subset of D, x [kk’]. Hence A” will be kk’-copying. 

The parameters Z and Z’ represent sets of the respective forms 

Z=Z, x {l}u~~~uZkx {k} and Z’=Z; x (1) u ... uZ; x {k). Hence, the definition 

scheme A” will be written in terms of parameters Y, Y’, Zi, . . . , Zk, Z;, . . . , Z;. It will 

be of the form 

(q”> ($I: j)it[kl,t[k'l, (B~,~,~'),~,,,'))~~P,~,i'~[kl,,.,'c[k'l)~ 

so that the domain of D, will be handled as a subset of DT x [k] x [k’] and not of 

D, x [kk’]. The formulas forming A” will be obtained from those forming A’ by the 

transformation of Proposition 3.1. We first consider c$’ which should express that 

def,(T, Y, Y’) is defined, i.e., that (T, Y, Y’)+cp, 

and that ifZ=Z1x{l}u...uZkx{k} andZ’=Z’lx{l}u~~~uZ~x{k}, then 

def,,(S, Z, Z’) is defined, i.e., that (S, Z, Z’)l= @, 

which is equivalent to: 

(T, Y, Y’, Zi, . . . . Zk, Z’i, . . . . Z;)l=t, 

where z is obtained from rp’ by the transformation of Proposition 3.1. Hence, cp” is the 

conjunction of cp and r. We omit the constructions of the other formulas because they 

are quite similar. 0 
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We could define more powerful transductions by which a structure S would be 

constructed “inside” T x T instead of “inside” a structure formed of a fixed number of 

disjoint copies of T linked as explained in the definition of cop, used in Proposition 

2.3. However, with this variant, one could construct a second-order formula p’ as in 

Proposition 3.1 (with quantifications on binary relations), but not a monadic second- 

order one (at least in general). We wish to avoid (full) second-order logic because most 

constructions and decidability results (like those of [S]) break down. In the third 

example given before Fact 2.1, we have shown that the transduction associating the 

automaton &’ x ~$9 with an automaton d is definable (via the chosen representation of 

finite-state automata by relational structures) for fixed 99’. 

Here are some other closure properties of the class of definable transductions. 

Proposition 3.3. The union of two definable transductions is a definable transduction. So 

is the intersection of a definable transduction with a transduction of the form A x B, 

where A and B are definable sets. 

Proof. See [9] for the first assertion and [lo] for the second. 0 

Here are now some negative closure properties. 

Proposition 3.4. (1) The image of a definable set under a definable transduction is a set 

that is not definable in general. 

(2) The inverse of a definable transduction is a transduction that is not definable in 

general. 

(3) The intersection of two definable transductions is a transduction that is not 

definable in general. 

Proof. (1) The transduction of words that maps a”b to a”ba”ba”b for n > 0 is definable 

(this follows from Proposition 3.3 and the second example given before Fact 2.1). The 

image of the definable language a*b is a language that is not regular (and even not 

context-free), hence not definable by the basic result of Biichi and Elgot ([38, 

Theorem 3.21) recalled in the introduction. 

(2) The inverse of this transduction is not definable since, if it would be, its domain 

would be definable (by Fact 2.2), hence regular, which is not the case. 

(3) The intersection of the definable transductions of words that map a”b”’ to c”, and 

a”b”’ to cm is the one that maps a”b” to 6’. It is not definable because its domain is not 

a definable language. 0 

4. Definable transductions and context-free graph grammars 

There are two classes of context-free graph (and hypergraph) grammars, the class of 

HR (Hyperedge Replacement) and the class of VR (Vertex Replacement) grammars. 
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Both kinds of grammars can be described by rewriting rules: HR grammars (which 

generate the HR sets of graphs and hypergraphs) are based on the replacement in 

a hypergraph of a hyperedge by a hypergraph: the labels of edges play the role of 

terminal and nonterminal symbols in context-free grammars; the VR grammars can be 

described by a complicated rewriting of vertices. Grammars of both types are context- 

free in the sense of [6]. This means in particular that they are conjuent, i.e., that 

independent derivation steps can be permuted and that the equivalence classes of 

derivation sequences w.r.t. permutations of independent steps can be characterized by 

derivation trees (see [6] for a formal definition). Another characteristic property of 

context-free graph grammars is that the generated sets can be characterized as 

forming the least solutions of systems of equations canonically associated with the 

considered grammar. Grammars of both types can actually be defined in an easier way 

as systems of fixed-point equations, written with set union and appropriate operations 

on hypergraphs that we need not recall here. 

