
Pattern Logics and Auxiliary Relations

Diego Figueira Leonid Libkin
University of Edinburgh

Abstract
A common theme in the study of logics over finite structures is
adding auxiliary predicates to enhance expressiveness and convey
additional information. Examples include adding an order or arith-
metic for capturing complexity classes, or the power of real-life
declarative languages. A recent trend is to add a data-value com-
parison relation to words, trees, and graphs, for capturing modern
data models such as XML and graph databases.

Such additions often result in the loss of good properties of
the underlying logic. Our goal is to show that such a loss can be
avoided if we use pattern-based logics, standard in XML and graph
data querying. The essence of such logics is that auxiliary relations
are tested locally with respect to other relations in the structure.
These logics are shown to admit strong versions of Hanf and Gaif-
man locality theorems, which are used to prove a homomorphism
preservation theorem, and a decidability result for the satisfiability
problem. We discuss applications of these results to pattern logics
over data forests, and consequently to querying XML data.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Computational
logic

Keywords First-order logic, pattern, finite model theory, locality,
homomorphism preservation theorem, data trees, XML, decidabil-
ity

1. Introduction
A common theme in the study of logics over finite structures is
adding auxiliary relations and investigating the extra expressive-
ness they provide. Such auxiliary relations may serve several pur-
poses. They may provide information about presentations of struc-
tures that is otherwise not available (for instance, an ordering of
graph vertices). They may provide operations on the underlying do-
main to make logics closer to practical features that they are mod-
eling (for instance, arithmetic operations are a common feature of
real-life database query languages). And sometimes they provide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

extra features as models evolve (an example of this is the study
of data trees as a better abstraction of XML data than trees them-
selves). We now illustrate these in more detail.

• In the study of logics capturing complexity classes (cf. [26, 30,
32]), one usually adds an auxiliary relation that specifies an
ordering of the domain. The goal is to bridge the gap between
machine models, that can talk about a particular presentation,
and logics, that cannot distinguish isomorphic structures.

• In the study of embedded finite models (cf. [26]), one adds arbi-
trary auxiliary relations, for instance arithmetic operations. The
goal is usually to simulate the expressiveness of real-life query
languages over finite databases, as those use extra operations on
the domain.

• In the study of data models underlying modern database appli-
cations – such as XML and graph data – one distinguishes the
basic structure (e.g., a tree for XML) and data that such ba-
sic structures carry. The latter is often modeled by a predicate
expressing the property that two vertices carry the same data
items, i.e., a data equality predicate, resulting in data words,
data trees, and data graphs [7, 14–16, 34, 41].

With such auxiliary relations, one usually tries to control the
power of the resulting logic. In the case of adding orderings, one
does this by insisting on invariance of definable properties: they
need not depend on a particular ordering that is used. Still, the mere
presence of an order or a successor relation enhances the power of
logic [32, 38]. At the same time, one can establish useful properties
of definable queries, for instance, locality [4, 27], or bounds on
their expressiveness [10, 22, 37, 40]. For embedded finite models,
the spirit of the restrictions is similar: invariance under one-to-one
mappings of the domain of structure. A typical result would state
that adding arbitrary auxiliary relations yields no more power than
adding an order under such invariance, cf. [26].

In the case of adding the data equality predicate, restrictions
guaranteeing good behavior of logics are of a different nature. The
study of such predicates started with words and trees, on which
first-order logic (FO) and monadic second-order logic (MSO) are
undecidable, which explains the interest in preserving decidabil-
ity (and connection with automata) in the presence of data. The
standard restriction guaranteeing decidability is to the two-variable
fragment, FO2, see [15, 16], or extensions thereof [14, 42].

We are interested in different types of restrictions guaranteeing
good properties of logics with auxiliary relations. Our primary
motivation comes from studying logics over advanced data models
such as XML and graph data, where auxiliary relations capture
the notion of adding data values. A concrete example is shown in
Fig. 1. In this tree, nodes have labels from a finite alphabet {a, b, c},
and they also come equipped with data values from an infinite set,
in this case, N. One represents such a tree as a structure that has the
usual child relation, unary labeling predicates for alphabet letters,

child relation (ch)

data relation (~)

a

b

c

b c a

bb

a

4

42

2 7 4

729

Figure 1. Example of a data tree.

and the data equality predicate for data values (instead of infinitely
many unary predicates); we write x ∼ y if nodes x and y have the
same data value (as shown by the dashed lines in the figure).

