Rook-drawing for planar graphs

Claire Pennarun
From joint work with David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

Labyrinth Day
April 3rd, 2015
We want to draw large graphs representing dynamic data:

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
- low complexity of algorithms (linear, if possible)

→ new type of drawing with constraints: rook-drawing
We want to draw large graphs representing *dynamic data*:
We want to draw large graphs representing **dynamic data**:

- addition/deletion of nodes
We want to draw large graphs representing **dynamic data**:

- addition/deletion of nodes
We want to draw large graphs representing **dynamic data**:
- addition/deletion of nodes
We want to draw large graphs representing **dynamic data**:

- addition/deletion of nodes
- a metanode = a group of nodes
We want to draw large graphs representing **dynamic data**:

- addition/deletion of nodes
- a metanode = a group of nodes
We want to draw **large** graphs representing dynamic data:

- addition/deletion of nodes
- a metanode = a group of nodes
We want to draw large graphs representing dynamic data:

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
We want to draw large graphs representing dynamic data:

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
- low complexity of algorithms (linear, if possible)
We want to draw large graphs representing dynamic data:

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
- low complexity of algorithms (linear, if possible)

→ new type of drawing with constraints: rook-drawing
Rook-drawing

Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

Claire Pennarun (LaBRI, Bordeaux)
Rook-drawing

Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
Rook-drawing

Definition

A **rook-drawing** of a graph of \(n \) vertices \(\rightarrow \) two orders on the nodes

- Straight-lines
- Regular grid \(n \times n \)
- One vertex per line and column exactly

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

Labyrinth Day
Is there a **planar** rook-drawing for every planar graph?
Is there a **planar** rook-drawing for every planar graph?

What we already know:

- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an \((n - 2) \times (n - 2)\) grid)
Planar rook-drawing

Is there a planar rook-drawing for every planar graph?

What we already know:

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an \((n - 2) \times (n - 2)\) grid)

Idea: addition of constraints, but 2 more lines and columns!
Is there a **planar** rook-drawing for every planar graph?

What we already know:

- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an \((n - 2) \times (n - 2)\) grid)

Idea: addition of constraints, but 2 more lines and columns!
Is there a **planar** rook-drawing for every planar graph?

What we already know:

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an \((n - 2) \times (n - 2)\) grid)

Idea: addition of constraints, but 2 more lines and columns!
Is there a **planar** rook-drawing for every planar graph? **No!**

What we already know:

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an \((n - 2) \times (n - 2)\) grid)

Idea: addition of constraints, but 2 more lines and columns!
A counter-example

Three exterior nodes a, b and c. Inner nodes: inside the area delimited by (ab), (bc) and (ca).
A counter-example

Three exterior nodes a, b and c. Inner nodes: inside the area delimited by (ab), (bc) and (ca).

$\alpha \geq 45^\circ$, $\beta \geq 45^\circ$. Mbc right-angled
A counter-example

Three exterior nodes a, b and c. Inner nodes: inside the area delimited by (ab), (bc) and (ca).

$\alpha \geq 45^\circ$, $\beta \geq 45^\circ$. Mbc right-angled

$\alpha = \beta = 45^\circ \rightarrow x(b) = y(c)$.
Three exterior nodes \(a\), \(b\) and \(c\). Inner nodes: inside the area delimited by \((ab)\), \((bc)\) and \((ca)\).

\[\alpha \geq 45^\circ, \beta \geq 45^\circ.\] \(Mbc\) right-angled

\[\alpha = \beta = 45^\circ \rightarrow x(b) = y(c).\]

\((bc)\) prevents any node to fill the line under \(b\) or the column at the left of \(c\).
A counter-example

Three exterior nodes a, b and c. Inner nodes: inside the area delimited by (ab), (bc) and (ca).

\[\alpha \geq 45^\circ, \beta \geq 45^\circ. \quad Mbc \text{ right-angled}\]

\[\alpha = \beta = 45^\circ \rightarrow x(b) = y(c).\]

(bc) prevents any node to fill the line under b or the column at the left of c.

