
A decidable two-way logic on data words
Diego Figueira

U. of Warsaw & U. of Edinburgh

Abstract—We study the satisfiability problem for a logic on
data words. A data word is a finite word where every position
carries a label from a finite alphabet and a data value from
an infinite domain. The logic we consider is two-way, contains
future and past modalities, which are considered as reflexive and
transitive relations, and data equality and inequality tests. This
logic corresponds to the fragment of XPath with the ‘following-
sibling-or-self’ and ‘preceding-sibling-or-self’ axes over data
words. We show that this problem is decidable, EXPSPACE-
complete. This is surprising considering that with the strict
(non-reflexive) navigation relations the satisfiability problem is
undecidable. To prove this, we first reduce the problem to a
derivation problem for an infinite transition system, and then we
show how to abstract this problem into a reachability problem
of a finite transition system.

I. INTRODUCTION

We study data words. A data word is a finite string where
each position carries a label from a finite alphabet and a
data value from some infinite domain. This kind of structure
has been considered in the realm of semistructured data,
timed automata, program verification, and generally in systems
manipulating data values. Finding automata and logics with
decidable satisfiability problems over data words is an impor-
tant quest when studying systems manipulating data values.

Suppose that a data word models a database of ‘actions’ that
were performed throughout the time, where the linear structure
of the data word corresponds to the flow of time. Over these
structures, one may want to model the behavior of a system,
and may want to check that the specified behavior is satisfiable.
In other words, that it does not contain any contradiction. The
satisfiability problem is crucial to solve this and other static
analysis problems.

In this paper we consider a formalism to express properties
of data words, where the data values can only be tested for
equality or inequality. Logics or automata that can test equality
of data values and that can express meaningful properties are
necessary. However, they are usually undecidable.

We study a two-way logic on data words and show that it
has a decidable EXPSPACE satisfiability problem. We call it
Two-way Path Logic (or PathLogic for short). PathLogic can be
seen as an extended temporal logic [DL09] or as a fragment of
XPath [CD99] on data words. It has future and past modalities
to navigate the word and data equality test expressions. For
example, it can test the following property of a node:

“there is a node x to the left and two nodes y < z
to the right with labels a, b, and c respectively,
such that x and z have the same data value”.

(?)

Work supported by the FET-Open grant agreement FOX (FP7-ICT-233599).

This property is expressed in PathLogic with the formula

〈 ←−[a] =
−−−→
[b]·[c] 〉 .

Although we can test the relative appearances of labels, the
left and right relations are interpreted as transitive-reflexive
relations. Thus, 〈 ←−[a] =

−−−→
[b]·[b] 〉 is equivalent to 〈 ←−[a] =

−→
[b] 〉.

Our main result is the following.

Main Theorem. The satisfiability problem for PathLogic is
EXPSPACE-complete.

This logic has links with other logics. Indeed, PathLogic
is inspired by the logic for XML documents XPath with
data equality tests and the reflexive-transitive axes ‘following-
sibling-or-self’ and ‘preceding-sibling-or-self’.1 We note
these axes →∗ and ∗← respectively for economy of
space and XPath(→∗, ∗←,=) to the logic. PathLogic is
in fact expressive-equivalent (through an EXPTIME trans-
lation) to XPath(→∗, ∗←,=) interpreted over data words.
In fact, PathLogic is a simplification of the syntax of
XPath(→∗, ∗←,=) that preserves only the essential. This has
also the advantage of simplifying the decidability proofs. In
terms of XPath our result is translated as follows.

Theorem 1. The satisfiability problem for XPath(→∗, ∗←,=)
is in 2EXPSPACE.

This may be surprising given the known results in this area.
In fact, [FS09] shows that XPath(→+,=) is decidable with
non-primitive recursive complexity. This is the fragment that
contains the non-reflexive ‘following-sibling’ axis. What is
more, XPath(→+,+←,=) or even XPath(→∗,+←,=) are un-
decidable. Simply reducing the navigation by having reflexive-
transitive relations instead of only transitive, we turn an
undecidable problem into an elementarily decidable one. Thus,
the→∗ and ∗← axes behave surprisingly much better than→+

and +←. This result opens some promising conjectures on the
decidability of several fragments of XPath on XML documents.

Decidable two-way logics on data words are scarce. Very
often two-way logics on data words have an undecidable
satisfiability problem. One such prominent example is the
case of LTL↓1(F,F−1), a temporal logic with with future and
past modalities and one register to store and compare data
values. Whether we interpret the F and F−1 modalities as
either reflexive or strict, its satisfiability problem remains
undecidable. Further, if only one of these modalities is al-
lowed, it becomes decidable, but with non-primitive recursive

1Strictly speaking, these axes do not exist in XPath [CD99]. They must be
interpreted as the reflexive version of the ‘following-sibling’ and ‘preceding-
sibling’ axes respectively.

complexity [DL09], [FS09]. PathLogic can also be seen as a
fragment of LTL↓1(F,F−1), as we will discuss later on.

Related work

This paper addresses a topic related to the work of [FS09],
about the complexity and decidability of logics for data
words and trees with transitive relations. [FS09] showed
lower bounds for several fragments of LTL↓1 and XPath with
transitive relations for navigation. In particular, it was shown
that all fragments of XPath with data equality tests containing
transitive and non-reflexive axes →+, +← or ↑+ have a
satisfiability problem of non-primitive recursive complexity.
To obtain such results it was necessary to study the behavior
of XPath on non-branching structures, i.e., on data words.
The present paper also centers on data words, showing this
time a positive result with the spirit of obtaining in the
future decidability results for fragments of XPath over XML
documents.

Bojańczyk et al. [BDM+10] study the satisfiability problem
for first order logics with two variables on data words. In
particular they study the fragment FO2(<,∼). This is first-
order logic restricted to two variables, a binary relation <
which corresponds to the order in the word, and a binary
relation ∼ to test for data equality or inequality of nodes. They
show that the satisfiability problem is decidable, NEXPTIME-
complete. In fact, they show that the decidability is also
preserved if we allow any predicate ‘+k’, relating any two
nodes at distance k in the data word.2 This logic is in some
sense two-way, since it can navigate both in the future and
past directions. Since it also includes equality and inequality
of nodes, the transitive < relation and the reflexive-transitive
relation ≤ are one definable in terms of the other. However
close, FO2(<,∼) is incomparable with PathLogic in terms
of expressive power. This decidability result was extended to
FO2(<,-), where x - y tests that x carries a data value
smaller or equal to that of y. The satisfiability of this logic is
EXPSPACE [SZ10].

Demri and Lazić [DL09] study the already mentioned logic
LTL↓1, which is a two-way temporal logic on data words.
It is based on the linear temporal logic LTL with special
constructs to store and test for equality of data values. This
logic with Future, Next and Until modalities is shown to
be decidable [DL09], but any fragment with Future and
Past modalities becomes undecidable [FS09]. Nevertheless,
[DL09] identifies a decidable fragment that is equivalent to
FO2(<,∼,+1, . . . ,+k), and hence decidable. [DDG07] and
[KSZ10] also investigate decidable two-way logics but this
time over multi-attributes data words, were every position
carries a vector of data values. These logics are intimately
related with FO2 and they are hence also incomparable to
PathLogic in expressive power.

Organization: In Section II we introduce our logic
PathLogic and we briefly comment on the relation with XPath,
LTL↓1, and FO2. Sections III, IV and V are dedicated to prove

2For this logic no primitive-recursive upper bound is known.

our main result, that the satisfiability problem of PathLogic
is in EXPSPACE. In Section VI we discuss about the lower
bound. Section VII contains some corollaries of our result in
terms of XPath fragments. Finally, in Section VIII we propose
some conjectures and future lines of work.

II. A TWO-WAY LOGIC

Notation: We consider a finite word over E as a function
w : [n] → E for some n > 0, where [n] = {1, . . . , n}. We
define the set of words as Words(E) := {w : [n] → E |
n > 0}. We write pos(w) = {1, . . . , n} to denote the set of
positions (that is, the domain of w). Given w ∈ Words(E)
and w′ ∈ Words(F) with pos(w) = pos(w′) = P , we
write w ⊗ w′ ∈ Words(E × F) for the word such that
pos(w ⊗ w′) = P and (w ⊗ w′)(x) = (w(x),w′(x)). A
data word is a word w = a⊗d ∈ Words(A × D), where A
is a finite alphabet of letters and D is an infinite domain. We
use A for a finite alphabet, D as an infinite domain, and we
refer to its elements with the letters a, b, c ∈ A and d, e ∈ D.
We use w, a and d for words of Words(A×D), Words(A)
and Words(D) respectively. We use loosely the term node to
denote the pair of label and data value of a position. We write
℘(S) and ℘<∞(S) to denote the powerset and finite powerset
of a set S respectively.

We work with a logic with a simple syntax and same
expressive power as XPath(→∗, ∗←,=). We call this logic
PathLogic. This is an equivalent formalism which is more
convenient to work with for the proofs presented here.

PathLogic is a two-sorted logic with path expressions (that
we note α, β) and node expressions (ϕ,ψ). A path expression
is a sequence of node expressions, noted α = [ψ1]· · · · ·[ψn]
and we say that a position i of the data word reaches another
position j through −→α if there are witness positions i ≤ i1 ≤
· · · ≤ in = j where ψk holds true at position ik, for every k.
On the other hand, a node expression is a boolean combination
of tests for labels and formulas of the form 〈←−α =

−→
β 〉. Such

a formula demands the existence of one position to the left
and one to the right reachable by ←−α and

−→
β respectively, that

carry the same data value. Analogously, 〈←−α 6= −→β 〉 expresses
the same property except that the positions must carry different
data values. Expressions are formally defined as follows.

ϕ,ψ ::= 〈←−α =
−→
β 〉 | 〈←−α 6= −→β 〉 | a | ¬ϕ | ϕ ∨ ψ

α, β ::= ε | [ϕ]·α

And semantics are defined according to the intuition we just
gave. See Figure 1 for a precise definition.

In this context, we define w, i |= ϕ iff i ∈ [[ϕ]]w, and
w |= ϕ iff w, 1 |= ϕ. We also define the test 〈−→α 〉, which
checks if there is a node reachable by α, as 〈−→α = −→α 〉, and
likewise for 〈←−α 〉. The satisfiability problem is the problem
of, given ϕ ∈ PathLogic, whether there is a data word w such
that w |= ϕ. Our main result is that this problem is decidable.

[[a]]w
def
= {i ∈ pos(w) | a(i) = a}

[[ϕ ∨ ψ]]w def
= [[ϕ]]w ∪ [[ψ]]w

[[¬ϕ]]w def
= pos(w) \ [[ϕ]]w

[[〈←−α =
−→
β 〉]]w def

= {i ∈ pos(w) | ∃j, k ∈ pos(w),

(i, j) ∈ [[α]]w←, (i, k) ∈ [[β]]w→,d(j) = d(k)}

[[〈←−α 6=
−→
β 〉]]w def

= {i ∈ pos(w) | ∃j, k ∈ pos(w),

(i, j) ∈ [[α]]w←, (i, k) ∈ [[β]]w→,d(j) 6= d(k)}

[[ε]]w→
def
= [[ε]]w← = {(i, i) | i ∈ pos(w)}

[[[ϕ]·α]]w→
def
= {(i, j) ∈ (pos(w))2 | ∃k ≥ i s.t.

k ∈ [[ϕ]]w, (k, j) ∈ [[α]]w→}

[[[ϕ]·α]]w←
def
= {(i, j) ∈ (pos(w))2 | ∃k ≤ i s.t.

k ∈ [[ϕ]]w, (k, j) ∈ [[α]]w←}

Fig. 1. Semantics of PathLogic for a data word w = a⊗d.

Comparison with other logics

a) XPath: PathLogic corresponds precisely to
XPath(∗←,→∗,=) in terms of expressiveness. The
only difference is that the syntax is simplified. While
XPath(∗←,→∗,=) may change direction inside a path
expression, PathLogic cannot. But in fact this does not
change the expressive power: we can always factorize path
expressions with mixed axes into formulas whose path
expressions use only one axis. Thus, there is an EXPTIME
translation from XPath(∗←,→∗,=) into PathLogic.

b) LTL↓1: PathLogic also corresponds to the simple
fragment of LTL↓1 as defined in [FS09]3, denoted by
sLTL↓1(F,F−1).4 Here, F and F−1 must be interpreted

as reflexive-transitive relations. The logic sLTL↓1(F,F−1)
is equivalent to XPath(∗←,→∗,=) (and hence also to
PathLogic) in terms of expressive power. As shown in [FS09],
there is a PTIME translation in both directions.

c) FO2: As already mentioned, FO2(<,∼) is incompa-
rable with PathLogic. Indeed, FO2(<,∼) can express that the
word contains at least two nodes, while we cannot express
this property using only reflexive-transitive modalities. On
the other hand, PathLogic can easily express a property like
“all nodes labeled a verify the property (?)”, that cannot be
expressed in FO2(<,∼).5

III. THE SATISFIABILITY PROBLEM

We solve the satisfiability problem through a series of two
reductions. First, we reduce the problem into a derivation
problem for an infinite transition system �. And second, we
abstract this transition system, reducing this problem into a

3A formula of LTL↓1 in negated normal form is said to be simple if (i)
there is at most one occurrence of ↑ within the scope of each occurrence of
↓ and, (ii) there is no negation between an occurrence of ↑ and its matching
↓, except maybe immediately before ↑. We denote by sLTL↓1 the fragment
of LTL↓1 containing only simple formulas.