Restrictions such as invariance are simply not relevant in this
setting (and invariant properties cannot say anything interesting
about data values). Using FO2 makes the logic too weak: many
languages studied in the context of XML with data [3, 13, 35, 36,
44] or graphs with data [7, 34] need to go beyond the two-variable
fragment.

Thus, we would like to find restrictions on logics with aux-
iliary relations that, while sufficiently expressive, do not impose
too severe restrictions. The idea of such restrictions is motivated
by practical languages for XML and graph data. A key notion in
many of them is that of a pattern: essentially a small subgraph, or
a subtree, that needs to be matched in a large data set. These often
provide the basis for language constructors, for instance, for the
navigational language XPath [35, 36], more general XML query
languages [3, 13, 17], or path queries over graphs [7, 23]. Patterns
also provide a standard abstraction of incomplete data in relational,
XML, and graph models [1, 2, 8, 9, 29].

An example of a pattern in a tree is a node labeled a that has an
a-child with the same data value and a b-child with a different data
value; this is clearly matched in the data tree in Fig. 1 by the root
and its two children.

Patterns are highly useful as query language constructors for
at least two different data models, and at the same time, pattern-
based logical languages provide a restriction on the use of auxiliary
relations that makes it possible to recover nice properties of the
underlying logic. The restriction imposed by patterns is that the use
of auxiliary relations becomes local: we check those predicates for
elements of the domain that are close to each other in the structure.
In the above example, we check data equality of a node and its
child, which are at distance one in the tree.

Our goal is to show that pattern-based logics with auxiliary
relations behave well without imposing very restrictive conditions
such as invariance or two-variable limitation. In fact, this good
behavior is due to the local nature of auxiliary predicates.

The particular questions we investigate are inspired by applica-
tions of logical formalisms with data equality predicate in query-
ing XML and graph data. These questions are split into three
groups. The first one concerns the expressiveness of logics, which
is a standard subject for investigation. The second one has to do
with the homomorphism preservation theorem. This choice is mo-
tivated by both the importance of the result in finite model the-
ory ([39] proved that it holds over the class of all finite structures,
solving a long-standing open problem; it also holds for several

well-behaved classes of finite structures [6, 18]) and its applica-
tions in the data management field (e.g., in handling incomplete
information in databases [25], in characterizing classes of schema
mappings in data exchange [43], and in rewritability of ontology-
mediated queries [11]). The third group deals with the basic decid-
ability question, which in fact motivated two-variable restrictions
for logics over data words and data trees.

Our main contributions are as follows.
1) Motivated by logics used for querying XML and graph data,
we define a pattern logic with auxiliary relations, and an equally
expressive logic: FO with local auxiliary relations.
2) When it comes to the expressiveness of the logic, we prove
analogs of Hanf and Gaifman locality properties [24, 28] (see also
[19, 32]), with neighborhoods defined without using the auxiliary
relations. These stronger versions of well known locality theorems
give us easy tools to prove expressivity bounds for pattern logics.
3) We prove a homomorphism preservation theorem for pattern
logics. It works over classes of structures that include, among
others, ranked data trees. Crucially, such classes are defined without
mentioning auxiliary relations: for instance, we can specify classes
of trees so that the homomorphism preservation theorem would
hold on them when the data equality predicate is added. Ranked
data trees provide just one example of a class of structures for
which the result holds; we state the condition in terms of closure
and structural properties of the class. We also discuss applications
of this result in querying XML data.

Note that such a result does not follow from Rossman’s theorem
[39], since trees are not FO-definable, nor from other results on
homomorphism preservation [6, 18] which impose restrictions that
are violated by adding the data equality relation. Homomorphism
preservation results in the finite [6, 18, 39] are rather hard to obtain,
and our result requires a considerable effort too, crucially relying
on the revised form of Gaifman locality theorem.
4) We show a decidability result for pattern logics. It is given
for classes of structures which include data words and ranked data
trees; we further show that the logic continues to be decidable when
one adds the sibling ordering and other relations (for instance, other
equivalence relations).

Thus, we retain decidability without such strong restrictions on
expressiveness that the two-variable fragment imposes. In the case
of unranked data trees, however, we show undecidability of the
pattern logic.
Organization. Basic definitions are given in Section 2. In Section
3 we define pattern logics and logics with local auxiliary relations.
Section 4 proves locality theorems, and Section 5 shows the homo-
morphism preservation theorem and explains some of its applica-
tion. In Section 6 we discuss decidability of pattern logics. Section
7 offers concluding remarks.