We refer the reader to [2,7, 10,31, 321 for definitions and basic properties of HR 

grammars. The relations between HR grammars and definable transductions are 

collected in the following theorem. 

Theorem 4.1. (1) The mapping yield that associates with a derivation tree of a (jxed) 

HR grammar the generated hypergraph is (*, 2)-definable. 

(2) A set of hypergraphs is HR if and only if it is the image of a recognizable set 

of$nite trees under a (*, 2)-definable transduction. 

(3) The class of HR sets of hypergraphs is closed under (2,2)-definable transductions. 

Proof. (1) is proved in [lo]; the “if” part of (2) is a difficult theorem established in 

[ 153, whereas the “only if” part follows immediately from (1); (3) follows immediately 

from (2) since the composition of a (*, 2)-definable transduction from trees to hyper- 

graphs and a (2,2)-definable transduction from hypergraphs to hypergraphs is (*, 2)- 

definable. 0 

Remark. In Condition (2), one can replace a recognizable set ofjnite trees by the set 

B ofjnite binary unlabelled trees, because every recognizable set of finite trees is the 

image of B under some (*, *)-definable transduction [15, Lemma 2.41. 

Let us say that a HR grammar is linear if each right-hand side of a production rule 

has at most one nonterminal, and that a set of hypergraphs is linear HR if there exists 

a linear HR grammar generating it. From the constructions establishing Theorem 4.1, 

we get that a set of hypergraphs is linear HR if and only if it is the image 

of a recognizable language under a (*, 2)-definable transduction, and that the 

class LIN-HR of linear HR sets of hypergraphs is closed under (2,2)-definable 

transductions. 

We now come to the more complex class of VR sets of simple graphs. A few words of 

history are in order because the definition of this class has emerged from a sequence of 
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papers. It comes out of the NLC grammars introduced by Janssens and Rozenberg 

[33]; (NLC means “node labelled controlled’). Not all NLC grammars are context- 

free because they are not always confluent (independent derivation steps cannot in 

general be permuted). The BNLC (“boundary” NLC) grammars form a restriction of 

the general case and are confluent [37]. Whereas NLC grammars generate undirected 

graphs with unlabelled edges, the more general edNCE grammars can generate 

directed labelled graphs, and edge labels can be modified during the rewriting. Only 

the confluent ones (the C-edNCE grammars) are context-free. Other types of gram- 

mars, the S-HH (“separated handle hypergraph”) grammars, that are always context- 

free, generate exactly the same sets of graphs as the C-edNCE grammars and give 

more easily equivalent systems of fixed-point equations [16]. See also [26] for more 

details and references. A grammar independent characterization of C-edNCE sets of 

graphs, slightly weaker than Theorem 4.2(2) is given by Engelfriet in [26]. 

A VR set of graphs is a set of directed or undirected graphs generated by either 

a C-edNCE or a S-HH grammar, or defined as a component of the least solution of 

a systems of fixed-point equations written with certain appropriate operations (see 

[16]). Actually, the simplest way to define them is by systems of equations (see also 

[13, 141 for these systems). Since these grammars are confluent, their derivation 

sequences can be represented by derivation trees [6]. 

Theorem 4.2. (1) The mapping yield that maps a derioation tree qf a$xed C-edNCE or 

S-HH grammar to the generated graph is (*, 1)-dejnable. 

(2) A set of simple graphs is VR if and only ifit is the image of a recognizable set 

ofjinite trees under a (*, 1)-definable transduction. 

(3) The class of VR sets of graphs is closed under (l,l)-definable transductions. 

Proof. (1) See [ 131 or [22]. (2) The “if” part is proved in [22] for a restricted notion of 

transduction; the full form is Theorem 3.2 of [ 153, an alternative proof is given in [ 131. 