4This fragment has no connection with the simple fragment of LTL↓1 defined
in [DL09].

5To express this property we would need 3 variables. (And FO3(<,∼) is
undecidable since FO3(<,+1,∼) is undecidable [BDM+10, §9].)

similar problem for a finite transition system ⇀K . In truth,
⇀K is not a finite transition system, but we will see that it
can be easily restricted to a finite one.

Organization: In this section we present the general out-
line of the decidability proof, and we show our first reduction
to a derivation problem for �. Section IV contains the most
difficult result, namely the reduction of this problem into the
derivation problem for ⇀K . Finally, in Section V we solve the
derivation problem for ⇀K with an EXPSPACE procedure.

A. Outline of the proof
We first reduce the problem of testing whether some formula

ϕ is satisfiable into a derivation problem for an infinite
state transition system � that depends on ϕ. This problem
consists in testing whether there exists a finite sequence
µ1 � · · · � µn such that µ1 and µn satisfy certain local
properties. The domain of this transition system is the set of
mosaics: abstractions of positions of a data word, containing
all the data values that can be found to the right and to the
left, and further with which path expressions of the logic they
can be reached. The transition system � relates any two
mosaics that can be matched: that is, that could abstract two
positions of a data word that are one next to another. We
show that from a derivation µ1 � · · ·� µn with some good
properties, one can build a data word of length n that satisfies
the input formula ϕ. In turn, if there is no such derivation,
ϕ is unsatisfiable. To obtain this reduction, we work with
formulas of PathLogic in a certain normal form. This normal
form enables to have a simple definition of the transition �
specially convenient for our proofs.

Next, in Section IV, we solve the derivation problem for
� by a reduction to a similar derivation problem for another
transition system ⇀K . This transition system is parametrized
by a set K of data values. The definition of ⇀K introduces an
important concept of rigid data values, which are data values
that play a determined function in a sequence µ1 � · · ·� µn.
We denote by K such data values of important interest.
Based on this concept we define a quasi-order ≤K over
the set of mosaics, which is monotone with respect to �.
This monotonicity serves to finally show the reduction from
derivation problem for � to the derivation problem for ⇀K .

The derivation problem for ⇀K may seem in appearance
more difficult than for �, since we are dealing now with
a family of transition systems ⇀K , one for every K. Nev-
ertheless, in Section V we show that the parameter K is
harmless and we can bound and fix a value for it. Also, we
will see that we only need to work with the minimal classes
of equivalences of ≤K which are also finite and bounded.
These observations give us indeed a finite transition system.
Thus, we can use a standard reachability algorithm that solves
the derivation problem for ⇀K and hence the satisfiability
problem for PathLogic.

Next, we define the normal form for PathLogic and the
transition system�, together with some fundamental concepts
and notation that we use throughout. We then state the target
problem for the reduction.

B. A normal form

We will assume a certain normal form of the formula
ϕ to test for satisfiability. This will simplify the necessary
machinery to solve our problem. This normal form consists
simply of having formulas without nesting of data tests. That
is, we avoid treating formulas like

〈
←−−−−−−−−−−
[〈 ←−[a] =

−→
[b] 〉] =

−−−→
[c]·[d] 〉 .

Let us write BC(labels) to denote all the formulas which
are boolean combinations of tests for labels of A. If a formula
is such that all its path expressions α contain only tests for
labels (i.e., α ∈ (BC(labels))∗ abusing notation) we call it a
non-recursive formula.

In the normal form we suppose that ϕ = ϕ1 ∧ ϕ2 where
ϕ1 is a non-recursive formula and ϕ2 is a conjunction of tests
of the form “a node satisfies ψ iff it has some of the labels
{a1, . . . , an}” for some non-recursive formula ψ and labels
a1, . . . , an ∈ A. Formally, ϕ2 contains a conjunction of tests
of the form

¬〈 −−−−−→[ξ ∧ ¬ψ] 〉 ∧ ¬〈 −−−−−→[¬ξ ∧ ψ] 〉
for ξ a disjunction of labels and ψ a non-recursive formula.
Then, we obtain the following.

Lemma 1 (normal form). There is an exponential-time trans-
lation that for every formula η ∈ PathLogic returns a formula
ϕ in normal form such that η is satisfiable iff ϕ is satisfiable.

Proof: Given a formula η we define the alphabet Aϕ
of the translation ϕ as all the locally consistent sets of
subformulas of η. That is, the sets S such that for every
subformula ψ of η: (1) if ψ = ¬ψ′ then {ψ′,¬ψ′} 6⊆ S;
(2) if ψ = ψ′ ∧ ψ′′ then ψ ∈ S iff {ψ′, ψ′′} ⊆ S; and (3) if
ψ = ψ′ ∨ ψ′′ then ψ ∈ S iff ψ′ ∈ S or ψ′′ ∈ S.

Given a formula ψ, tr(ψ) denotes the result of replac-
ing every instance of a path expression [ψ1]· · · · ·[ψn] in ψ
(which does not appear nested inside another path expression)
by [ζψ1]· · · · ·[ζψn], and every test for label a (which does
not appear inside a path expression) by ζa, where ζψ =∨
S∈Aϕ,ψ∈S S.
To build the formula ϕ = ϕ1∧ϕ2 in normal form, we define

ϕ1 = tr(η), and we build ϕ2 as a conjunction of formulas

¬〈−−−−−−−−−→[ζψ ∧ ¬tr(ψ)]〉 ∧ ¬〈−−−−−−−−−→[¬ζψ ∧ tr(ψ)]〉
for all subformulas ψ of η. It is easy to see that this translation
preserves satisfiability.

We fix once and for all A as the finite alphabet and D
as the infinite domain we are going to work with. Given
ϕ = ϕ1 ∧ ϕ2 in normal form, we write Ωϕ to denote all
non-recursive subformulas of ϕ, and γϕ : A → ℘(Ωϕ) to
denote the function where γϕ(a) is the set of formulas ψ

such that ϕ2 contains ¬〈−−−−−−−−→[ξ ∧ ¬tr(ψ)]〉 as a subformula, for
some disjunctive formula ξ containing a. Finally, we define
Ωpϕ = {α ∈ Ωϕ | α is a path expression different from ε}.
We exclude ε from Ωpϕ simply because we are interested in
those path expressions that are ‘moving’, unlike ε.

In future sections, we will reduce the satisfiability for a
formula in normal form into an EXPSPACE problem. This,
together with Lemma 1, immediately yields a 2EXPSPACE
decision procedure. However, the satisfiability for PathLogic is
in EXPSPACE, since the algorithm is doubly exponential only
in the size of path subformulas. By the following observation,
we will obtain an EXPSPACE algorithm for arbitrary PathLogic
formulas.

Corollary 1. About the translation of Lemma 1:
1. The set of path subformulas Ωpϕ resulting from the transla-

tion has cardinality polynomial in η.
2. Every path subformula of Ωpϕ can be written using polyno-

mial space.

Proof of Corollary 1: The blowup in the exponential
translation comes only from the formulas ζψ . In fact, ϕ can be
symbolically written in polynomial space just as we did, using
a symbol ζψ instead of a big exponential disjunction. Remark
that testing whether a label S ∈ Aϕ satisfies ζψ reduces to
testing ψ ∈ S.

C. The transition system

Given a formula ϕ in normal form, we show an abstraction
of the important information that we need to keep track of in
a model that satisfies ϕ. Each piece of information is called
a mosaic. A mosaic maintains all necessary facts about some
position i of a data word w such that w |= ϕ, namely
• the label and datum of the current position,
• the data values that are to be found to the right of i, and

with which paths of Ωpϕ are reachable,
• and likewise for the data values to the left.

We say that a mosaic is the ϕ-abstraction of a position i of a
data word w if it contains all the aforementioned details of the
position. A mosaic that abstracts a position i of w contains
enough information to test whether ψ is satisfied at position
i (i.e., w, i |= ψ) for any subformula ψ of ϕ. In order to be
a valid mosaic, the mosaic must always comply with γϕ(a)
where a ∈ A is the label of the mosaic.

Given two mosaics µ1, µ2, we can check if they match, that
one can be next to the other, that there are no incompatibilities.
For example, suppose that µ1 is the ϕ-abstraction of a position
i. If µ1 asserts that there is a data value d different from the
current one that can be reached with [a] navigating to the
right, then the mosaic that abstracts i + 1 must also contain
the information that d can be reached with [a]. Otherwise
these two mosaics would not match. We will write � for
this matching relation, and � sequence for any sequence
µ1 � · · · � µn. (In general, a → sequence denotes
µ1 → · · · → µn for any transition system →.)

Indeed, the ϕ-abstraction of the positions of a data word
w and formula ϕ such that w |= ϕ verify that they are a
� sequence. Moreover, the leftmost mosaic must not contain
information of data values to the left simply because there
are no more elements to the left. For the same reasons, the
rightmost mosaic must not contain information on the data

values to the right. We call such mosaics left-complete and
right-complete respectively. A� sequence is complete if the
leftmost element is left-complete and the rightmost element is
right-complete. We show that from any complete� sequence
for ϕ whose first element verifies ϕ, we can build a data word
satisfying ϕ. And in turn, the sequence of ϕ-abstractions of
a word that satisfies ϕ is indeed a complete � sequence for
ϕ. Now the satisfiability problem reduces to the problem of
testing if there is a complete� sequence whose first element
satisfies ϕ. We call this the derivation problem.

Definitions: Let us now turn to the basic definitions. An
important object we will work with is that of a profile. A
profile of a data value d is a subset of Ωpϕ describing all the
possible ways to reach d in a data word w from a position
i ∈ pos(w) by going in one direction (either to the right or to
the left). We use π, ρ ⊆ Ωpϕ as names for profiles.

We define some useful operations on profiles. There is a
constant profile σa for every a ∈ A, which consists in all the
path expressions that can be satisfied locally at a certain node,
assuming that the node’s label is a. (Note that σa is a constant
whereas π, ρ are names.)

σa
def
= {α ∈ Ωpϕ | α = [ψ1]· · · · ·[ψn],∀i : a |= ψi} a ∈ A

where a |= ψi means that ψi is verified by the label a—
remember that ψi ∈ BC(labels). Also, given a profile π and
a label a ∈ A, we write aπ for the concatenation of the profiles
of σa and π.

aπ
def
= π ∪ {α·β ∈ Ωpϕ | α ∈ σa, β ∈ π}

Finally, we write π+a for the union of the profiles π and σa.

π + a
def
= π ∪ σa

Remark 1. These are idempotent and commutative opera-
tions: a(aπ) = aπ; (π+ a) + a = π+ a; a(π+ a) = aπ+ a.

Definition 1 (mosaic). A mosaic over ϕ is a tuple µ =

(a, d,
←
χ,
→
χ) where a ∈ A, d ∈ D, and

←
χ,
→
χ ∈ ℘<∞(D×Ωpϕ).

The idea is that
←
χ is contains the profiles of the data values

that can be found to the left and
→
χ of those to the right.

We use letters µ, ν for mosaics and we fix the nomenclature
µi = (ai, di,

←
χ i,
→
χ i) for every i. We adopt the following

notation for χ ∈ {←χ,→χ}, α ∈ Ωpϕ, and e ∈ D.

χ(e)
def
= {α ∈ Ωpϕ | (e, α) ∈ χ} µ(e)

def
= (

←
χ(e),

→
χ(e))

χ(α)
def
= {e ∈ D | (e, α) ∈ χ}

We call µ(e) the profile of e in µ. Note that we use profile to
denote either a subset of Ωpϕ or a pair of subsets of Ωpϕ. The
intended meaning will always be clear from the context.

Given a formula ϕ = ϕ1 ∧ϕ2 in normal form, a data word
w and a position i, we say that a mosaic µ over ϕ is the
ϕ-abstraction of (w, i) if it is defined in the expected way
by taking into account the data values of w and the path

expressions Ωpϕ. That is, if w = a⊗d and µ = (a, d,
←
χ,
→
χ)

we define (a, d) = w(i),
→
χ = {(e, [ψ1]· · · · ·[ψn]) ∈ D ×

Ωpϕ | there are i ≤ j1 ≤ · · · ≤ jn ≤ |w| where a(jk) |=
ψk for all k and d(jn) = e}. Likewise for

←
χ .

For every atomic expression 〈α = β〉, 〈α 6= β〉 or a from
Ωϕ one can decide if the formula holds at position i of w
simply by inspecting the ϕ-abstraction of (w, i). Hence, one
can define a satisfaction relation `, where the following holds.

Lemma 2. For every formula ϕ in normal form and subfor-
mula ψ ∈ Ωϕ and for every data word w and position i,
w, i |= ψ iff µ ` ψ, where µ is the ϕ-abstraction of (w, i).

Not all mosaics are consistent with the ϕ-abstraction. For
example, a mosaic over ϕ with a label a ∈ Ωϕ such that
→
χ([a]) = ∅ cannot be the ϕ-abstraction of any (w, i):

→
χ([a])

must contain the mosaic’s datum.

Definition 2 (validity). A mosaic (a, d,
←
χ,
→
χ) is valid if it

satisfies the following restrictions for all χ ∈ {←χ,→χ}

1. for every e ∈ D, χ(e) is suffix closed: if α·β ∈ χ(e) then
β ∈ χ(d′),

2.
→
χ(d) = aπ + a and

←
χ(d) = aρ+ a for some π, ρ ⊆ Ωpϕ,

3. for every e ∈ D, χ(e) = aπ for some π ⊆ Ωpϕ, and
4. µ ` ∧

ψ∈γϕ(a) ψ.