2. Preliminaries
Relational Structures A relational vocabulary σ is a finite set
of relation symbols, each with a specified arity. A σ-structure A
consists of a universeA (also called a domain) and an interpretation
RA ⊆ Am of each R ∈ σ of arity m. We normally use A,B, . . .
to denote the universe of A,B,

Let t denote the disjoint union of sets (i.e., A t B is A ∪ B if
A∩B = ∅). Let⊕ denote the disjoint union of σ-structures, that is,
A⊕B has universeAtB andRA⊕B = RA tRB for everyR ∈ σ.
A graph is a structure G = (V,E), where E is a binary relation
that is symmetric and irreflexive. Thus, our graphs are undirected,
loopless, and without parallel edges.

A σ-structure B is called a substructure of another σ-structure
A if B ⊆ A and RB ⊆ RA for every R ∈ σ. In that case

we write B ⊆ A. A substructure B is an induced substructure if
RB = RA ∩ Bm for every R ∈ σ of arity m. For A′ ⊆ A we
write A|A′ for the induced substructure of A with domain A′. For
σ′ ⊆ σ, the σ′-induced substructure of A, denoted by A|σ′ , is the
restriction of A to the signature σ′.

The Gaifman graph of a σ-structure A, denoted by G(A), is
the undirected graph whose set of nodes is the universe of A, and
whose edges are pairs (a, a′) of distinct elements of A that appear
together in some tuple of a relation in σ.

Let G = (V,E) be a graph. Recall that the distance between
two vertices u and v is the length of the shortest path from u to v.
For a vertex u and an integer r ≥ 0, the r-neighborhood of u in G,
denoted by NG

r (u), is the set of vertices at distance at most r from
u. In particular, NG

0 (u) = {u}. For a tuple ū = (u1, . . . , um), we
let NG

r (ū) be
⋃
{NG

r (ui) | 1 ≤ i ≤ m}. Where this causes no
confusion, we also write NG

r (ū) for the subgraph of G induced by
this set of vertices.

For a structure A and a vector ā of elements of A, we define
the r-neighborhood NA

r (ā) as the induced substructure with the
universe N

G(A)
r (ā) expanded with |ā| constant symbols interpreted

as the elements of ā. In particular, if two neighborhoods NA
r (ā)

and NB
r(b̄) are isomorphic, which is denoted by NA

r (ā) ∼= NB
r(b̄), it

means that there is an isomorphism that sends ā to b̄.

Data trees and forests. These structures received much attention
as of late, being an abstraction of XML documents with data. The
structure of XML documents is normally modeled as a tree; in data
trees, we add a data value from an infinite domain to each node.
The usual way to represent this as a first-order structure is by means
of an equivalence relation ∼ on nodes whose meaning is that two
nodes carry the same data value, see Fig. 1.

We now give precise definition, generalizing slightly the stan-
dard ones from [14–16, 41]. For a vocabulary σ = τ t {ch}, we
say that a σ-structure A is a τ -tree if chA is the child relation of a
finite tree. Over τ -trees, we use “root”, “parent”, “child”, “sibling”,
etc., to make reference to elements of the ch-induced tree. For any
τ -tree A, we say that sib is a sibling order for A if it is the union,
over all elements a in A, of total linear orders on sets of a’s siblings
{b ∈ A | (a, b) ∈ chA}. We say that a τ -tree A is k-ranked if every
element of A has at most k children. We write root(A) to denote the
root element of A. Given a tree A and an element a ∈ A, by A�a
we denote the induced substructure given by the subtree rooted at
a.

The class of data trees DT is the class of all τ -trees where τ
has monadic relations and one binary equivalence relation ∼. The
class of data forestsDF is the class of disjoint unions of data trees,
i.e., A1 ⊕ · · · ⊕ Am for m ∈ N such that A1, . . . ,Am ∈ DT . By
DFk we denote the class of data forests in which every data tree is
k-ranked.

First-Order Logic (FO) Let σ be a relational vocabulary. Formu-
lae of FO over σ are obtained by closing relational atomic formulae
R(x1, . . . , xm), where R ∈ σ is of arity m, and atomic equality
formulae x = y under conjunction ∧, disjunction ∨, negation ¬,
existential ∃ and universal ∀ quantification. The semantics is stan-
dard. We write A |= ϕ(ā) if ϕ is true in A when its free variables
are interpreted by the tuple of elements ā. The quantifier rank of a
first-order formula is the maximum depth of quantifier nesting in it.