(3) follows from (2) like do the corresponding assertions of Theorem 4.1. 0 

As in Theorem 4.1, and for the very same reason, we can replace in Theorem 4.2(2) 

a recognizable set of jinite trees by the set B. Since a (*,2)-definable transduction is 

(*, 1)-definable, it follows also from Theorems 4.1(2) and 4.2(2) that every HR set of 

simple graphs is VR, which gives another proof of a result known from [16]. As 

another consequence we get, using Proposition 2.5, that the set of line graphs of the 

graphs of a HR set is VR. 

The linear VR sets of graphs, i.e., those defined by linear C-edNCE or S-HH 

grammars (with at most one nonterminal in each right-hand side of a production) can 

be characterized as the images of recognizable languages under (*, l)-definable trans- 

ductions, and their class (let us denote it by LIN-VR) is closed under (1, 1)-definable 

transductions. 

As another application of Theorem 4.2, we shall establish that the set of chordal 

graphs is not VR. A chordal graph is a simple undirected graph in which every cycle of 
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length at least 4 has a chord (see [28]). These graphs can also be described as 

“tree-shaped” combinations of cliques. Considering also the fact that the set of all 

cliques is VR, one might think that the set of chordal graphs is VR. But this is not the 

case. 

Proposition 4.3. The set of chordal graphs is not VR. 

Proof. In the following proof, all graphs are simple loop-free and undirected. Let L be 

the set of graphs constructed in the following way. They consist of a clique K having at 

least four vertices augmented with a possibly empty set V of additional vertices and 

with edges such that every vertex in V is linked to two distinct vertices of K. 
For every G in L, we let H:=f(G) be the graph constructed as follows: its vertices 

are those of the clique K upon which G is constructed (they are actually the vertices of 

G of degree more than two); two such vertices are linked in H if and only if they are 

both linked in G to a same vertex u of V (i.e., a vertex of degree two). It follows from 

this definition that the transduction 

{(IGIl, I~(G)II)IGEL) 

is definable. Since every graph in L is chordal and every graph with at least 4 vertices is 

f(G) for some G in L, we obtain that the image underfof the set of chordal graphs is 

the set of all graphs having at least four vertices. This latter set is not VR (because 

every VR set contains at most finitely many square grids by, e.g., [ 151). It follows from 

Theorem 4.2(3) that the set of chordal graphs is not VR either. 0 

What about VR sets of simple hypergraphs? We define them as the images of 

recognizable sets of finite trees (equivalently of the set of finite binary trees E!) under 

(*,l)-definable transductions. Courcelle [13, Theorem 4.61 gives a characterization in 

terms of systems of fixed point equations built with appropriate operations. A decid- 

able characterization of the VR sets of hypergraphs that are not HR is given in [14] 

(and its proof uses definable transductions). Let us finally mention that S-HH 

grammars generate certain VR sets of simple hypergraphs, but not all of them [16]. 

5. Comparing representations of graphs and hypergraphs by relational structures 

Transductions of structures can be used for the following two purposes: (1) for 

comparing several representations of the same object by relational structures, and (2) 

for encodings of hypergraphs by graphs, or more generally, of combinatorial objects 

by others. We illustrate successively these two uses. 

We have defined two relational structures, I G I i and ( G I2 able to represent unam- 

biguously simple hypergraphs. For every set %7 of simple hypergraphs, we let tr(%?) be 

the transduction: tr(%‘) = { (/ G II, I G 12) / GE%‘}. It is functional since we are dealing 

with simple hypergraphs and since any two isomorphic structures are considered as 
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equal. If %? is the set of all (finite) simple graphs, then k(W) is not definable (otherwise, 

by Theorems 4.1 and 4.2, the classes of HR and VR sets of graphs would be the same 

which is not the case). 

The tree-width of a graph is an integer that characterizes how close it is to be a tree: 

forests have tree-width 1, the tree-width of a clique with n vertices is n. The graphs 

generated by a HR-grammar have a tree-width bounded by some integer computable 

from the grammar (see [7,11,12]). 

Theorem 5.1. Let k be an integer. Let %? be either the set of simple graphs of degree at 
most k or that of simple graphs of tree-width at most k or that of simple hypergraphs 
of tree-width at most k. The transduction tr(%T) is de$nable. 