Fill these line and column with c and b!
A counter-example

Three exterior nodes a, b and c. Inner nodes: inside the area delimited by (ab), (bc) and (ca).

$\alpha \geq 45^\circ$, $\beta \geq 45^\circ$. Mbc right-angled
$\alpha = \beta = 45^\circ \rightarrow x(b) = y(c)$.
(bc) prevents any node to fill the line under b or the column at the left of c.
Fill these line and column with c and b!
Inner nodes: along a diagonal \rightarrow problem with the edges...
A graph is **outerplanar** if it has a planar drawing such that all its vertices are on the outer face.

Result

Every outerplanar graph has a rook-drawing which can be computed in linear time.
[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- Edges of G outerplanar map $\rightarrow T_r, T_b$
- Edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

Claire Pennarun (LaBRI, Bordeaux)
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

Claire Pennarun (LaBRI, Bordeaux)
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first

Claire Pennarun (LaBRI, Bordeaux)
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

$x : \text{ccw pre-order depth-first}$

$y : \text{ccw post-order depth-first}$
[Bonichon, Gavoille, Hanusse, 2005]

- Edges of G outerplanar map $\rightarrow T_r, T_b$
- Edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, \ T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

$\times :$ ccw pre-order depth-first

$y :$ ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- Edges of G outerplanar map $\rightarrow T_r, T_b$
- Edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of G outerplanar map $\rightarrow T_r, T_b$
- edges of T_r: between u and the first node below u, unrelated in T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Hypothesis: T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)]$.

Proof by induction on depth:
Hypothesis: T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)]$.

Proof by induction on depth:
The children subtrees are placed in distinct areas and are ”well” drawn.
Hypothesis: T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)]$.

Proof by induction on depth:
The children subtrees are placed in distinct areas and are "well" drawn.

Edges from v to its children: no crossings!
Hypothesis: T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)]$.

Proof by induction on depth:
The children subtrees are placed in distinct areas and are ”well” drawn.

Edges from v to its children: no crossings!

Additional red edges are between children subtrees: no crossings!
Main result

Every planar graph with n nodes admits a planar polyline rook-drawing, with at most $n - 3$ bends (at most one per edge). Such a drawing can be computed in linear time.

G a triangulation (else, make it triangulated and remove the edges at the end) with exterior nodes v_0, v_1 and v_2

Proof : based on an algorithm of [Bonichon, Mosbah, Le Saëc, 2002] optimizing the area of a polyline drawing.
A **Schnyder wood** is a partition of the internal edges of a triangulation in three trees T_0, T_1 and T_2 (directed toward the root) and with a particular configuration around each inner node:

$$P_2(u) \quad P_1(u) \quad P_0(u)$$
A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0, T_1 and T_2 (directed toward the root) and with a particular configuration around each inner node:

\[P_2(u) \]
\[P_1(u) \]
\[P_0(u) \]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.
\((T_0, T_1, T_2)\) : Schnyder wood of \(G\).
(T₀, T₁, T₂) : Schnyder wood of G.

(v₁v₀), (v₂v₀), (v₂v₁)
Planar polyline rook-drawing - Nodes

- \((T_0, T_1, T_2)\) : Schnyder wood of \(G\).
- \((v_1v_0), (v_2v_0), (v_2v_1)\)
- \(x\) : clockwise preordering of \(T_0\)
 \[= \{v_0v_2ABCDEFGHIv_1\}\]
Planar polyline rook-drawing - Nodes

- \((T_0, T_1, T_2)\) : Schnyder wood of \(G\).
- \((v_1 v_0), (v_2 v_0), (v_2 v_1)\)
- \(x\) : clockwise preordering of \(T_0\) \(= \{v_0 v_2 ABCGDEFHIv_1\}\).
- \(y\) : clockwise postordering of \(T_1\) \(= \{DEABFHIGCV_2 v_1\}\) \((v_0 = 0)\).
The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$.

First blue child: directly right to its father → straighten

The edges $(u, P_1(u))$ are bent at $(x(\text{last descendant}_0(u)), y(u))$ (no bend if u is a leaf of T_0).