The class ∃Pos of existential-positive formulae is the closure
of atomic formulae under conjunction, disjunction, and existential
quantification. By substituting variables, one can eliminate equali-
ties in ∃Pos formulae.

Locality. FO formulae are known to exhibit locality properties,
most commonly formulated in terms of theorems by Hanf and
Gaifman. Define (A, ā) �r (B, b̄) for ā ∈ An and b̄ ∈ Bn if

there exists a bijection f : A→ B such that NA
r (āc) ∼= NB

r(b̄f(c))
for every c ∈ A. Hanf’s locality theorem states that for every FO
formula ϕ(x̄), there exists a number r so that (A, ā) �r (B, b̄)
implies that A |= ϕ(ā) if and only if B |= ϕ(b̄). In fact r can
be taken to be (3k − 1)/2, where k is the quantifier rank of ϕ.
It was originally stated by Hanf in [28] for infinite models, and
then restated for sentences over finite models in [22]; the present
formulation is from [32].

To state Gaifman’s theorem, note that for every integer r ≥ 0,
there is an FO formula δ(x, y) ≤ r stating that the distance
between x and y in the Gaifman graph is at most r. Let δ(x, y) > r
be the negation of this formula. Note that δ(x, y) ≤ r could be
expressed in ∃Pos, by a formula whose quantifier rank is bounded
by r plus the maximum arity of a relation of σ (in fact it can even
be logarithmic in r).

Define r-local formulae ψr(x) as formulae in which all quanti-
fiers are restricted to the r-neighborhood of x, i.e., formulae that
are either of the form ∃y (δ(x, y) ≤ r ∧ . . .) or of the form
∀y (δ(x, y) ≤ r → . . .). A basic FO local sentence is

∃x1 . . .∃xn
(∧

1≤i<j≤n

δ(xi, xj) > 2r ∧
∧
i≤n

ψr(xi)
)
,

where ψr(x) is an r-local formula. Gaifman’s theorem [24] says
that every FO sentence ϕ is equivalent to a Boolean combination
of basic FO local sentences. Here r is exponential in the quantifier
rank of ϕ.

Homomorphisms. A homomorphism between two structures A,B
of the same vocabulary is a mapping h : A → B so that for each
relation symbol R in the vocabulary, if ū ∈ RA, then h(ū) ∈ RB.

Auxiliary relations. We often deal with a situation where the vo-
cabulary is split into two kinds of relations: main and auxiliary
ones. Throughout the paper we shall reserve τ for the vocabulary
of auxiliary relations. If σ and τ are two disjoint vocabularies, we
write στ as an abbreviation of σ t τ . For instance, in data trees,
we can treat the equal-value relation τ as the auxiliary relation. In
the study of invariance, τ typically contains a single binary relation
interpreted as a linear order or a successor.

3. Patterns and local auxiliary relations
As discussed in the introduction, logical languages for XML and
graph data are largely based on patterns (either tree or graph pat-
terns) [3, 7, 9, 13, 23, 36]. Such a pattern is a small subtree or a
subgraph that needs to have a match in the large database. On top
of it, one might impose data values [2, 8, 12, 17, 34], for instance
by means of the data equality predicate [14–16, 41]. An example
of a pattern is the tree in Fig. 1. It has both the child and the data
equality relations. Note that the tree (i.e., the reduct of the ch re-
lation) is connected, but the data equality relation on it could be
arbitrary: in that example, it has three connected components.

We now generalize this to arbitrary structures. Assume that we
have, as before, two disjoint vocabularies σ and τ . A σ-pattern over
στ is a στ -structure P so that the Gaifman graph of its σ-reduct is
connected (i.e., the graph G(P|σ) is connected). We omit ‘over στ ’
if it is clear from the context.

Note that a σ-pattern over στ does include all the relations in
τ as well, but it is only the σ-part of it that needs to be connected
(like the tree in Fig. 1, where σ is the child relation).

Pattern logic. For an arbitrary structure A, let ∆A denote its positive
diagram, i.e., the conjunction of all relational atomic formulae true
in A. If |A| = n, then ∆A has n free variables. For instance, if A
is a graph with edges (v1, v2) and (v2, v3), then ∆A(x1, x2, x3) =
E(x1, x2) ∧ E(x2, x3).

Fix σ and τ . Formulae of σ-pattern logic FOPAT
σ (στ) are defined

as follows:
ϕ,ψ := S(x̄) | x = y S ∈ σ

| ∆P(x̄) P is a σ-pattern
| ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ
| ∃xϕ | ∀xϕ .