The proof is given in [9] and [15, Lemma 3.81 for graphs, and in [14] for 

hypergraphs. This theorem has consequences relevant to the comparison between HR 

and VR sets of graphs. 

Corollary 5.2. If a VR set of graphs has bounded degree, bounded tree-width, or is 
a subset of some HR set, then it is HR. If a VR set of hypergraphs has bounded 
tree-width, or is a subset of some HR set, then it is HR. 

Proof. Immediate application of Theorems 4.1, 4.2, and the fact that a HR set of 

hypergraphs has bounded tree-width. The case of sets of graphs of bounded degree is 

also known from [24, 41. q 

We now consider encodings of hypergraphs by graphs, along the lines of [25]. For 

H in HG(A), we denote by gra(H) the graph G such that 

Vc = VH u Eu (recall that V, n Eu = 8), 

Eo=((e, i, n)Ie~Eu, u~Vu, u=vert,(e, i)} 

u{(e,a)Ie~E,,labH(e)=a}u((v,*)lv~VH}, 

vert,((e, i, u))=(e, u) and labc((e, i, u))=i, 

vert&(e, a)) =(e) and lab,((e, a)) = a, and, 

ver&((o, s))=(u) and labc((u, *)) = *. 

Thus, gra(H) belongs to HG(A u [m] u {*}), where m is the maximum rank of an 

element of A. In this graph, the vertices represent the vertices of H as well as the edges 

of H. If vert,(e) = (ul, . . . , u,) then, in gra(H), there is an i-labelled edge from the vertex 

representing e to the one representing ui. If lab,(e) = b, then the vertex representing e is 

incident with an edge of rank 1 having the label b in gra(H). The vertices of G 

representing vertices of H are incident with an edge of rank 1 having the “new” label *. 

Note that the mapping gra is injective. 
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The following result from [ 153 is a generalization of [25, Theorem l] and the given 

proof is independent of the original one. It shows that the C-edNCE grammars 

generate the same sets of hypergraphs (via the coding gra) as the HR grammars. 

Theorem 5.3. (1) The transduction gra is injective and (2,2)-definable; the transduction 

gra-’ is (1,2)-deJinable. 

(2) For every subset L of HG(A), the set gra(L) is VR ifand only ifit is HR if and 

only if the set L is HR. 

Proof. We have already observed that gra is injective; it is easy to verify that it is 

(2,2)-definable. Hence, if L is HR, then the set gra(L) is HR, hence also VR. 

Conversely, the transduction gra - ’ is (1,2)-definable. Hence, by Theorems 4.1 and 4.2, 

gra- ‘(L’) is HR if L’ is VR. Hence, if gra(L) is VR, the set L = gra- ’ (gra(L)) (because 

gra is injective) is HR. 0 

6. Definable transductions of words and trees 

We review some relations between definable transductions and classical notions in 

language theory. The following proposition shows that the class of definable transduc- 

tions and that of rational transductions are incomparable. 

Proposition 6.1. A rational transduction is dejinable if and only if the image of every 

word is a $nite language. 

Proof. The “only if” part follows from Fact 2.1. Conversely, a rational transduction 

such that every word has a finite image is of the form Au. [h(k- ’ (u) n K)], where K is 

a recognizable language, h and k are homomorphisms with k nonerasing (i.e., the 

image of a letter is not the empty word): see [3, Exercise 7.2, p. 871. It is thus definable 

by Propositions 2.4, 3.2 and 3.3. 0 

We have observed that yield, the transduction from a derivation tree relative to 

some fixed context-free grammar to the generated word, is definable. Its inverse is not 

definable in general even if the grammar is unambiguous (otherwise the set of Polish 

prefix notations of terms over a finite ranked alphabet would be the domain of a definable 

transduction and would be definable whence recognizable which is not the case). 

For some (but not all) HR grammars F, there exists a (2, *)-definable transduction 

associating with every hypergraph G generated by F one of its derivation tree relative 

to F. In other words, for these grammars, the definable transduction yield has 

a definable inverse (see [lo]). However, these grammars, analogous to left-linear 

context-free (word) grammars, are less powerful than the general HR grammars. 