Finally, M(ϕ) is the set of all valid mosaics over ϕ.
Henceforth we write mosaic to denote a valid mosaic unless
otherwise stated. Observe that the ϕ-abstraction of a data word
w and position i results always in a valid mosaic.

Lemma 3. The ϕ-abstraction of (w, i) is a valid mosaic of
M(ϕ), assuming w |= ϕ and i ∈ pos(w).

The importance of the normal form presented earlier is that
it allows us to work separately on each data value. The left
profile of a data value at position i + 1 depends solely on
the profile of that data value at position i, and the labels of
these positions. In fact, all the interaction between the profiles
of different data values is encapsulated in the restrictions
imposed by the function γϕ. This is due to the fact that all
path expressions contained in Ωpϕ depend only on the label of
the mosaic. We can hence define a relation that tests whether
it is possible that two profiles of a data value can abstract two
consecutive positions.

We define the relations
→
m,
←
m that evidence this dependency

of profiles for a given data value d. Intuitively, the first three
components of the relation specify the situation for d on the
left position: the label of the node, whether d is equal (1)
or not (0) to the current data value, and its profile (

→
χ(d) or

←
χ(d) respectively for

→
m,

←
m). The other three components

contain a similar description for the same data value on the
right position. The idea is that

→
m and

←
m hold if it is possible

to have this situation in a data word.
→
m(a, 1, π1, b, j, π2)

def⇔ π1 = aπ2 + a (1)
→
m(a, 0, π1, b, j, π2)

def⇔ π1 = aπ2 (2)
←
m(a, i, ρ1, b, j, ρ2)

def⇔ →
m(b, j, ρ2, a, i, ρ1) (3)

Using
→
m and

→
m, we define m(a, i, (ρ1, π1), b, j, (ρ2, π2))

iff
→
m(a, i, π1, b, j, π2) and

←
m(a, i, ρ1, b, j, ρ2). We use the

expression d
?
=d′ to denote 1 if d = d′ or 0 otherwise. Now

we can define the transition system �:

Definition 3 (�). We say that µ1 and µ2 match, and we write
it µ1 � µ2, iff for all d ∈ D

m(a1, d1
?
=d, µ1(d), a2, d2

?
=d, µ2(d)) .

We define the necessary properties that the abstractions of
the borders (i.e., of the first and last elements) should admit.

Definition 4. We define the left and right demands of a mosaic
µ = (a, d,

←
χ,
→
χ). A left- (resp. right-) demand consists of the

data values that necessarily have to be found to the left (resp.
to the right).
←−−
dem(µ)

def
= {(e, ρ) ∈ ←χ | (e 6= d ∧ ρ 6= ∅) ∨ (e = d ∧ ρ 6= σa)}

−−→
dem(µ)

def
= {(e, π) ∈ →χ | (e 6= d ∧ π 6= ∅) ∨ (e = d ∧ π 6= σa)}

We say that a mosaic is left-complete (resp. right-complete)
if it does not have left-demands (resp. right-demands).

Definition 5. A � sequence is a sequence of mosaics
µ1, . . . , µn such that µi � µi+1 for all i < n. We say that
the sequence is complete if

←−−
dem(µ1) =

−−→
dem(µn) = ∅.

We state the derivation problem for a transition system →.

The derivation problem for →
INPUT: A formula ϕ = ϕ1 ∧ ϕ2 in normal form.

OUTPUT: Is there a complete → sequence over M(ϕ)
whose leftmost mosaic µ verifies µ ` ϕ1 ?

Note that any data word corresponding to a complete →
sequence over M(ϕ) always satisfies ϕ2. This is because
M(ϕ) contains only valid mosaics, satisfying condition 4 of
Definition 2.

D. From the satisfiability problem to the derivation problem

We can reduce the satisfiability problem for ϕ into a the
derivation problem for � over M(ϕ).

Proposition 1. A PathLogic formula ϕ = ϕ1 ∧ ϕ2 in normal
form is satisfiable iff the derivation problem for� with input
ϕ has a positive answer.

IV. THE DERIVATION PROBLEM FOR�
In this section we show how to solve the derivation problem

for �. For this, we introduce a quasi-order ≤K on the set
of mosaics, parametrized by a set of data values K. The
parameter of this relation relies on the concept of rigid values,
which are data values with a specific role in a � sequence.

We show that ≤K is (upward) monotone with respect to �.
This monotonicity allows us to define a transition system ⇀K

that has an equivalent derivation problem. We postpone the
solving of the derivation problem for ⇀K to Section V.

We fix once and for all a formula ϕ of PathLogic in normal
form, and M(ϕ) as the domain of the transition system �.

A. Rigid and flexible data values

Not all data values are the same in a data word satisfying a
formula, different data values have different roles. We distin-
guish here two categories of data values: rigid and flexible.
Rigid data values are important for the satisfaction of the
formula and special care is needed to treat these, whereas
flexible values are not crucial, and they can be sometimes
removed from the word. Let us give some more precise
intuition. We use the logic PathLogic to make this intuition
clear, but we will then state the definitions in terms of our
transition system.

Given a data word w such that w |= ϕ, suppose there
is a data value d such that: if d can be accessed through a
path expression α starting at some position i, then d is the
only value that can be accessed through α at position i. When
there is such a d we call it a rigid value for i, since the
logic can identify it and pinpoint it from the rest of the data
values. If d is rigid for at least one position of w we say that
d is rigid for w. All the remaining data values (which are the
flexible values) of w play the role of assuring that “there are
at least two data values reachable through α from position i”
for some α and i. As such, its importance is only relative. For
example, if w is a data word satisfying ϕ and containing d as
a flexible value, then consider w′ as the result of replacing,
for some fresh data value d′, every appearance of (a, d) in w
by (a, d) (a, d′) (i.e., d′ appears next to each occurrence of d,
with the same label). w′ will continue to satisfy ϕ. But this is
not necessarily true if d is a rigid value. The same notions hold
for our� sequences. We say that a mosaic µ is K-compliant
for K ⊆ D if all its rigid values are inside K.

Definition 6 (K-compliant). Given a finite set K ⊆ D we
say that a mosaic µ = (a, d,

←
χ,
→
χ) is K-compliant iff for all

α ∈ Ωpϕ and χ ∈ {→χ,←χ}

χ(α) = {e} implies e ∈ K .

This notion of K-compliance will be central for our second
reduction to the more abstract transition system. Observe that
for every � sequence there is a trivial K such that all its
mosaics are K-compliant: the set of all data values of the data
word. Later on, we will see that we can effectively bound the
size of K as a function of ϕ. This bound is independent of
the length of the � sequence.

Based on this idea of rigid values, we define a relation
≤K specially tailored for mosaics that are K-compliant. In
this definition, if two mosaics are in the relation, then all the
profiles of data values from K must remain untouched. For
any other flexible value, we are only interested in having at
least as many data values with a certain profile in the bigger

∀

∃µ3

µ1 µ2

µ4

�

� · · · �

≤
K

≤
K

Fig. 2. The forward monotonicity Lemma.

profile. We also preserve the existence or non-existence of a
flexible data value with a given profile.

Definition 7 (≤K). µ1 ≤K µ2 iff:
1. they have the same label
2. ∀d ∈ K, µ1(d) = µ2(d),
3. µ1(d1) = µ2(d2) for di the data value of µi,
4. ∀(ρ, π) ∈ ℘(Ωpϕ)× ℘(Ωpϕ),

|µ−1
1 (ρ, π) \K| ≤1 |µ−1

2 (ρ, π) \K|
where n ≤1 m iff 0 = n = m or 1 ≤ n ≤ m.

Lemma 4 (about ≤K). Given µ1 ≤K µ2 we have
1. if both mosaics are valid, then µ1 is left-complete iff µ2 is

left-complete, and likewise for right-complete,
2. if µ1 is K-compliant, then µ2 is K-compliant,
3. if µ1 is valid, then µ2 is valid,
4. if both are K-compliant, for all ψ ∈ Ωϕ, µ1 ` ψ iff µ2 ` ψ.

B. A more abstract transition system

We define a transition system ⇀K over the set of K-
compliant mosaics, which is also parametrized by K. We
then reduce the derivation problem for � into the derivation
problem for ⇀K .

Definition 8 (⇀K). µ1 ⇀K µ2 iff µ1 and µ2 are K-compliant
and µ1 ≤K µ′1 � µ′2 ≥K µ2 for some mosaics µ′1, µ

′
2.

Note that ⇀K is a looser relation than�. This will enable
us to easily bound the domain. But we postpone this issue to
the next Section V. Our present goal is to show that there is
indeed a reduction.

Proposition 2. There exists a K-compliant complete ⇀K

sequence over M(ϕ) whose first element µ1 verifies µ1 ` ϕ1

iff there exists a K-compliant complete � sequence over
M(ϕ) whose first element µ′1 verifies µ′1 ` ϕ1.

To prove the above proposition, first we need to show a
monotonicity property of the transition system �. The next
Lemma asserts that � is upward compatible with respect to
≤K , as in Figure 2. This is a crucial Lemma of our proof.

Lemma 5 (forward monotonicity). For every K-compliant
mosaics µ3 ≥K µ1 � µ2 there is a K-compliant mosaic
µ4 such that µ3 �+ µ4 ≥K µ2.

Since all our definitions are symmetrical, by the proof of
Lemma 5 we will also obtain a similar result for backward
monotonicity.

Lemma 6 (backward monotonicity). For every K-compliant
mosaics µ1 � µ2 ≤K µ4 there is a K-compliant mosaic µ3

such that µ1 ≤K µ3 �+ µ4.

Before going into the details of the proof, we state some
simple facts.

Lemma 7 (about m). For any two valid mosaics µ1, µ2 ∈
M(ϕ) and d ∈ D, suppose that a1 = a2 = a for some a ∈ A.
Let (ρ1, π1) = µ1(d), (ρ2, π2) = µ2(d), i = (d

?
=d1), j =

(d
?
=d2). Then

→
m(a, i, π1, a, j, π2) holds iff either

i = 1, j = 0 and π1 = π2 + a, (4)
i = 0, j = 0 and π1 = π2, (5)
i = 1, j = 1 and π1 = π2, or (6)
i = 0, j = 1 and π1 = π2. (7)

Analogously,
←
m(a, i, π1, a, j, π2) holds iff either

i = 1, j = 0 and ρ1 = ρ2, (8)
i = 0, j = 0 and ρ1 = ρ2, (9)
i = 1, j = 1 and ρ1 = ρ2, or (10)
i = 0, j = 1 and ρ2 = ρ1 + a. (11)

Proof of Lemma 5 (forward monotonicity): Let µi =

(ai, di,
←
χ i,
→
χ i) for all i ∈ {1, 2, 3, 4}. In this context we will

write flexible value to denote a value d ∈ D\K and rigid value
to denote a value d ∈ K. Notice that a1 = a3 by definition of
µ1 ≤K µ3. By µ1 � µ2 we can assume µ1(d1) = (ρ1, a1π1+
a1) and µ2(d1) = (a2ρ1, π1) for some ρ1 of the form ρ1 =
a1ρ
′+a1. Similarly, we assume µ2(d2) = (a2ρ2 +a2, π2) and

µ1(d2) = (ρ2, a1π2) for some π2 of the form π2 = a2π
′+a2.

Hence, if d1 = d2 we have that ρ1 = ρ2 and π1 = π2.
We divide this proof into two parts. The first one groups all

the easy cases, where the simulation can be done in one step:
µ3 � µ4. For the second part, we will need to use more than
one step to arrive to such µ4 mosaic.

Easy situation. The easy situation is when all data values
in µ3 can be ‘simulated’ by the behavior of data values of µ1.
We say that a flexible data value d of µ3 can simulate another
flexible data value d′ of µ1 if they have the same same profile
and d is equal to d3 iff d′ is equal to d1. If this holds, d can
have the same profile as d′ after one step of �, by reading
the same letter as µ2. If all flexible data values of µ3 simulate
some data value of µ1 and in turn every flexible data value
from µ1 is simulated by at least one data value from µ3, we
can arrive to a mosaic µ4 ≥K µ2; but there is one caveat.
(A) There cannot be more than one data value that is chosen

to simulate d2, since only one of them can become the
data value of µ4. In this case the simulation would fail.
If there is another flexible data value d′ with the same
profile as d2 in µ1, then we must choose only one data
value to simulate d2, and all the rest to simulate d′. We
call this last restriction the condition A.

(B) By definition of ≤K , every data value d such that µ3(d) 6=
µ3(d3) (= µ1(d1)) can simulate at least one data value in
µ1. Then, in order to assure that every data value of µ3

can be simulated, it suffices to check that either d1 is rigid
(and hence also d3), or if d1 is flexible, that there are at
least another flexible data value with the same profile as

d1. We call this the condition B. If this would not hold,
there could happen that there is only d1 with the profile
µ1(d1) in µ1, and that there is a flexible data value d 6= d3

with µ3(d) = µ1(d1). This data value d cannot simulate
any value, and the simulation would then fail.

We formalize the properties we have discussed.
(A) If d2 is a flexible value, then there are other flexible values

with the same profile. That is, there exists another flexible
value d′ 6= d2 with µ1(d′) = µ1(d2).

(B) The same applies to d1: if it is a flexible value, then there
exists d′ 6= d1 with µ1(d′) = µ1(d1).