That is, we restrict FO(στ) by disallowing arbitrary atomic τ -
formulae, and only allowing them as part of pattern formulae ∆P,
so that the σ-reduct of P is connected. The existential positive
fragment (in which negation and universal quantification are dis-
allowed) is denoted by ∃PosPAT

σ (στ).
Note that this is not the minimal definition of the logic: for

instance, S(x̄) is a particular case of a formula ∆P(x̄). In fact the
logic can be compactly defined as

ϕ,ψ := (x = y) | ∆P(x̄) | ϕ ∧ ψ | ¬ϕ | ∃xϕ.
The formula ∆P(x̄) is a quantifier-free FO(στ) formula; in

particular its quantifier rank is zero. Note that if P has universe
{v1, . . . , vn}, then A |= ∆P(a1, . . . , an) if and only if the map-
ping f : vi 7→ ai, for 1 ≤ i ≤ n, is a homomorphism from P to
A.

Patterns as those used for querying XML documents with data
values are indeed such: one specifies a small connected part of the
tree, and then adds an arbitrary data equality relation over it, see
[8, 12, 17, 36, 41].

τ -local formulae. We now present a slightly different way of look-
ing at the pattern logic, by allowing τ -predicates, but only in a “lo-
cal” context. The resulting logic will be called FOLOC

τ , expressing
the fact that τ -predicates have been “localized”. The idea of such
local uses of predicates appeared previously not only in connection
with patterns in data models, but also in connection with expressiv-
ity of logics in the finite [20].

To define it, we need an FO formula connσ(z̄) expressing
that the σ-substructure induced by z̄ is connected. That is, A |=
connσ(ā) if and only if G((A|σ)|ā) has only one connected com-
ponent. Note that while in general connectivity is not FO-definable,
in this case we test for connectivity of a graph of a fixed size |z̄|.
Thus, connσ(z̄) is an FO (in fact, positive, quantifier-free) formula:
one simple takes the disjunctions of positive diagrams of all con-
nected graphs with |z̄| vertices.

Now we define FOLOC
τ (στ) as

ϕ,ψ := S(x̄) | x = y S ∈ σ
| T (x̄) ∧ connσ(x̄, ȳ) T ∈ τ
| ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ
| ∃xϕ | ∀xϕ

We write ∃PosLOC
τ (στ) for the existential positive fragment,

without ¬ and ∀.
Patterns and locality give us two different ways of looking at the

same logic:

Proposition 3.1. For all σ and τ , we have FOPAT
σ (στ) = FOLOC

τ (στ)
and ∃PosPAT

σ (στ) = ∃PosLOC
τ (στ).

Proof. For any σ-pattern formula ∆P(x̄), let ϕ(x̄) ∈ ∃PosPAT
σ (στ)

be the formula that results from replacing every occurrence of
T (ȳ) so that T ∈ τ with T (ȳ) ∧ connσ(ȳ, x̄) in ∆P(x̄). Note
that since the σ-reduct of the Gaifman graph of P is connected,
we have that ∆P(x̄) is equivalent to ϕ(x̄). Then, it follows that
every FOPAT

σ (στ) formula is equivalent to a FOLOC
τ (στ) formula;

and every ∃PosPAT
σ (στ) formula is equivalent to a ∃PosLOC

τ (στ)
formula.

Conversely, any conjunctive quantifier-free ∃PosLOC
τ (στ) for-

mula ϕ(x̄) is equivalent to a finite disjunction of σ-pattern formu-
lae
∨
i ∆Pi(x̄). Indeed, it is easy to see that the canonical structure

Aϕ′ of ϕ′ = ∃x̄.ϕ is a disjoint union P1 ⊕ · · · ⊕ Pn of structures
Pi where G(Pi|σ) is connected for every i ∈ [1, n]. This is a conse-
quence of the syntactic restriction of FOLOC

τ (στ) requiring any two
elements in a tuple of a relation T ∈ τ to be connected through σ-
relations. In other words, Aϕ′ is a disjoint union of σ-patterns over
στ . Thus, ϕ(x̄) is equivalent to

∨
i∈[1,n] ∆Pi(ȳi), where ȳi, rang-

ing over x̄, are the variables of the domain of Pi. Therefore, every
∃PosLOC

τ (στ) formula is equivalent to a ∃PosPAT
σ (στ) formula; and

every FOLOC
τ (στ) formula is equivalent to a FOPAT

σ (στ). �

For a graph G, let Gr stand for its r-step transitive closure, i.e.,
a graph in which we have an edge (u, v) if there is a path from
u to v of length at most r in G. Given a στ -structure A, we say
that it is (τ, r)-local if G(A|τ) ⊆ G(A|σ)r . The (τ, r)-localization
of A is its maximal (τ, r)-local substructure. It can be constructed
as follows: look at all relations of τ , and remove all tuples ā from
them that have two components a, a′ at distance greater than r in
G(A|σ).