The example used in the proof of Proposition 3.4 shows that the image of a context- 

free language under a definable transduction is not context-free. The following is more 

precise. 
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Theorem 6.2. (1) The following classes of languages are identical: 

(1.1) the sets of words defined by HR grammars, or, equivalently, by VR grammars, 

(1.2) the images of HR (resp. VR) sets of hypergraphs by (2, *)-definable (resp. (1, *)- 

definable) transductions from hypergraphs to words. 

(2) The following classes of languages are identical: 

(2.1) the images of regular languages under definable transductions from words to 

words, 

(2.2) the languages in LIN-HR, or equivalently, in LIN-VR, 

(2.3) the images of LIN-HR (resp. LIN-VR) sets of hypergraphs by (2, *)-definable 

(resp. (1, *)-definable) transductions, from hypergraphs to words. 

Proof. That (1.1) =( 1.2) follows from Theorems 4.1(3) and 4.2(3); the other equalities 

follow from previous remarks. 0 

The main result of [23] characterizes the HR (or VR) languages as the output 

languages of certain transducers from trees to words (namely the deterministic tree- 

walking tree-to-word transducers). Another result of the same paper characterizes the 

languages in LIN-HR (equivalently, in LIN-VR) as the output languages of determin- 

istic 2-way gsm mappings. 

Here are some open questions: What is the class of images of context-free languages 

under definable (word-to-word) transductions. 7 It is in between the two classes 

considered in assertions (1) and (2) of Theorem 6.2, but is it strictly in between? It is 

closely related, perhaps identical, to the class of images of context-free languages 

under deterministic 2-way gsm mappings. This later class has been considered in [27] 

where it is proved (Corollary 4.10) that it equals the class of context-free controlled 

ETOL systems offinite index, also considered in [34]. It would also be interesting to 

have “machine” characterizations of definable word-to-word transductions (in terms 

of 2-way generalized sequential machines or of related devices) and of definable 

tree-to-word transductions. 

7. Parikh’s theorem and definable transductions from graphs to commutative words 

Let A= {aI, . . , a,,} be an alphabet. A commutative word over A, say w, can be 

identified with the n-tuple of numbers of occurrences of letters a,, . . . , a,, in w or with 

the edgeless, vertex labelled graph with one vertex labelled by ai for each occurrence of 

ai in w, for each i = 1, . . . , n. We shall denote by A” the set of such commutative words, 

the set of tuples of nonnegative integers and the set of such graphs which are all 

canonically isomorphic. 

In Theorem 6.2, we have characterized the images of HR and VR sets of hyper- 

graphs under definable transductions from hypergraphs to words. We do the same 

here for their images under definable transductions from hypergraphs to commutative 

words. 
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A subset of A’ is semilinear if it is semilinear in the usual sense when considered as 

a set of tuples of numbers, i.e., if it is a finite union of sets of the form 

{G+~,Z,+~~~S;~~Z~~~~ ,..., &EN}), where G,Zr ,..., &EN”. 

From [27, Corollary 3.2.71 saying that the commutative images of the output 

languages of deterministic tree-walking tree-to-word transducers are semilinear sets 

and the main result of [23], we obtain the following result. 

Theorem 7.1. The following classes of sets of commutative words are identical: 
(1) the class of semilinear sets, 
(2) the class of HR (equivalently of VR) sets of commutative words, 
(3) the images of HR (resp. of VR) sets of hypergraphs under (2, *)-definable (resp. 

under (1, *)-definable) transductions from hypergraphs to commutative words. 

A proof that does not rest on the constructions of [27] can be given with the help of 

the following lemma of independent interest. Let cp be a formula in _Y(R, {XI, . . . ,X,}) 

for some ranked set R of relational symbols. Let S be an R-relational structure. 

We define 

sat(cp, S):={(X,, . . . ,Xk)lX l,...,XkEDs,(S,X1,...,Xk)l=(P}. 

With cp and an n x k matrix B of nonnegative integers, we can form the transduction 

fq,B from R-structures to A’ (identified with N”) such that 

f&(S):= { (Card(X,), . . , Card(Xk)).B I (X,, . . . ,X,)Esat(q, S)}. 

Lemma 7.2. A transduction from structures to commutative words is definable if and 

only tf it is of the form fW,B for some cp and B. 