If (A) and (B) hold, by definition of ≤K then there exists a
surjective function ξ : D→ D such that for every d ∈ D,
1. d = d3 iff ξ(d) = d1,
2. |ξ−1(d2)| = 1,
3. µ3(d) = µ1(ξ(d)),
4. if d ∈ K then ξ(d) = d.
In other words, ξ behaves as the identity on K, sends data
values from µ3 to data values with the same profile in µ1, and
sends only one data value to d1 (namely d3) and to d2. We
call ξ a simulating function between µ3 and µ1. If ξ is defined
only for subsets D1, D2 ⊆ D, we call ξ : D1 → D2 a partial
simulating function on D1, D2 between µ3 and µ1, and in this
case conditions 1 and 2 are replaced by

1′. if d3 ∈ D1, d = d3 iff ξ(d) = d1,
2′. if d2 ∈ D2, |ξ−1(d2)| = 1.

We build µ4 = (a4, d4,
←
χ,
→
χ) where a4 = a2, {d4} =

ξ−1(d2) and we define µ4(d) = µ2(ξ(d)) for all d ∈ D. It is
straightforward to check that for every d ∈ D

m(a1, d
?
=d3, µ3(d), a2, d

?
=d4, µ4(d)) iff

m(a1, ξ(d)
?
=d1, µ1(ξ(d)), a2, ξ(d)

?
=d2, µ2(ξ(d))) .

Complex situation 1. Suppose first that the condition B just
seen does not hold, but that condition A holds. In other words,
d1 is the only flexible value with profile µ1(d1) in µ1. Observe
that d1 6= d2. Otherwise we would have a contradiction, since
(B) and (A) would express the same property, and we assume
that one holds but the other does not.

Note that in this case we cannot define a function ξ just as
before, because there may be a flexible data value d 6= d3 with
µ3(d) = µ1(d1). (If there is no such data value, we proceed
just as in the easy case.) We basically do not know what to
do with this data value d, since it cannot simulate any other
data value from µ1. Let P be the set of these problematic data
values,

P = {d ∈ D \K | d 6= d3, µ3(d) = µ1(d1)}
If P = {e1, . . . , en}, we will create n intermediary mosaics
µ′1, . . . , µ

′
n with

µ3 � µ′1 � · · ·� µ′n� µ4 ≥K µ2

where µ′i has the same letter a1 as µ3 and ei as data value.
Further, all data values except {d3, e1, . . . , en} will preserve

the same profile they have in µ3 all along µ′1, . . . , µ
′
n. This is

just a consequence of (5). Each µ′i is defined as follows:
• a1 is the label, and ei is the data value,
• d3, e1, . . . , ei−1 have profile (ρ1, a1π1),
• ei, . . . , en have profile (ρ1, a1π1 + a1), and
• any other data value d 6∈ {d3, e1, . . . , en} has profile
µ3(d).

These are indeed legal mosaics.

Claim 1. For all i ∈ [n], µ′i is valid and K-compliant.

Claim 2. µ3 � µ′1, and for all i ∈ [n− 1], µ′i� µ′i+1.

Let D1 = D\{d3, e1, . . . , en}, D2 = D\{d1} and ξ : D1 →
D2 be a partial simulating function on D1, D2 between µ3 and
µ1. It must exist since condition A holds.

Claim 3. There exists a partial simulating function ξ : D1 →
D2 between µ3 and µ1.

We then define µ4 as µ4 = (a4, d4,
←
χ4,

→
χ4) with a4 =

a2, {d4} = ξ−1(d2), µ4(d) = (a2ρ1, π1) for all d ∈
{d3, e1, . . . , en} and µ4(d) = µ2(ξ(d)) for all other d ∈ D. It
then follows that µ′n� µ4 and that µ4 ≥K µ2.

Claim 4. µ′n� µ4

Claim 5. µ4 ≥K µ2

There are two other complex situations: when neither con-
ditions A nor B hold, and when condition B holds but A
does not. These conditions are treated in an analogous way.
If condition B holds but A does not, we use a symmetrical
strategy, creating intermediate mosaics but this time with the
same label as µ2. If neither of the conditions hold, we combine
both approaches.

We show that the reduction from the derivation problem for
� into the derivation problem for ⇀K is sound and complete
with the following two lemmas.

Lemma 8 (complete). For every K-compliant complete �
sequence µ1 � · · · � µn over M(ϕ) there exists a K-
compliant complete sequence µ′1 ⇀K · · ·⇀K µ′n overM(ϕ).

Proof: Trivial, since � over K-compliant mosaics is a
particular case of ⇀K by reflexivity of ≤K .

Lemma 9 (sound). For every K-compliant sequence µ1 ⇀K

· · · ⇀K µn over M(ϕ) there exists a K-compliant �
sequence µ′1 � · · · � µ′m over M(ϕ) with µ1 ≤K µ′1 and
µn ≤K µ′m.

Proof: We proceed by induction on n. The base case is
immediate. For the inductive step, suppose we have a sequence
µ1 ⇀K · · · ⇀K µn ⇀K µn+1. By inductive hypothesis we
obtain ν1 � · · · � νm with ν1 ≥K µ1 and νm ≥K µn, as
shown in Figure 3. Since µn ⇀K µn+1, then

µn ≤K µ′n� µ′n+1 ≥K µn+1

for some µ′n and µ′n+1 by definition of ⇀K . Let µ† be such
that µ† ≥K νm and µ† ≥K µ′n. It always exists such µ†.

ind. hyp.

backward monotonicity forward monotonicityclaim

definition

�K �K· · ·µ1 µn µn+1

ν1 νm µ�n µ�n+1

ν†
1 ν†

l µ† µ†
1 µ†

k

� · · ·

�K

=

�

=� · · · � � · · ·�

�

Fig. 3. General argument of Lemma 9. Solid lines correspond to the relation
≤K , where the upper element in the diagram is the bigger.

Claim 6. For any three mosaics µ1, µ2, µ3 with µ1 ≥K µ3

and µ2 ≥K µ3, there exists a mosaic ν such that µ1 ≤K ν
and µ2 ≤K ν.

By applying the monotonicity lemma we obtain on the one
hand a sequence

ν†1 � · · ·� ν†l

where ν†l = µ† and ν1 ≤K ν†1 , and by the backwards
monotonicity lemma that

µ†1 � · · ·� µ†k

where µ†1 = µ† and µ†k ≥K µ′n+1. This is depicted in Figure 3.
Further, these � sequences are K-compliant. Then,

ν†1, . . . , ν
†
l−1, µ

†, µ†2, · · · , µ†k
is the the desired � sequence.

By Lemmas 8 and 9 the Proposition 2 follows. The facts
that the sequence is complete and that the first mosaic verifies
ϕ1 follow from Lemma 4.

V. THE DERIVATION PROBLEM FOR ⇀K

In this section we solve the derivation problem for ⇀K .
Since the transition system ⇀K is parametrized by K, the
derivation problem for ⇀K is in fact: “is there a finite set
K ⊆ D such that the derivation problem for ⇀K over M(ϕ)
has a positive solution?”.

Note that we are dealing with many sources of infinity here:
the choice of K, the domain of the transition system (i.e., the
set of all mosaics), and the definition of ⇀K , which involves
making a potentially infinite number of tests. Nevertheless,
they can all be tamed. This is the purpose of this section.

We now show that the object that we are dealing with can
be effectively bounded, to end up with finite objects that can
be treated by an algorithm.

A. A bound on the rigid values

For every complete � sequence over M(ϕ) there are only
linearly many rigid values. This Lemma will allow us to bound
the number of minimal ≤K classes of equivalence.

Lemma 10. For every complete sequence µ1 � · · · � µn
over M(ϕ) there is a set K ⊆ D such that:
1. |K| ≤ 2 · |Ωpϕ|
2. µ1, . . . , µn are K-compliant.

Corollary 2. If there is a finite set K ′ ⊆ D such that the
derivation problem for ⇀K′ has a solution, then the derivation
problem for ⇀K has also a solution, for any subset K ⊆ D
with 2 · |Ωpϕ| elements.

Therefore, henceforth we assume without any loss of gen-
erality that K is any fixed subset of D of 2 · |Ωpϕ| elements.

B. A bound on the domain

Let us write MINM(ϕ) for the set of mosaics of M(ϕ)
that are minimal with respect to ≤K . This set contains only
one element (arbitrarily chosen) for every minimal class of
equivalence of ≤K .

Remark 2. Notice that if µ1 ⇀K µ2 then µ′1 ⇀K µ′2 for any
µ′1 ≤K µ1 and µ′2 ≤K µ2. Hence, we can restrict the domain
of ⇀K to MINM(ϕ). That is, to mosaics that are minimal with
respect to ≤K .

Lemma 11. The number of elements of MINM(ϕ) is double
exponential in |ϕ|.

From the previous statements we obtain the following.

Lemma 12. If there is a complete K-compliant ⇀K sequence
µ1 ⇀K · · ·⇀K µn over M(ϕ), then there is a complete K-
compliant sequence µ′1 ⇀K · · ·⇀K µ′m where
• µ′1 ≤K µ1, µ′m ≤K µn,
• m ≤ |MINM(ϕ)|, and
• µ′i ∈ MINM(ϕ) for all 1 ≤ i ≤ m.

C. A bound on the relation

The lemmas above show that we have that the problem now
reduces to find a complete small ⇀K sequence for a small K.
In fact, we can test the relation ⇀K between any two elements
in polynomial space.

We define the space of a mosaic µ, that we denote by |µ|,
as the space needed to write the multiset of all non-empty
profiles of the mosaic. It is not hard to see that ⇀K can be
in fact checked in polynomial space.

Lemma 13. Given two K-compliant mosaics µ1, µ2, we can
test µ1 ⇀K µ2 in space polynomial in |µ1| and |µ2|.

D. The algorithm

With all these ingredients we can now decide the derivation
problem using a standard reachability algorithm.

Proposition 3. The derivation problem for � is in EXP-
SPACE.

Hence, we obtain that PathLogic has a decidable, EXP-
SPACE satisfiability problem.

Proposition 4. The satisfiability problem for PathLogic is in
EXPSPACE.

Proof: As remarked in Section III-B, this is not entirely
straightforward, since we have an exponential translation from
satisfiability of PathLogic into the derivation problem for �.

Let η ∈ PathLogic. By item (1) of Corollary 1, the
translation of η into its normal form ϕ preserves a number of
path subformulas polynomial. This, combined with Lemma 10
and Corollary 2, provides a bound on the size of the set K to
consider that is polynomial in |η|.

Hence, the number of minimal mosaics MINM(ϕ) is still
doubly exponential (Lemma 11) in |ϕ| and in |η|. (Having an
exponential number of labels does not change this fact.)

By item (2) of Corollary 1, any path subformula of ϕ can be
written in polynomial space in |η|. Then, each minimal mosaic
can be written in exponential space. Hence, the algorithm of
Proposition 3 remains EXPSPACE in |η|.

VI. LOWER BOUND

There is also a lower bound of EXPSPACE for the satisfia-
bility problem of PathLogic.

Proposition 5. The satisfiability problem for PathLogic is
EXPSPACE-hard.

This can be shown by coding a solution for an instance
of the 2n corridor tiling problem. The coding, although it is
not quite straightforward, utilizes several coding techniques
developed in [FS09].

VII. COROLLARIES ON XPATH AND XML DOCUMENTS

Let us call plain-XPath(∗←,→∗,=) to the fragment of
XPath such that that

• all path expressions do not mix ∗← and →∗, i.e., each
path expressions uses only ∗← or only →∗, and

• all test node expressions 〈α = β〉 and 〈α 6= β〉 are such
that α uses only ∗← and β only →∗.

It is immediate that this basically corresponds to PathLogic.

Lemma 14. There are PTIME translations such that for
every node expression of plain-XPath(∗←,→∗,=) (resp.
of PathLogic, one-way PathLogic) return an equivalent
node expression PathLogic (resp. plain-XPath(∗←,→∗,=),
XPath(→∗,=)).

Corollary 3. The satisfiability problem for plain-
XPath(→∗, ∗←,=) on data words is EXPSPACE-complete.

The coding to show Proposition 5 uses only one-way
expressions (of the form 〈ε = −→α 〉). Hence, this bound also
translates into a EXPSPACE-hardness for XPath(→∗,=).

Corollary 4. The satisfiability problem for XPath(→∗,=) on
data words is EXPSPACE-complete.

In fact, plain-XPath(→∗, ∗←,=) (and hence PathLogic) is
expressive-equivalent to XPath(→∗, ∗←,=).

Lemma 15. There exists a computable EXPTIME translation
that for every node expression ϕ of XPath(∗←,→∗,=) returns
an equivalent node expression ψ of plain-XPath(∗←,→∗,=).

VIII. DISCUSSION

We believe that the proof we give here may allow to extend
existing decidability results of XPath fragments with reflexive-
transitive axes. However, one has to combine the techniques
of those results with the ones contained here. We propose the
following candidates of (non-trivial) corollaries of the work
contained in this paper and known results on XPath.

Conjecture 1. Satisfiability of XPath(↓, ↓∗,→∗, ∗←,=) on
XML documents is decidable, with elementary complexity.

This would be an extension of the result of [Fig09] stating
that XPath(↓, ↓∗,=) is EXPTIME-complete, and in contrast
to the fact that XPath(↓, ↓∗,→∗,+←,=) is undecidable and
XPath(↓, ↓∗,→+,=) has non-primitive recursive complexity
[FS09]. In fact, we believe that this can be pushed further:

Conjecture 2. Satisfiability of XPath(↓, ↓∗, ↑∗,→∗, ∗←,=) on
XML documents is decidable, with elementary complexity.