Proposition 3.2. Let ϕ(x̄) be a formula of FOPAT
σ (στ) (or of

FOLOC
τ (στ)). There exists r ≥ 0 so that ϕ(ā) is true in A if and

only if it is true in the (τ, r)-localization of A, for every tuple ā of
elements of A.

Proof. Let ϕ(x1, . . . , xn) ∈ FOLOC
τ with quantifier rank k, and

let r = k + n. Suppose A is a στ -structure, R ∈ τ , and
(b1, . . . , bm) ∈ RA, so that for some i, j ∈ [1,m], bi and
bj are at distance > r, that is, N

A|σ
r (bi) ∩ N

A|σ
r (bj) = ∅.

Let A′ be the structure resulting from removing (b1, . . . , bm)
from RA in A. One can easily show by induction on the quan-
tifier rank of ϕ that, for every a1, . . . , an ∈ A we have A |=
ϕ(a1, . . . , an) ⇔ A′ |= ϕ(a1, . . . , an). This is because, by defi-
nition of FOLOC

τ , ϕ can only test for R(x1, . . . , xm) in conjunction
with connσ(x1, . . . , xm, y1, . . . , ys) for some y1, . . . , ys, which
specifies that the elements denoted by x1, . . . , xm, y1, . . . , ys form
a connected component, and thus that every pair xi, xj is at dis-
tance ≤ |{x1, . . . , xm, y1, . . . , ys}| ≤ n + k = r. By repeating
this argument for all tuples b̄ in a relation in τ which are not r-local,
it follows that, for every structure A and a1, . . . , an in A, we have
A |= ϕ(a1, . . . , an) if and only if Â |= ϕ(a1, . . . , an), where Â is
the (τ, r)-localization of A. �

It follows that if we define τ -conn(A) as A|A1 ⊕ · · · ⊕ A|An ,
where the Ai’s are the maximal connected components of G(A|σ),
then A and τ -conn(A) agree on all FOPAT

σ (στ) formulae.
Some (τ, r)-local relations always exist: for instance, if τ con-

tains a single binary relation symbol S, then every structure A with
a connected Gaifman graph has a (S, 3)-local successor relation;
this follows from the fact that the cube of any connected graph is
Hamiltonian [31].

4. Locality of pattern logics
The goal of this section is to show strong locality results for the pat-
tern logic: one can prove analogs of Hanf and Gaifman theorems for
FOPAT

σ (στ) where neighborhoods are defined with respect to Gaif-
man graphs of σ-reducts only, i.e., τ -relations do not count for com-
puting the distance between two elements. This makes neighbor-
hoods smaller, and thus easier to make isomorphic; consequently it
makes these versions of locality easier to apply. One particular ap-
plication is the separation of FOPAT

σ (στ) from FO(στ); others will
be crucial for proving homomorphism preservation and decidabil-
ity results.

For a στ -structure A, we use δσ(a, b) to denote the distance be-
tween a and b in G(A|σ), the Gaifman graph that takes into account
only σ-relations. Note that δσ(x, y) ≤ r can be expressed as an
existential-positive FO(σ) formula, and δσ(x, y) > r as its nega-

tion. For ā = (a1, . . . , an), by N
A|σ
r (ā) we mean the substructure

of A induced by the set {b | δσ(b, ai) ≤ r for some i ≤ n}, to-
gether with n additional constants, interpreted as the elements of ā.
Note that while the elements of N

A|σ
r (ā) are those at distance ≤ r

from ā in G(A|σ), the structure N
A|σ
r (a) contains all the induced

relations of σ and τ .
Given two στ -structures A and B, we write (A, ā) �τ

d (B, b̄)
for ā ∈ An and b̄ ∈ Bn if there exists a bijection f : A→ B such
that for every c ∈ A,

N
A|σ
d (āc) ∼= N

B|σ
d (b̄f(c)).

We say that a formula ϕ(x̄) is Hanf-τ -local if there exists a
number d so that (A, ā) �τ

d (B, b̄) implies that A |= ϕ(ā) if and
only if B |= ϕ(b̄).