Edges of T_2: not bent

k = number of leaves in T_0

T_0 = $n - 1$ edges

T_1 = $n - 2 - k$ bends.

T_2 = 0 bends.

→ $n - 3$ bends in the drawing of G.
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)

First blue child : directly right to its father \(\rightarrow\) straighten
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)

First blue child : directly right to its father → straighten

The edges \((u, P_1(u))\) are bent at \((x(\text{last descendant}_0(u)), y(u))\)
(no bend if \(u\) is a leaf of \(T_0\))
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)

First blue child: directly right to its father \(\rightarrow\) straighten

The edges \((u, P_1(u))\) are bent at
\((x(\text{last descendant}_0(u)), y(u))\)
(no bend if \(u\) is a leaf of \(T_0\))

Edges of \(T_2\): not bent
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)

First blue child: directly right to its father \(\rightarrow\) straighten

The edges \((u, P_1(u))\) are bent at \((x(\text{last descendant}_0(u)), y(u))\)
(no bend if \(u\) is a leaf of \(T_0\))

Edges of \(T_2\): not bent

\[k = \text{number of leaves in } T_0\]
\[T_0 = n - 1 \text{ edges}\]
\[T_1 = n - 2 \text{ edges}\]
\[T_2 = n - 3 \text{ edges}\]
Planar polyline rook-drawing - Edges

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- First blue child: directly right to its father → straighten
- The edges \((u, P_1(u))\) are bent at \((x(\text{last descendant}_0(u)), y(u))\)
 (no bend if \(u\) is a leaf of \(T_0\))
- Edges of \(T_2\): not bent

\[k = \text{number of leaves in } T_0 \]
\[T_0 = n - 1 \text{ edges} \]
\[T_1 = n - 2 \text{ edges} \]
\[T_2 = n - 3 \text{ edges} \]

\[T_0 = n - 1 - (n - k) \text{ bends.} \]
Planar polyline rook-drawing - Edges

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- First blue child: directly right to its father → straighten
- The edges \((u, P_1(u))\) are bent at
 \((x(\text{last descendant}_0(u)), y(u))\)
 (no bend if \(u\) is a leaf of \(T_0\))
- Edges of \(T_2\): not bent

\[
k = \text{number of leaves in } T_0 \]
\[
T_0 = n - 1 \quad \text{edges}
\]
\[
T_1 = n - 2 \quad \text{edges}
\]
\[
T_2 = n - 3 \quad \text{edges}
\]

\(T_0 = n - 1 - (n - k) \) bends.
\(T_1 = n - 2 - k \) bends.
Planar polyline rook-drawing - Edges

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- First blue child: directly right to its father → straighten
- The edges \((u, P_1(u))\) are bent at \((x(\text{last descendant}_0(u)), y(u))\) (no bend if \(u\) is a leaf of \(T_0\))
- Edges of \(T_2\) : not bent

\[k = \text{number of leaves in } T_0 \]

\[T_0 = n - 1 \text{ edges} \]
\[T_1 = n - 2 \text{ edges} \]
\[T_2 = n - 3 \text{ edges} \]

\[T_0 = n - 1 - (n - k) \text{ bends.} \]
\[T_1 = n - 2 - k \text{ bends.} \]
\[T_2 = 0 \text{ bends.} \]
The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\).

First blue child: directly right to its father \(\rightarrow\) straighten

The edges \((u, P_1(u))\) are bent at \((x(\text{last descendant}_0(u)), y(u))\) (no bend if \(u\) is a leaf of \(T_0\)).