Proof. Let P be the set of unary relation symbols p1 , . . . ,p,,. A commutative word over 

A will be represented by a P-structure T= (D,,p,,, . . . ,pnT) such that for every d in 

D, the relation p&d) holds for exactly one index i. Considering T as a graph with set 

of vertices D,, we make RiT(d) hold if and only if d is labelled by ai. 

Let cp and B be given as in the statement. Let b be the value of the largest coefficient 

Bi, j of B. We shall construct T belonging tof,, B(S) as def, (S, XI, . . . , X,), where d is an 

n.k.b-copying definition scheme: 

(% ($1,~ t)lc[n,,,c[k,, tt[b]) (‘%hvcPx [n] x [&I x [b] >. 

The definition scheme d will be such that 

&-={(x, i, j, t)lxsDs, ieCn1, jeCk1, tsCBi,jl, XEXj}, (1) 

PiT((X, i’, j, t)) holds if and only if i’ = i. (2) 

Since the ith component of the tuple in fW,B(S) associated with X1, . . . ,X, is 

Card(X,).Bi, I+ ... +Card(X,). Bi,k, the structure T is actually equal to 

def,(S, XI, . ,X,) if it satisfies (1) and (2) for X1, . . . ,X, satisfying 9 in S. Hence, we 
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need only take $i, j, f to be the formula “x,Xj” if t d Bi,j and the formula false otherwise. 

For w = (pi, i’,j, t) we take for 8, the formula true if i = i’ and false otherwise. 

We now prove the converse. Given a (P, R)-definition scheme d, we shall construct 

cp and B such that fq,B = def,. Let d be m-copying with parameters X1, . , X,. Let cp’ 

be its first formula, which defines the domain of def,. We shall use the new variables 

Yj,j for i = 1, . , m,j = 1, . . . , n. From A it is not hard to construct a formula cp express- 

ing the following in any R-structure S: 

(X,, . . . ,X,) holds and, for every i and j, Y,,i is the set of elements x of 

Ds such that (x, i) belongs to the domain of T where T= def, (S, X1, . . . , X,) 

and PjT((X, i)) holds. 

The number of elements of T that satisfy pj is thus the sum of cardinalities of the sets 

Y ,,,, for i= 1, . . . , m. From this observation follows the definition of B, a (k + mn) x n- 

matrix with coefficients in (0, l}. 0 

Any set of the form (3) in Theorem 7.1 is thus the image of a recognizable set of trees 

under a transduction of the form f,, B. By reduction to Parikh’s theorem for context- 

free languages (see [14, Lemma 3.11) one proves that it is semi-linear. This gives 

a proof of Theorem 7.1 that does not depend on the results of [27]. Here is an 

extension of Parikh’s theorem. 

Corollary 7.3. Let L be a HR (resp. VR) set of hypergraphs. Let L’ be the associated set 

of structures (of type 2 or 1, resp.). Then fq,B(L') is semilinear. 

This result extends the version of Parikh’s theorem of [31] in the sense that it does 

not only count vertex or edge labels but cardinalities of sets satisfying MS formulas. It 

is used in [14] to decide whether a VR set of hypergraphs is HR. 

8. Conclusion 

Definable transductions form a quite powerful class of graph transformations, that 

is nevertheless manageable, as shown by the closure theorems we have stated above. 

We do not review algorithmic aspects here. Let us only mention that these transduc- 

tions form a key tool in [l] where testing properties of tree-structured graphs (a 

derivation tree relative to a context-free grammar is a typical example of structuring) 

is reduced (via the inverse of a definable transduction) to testing properties of trees by 

means of finite-state tree automata. Let us also mention that for every input graph 

G of tree-width at most some k, an output graph (relative to a fixed definable 

transduction) can be constructed in time O(size(G)) by the results of [17]. 

A natural question is whether the class of definable transductions can be extended 

so as to be closed under inverse. The answer is no if one wishes that the extended 

transductions preserve the classes HR and VR, because, roughly speaking, the set of 
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all finite graphs is neither HR nor VR. This is a striking difference with the case 

of words (since the set of all words over a finite alphabet is context-free): there is no 

hope to generalize everything from words (or trees) to graphs. 
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