Theorem 4.1. Every formula of FOPAT
σ (στ) is Hanf-τ -local.

Proof. This can be seen as a consequence of Proposition 3.2 and
Hanf-locality of FO. Given a FOPAT

σ (στ) formula ϕ(x̄), let d be
so that (A, ā) �d (B, b̄) implies that A |= ϕ(ā) if and only
if B |= ϕ(b̄). It exists by Hanf-locality of FO. Let r be the
radius yielded by Proposition 3.2, so that A |= ϕ(ā) iff Aτ,r |=
ϕ(ā), where Aτ,r is the (τ, r)-localization of A. We then have that
d · r is the necessary radius. Indeed, if (A, ā) �τ

d·r (B, b̄), then
(Aτ,r, ā) �τ

d·r (Bτ,r, b̄) and therefore (Aτ,r, ā) �d (Bτ,r, b̄),
which means that Aτ,r |= ϕ(ā) if and only if Bτ,r |= ϕ(b̄). Since
Aτ,r |= ϕ(ā) ⇔ A |= ϕ(ā) and Bτ,r |= ϕ(ā) ⇔ B |= ϕ(ā), it
then follows that A |= ϕ(ā) iff B |= ϕ(b̄). �

If τ has only unary predicates, then FOPAT
σ (στ) = FOLOC

τ (στ) =
FO(στ), since connσ(x) is true for each x. However, with a single
non-unary predicate in τ , locality provides a separation result:

Corollary 4.2. FOPAT
σ (στ) $ FO(στ) if and only if τ has at least

one relation of arity > 1.

Proof. Let τ have a relation T of arity m > 1. Let ϕ say that
T is nonempty, i.e., ∃x1, . . . , xm T (x1, . . . , xm). Assume ϕ is
definable in FOPAT

σ (στ), and let d witness its Hanf-τ -locality. Take
A to be a structure on an m-element universe {a1, . . . , am} in
which all σ and τ relations are empty, and let B with the universe
{b1, . . . , bm} be like A except that T B contains a single tuple
(b1,bm). Since each neighborhood N

A|σ
r (a) is a singleton with

all relations empty (and likewise for B), the map f : ai 7→ bi, i ≤
m witnesses A �τ

d B. However, A |= ¬ϕ while B |= ϕ.
This contradicts Theorem 4.1 and shows that ϕ is not definable
in FOPAT

σ (στ). �

As a consequence of Hanf-τ -locality, we have the following
condition, known as Gaifman locality for formulae with free vari-
ables [32] (except that we again only look at neighborhoods defined
by σ-relations):

Corollary 4.3. For every FOPAT
σ (στ) formula ϕ(x̄), there is a

number r ≥ 0 so that N
A|σ
r (ā1) ∼= N

A|σ
r (ā2) implies that ā1 and

ā2 are indistinguishable by ϕ, i.e., A |= ϕ(ā1)↔ ϕ(ā2).

We can also show a strengthening of Gaifman’s theorem for
sentences. A basic FOPAT

σ (στ) local sentence is of the form

∃x1 . . . xn
(∧

1≤i<j≤n

δσ(xi, xj) > 2r ∧
∧
i≤n

ψr,σ(xi)
)
, (†)

where ψ is an FO(στ) formula with one free variable, and ψr,σ(x)

stands for the relativization of ψ to N
A|σ
r (x); that is, the result of re-

placing in ψ every subformula of the form ∃yθ with ∃y(δσ(x, y) ≤
r ∧ θ), and every subformula of the form ∀yθ with ∀y(δσ(x, y) ≤
r → θ). The locality radius of a basic local sentence is r. Its width
is n. The formula ψ is called the local condition.

While syntactically (†) is not an FOPAT
σ (στ) sentence, it can be

expressed in this logic. Indeed, it is easy to see that (†) is definable
in FOLOC

τ (στ): the first conjunct only refers to σ-relations, and
in ψr,σ(x), quantification is relativized to the r-neighborhood of
x, with respect to σ. Thus, for any occurrence of a τ relation
T (z1, . . . , zk), we know that all the zi’s must belong to the same
connected component of G(A|σ), and in particular be at distance at
most 2r from each other. Hence, each such atomic formula can be
replaced by ∃ȳ (T (z̄) ∧ connσ(z̄, x, ȳ)), where ȳ has k · (r − 1)
variables witnessing paths from each of the zi’s to x of length
at most r. This turns (†) into syntactically proper shape of an
FOLOC

τ (στ) sentence, and thus by Proposition 3.1 it is also an
FOPAT

σ (στ) sentence.
We now have an analog of Gaifman’s theorem:

Theorem 4.4. Every FOPAT
σ (στ) sentence is equivalent to a Boolean

combination of basic FOPAT
σ (στ) local sentences (†).