Edges of \(T_2\): not bent

\[k = \text{number of leaves in } T_0 \]
\[T_0 = n - 1 \text{ edges} \]
\[T_1 = n - 2 \text{ edges} \]
\[T_2 = n - 3 \text{ edges} \]

\[T_0 = n - 1 - (n - k) \text{ bends.} \]
\[T_1 = n - 2 - k \text{ bends.} \]
\[T_2 = 0 \text{ bends.} \]

\(\rightarrow n - 3 \text{ bends in the drawing of } G.\)
Proof of planarity (some ideas)

Claire Pennarun (LaBRI, Bordeaux)
Edges direction

For each inner node v:

- $P_0(v)$ is left and below v.
- $P_1(v)$ is right and above v.
- $P_2(v)$ is left and above v.
Every node v with $x(u) < x(v) < x(P_1(u))$ has $y(v) < y(u)$ if v is not a descendant of u in T_0.

v : between u and $P_1(u)$.

\[P_1(u) \]
Every node v with $x(u) < x(v) < x(P_1(u))$ has $y(v) < y(u)$ if v is not a descendant of u in T_0.
Every node v with $x(u) < x(v) < x(P_1(u))$ has $y(v) < y(u)$ if v is not a descendant of u in T_0.

v: between u and $P_1(u)$. $\rightarrow v$ in area $(v_0, u), (u, P_1(u)), (P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to “leave” the area!
Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has $y(v) < y(u)$ if v is not a descendant of u in T_0.

$v :$ between u and $P_1(u)$.

$\rightarrow v$ in area $(v_0, u), (u, P_1(u)), (P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to “leave” the area!
Intersection t on path (v_0, u).

Paths $v \rightarrow t$ and $u \rightarrow t$.
Properties of green/red edges

Every node \(v \) with \(x(u) < x(v) < x(P_1(u)) \) has \(y(v) < y(u) \) if \(v \) is not a descendant of \(u \) in \(T_0 \).

\[
\begin{align*}
\text{v : between } u \text{ and } P_1(u). & \quad \rightarrow v \text{ in area } (v_0, u), (u, P_1(u)), (P_1(u), v_0). \\
\text{Path } v \rightarrow v_2 \text{ has to “leave” the area!} \\
\text{Intersection } t \text{ on path } (v_0, u). \\
\text{Paths } v \rightarrow t \text{ and } u \rightarrow t. \\
\rightarrow \text{path from } v \text{ to } u \text{ is going upwards} \\
& = y(v) < y(u).
\end{align*}
\]
Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has $y(v) < y(u)$ if v is not a descendant of u in T_0.

$v :$ between u and $P_1(u)$. $\rightarrow v$ in area $(v_0, u), (u, P_1(u)), (P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to “leave” the area!
Intersection t on path (v_0, u).

Paths $v \rightarrow t$ and $u \rightarrow t$.

\rightarrow path from v to u is going upwards $\Rightarrow y(v) < y(u)$.

Every node v with $x(P_2(u)) < x(v) < x(u)$ has $y(v) < y(u)$ if v is not a descendant of $P_2(u)$ in T_0.
The edges of T_0 do not cross each other.
The edges of T_0 do not cross each other.
The edges of T_0 do not cross each other.
The edges of T_0 do not cross each other.

The subtrees of children "live" in different areas of width $(x(l(v_i)) - x(v_i))$.
The edges of T_0 do not cross each other.

The subtrees of children "live" in different areas of width $(x(l(v_i)) - x(v_i))$.

The edges to the children cannot cross each other.
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.

u_{i+1} should be below the edge (u_i, u)
Non-crossing - green

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$ $x(u_{i+1}) < x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.

u_{i+1} should be below the edge (u_i, u)
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$

$x(u_{i+1}) < x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.

u_{i+1} should be below the edge (u_i, u)
The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

u_{i+1} descendant of u_i in T_0

u_{i+1} not descendant of u_i in T_0

$x(u_{i+1}) > x(u_i)$

$x(u_{i+1}) < x(u_i)$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1}.

u_{i+1} should be below the edge (u_i, u)

Descendants of u_{i+1} are between $x(u_{i+1})$ and $x(u_i)$.
Open questions:

- Reduce the number of bends necessary to draw a given planar graph?
- Characterization of planar graphs for which a straight-lines rook-drawing is (not) possible
- What is the minimum grid size requested to draw a planar straight-lines rook-drawing for a given planar graph?
Thank you for your attention!