Furthermore, it is plausible that the following fragment of
XPath is decidable.

Conjecture 3. Satisfiability of XPath(↓, ↓∗, ↑, ↑∗,→∗, ∗←,=)
on XML documents is decidable.

This would be an extension of a recent result stating
that XPath(↓, ↓∗, ↑, ↑∗,=) is decidable [FS11]. However, even
XPath(↓, ↓∗, ↑, ↑∗,→+,=) or XPath(↓, ↓∗, ↑, ↑∗,→,=) are
undecidable [FS09].

Future work

We conclude with some open questions.
1. Decidability of XPath fragments. Is any of the aforemen-

tioned conjectures true?
2. Infinite words. Is PathLogic decidable on infinite data

words? (It does not enjoy the finite model property.)
3. Ordered data. As a possible extension, one may add

comparison between data values with respect to a linear
or partial order.

REFERENCES

[BDM+10] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas
Schwentick, and Luc Segoufin. Two-variable logic on data
words. ACM Trans. Comput. Log., 2010. To appear.

[CD99] James Clark and Steve DeRose. XML path language (XPath).
Website, 1999. W3C Recommendation. http://www.w3.org/TR/
xpath.

[Chl86] Bogdan S. Chlebus. Domino-tiling games. J. Comput. Syst. Sci.,
32(3):374–392, 1986.

[DDG07] Stéphane Demri, Deepak D’Souza, and Régis Gascon. Decidable
temporal logic with repeating values. In Symposium on Logical
Foundations of Computer Science (LFCS’07), volume 4514 of
LNCS, pages 180–194. Springer, 2007.

[DL09] Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier
and register automata. ACM Trans. Comput. Log., 10(3), 2009.

[Fig09] Diego Figueira. Satisfiability of downward XPath with data
equality tests. In ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’09), pages 197–206.
ACM Press, 2009.

[FS09] Diego Figueira and Luc Segoufin. Future-looking logics on data
words and trees. In Int. Symp. on Mathematical Foundations of
Comp. Sci. (MFCS’09), volume 5734 of LNCS, pages 331–343.
Springer, 2009.

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

[FS11] Diego Figueira and Luc Segoufin. Bottom-up automata on
data trees and vertical XPath. In International Symposium on
Theoretical Aspects of Computer Science (STACS’11), Leibniz
International Proceedings in Informatics. Leibniz-Zentrum für
Informatik, 2011.

[KSZ10] Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Tem-
poral logics on words with multiple data values. In IARCS
Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’10), 2010.

[SZ10] Thomas Schwentick and Thomas Zeume. Two-variable logic
with two order relations. In EACSL Annual Conference on
Computer Science Logic (CSL’10), 2010.

APPENDIX

APPENDIX TO SECTION III

Proof of Proposition 1: We want to show that a PathLogic
formula ϕ = ϕ1 ∧ ϕ2 in normal form is satisfiable iff there
exists a complete � sequence of mosaics

µ1 � µ2 � · · ·� µn

over M(ϕ) such that µ1 ` ϕ1. Throughout the proof we will
only work with the

→
χ part of the mosaic, since the situation

for
←
χ is symmetrical.

(if) Now, we show the other direction. Suppose we have a
complete � sequence

µ1 � · · ·� µn

over M(ϕ) such that µ1 ` ϕ1. We build a data word w of
length n such that µi is the ϕ-abstraction of (w, i). The data
word is defined as w(i) = (ai, di) where (ai, di) is the label
and data value of µi. We claim that for every i, µi is the
ϕ-abstraction of (w, i). In the following proof we only work
with the

→
χ part of the mosaics. The proof for

←
χ will follow

by symmetry.
(sound) If from a position i we can access a data value d by

going to the right with a path expression α ∈ Ωpϕ, we want to

show that (d, α) ∈ →χ . We proceed by combined induction on
the size of α and the index n− i. The base cases for i = n are
immediate since everything is satisfied locally. If α = [ψ] and
di = d, then the data value can be accessed locally. By item
2 of validity of µi, πi = aiπi + ai, where πi =

→
χ i(d) 3 α.

Since α ∈ σai then α ∈ πi. If on the other hand di 6= d, this
means that there is a future position j > i with data value
dj = d such that aj |= ψ. This means that d can be accessed
through α from position i + 1. We then apply the inductive
hypothesis and we obtain that (d, α) ∈ →χ i+1. By Eq. (2) of
→
m, πi = aiπi+1 where πi+1 =

→
χ i+1(d). Since α ∈ πi+1, then

α ∈ πi. This concludes the base case. For the inductive case,
suppose α = [ψ]·α′. Suppose first that ai |= ψ. Observe that
if we can access d through α we can also access d through α′.
By inductive hypothesis we have that α′ ∈ →χ i(d). By item 3
of validity of µi we have that

→
χ i(d) = aiπ for some π. since

[ψ] ∈ σai , then [ψ]·α′ ∈ →χ i(d). Suppose now that ai 6|= ψ.
This means that d can be accessed actually from position i+1

through α. We then apply the inductive hypothesis and obtain
that α ∈ →χ i+1(d). By Eq. (1) or (2) (depending on whether
d = di or not) we obtain in both cases that α must also be in→
χ i(d).

(complete) Suppose that (d, α) ∈ →χ i, we want to show that
from position i we can access d by going to the right with a
path expression α. We proceed first by induction on the length
of α and then by induction on the index n− i. Suppose first
that α = [ψ]. If ai |= ψ and di = d, then α is satisfied locally
and we are done. If di 6= d then µi is not right-complete, this
means that there is a mosaic µi+1 where

→
m(ai, 0, πi, ai+1, di+1

?
=d, πi+1)

where πi =
→
χ i(d) 3 α and πi+1 =

→
χ i+1(d). By Eq. (2) of

→
m,

πi = aiπi+1. Since α has only one element, by definition of
aiπi+1, α ∈ π2. We can then apply the inductive hypothesis
and obtain that d can be accessed through α from position
(w, i + 1), which implies that it can also be accessed from
position (w, i).

Finally, if di = d but a 6|= ψ then µi is not right-complete
and there must be a mosaic µi+1 where

→
m(ai, 1, πi, ai+1, di+1

?
=d, πi+1)

where πi =
→
χ i(d) 3 α and πi+1 =

→
χ i+1(d). By Eq. (1)

of
→
m, πi = aiπi+1 + ai. Since ai 6|= ψ we must have that

α ∈ πi+1. Again, we apply the inductive hypothesis and obtain
that d can be accessed through α from position (w, i + 1),
which implies that it can also be accessed from position (w, i).
This concludes the base case. For the inductive case, suppose
α = [ψ]·α′. If ai |= ψ then by condition 1 of a valid mosaic,
since α ∈ →χ i(d) then α′ ∈ →χ i(d). By applying inductive
hypothesis we obtain that d can be reached from position i
through α′ and since ai |= ψ it can also be reached through
[ψ]·α′. If on the other hand ai 6|= ψ, then by equations (1)
or (2) (depending on whether di = d or not) we obtain that
πi = aiπi+1 or πi = aiπi+1 + ai. In any case, since ψ 6∈ ai,
we obtain that α ∈ πi+1 and we apply the inductive hypothesis
just as in the base case.

(only if) This direction is easier. Given a data words we
have to show that the ϕ-abstraction of each position results in
a complete � sequence whose first element verifies ϕ1.

Given a data word w = a⊗d such that w |= ϕ we can
build a� sequence µ1, . . . , µ|w| overM(ϕ) that is complete,
such that µ1 ` ϕ. We define µi = (ai, di,

←
χ i,
→
χ i) as the ϕ-

abstraction of (w, i).
Let us first show that µ1, . . . , µ|w| are valid mosaics of

M(ϕ). It is easy to see that the path expressions of
→
χ(d) are

suffix closed since if i ∈ [[α·β]]w→ then i ∈ [[β]]w→. Hence, item
1 holds. Items 2 and 3 are also very easy to verify. Finally, we
need to show that all mosaics with a letter a verify γϕ(a). But
this must be true by the formula ϕ2 holding at the leftmost
element. We then have that item 4 of the validity conditions
is also met.

Secondly, we show that µ1, . . . , µ|w| is a � sequence. Let
us analyze a pair of arbitrary positions i, i+1 and a data value
d ∈ D. Let us show that

→
m(ai, di

?
=d,

→
χ i(d), ai+1, di+1

?
=d,

→
χ i+1(d))

holds true. Take an arbitrary path expression α =

[ψ1]· · · · ·[ψn] ∈ Ωpϕ. If (d, α) ∈ →χ i+1 then there are n ordered
positions greater or equal to i + 1 satisfying respectively
ψ1, . . . , ψn by definition of ϕ-abstraction. Then in particular
they are greater or equal to i, and hence (d, α) ∈ →χ i. Thus,
→
χ i+1(d) ⊆ →

χ i(d). On the other hand, suppose there is a
prefix of α, say [ψ1]· · · · ·[ψk], such that ai |= ψj for all
j ∈ [1..k], and that (d, [ψk+1]· · · · ·[ψn]) ∈ →χ i+1(d). Then,
there are witness positions for ψk+1, . . . , ψn which are greater
or equal to i + 1. Also, there is a witness for ψ1, . . . , ψk at
position i. Then, d can be accessed through α from position
i, and then α ∈ →χ i(d) by definition of ϕ-abstraction. We
just showed that ai

→
χ i+1(d) ⊆ →

χ i(d), that will be useful
next. We separate the two different cases from the definition
of
→
m: either di = d or di 6= d. Suppose first di 6= d.

Any path α ∈ →χ i(d) has a (possibly empty) prefix which
is satisfied at position i by letter ai, and a suffix that is
satisfied at positions bigger or equal to i + 1. But this suffix
cannot be empty, since this would mean that di = d. Then,
we have that

→
χ i(d) ⊆ ai

→
χ i+1(d) and we conclude that

ai
→
χ i+1(d) =

→
χ i(d). On the other hand, if di 6= d, we can

show that in this case ai
→
χ i+1+ai =

→
χ i proceeding in a similar

way. We showed that
→
m(ai, di

?
=d,

→
χ i, ai+1, di+1

?
=d,

→
χ i+1)

holds. The proof for
←
m(ai, di

?
=d,

←
χ i, ai+1, di+1

?
=d,

←
χ i+1)

is completely analogous. We conclude that the sequence
µ1, . . . , µ|w| is a � sequence over M(ϕ).

Now, we show that it is complete. By way of contradiction,
suppose that µ1 is not left-complete. Let (d, π) ∈ ←−−dem(µ1).
Then:

• If d = d1 and π 6= σa, this means that there is α ∈ Ωpϕ

such that (d, α) ∈ ←χ(µ1) and a 6|= ψ where [ψ] is a
particle of α. By construction of µ1 and the fact that
(d, α) ∈ ←χ(µ1), this means that there is a position to the
left of the first position that can reach the data value d
through α. But since a 6|= ψ this position must be strictly
to the left. This is a contradiction, since there are no
positions to the left of the first one.

• Otherwise, d 6= d1 and (d, α) ∈ ←
χ(µ1). Again, we

conclude that there must be a position strictly to the left
of the first one, which is a contradiction.

Then, we have that necessarily µ1 is left-complete. Proceeding
in a similar way, w prove that µ|w| is right-complete.

Finally, we show that µ1 ` ϕ1. But this is immediate by
Lemma 2 from the fact that w, 1 |= µ1.

APPENDIX TO SECTION IV
Proof of Lemma 4: We show, one by one, all conditions

of the Lemma.
Condition 1: If µ1 is not right-complete, then either:

• There is a path expression α ∈ σa1 and a data value e 6=
d1 such that (e, α) ∈ →χ1. Then for the profile (ρ, π) =
µ1(e) there must be at least one data value e′ such that
µ2(e′) = (ρ, π). Hence, µ2 is not right-complete either.

• There is a path expression α 6∈ σa1 such that (d1, α) ∈
→
χ1. Since µ1(d1) = µ2(d2), then (d2, α) ∈ →χ2 and µ2

is not right-complete.
• There is a path expression α ∈ σa1 such that (d1, α) 6∈
→
χ1. But in this case µ1 is not valid, since d1 must contain
at least all the path expressions from σa1 .

The back condition is identical, and the condition for left-
complete is completely symmetrical.

Condition 2: Suppose that µ2 is not K-compliant. Then
suppose without any loss of generality that there is α ∈ Ωpϕ

such that
→
χ2(α) = {e} for e 6∈ K. Let µ2(e) = (ρ, π),

and hence µ−1
2 (ρ, π) = {e}. By µ1 ≤K µ2, |µ−1

1 (ρ, π) \
K| ≤1 |µ−1

2 (ρ, π) \K|, and by definition of ≤1 we have that
|µ−1

2 (ρ, π) \K| = 1. Then there is also a data value e′ such
that

→
χ1(α) = {e′}. Hence, µ1 is not K-compliant.
Condition 4: Suppose that µ1 ` ψ. Let ψ = 〈←−α =

−→
β 〉

for some path expressions α, β. Suppose first that either α is
equal to ε. Then the test amounts to having (d1, β) ∈ →χ1.
Since µ1(d1) = µ2(d2) we have that (d2, β) ∈ →χ2 and hence
that µ2 ` ψ. If none of α, β are ε then there must be a data
value e ∈ D such that (e, α) ∈ ←χ1 and (e, β) ∈ →χ1). Consider
the profile of this data value (ρ, π) = µ1(e). By µ1 ≤K µ2

there must be a data value e′ such that µ2(e′) = (ρ, π). Then,
µ2 ` 〈←−α =

−→
β 〉. If ψ = 〈←−α 6= −→β 〉 we proceed in a similar

way. If ψ = ¬〈←−α =
−→
β 〉 this means that µ1(α) ∩ µ1(β) = ∅.

