Rook-drawing for planar graphs

Claire Pennarun
From joint work with David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

November 13th, 2014
Find a drawing such that the following operations on a graph are easy to implement and to visualize:

- deletion/addition of nodes in the drawing
- node "expansion", i.e. zoom in a hierarchical structure
Rook-drawing

Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
Rook-drawing

Definition

A **rook-drawing** of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly
Planar rook-drawing

What we already know:

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $n \times n$ grid)

Is there a planar rook-drawing for every planar graph with n vertices on a $n \times n$ grid?

No!
Planar rook-drawing

What we already know:
- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an $n \times n$ grid)

Is there a planar rook-drawing for every planar graph with n vertices on a $n \times n$ grid?
Planar rook-drawing

What we already know:
- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $n \times n$ grid)

Is there a planar rook-drawing for every planar graph with n vertices on a $n \times n$ grid?

No!
Planar rook-drawing

What we already know:
- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an \(n \times n\) grid)

Is there a planar rook-drawing for every planar graph with \(n\) vertices on an \(n \times n\) grid?

No!
Planar rook-drawing

What we already know:
- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an $n \times n$ grid)

Is there a planar rook-drawing for every planar graph with n vertices on a $n \times n$ grid?

No!

- Planar straight-lines rook-drawing for outerplanar graphs
- Planar polyline rook-drawing with a few bends for planar graphs
Planar rook-drawing

What we already know:

- Straight-lines drawing ([Fáry, 1948]: every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990]: every planar graph on an $n \times n$ grid)

Is there a planar rook-drawing for every planar graph with n vertices on a $n \times n$ grid?

No!

- Planar straight-lines rook-drawing for outerplanar graphs
- Planar polyline rook-drawing with a few bends for planar graphs
A graph is **outerplanar** if it has a planar drawing such that all its vertices are on the outer face.

Result

Every outerplanar graph with n vertices has a rook-drawing computed in linear time on a grid $n \times n$.
[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

Claire Pennarun (LaBRI, Bordeaux)
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
Bonichon, Gavoille, Hanusse, 2005

- Edges of $G \rightarrow T_r, T_b$
- Edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first

y: ccw post-order depth-first
[Bonichon, Gavoille, Hanusse, 2005]

- Edges of $G \rightarrow T_r, T_b$
- Edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
Rook-drawing for outerplanar graphs

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \rightarrow T_r, T_b$
- edges of T_r: between u and its first non-descendant found after u in a clockwise pre-ordering of T_b.

x: ccw pre-order depth-first
y: ccw post-order depth-first
For each vertex u not a leaf of T:

- Define an area A_u with only red edges leading to u (the areas A_i are disjoint).

The drawing is planar within A_u and blue and red edges can not cross.
For each vertex u not a leaf of T_r: define an area A_u with only red edges leading to u (the areas A_i are disjoint).
For each vertex u not a leaf of Tr:

define an area A_u with only red edges leading to u (the areas A_i are disjoint).

The drawing is planar within A_u and blue and red edges can not cross.
A **Schnyder wood** is a partition of the interior edges of G in three trees T_0, T_1 and T_2 (directed toward the root) and with a particular configuration around each node:

![Diagram](image)

A Schnyder wood is a partition of the interior edges of G in three trees T_0, T_1 and T_2 (directed toward the root) and with a particular configuration around each node.
A Schnyder wood is a partition of the interior edges of G in three trees T_0, T_1 and T_2 (directed toward the root) and with a particular configuration around each node:

$$P_2(u) \quad P_1(u) \quad P_0(u)$$

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

[Schnyder 1989]
We consider G a plane triangulation (with exterior nodes v_0, v_1 and v_2).

Main result

Every planar graph with n nodes admits a planar polyline rook drawing on a $n \times n$ grid, with at most $n - 2$ bends (at most one per edge). Such a drawing is computed in linear time.

Proof: based on an algorithm of [Bonichon, Mosbah, Le Saëc, 2002] optimizing the area of a polyline drawing.
Compute a realizer (T_0, T_1, T_2) of the graph G.

- Column order: clockwise preordering of $T_0 = \{ABCGDEFHI\}$.
- Line order: clockwise postordering of $T_1 = \{DEABFHIGC\}$.

Column order + Line order = 1 vertex for each line and column!
Compute a realizer \((T_0, T_1, T_2)\) of the graph \(G\).

Place \(v_0\) at \((0, 0)\), place \(v_2\) at \((1, n - 2)\), place \(v_1\) at \((n - 1, n - 1)\).
Planar polyline rook-drawing

- Compute a realizer \((T_0, T_1, T_2)\) of the graph \(G\).
- Place \(v_0\) at \((0, 0)\), place \(v_2\) at \((1, n-2)\), place \(v_1\) at \((n-1, n-1)\).
- Column order: clockwise preordering of \(T_0 = \{ABC GDEFHI\}\).
Planar polyline rook-drawing

- Compute a realizer \((T_0, T_1, T_2)\) of the graph \(G\).
- Place \(v_0\) at \((0, 0)\), place \(v_2\) at \((1, n-2)\), place \(v_1\) at \((n-1, n-1)\).
- Column order: clockwise preordering of \(T_0 = \{ABCDEFGHFI\}\).
- Line order: clockwise postordering of \(T_1 = \{DEABFHI\}G\).
Planar polyline rook-drawing

- Compute a realizer \((T_0, T_1, T_2)\) of the graph \(G\).
- Place \(v_0\) at \((0, 0)\), place \(v_2\) at \((1, n - 2)\), place \(v_1\) at \((n - 1, n - 1)\).
- Column order: clockwise preordering of \(T_0 = \{ABCDEFGHI\}\).
- Line order: clockwise postordering of \(T_1 = \{DEABFHIGC\}\).

\[\text{Column order + Line order} = 1 \text{ vertex for each line and column!}\]
Edges bends

If we bend all edges:

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- The edges \((u, P_1(u))\) are bent at \((x(P_1(u)) - 1, y(u))\)
- The edges \((u, P_2(u))\) are bent at \((x(P_2(u)) + 1, y(u))\)
Edges bends

If we bend all edges:

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- The edges \((u, P_1(u))\) are bent at \((x(P_1(u)) - 1, y(u))\)
- The edges \((u, P_2(u))\) are bent at \((x(P_2(u)) + 1, y(u))\)

In fact, we can straighten many of them! (All red edges, left-most blue edges and green ones from blue leafs)
Edges bends

If we bend all edges:

- The edges \((u, P_0(u))\) are bent at \((x(u), y(P_0(u)) + 1)\)
- The edges \((u, P_1(u))\) are bent at \((x(P_1(u)) - 1, y(u))\)
- The edges \((u, P_2(u))\) are bent at \((x(P_2(u)) + 1, y(u))\)

In fact, we can straighten many of them! (All red edges, left-most blue edges and green ones from blue leafs)

Around a node:
- \(\#bends = \#\{\text{blue children}\}\)
- \(\rightarrow n - 2\) bends in the drawing
Conclusion

Open questions:

- Reduce the number of bends necessary to draw a given planar graph?
- Caracterization of planar graphs for which a straight-lines rook-drawing is not possible / is possible
- What is the minimum grid size requested to draw a straight-lines rook-drawing?
Thank you for your attention!