By way of contradiction, suppose that µ2(α)∩µ2(β) 3 e. Let
(ρ, π) = µ2(e). Then we have that by µ1 ≤K µ2 there must
be a data value e′ such that µ1(e) = (ρ, π). Hence µ1(α) ∩
µ1(β) 3 e′ which is a contradiction. Finally, if ψ = ¬〈←−α 6=−→
β 〉, then either
•
←
χ1(α) = ∅,

•
→
χ1(β) = ∅, or

•
←
χ1(α) =

→
χ1(β) = {e} for some e ∈ D.

We can see that in each of this cases a similar property holds
for µ2. In particular for the last one, this condition necessarily
means that e ∈ K since µ1 is K-compliant. Let (ρ, π) =
µ1(e). Then we have that |µ−1

1 (ρ, π) \ K| = 0 and hence
|µ−1

2 (ρ, π)\K| = 0. This, added to the fact that µ2(e) = (ρ, π)

yields that
←
χ2(α) =

→
χ2(β) = {e}.

Condition 3: This condition is immediate from Condition
4 and the fact that there is a data value e with µ1(e) = (ρ, π)
iff there is a data value e′ with µ2(e′) = (ρ, π).

Proof of Lemma 7: We only prove conditions (4), (5),
(6) and (7), since the second set of conditions is completely
symmetrical.

If i = 1, j = 0, then d = d1, d 6= d2. By (1) π1 = aπ2 + a.
On the other hand, since a2 = a, by condition 3 of validity
applied to µ2, π2 = aπ′2 for some π′2. By idempotence we
have that aπ2 = π2 and hence that π1 = aπ2 + a = π2 + a.

If i = 0, j = 0 by (2) π1 = aπ2 and aπ2 = π2 by the same
reason as before.

If i = 1, j = 1, by (1) we have that π1 = aπ2 + a and
π2 = aπ′2 + a by condition 2 of validity of µ2, since d = d2.
Again by idempotence we obtain π1 = aπ2 + a = π2.

Finally, if i = 0, j = 1, by (2) we have that π1 = aπ2

and by condition by condition 2 of validity of µ2 we have
π2 = aπ′2 + a. By idempotence, π1 = aπ2 + a = π2.

Proof of Claim 1: The only thing that changes between
µ′i−1 and µ′i (or between µ3 and µ′1) is that ei−1 is perhaps no
longer reachable by some α ∈ σa1 . There is however always at
least one data value (namely ei) that can reach α. In fact there
are always two data values that can reach α except, perhaps,
in µ′n, where en may be the only (flexible) data value that can
reach α.

So the only possibility to falsify the validity property 4 of
a mosaic is that γϕ(a1) demands that there exists at least two
data values reachable by α, and that this is not true in µ′n.
Suppose ad absurdum that α is accessible by only one data
value in µ′n. First, note that α is accessible by at least two data
values in µ1, namely d1 and d′ for some d′ 6= d1. If only d1

could access α, then d1 would be a rigid value, contradicting
our assumption.

If µ1(d′) = (ρ1, a1π1 + a1) then d′ must be rigid (because
d1 is the only flexible value with that profile), and µ′n(d′) =
(ρ1, a1π1 + a1) and in this case there are two data values (en
and d′) that can access α.

If µ1(d′) 6= (ρ1, a1π1+a1) then there is a data value d′′ such
that µ3(d′′) = µ1(d′) by definition of µ1 ≤K µ3 where, of
course, d′′ 6∈ {d3, e1, . . . , en}. Since µ′n and µ3 coincide in the
profiles of all data values except perhaps in {d3, e1, . . . , en}
we obtain that µ′n(d′′) = µ3(d′′) = µ1(d′). Hence, there are
two data values (namely en and d′′) that can access α at µ′n.

The properties 1, 2, and 3 of validity are immediate to check.
Finally, we prove by a similar argument that all µ′i are

K-compliant. Suppose ad absurdum that there is α ∈ Ωpϕ
accessible only by one value that is flexible in µ′i. Then it must
be a data value from {e1, . . . , en} since the other values do not
change of profile with respect to µ3, which is K-compliant.
Further, it must be at µ′n since otherwise α can be accessed
both by en−1 and en. As we already showed, if α is accessible
by only one data value in µ′n then it is also accessible by only
one data value in µ1 and it is then rigid, by K-compliance of
µ1, which is in contradiction with our hypothesis.

Proof of Claim 2: To simplify notation, let us define
µ′0 = µ3 and e0 = d3. Take an arbitrary data value d 6∈
{e0, e1, . . . , en} and take any pair of mosaics µ′i, µ

′
i+1 with

0 ≤ i < n. Then we have that: d is not the data value of
µ′i nor µ′i+1; and µ′i and µ′i+1 carry the same letter a1. We
can thus apply conditions (5) and (9) and obtain that µi(d) =

µ′i+1(d) verifies m. If d ∈ {e0, . . . , ei−1, ei+2, . . . , en}, the
same applies, since d is not the data value of µ′i nor µ′i+1, and
then µ′i(d) = µ′i+1(d) verifies m. If d = ei+1 we have that
µ′i(ei+1) = µ′i+1(ei+1) = (ρ1, a1π1 + a1). a1π1 + a1 verifies
→
m by condition (7), and ρ1 verifies

←
m by condition (11), since

ρ1 = a1ρ
′+a1 and then ρ1 +a1 = ρ1 by idempotence of +a1.

Finally, if d = ei we have that µ′i(d) = (ρ1, a1π1 + a1) and
µ′i+1(d) = (ρ1, a1π1). The fact that ρ1 is preserved is verified
by
←
m by condition (8). And on the other hand, by (4) a1π1+a1

and a1π1 verify
→
m.

Proof of Claim 3: For any d ∈ D1 ∩ K, we define
ξ(d) = d. For any d ∈ D1 \K such that µ1(d) 6= µ1(d2), we
define ξ(d) = d′ ∈ D2 \K such that µ1(d′) = µ3(d), making
sure that ξ is surjective onto all flexible values of D2 \K that
do not have profile µ1(d2), this can be done by definition of
µ1 ≤K µ3. If d2 ∈ K, we are done with the definition of
ξ. Otherwise, suppose µ1(d2) = (ρ, π) and µ−1

1 (ρ, π) \K =
{d2} ∪ D′2 such that |D′2| > 0 by condition A. Let d ∈ D1

be a flexible data value from D1 with µ3(d) = (ρ, π) (there
must exist by ≤K). We define ξ(d) = d2, and for every other
d′ ∈ D1 \ {d} with the same profile we define ξ(d′) = d′′

for some d′′ ∈ D′2 (where there exists at least one element),
again making sure that ξ is surjective onto D′2. We can see
that ξ satisfies conditions 3, 4, and 2′. (condition 1′. is trivially
satisfied).

Proof of Claim 4: For every data value d that is simu-
lated by ξ we have that m(a1, d

?
=en, µ

′
n(d), a2, d

?
=d4, µ4(d)).

Hence, since ξ does all the work for us for all data val-
ues except {d3, e1, . . . , en}, we concentrate on these val-
ues. First, take any e ∈ {d3, e1, . . . , en−1}. We have that
µ′n(e) = (ρ1, a1π1) and µ4(e) = (a2ρ1, π1). It is immediate
that

→
m(a1, 0, a1π1, a2, 0, π1) and

←
m(a1, 0, ρ1, a2, 0, a2ρ1) and

hence that e behaves correctly. Now take en, where we have
µ′n(en) = (ρ1, a1π1 + a1) and µ4(en) = (a2ρ1, π1). We
simply need then to verify

→
m(a1, 1, a1π1 + a1, a2, 0, π1) and

←
m(a1, 1, ρ1, a2, 0, a2ρ1), which are clearly true.

Proof of Claim 5: Note that condition 1 of ≤K is
immediate by definition of µ4. We now check condition 2. Let
d ∈ K. Then we have that µ4(d) = µ2(ξ(d)) = µ2(d) since
ξ(d) = d. Condition 3 also holds: µ4(d4) = µ2(ξ(d4)) =
µ2(d2).

To check condition 4, first consider the profile (a2ρ1, π1).
µ−1

2 (a2ρ1, π1) contains d1, perhaps some rigid data values,
and perhaps some flexible data values d (with µ1(d) 6=
µ1(d1), since condition B does not hold). We know that
µ−1

4 (a2ρ1, π1) contains d3, e1, . . . , en. So both sets contain
at least one element. We show that for every data value in
µ−1

2 (a2ρ1, π1) there is a distinct data value in µ−1
4 (a2ρ1, π1)

and hence that |µ−1
2 (a2ρ1, π1)| ≤ |µ−1

4 (a2ρ1, π1)|. For any
d ∈ µ−1

2 (a2ρ1, π1) with d 6= d1 there exists a distinct data
value d′ 6∈ {d3, e1, . . . , en} such that ξ(d′) = d and hence
such that d′ ∈ µ−1

4 (a2ρ1, π1) by definition of µ4. On the other

hand, for d1 ∈ µ−1
2 (a2ρ1, π1) there is d3 ∈ µ−1

4 (a2ρ1, π1).
Thus, we conclude that |µ−1

2 (a2ρ1, π1)| ≤1 |µ−1
4 (a2ρ1, π1)|.

Now consider any profile (ρ, π) different from (a2ρ1, π1).
By ξ, we have that for every data value d ∈ µ−1

2 (ρ, π) there
exists d′ with ξ(d′) = d such that d′ ∈ µ−1

4 (ρ, π) by definition
of µ4. Hence, |µ−1

2 (ρ, π)| ≤ |µ−1
4 (ρ, π)|. Further, if there

is some d ∈ µ−1
4 (ρ, π), then ξ(d) ∈ µ−1

2 (ρ, π). Then, we
conclude that |µ−1

2 (ρ, π)| ≤1 |µ−1
4 (ρ, π)|, and that condition

4 holds. We thus have that µ4 ≥K µ2.

Continuation of the Proof of Lemma 5 (monotonicity):
Complex situation 2. Now, suppose that neither condition B
nor A hold. Then we can generate µ′1, . . . , µ

′
n just as before,

but now our problem is that from µ′n we cannot generate µ4

as before since condition A fails. Let us call

R = {e′1, . . . , e′m} = {d ∈ D \K | µ3(d) = µ1(d2)}.

These are the data values that can only be simulated by d2

(otherwise A would hold). Notice that d2 is necessarily flexible
by the negation of condition A, and that R is non-empty by
µ1 ≤K µ3. We will also be using the data values P and mosaic
µ′i’s as defined for the first complex situation. Observe that if
d1 = d2, then {d3}∪P = R, and otherwise ({d3}∪P)∩R =
∅.

The strategy we will take is similar as the previous one,
we will create intermediary mosaics µ′′1 , . . . , µ

′′
m, but this time

with a2 as letter, to obtain

µ3 � µ′1 � · · ·� µ′n� µ′′1 � · · ·� µ′′m = µ4.

Each of the data values e′i of R will change its profile first
from (ρ2, a1π2) = µ′n(e′i) to (a2ρ2, π2) = µ′′1(e′i), and then to
(a2ρ2 + a2, π2) = µ′′i (e′i). The only exception is the case of
e′1, that will only change once its profile, directly to (a2ρ2 +
a2, π2) in µ′′1 . Consider a simulating function ξ : D1 → D2

with D1 = D\{d3, e1, . . . , en, e
′
1, . . . , e

′
m}, D2 = D\{d1, d2}

between µ3 and µ1. It is easy to verify that it must exist.

Claim 7. There exists a partial simulating function ξ : D1 →
D2 between µ3 and µ1.

ξ is also a partial simulating function between µ′n and µ1

because it only simulates data values whose profiles were not
changed with respect to µ3. We build µ′′1 , . . . , µ

′′
m where each

µ′′i
• has letter a2 and data value e′i
• e′1, . . . , e

′
i have profile (a2ρ2 + a2, π2)

• e′i+1, . . . , e
′
m have profile (a2ρ2, π2)

• all data value from ({d3} ∪ P) \ R (if any) have profile
(a2ρ1, π1),

• any other data value d ∈ D1 has profile µ2(ξ(d)).
Finally, the role of µ4 is played by µ′′m. As before, we must
verify that everything closes.

Claim 8. µ′′m ≥K µ2.

Proof: Note that condition 1 of ≤K is immediate by
definition of µ4. We now check condition 2. Let d ∈ K. Then

we have that µ4(d) = µ2(ξ(d)) = µ2(d) since ξ(d) = d. Con-
dition 3 also holds: µ4(d4) = µ′′m(e′m) = (a2ρ2 + a2, π2) =
µ2(d2).

To check condition 4, first we proceed as in the proof of
Claim 5 to show that |µ−1

2 (a2ρ1, π1)| ≤1 |µ−1
4 (a2ρ1, π1)|.

For (a2ρ2 + a2, π2) note that |µ−1
2 (a2ρ2 + a2, π2)| ≤

|µ−1
4 (a2ρ2 + a2, π2)| for each element in µ−1

4 (a2ρ2 + a2, π2)
there is a distinct element in µ−1

2 (a2ρ2 + a2, π2). Indeed, for
d2 we have d4 and for any other data value d ∈ µ−1

4 (a2ρ2 +
a2, π2) we can take any data value from ξ−1(d), which has the
same profile. Moreover, |µ−1

2 (a2ρ2 +a2, π2)| ≤1 |µ−1
4 (a2ρ2 +

a2, π2)| since both sets contain at least one element.
Observe that all data values from D \ D1 have one of

the two µ4-profiles we have just treated. Then, for any other
mosaic (ρ, π) we know that all its data values are simulated
by data values of µ2, and we can then easily prove that
|µ−1

2 (a2ρ2 + a2, π2)| ≤1 |µ−1
4 (a2ρ2 + a2, π2)|. Then we

conclude that condition 4 of µ2 ≤K µ4 holds.

Claim 9. µ′n� µ′′1 .

Proof: For simplicity of notation let us call e0 = d3.
Suppose first that d2 6= d1, and hence that ({e0} ∪ P) ∩
R = ∅, as already pointed out. Take any ei. If i 6=
n, then µ′n(ei) = (ρ1, a1π1) and µ′′1(ei) = (a2ρ1, π1),
which verifies m(a1, 0, (ρ1, a1π1), a2, 0, (a2ρ1, π1)). If i = n,
then µ′n(ei) = (ρ1, a1π1 + a1) and µ′′1(ei) = (a2ρ1, π1),
which verifies m(a1, 1, (ρ1, a1π1 + a1), a2, 0, (a2ρ1, π1)).
Take now any e′j . Note that µ′n(e′j) = µ3(e′j) =
µ1(d2) = (ρ2, a1π2). If j 6= 1, then µ′′1(e′j) = (a2ρ2, π2),
which verifies m(a1, 0, (ρ2, a1π2), a2, 0, (a2ρ2, π2)). And if
j = 1, then µ′′1(e′j) = (a2ρ2 + a2, π2), which verifies
m(a1, 0, (ρ2, a1π2), a2, 1, (a2ρ2 + a2, π2)).

The pathological case is when d2 = d1. As we already
remarked, in this situation we have {e0} ∪ P = R. Also,
we have ρ2 = ρ1 and π2 = π1. Then take any data value
ei = e′j . If i 6= n and j 6= 1, µ′n(ei) = (ρ1, a1π1)
and µ′′1(ei) = µ′′1(e′j) = (a2ρ2, π2) = (a2ρ1, π1); it is
immediate to verify that m(a1, 0, (ρ1, a1π1), a2, 0, (a2ρ1, π1))
holds true. If i = n and j 6= 1, µ′n(ei) = (ρ1, a1π1 + a1)
and µ′′1(ei) = (a2ρ1, π1), and hence m(a1, 1, (ρ1, a1π1 +
a1), a2, 0, (a2ρ1, π1)). If i 6= n and j = 1, µ′n(ei) =
(ρ1, a1π1), µ′′1(ei) = (a2ρ2+a2, π2) = (a2ρ1+a2, π1), which
verifies m(a1, 0, (ρ1, a1π1), a2, 1, (a2ρ1 + a2, π1)). Finally, if
i = n and j = 1, µ′n(ei) = (ρ1, a1π1 + a1), µ′′1(ei) =
(a2ρ1 + a2, π1) which trivially verifies m(a1, 1, (ρ1, a1π1 +
a1), a2, 1, (a2ρ1 + a2, π1)).

Claim 10. For every i ∈ [m− 1], µ′′i � µ′′i+1.

Proof: Since µ′′i and µ′′i+1 have the same letter, it is
immediate that the preservation of the profile for every data
value other then those of R is compatible with the definition
of m. In other words, that m(a2, 0, µ

′′
i (d), a2, 0, µ

′′
i+1(d)) for

every d 6∈ R, since µ′′i (d) = µ′′i+1(d). For e′i+1 we have
to verify m(a2, 0, (a2ρ2, π2), a2, 1, (a2ρ2 + a2, π2)) which is
true by (7) and (11). For e′i we verify m(a2, 1, (a2ρ2 +
a2, π2), a2, 0, (a2ρ2 + a2, π2)). Notice that in this case, (4)

is verified since π2 of the form π2 = a2π
′ + a2, and then we

have that π2 + a2 = π2 by idempotence of +a2 and (8) is
trivially verified. Finally, for e′j with j < i or j > i + 1, we
can apply (5) and (9) since they preserve the profile.

Claim 11. For all i ∈ [n], µ′′i is valid and K-compliant.

Proof: This proof is completely equivalent and symmet-
rical to the proof of Claim 1. There, it was showed that
µ′1, . . . , µ

′
n are valid and K-compliant from the fact that µ3

is valid and K-compliant. The same argument works to show
that µ′′m−1, . . . , µ

′′
1 are valid and K-compliant from the fact

that µ′′m is valid and K-compliant. Observe that µ′′m is valid
an K-compliant by Lemma 4 since µ′′m ≥K µ2.

Complex situation 3. Finally, if condition B hold true, it
is the same procedure as before with P = ∅.

Proof of Claim 6: By definition of ≤K we have that
µ1 and µ2 verify the properties 1, 2 and 3 of ≤K , but
not necessarily 4. However, we still conserve the following
property. For every profile (ρ, π),

|µ−1
1 (ρ, π) \K| = 0 iff |µ−1

2 (ρ, π) \K| = 0 (12)

because this property must coincide with the mosaic µ3

verifying |µ−1
3 (ρ, π) \K| = 0. This is a consequence of the

property 4 of µ3 ≤K µ1 and µ3 ≤K µ2.
We define ν = (a, d,

←
χ,
→
χ), where a and d are the label

and data value of µ1 (the label is also equal to that of µ2).
Consider the mosaic µ′2 which is the result of renaming some
data values of µ2 in such a way that it has the same data value
d as µ1, and the only data values shared between µ′2 and µ1

are a subset of K ∪ {d}. We then define
• ν(e) = µ1(e) if µ1(e) 6= ∅, and
• ν(e) = µ′2(e) if µ1(e) = ∅.

Observe that this definition preserves all the profiles of the
rigid values and of the data value d. Further, for every profile
(ρ, π) both the flexible data values of µ−1

1 (ρ, π) and of
(µ′2)−1(ρ, π) are subsets of those of ν−1(ρ, π). This, combined
with the property (12) ensures that the condition 4 of the
definition of of ≤K holds both for µ1 and µ′2, and we hence
have ν ≥K µ1, ν ≥K µ′2. Since µ′2 and µ2 are equal modulo
renaming of data values from D \K, by definition of ≤K we
obtain ν ≥K µ′2, and we conclude the proof.

APPENDIX TO SECTION V

Proof of Lemma 11: Notice that, by definition of ≤K ,
we need to count the following
• the possible profiles of the current data value of the

mosaic, which is bounded by Prof
def
= |℘(Ωpϕ)×℘(Ωpϕ)|

• the possible profiles of all the data values from K,
bounded by Prof |K|

• the possible configurations accounting for which pro-
files have one flexible data value and which are empty,
bounded by 2|℘(Ωp

ϕ)2|,
• the possible labels, bounded by |A|.

We then obtain that there are not more than |A| ·Prof |K|+1 ·
2|℘(Ωp

ϕ)2|. In fact, |A| can be considered to be polynomial in
|ϕ|, since otherwise we can replace all letters not appearing in
ϕ by a single one ‘⊥’. Hence the number of minimal elements
of M(ϕ) with respect to ≤K is double exponential in |ϕ|.

Proof of Lemma 12: Let µ̂i be a mosaic such that µ̂i ≤K
µi and µ̂i ∈ MINM(ϕ) for all 1 ≤ i ≤ n (it always exist). Then
we have that µ̂1 ⇀K · · · ⇀K µ̂n, µ̂1 ≤K µ1, µ̂n ≤K µn.
Further, the sequence is complete, because ≤K preserves the
left/right completeness of a mosaic by Lemma 4. If there are
two indices i < j such that µ̂i = µ̂j , then we can remove
all the mosaics between them obtaining still a complete ⇀K

sequence with the aforementioned properties. We can repeat
this procedure until we obtain a ⇀K sequence where all the
elements are different. Hence, the sequence is bounded by
|MINM(ϕ)|.

A. Proof of Lemma 13

To prove Lemma 13, we first need to be able to compute
⇀K . The following lemma shows how to compute such
relation.

Lemma 16. Given two K-compliant mosaics µ1, µ2 ∈M(ϕ),
µ1 ⇀K µ2 iff for every data value d ∈ D:

1. if d ∈ K then m(a1, d
?
=d1, µ1(d), a2, d2

?
=d, µ2(d)) holds,

2. if d ∈ D \K then there is a bijection f : D \K → D \K
such that

a) m(a1, d
?
=d1, µ1(d), a2, d2

?
=f(d), µ2(f(d))), or

b) if µ1(d) = (∅, ∅) 6= µ2(f(d)), then

m(a1, d
?
=d1, (ρ, π), a2, d2

?
=f(d), µ2(f(d)))

for some profile (ρ, π) such that µ−1
1 (ρ, π) \K 6= ∅, or

c) if µ1(d) 6= (∅, ∅) = µ2(f(d)), then

m(a1, d
?
=d1, µ1(d), a2, d2

?
=f(d), (ρ, π))

for some profile (ρ, π) such that µ−1
2 (ρ, π) \K 6= ∅.

Proof of Lemma 16: (if) Suppose we have two mosaics
µ1 and µ2 that verify the conditions imposed by the Lemma
through a witnessing bijection f : D \K → D \K. Consider
two mosaics µ′1 and µ′2 such that a′1 = a1, d′1 = d1, a′2 = a2

and d′2 = f−1(d2) if d2 6∈ K, or d′2 = d2 otherwise. For
every d ∈ K we define µ′1(d) = µ1(d) and µ′2(d) = µ′2(d).
For every d ∈ D \K we define

(i) if µ1(d) = µ2(f(d)) = (∅, ∅) then µ′1(d) = µ′2(d) =
(∅, ∅)

(ii) if µ1(d) = (∅, ∅) but µ2(f(d)) 6=
(∅, ∅), there is some (ρ1, π1) such that
m(a1, d1

?
=d, (ρ1, π1), a2, d2

?
=f(d), µ2(f(d))) where

µ−1
1 (ρ1, π1) contains at least one flexible data value
e by condition 2b. We then define µ′1(d) = (ρ1, π1),
µ′2(d) = µ2(f(d)).

(iii) if µ1(d) 6= (∅, ∅) but µ2(f(d)) =
(∅, ∅), there must be (ρ2, π2) such that

m(a1, d1
?
=d, µ1(d), a2, d2

?
=f(d), (ρ2, π2)) where

µ−1
2 (ρ2, π2) contains at least one flexible data value
e by condition 2c. We then define µ′1(d) = µ1(d),
µ′2(d) = (ρ2, π2).

(iv) Finally, if µ1(d) 6= (∅, ∅) and µ2(f(d)) 6= (∅, ∅), we
define µ′1(d) = µ1(d), µ′2(d) = µ2(f(d)).

We need to show now that µ′1 ≥K µ1, µ′2 ≥K µ2 and
µ′1 � µ′2. Note that by Lemma 4 we will obtain that µ′1 and
µ′2 are also valid and K-compliant.
µ′1 ≥K µ1. The conditions 1, 2 of ≤K are easily verified

by construction of µ′1. Condition 3 also holds since because
d1 = d′1 and because µ1(d1) 6= ∅ it is defined by conditions
(iii) or (iv) in which µ1(d1) = µ′1(d1). To check that condition
4 is verified, take any profile (ρ, π). First note that

µ−1
1 (ρ, π) ⊆ (µ′1)−1(ρ, π). (13)

Further, if µ−1
1 (ρ, π) has no flexible values, this means that

condition 2b of the Lemma is never true for the profile (ρ, π).
Note that the only possible step in the construction where µ′1
is defined to be something else than the same profile as in
µ1 is in step ii, but this step is never reached with the profile
(ρ, π) since it needs 2b to hold true. Then, we have

if µ−1
1 (ρ, π) \K = ∅ then (µ′1)−1(ρ, π) \K = ∅ . (14)

Hence, by (13) and (14), condition 4 of ≤K is met and we
have µ′1 ≥K µ1.
µ′2 ≥K µ2. The conditions 1, 2 of ≤K are easily verified by

construction of µ′2. If d2 ∈ K, condition 3 is also easily veri-
fied. If d2 6∈ K, we have by construction that d′2 = f−1(d2).
We need to show that µ2(d2) = µ′2(f−1(d2)). For f−1(d2)
condition (i) cannot be true, since it cannot be true that
µ2(f(f−1(d2))) = µ2(d2) = (∅, ∅) by definition of mosaic.
Condition (iii) cannot either be true for the same reason. Then,
µ′2(f−1(d2)) has to be built according to condition (ii) or
(iv), which define µ′2(f−1(d2)) = µ2(f(f−1(d2))) = µ2(d2).
Then, condition 3 of µ′2 ≥K µ2 holds. To check that condition
4 is verified, take any profile (ρ, π). First note that

µ−1
2 (ρ, π) \K ⊆ f((µ′2)−1(ρ, π)) \K. (15)

Further, if µ−1
2 (ρ, π) has no flexible values, this means that

condition 2c of the Lemma is never true for the profile (ρ, π).
As before the only possible step in the construction where
µ′2(d) is defined to be something different to µ2(f̂(d)) is in
step (iii), but this step is never reached with the profile (ρ, π)
since it needs 2c to hold true. Then, we have

if µ−1
2 (ρ, π) \K = ∅ then (µ′2)−1(ρ, π) \K = ∅ . (16)

Hence, by (15) and (16), condition 4 of ≤K is met and we
have µ′2 ≥K µ2.
µ′1 � µ′2. Take any data value d ∈ D. If

d ∈ K then by condition 1 of the Lemma we have
m(a1, d

?
=d1, µ1(d), a2, d2

?
=d, µ2(d)) and by construction

µ1(d) = µ′1(d), µ2(d) = µ′2(d). Hence,

m(a1, d
?
=d1, µ1(d), a2, d2

?
=d, µ2(d)).

Suppose then that d 6∈ K. If µ1(d) = µ2(f(d)) = (∅, ∅)
we have that m(a1, d

?
=d1, µ1(d), a2, d2

?
=f(d), µ2(f(d))) by

item 2a. By step (i) of the construction, we have that µ′1(d) =

µ′2(d) = (∅, ∅) and then m(a′1, d
?
=d′1, µ

′
1(d), a′2, d

′
2

?
=d, µ′2(d)).

If µ1(d) 6= (∅, ∅) and µ2(f(d)) 6= (∅, ∅) we proceed in
a similar way. By step (iv) of the construction we have
that µ′1(d) = µ1(d) and µ′2(d) = µ2(f(d)) and we then
conclude m(a′1, d

?
=d′1, µ

′
1(d), a′2, d

′
2

?
=d, µ′2(d)). Otherwise, if

only one of µ1(d), µ2(f(d)) is empty, either by step (ii) or
(iii) we will define µ′1(d) or µ′2(d) as the profile necessary to
verify m(a′1, d

?
=d′1, µ

′
1(d), a′2, d

′
2

?
=d, µ′2(d)), which exists by

condition 2b or 2c.
(only if) If we have two mosaics µ1 ⇀K µ2 then there

must exist µ1 ≤K µ′1 � µ′2 ≥K µ2. By µ1 ≤K µ′1 there is
a bijection of data values f1 : D \ K → D \ K that sends
each data value of µ1 with non-empty profile to a data value
in µ2 with the same profile. Similarly we have a bijection f2

that relates the data values between µ2 and µ′2. We can then
define f = f1 ◦ f−1

2 and it is easy to check that it verifies all
the conditions defined in the Lemma.

Proof of Lemma 13: By Lemma 16, we only need to test
the conditions specified there. We disregard the space needed
to encode the data values, because we can always abstract them
away in classes of equivalence. The algorithm simply needs
to first guess a bijection f only restricted to the data values of
µ1 and µ2 that have non-empty profiles. That is, we are only
interested in pairs of data values (d, d′) such that µ1(d) 6= ∅ or
µ2(f(d)) 6= ∅. Then, this bijection f needs only polynomial
space. Then, we verify the conditions for each data value in
the bijection, each condition taking polynomial space to test.

Proof of Lemma 10: Consider any complete� sequence
µ1 � · · ·� µn overM(ϕ). Consider also a pair of functions
fl, fr : D→ ℘(Ωpϕ) that assign to each data value a set of path
expressions such that the following holds for every d ∈ D
• α ∈ fl(d) iff there is a position 1 ≤ i ≤ n s.t.

←
χ i(α) =

{d}.
• α ∈ fr(d) iff there is a position 1 ≤ i ≤ n s.t.

→
χ i(α) =

{d}.
We claim that for every two data values d 6= d′, fl(d) ∩
fl(d

′) = ∅, and fr(d) ∩ fr(d′) = ∅. By way of contradiction,
suppose that α ∈ fl(d)∩fl(d′), and assume that the witnessing
positions for this membership are i and i′. Suppose that i ≤ i′
without any loss of generality. This means that from position
i we can access the data value d by going to the left through
a path expression α. Since we can reach it from i we can also
reach it from i′, since i ≤ i′. Then we can reach both d and d′

form i′, which is in contradiction with i′ being the witnessing
position for α ∈ fl(d′).

Then, there are not more than |Ωpϕ| data values d such that
fl(d) 6= ∅, and likewise for fr. We can build K by collecting
these data values, and we will have that |K| ≤ 2 · |Ωpϕ|.

Proof of Proposition 3: For simplicity we build a
NEXPSPACE algorithm. Since NEXPSPACE = EXPSPACE
(Savitch’s Theorem) this proves the proposition. The algorithm
tries to build progressively a complete sequence µ′1 ⇀K

· · ·⇀K µ′m such that µ′i ∈ MINM(ϕ) for every i and µ′1 ` ϕ1.
It answers ‘yes’ iff there is such a sequence. By Lemma 12 we
know that if there is some complete ⇀K sequence then there
is one over minimal elements of size bounded by |MINM(ϕ)|.
The algorithm will keep track of the length of the sequence
it is building. Once the counter reaches |MINM(ϕ)| it fails,
answering that there is no complete sequence.

The algorithms maintains two variables:
• one counter c to count from 1 up to |MINM(ϕ)|, and
• the last mosaic it has treated µ.

Both variables require exponential space by Lemma 11. In the
first step it initializes the counter c = 1, and the variable µ with
a mosaic from MINM(ϕ) that it guesses. Next, it checks that
it is left-complete and that verifies ϕ1 (otherwise it answers
‘no’). Then it enters in a loop. At each step it checks if µ is
complete to the right. If it is right-complete, it answers ‘yes’.
Otherwise it performs the following actions.
• If c < |MINM(ϕ)| it increments c by one, otherwise it

answers ‘no’.
• It guesses a mosaic µ′ ∈ MINM(ϕ),
• It checks that µ ⇀K µ′ using exponential space by

Lemma 13. If it does not hold it answers‘no’.
• Finally, it overwrites µ with µ′.

If there is a complete sequence as the one described in
Lemma 12, it will first guess µ′1, then µ′2 up to µ′m and it will
answer ‘yes’. If there is no complete sequence, it will answer
‘no’ because for every possible guessed sequence µ′1 · · ·µ′m
either
• µ′1 is not left-complete, or
• µ′1 0 ϕ1, or
• µ′m is not right-complete
• there is some µ′i and µ′i+1 that are not in the ⇀K relation,

or
• m > |MINM(ϕ)|.

In each one of these cases the algorithm answers ‘no’.

APPENDIX TO SECTION VI

We show our hardness result by coding a solution for
an instance of the 2n corridor tiling problem. The coding,
although it is not quite straightforward, utilizes several coding
techniques developed in [FS09]. In fact, the coding of [FS09]
was introduced to show non-primitive recursiveness of the
logic XPath(→+,=), whereas here we work with a logic
which is expressive-equivalent to XPath(→∗,=). Although the
precise coding of [FS09] fails for XPath(→∗,=), we reuse the
same kind of techniques.

Proof of Proposition 5: We show this by coding an
instance of the 2n corridor tiling problem. An instance of
this problem consists in a size of the corridor n (encoded
in unary), a set of tiles T = {T1, . . . , Ts}, a special final tile

.

. . .

. . .
. . .

1 20 2n−1

0

0

1

2n−1

2n

k

Fig. 4. 2n corridor tiling. Each depicted box contains a tile from T . Each
number inside a box is the index of the position.

Ts, an initial tile T1, and the horizontal and vertical tiling
relations H,V ⊆ T × T . The problem consists in answering
whether there is k ∈ N and a function f : 2n × k → T such
that f(1, 1) = T0, f(2n, k) = Ts, and H(f(i, j), f(i+ 1, j)),
V (f(i, j), f(i, j+ 1)) for all possible i, j. In this case we say
that the problem has a solution. This problem is known to be
complete for EXPSPACE [Chl86]. We will see f as a matrix
of 2n columns and k rows, whose indices grow to the left and
to the top, like in Figure 4.

Groups: Since PathLogic cannot avoid having repeated
consecutive nodes with the same symbol, in this coding we
will always have to work with groups of nodes with the same
symbol. Unfortunately this makes the coding somewhat more
cumbersome. For the purpose of this poof, we consider a data
values as elements of (A×D)∗, as opposed to the functional
definition given in Section II. (Of course, both definitions are
equivalent.) This will simplify the description of the structure
in our coding.

Let us fix an instance of the 2n corridor tiling problem. We
will code a solution like the one in Figure 4 in a data word
by coding each of the position of the matrix, starting with the
first row from left to right, then with the second row, etc.

The particular strategy to link consecutive columns and rows
follows a similar coding idea as the one developed in [FS09].
Let

A = {b1, . . . , bn,N→,N↑,#,@,beg, end, T1, . . . , Ts} .

We will use data values as pointers to future elements, in the
sense that “a node (a, d) points to another node (b, e)” if (b, e)
appears to the right of (a, d) and d = e. The coding of a run
consists in a succession of blocks. Each block corresponds to
a position of the solution matrix. We first describe the general
structure of the block in terms of the labels it must contain,
and then we describe more precise properties that this structure
must verify.

The shape of each block is of the form

(beg, d1) · · · (beg, dn) w (end, e1) · · · (end, em)

where w ∈ (A×D)∗, and such that for every di there exists
ej with di = ej . Further, every data value of w is not equal
to any di nor ej . Also, w is of the form

Tile Num Next→ Next↑

such that

• Tile ∈ (T × D)+ is a group of nodes with the same
symbol Ti, for some i ≤ s (the data values will play no
role here).

• Next→ ∈ ({N→}×D)∗, such that each element (N→, d)
points to an element (beg, d) of a future block. (The idea
will be that every one of these nodes point to the next
block of the same row and next column.)

• Next↑ ∈ ({N↑} × D)∗, such that each element (N→, d)
points to an element (beg, d) of a future block. (The idea
is that these nodes point to the block of the same column
and next row.)

• Num ∈ ({b1, . . . , bn} × D)∗ is the coding of a binary
number of n bits (the data values play no role here). We
interpret that the i-th bit is 1 iff bi is in Num. From now
on we call the index of the block, to the number coded
in Num. Figure 4 shows the indices for each position of
the matrix.

Now we constrain this general structure to ensure that it
encodes a valid solution of the problem. In the sequel we say
that a block B points to a block B′ through some symbol S
iff B contains an element (S, d) and B′ contains an element
(beg, d′) such that d = d′.
• The first block has the tile T1.
• The last block has the tile Ts.
• If the Next→ part of a block B is the empty string, then
B is the last block.

• The first block of the data word has index 0.
• For every pair of blocks B,B′ such that B points to B′

through N→ then
– the index n of B and n′ of B′ are such that n′ =
n+ 1 (mod 2n)

– B′ is the next immediate block of B
– the tile ti of B and tj of B′ are in H-relation.

• If B points to B′ through N↑ then
– the index of B equals to the index of B′

– there is exactly one block B′′ of index 0 between B
and B′.

– the tile ti of B and tj of B′ are in V -relation.
It is easy to see that there exists a model with these properties
iff the 2n corridor tiling problem instance has a solution.

It is possible to code these conditions using similar tech-
niques as in [FS09]. The cited work uses a different logic that
is expressive equivalent XPath(→+,=) to code a much harder
(non-primitive recursive) problem which involves properties
that we cannot express with PathLogic. However, in order
to code these properties we do not need the strict transitive
relation →+, we can use →∗.
Remark 3. The above coding of EXPSPACE-hardness uses
only formulas that move in one direction.

APPENDIX TO SECTION VII
XPath(∗←,→∗,=) and plain-XPath(∗←,→∗,=) are

expressive-equivalent. There is a translation that transforms
each node expression of XPath(∗←,→∗,=) in an exponential
disjunction of node expressions of plain-XPath(∗←,→∗,=).

Proof idea of Lemma 15: We can factorize any atomic
node expression like 〈α = β〉 or 〈α 6= β〉 uses path expres-
sions with two directions into a disjunction of expressions,
such that each one of these is in plain-XPath(∗←,→∗,=). We
proceed by induction on the nesting depth of the subformula,
defined as the maximum number of nested path expressions
it contains. The base case is immediate. Take an expression
〈α = β〉 where Nα and Nβ are the sets of node expressions
[ψ] that use respectively α and β, where each of these is a
formula of plain-XPath(∗←,→∗,=) by inductive hypothesis.
The translation consists in checking from all the possible lin-
earizations of Nα∪Nβ∪{curr} those that are consistent with
α, β. Here, curr represents the current point of evaluation. For
example, the linearization [ψ1][ψ3]curr[η][ψ2] is consistent
with α = ∗←[ψ1]→∗[ψ2]∗←[ψ3], β = →∗[η]. However,
[ψ1][ψ2][ψ3]curr[η] is not. For each consistent linearization
the translation produces one disjunct 〈α′ = β′〉 with the
aforementioned properties. For our example of linearization
it would produce

〈[ψ1]∗←[ψ3]∗← =→∗[η]→∗[ψ2]〉.
The procedure for formulas 〈α 6= β〉 is similar. This translation
is exponential.

	Introduction
	A two-way logic
	The satisfiability problem
	Outline of the proof
	A normal form
	The transition system
	From the satisfiability problem to the derivation problem

	The derivation problem for
	Rigid and flexible data values
	A more abstract transition system

	The derivation problem for K
	A bound on the rigid values
	A bound on the domain
	A bound on the relation
	The algorithm

	Lower bound
	Corollaries on XPath and XML documents
	Discussion
	References
	Appendix
	Proof of Lemma 13