Proof. We make use again of Proposition 3.2, and of Gaifman’s
Theorem for FO. Given a FOPAT

σ (στ) sentence ϕ, by Gaifman’s
Theorem for FO it is equivalent to a Boolean combination of ba-
sic FO local sentences ψ1, . . . , ψn of the form (†). In particular, it
is equivalent to such a boolean combination on the class of (τ, r)-
localized structures, where r is as in Proposition 3.2. Over these
structures, one can see that each basic FO local sentence ψi with
locality radius ri is actually equivalent to a basic FOPAT

σ (στ) sen-
tence with locality radius ≤ r · ri. We then have that over (τ, r)-
localized structures ϕ is equivalent to a Boolean combination of ba-
sic FOPAT

σ (στ) local sentences. Then, by Proposition 3.2, this gen-
eralizes to the class of all structures. �

Note that, like for the analog of Hanf’s theorem, we define dis-
tance with respect to σ relations only: formulae ψr,σ can mention
both σ and τ relations, but the radius of quantification is deter-
mined just by σ. This is different from formulae ψr used in original
Gaifman’s theorem, which define neighborhoods with respect to all
vocabulary predicates (and thus neighborhoods could be larger). In
particular, it is easier to satisfy a basic FOLOC

τ local sentence than a
basic FO local sentence, which will make this version of Gaifman’s
theorem more valuable to us in the next sections.

5. Homomorphism preservation theorem
We now use locality results from the previous section to prove
a homomorphism preservation theorem (hpt) for a large class of
structures including ranked data forests. But first we explain the
concept and its applications in computer science.

5.1 HPT and its applications
Preservation theorems relate semantic properties of FO sentences
to their syntactic properties: for instance, a sentence is preserved
under extensions if and only if it is equivalent to an existential
sentence. A sentence ϕ is preserved under homomorphisms on
a class C of structures if, whenever we have a homomorphism
A→ B between two structures of C, then A |= ϕ implies B |= ϕ.
Then the hpt for C says that an FO sentence ϕ is preserved under
homomorphisms on C structures if and only if it is equivalent to
an existential positive sentence on C. It is very easy to check that
∃Pos sentences are preserved under homomorphisms; the crucial
part is the reverse direction.

When C is the class of all structures (finite and infinite), this is a
textbook model theory result. For finite structures, it had remained
an open problem for decades, before being confirmed by Rossman
[39] a few years ago. The hpt is also known for some classes of
well-behaved finite structures, for instance structures of bounded
treewidth [6, 18]. These are not consequences of Rossman’s the-
orem (since such classes of structures are not FO-definable), and

in fact versions of hpt in the finite tend to be quite hard results to
show.

At the same time, these preservation results often find applica-
tions in computer science. The reason for this is the special impor-
tance of the class of ∃Pos, especially in databases and constraint
satisfaction [1, 26]. In terms of their expressiveness, ∃Pos formu-
lae are equivalent to unions of conjunctive queries, or positive re-
lational algebra queries, cf. [1]. These are very common queries,
that also play a special role in many contemporary applications of
databases, for instance, data integration and exchange. In fact, hpt
was used for determining classes of mappings between database
schemas that one needs to use in data exchange applications [43]
and for characterizing properties of the chase procedure under vari-
ous types of mappings [21]. In constraint satisfaction, hpt is needed
to provide characterization of FO-definable CSP problems [5].

Another area where the hpt proved very useful is handling
incomplete data [1, 29]. Suppose we have an FO structure (i.e.,
a relational database) whose elements come from two sets: C of
constants and V of variables (also called nulls in the database
terminology). For instance, G = {(1, x), (x, y), (y, 2)} is a graph
whose nodes are 1, 2 ∈ C and x, y ∈ V . We view variables as
instances of incompleteness: we do not know what these nodes
actually are. Another instance of incompleteness is that some edges
may be missing altogether. Thus, one defines the semantics of an
incomplete structure A as the set [[A]] of structures A′ over C so
that there is a homomorphism f : A → A′ which is the identity
on C. For instance,G′ = {(1, 3), (3, 4), (4, 2), (5, 3)} is in [[G]], as
witnessed by the homomorphism x 7→ 3, y 7→ 4.

If we now have an FO sentence (query) ϕ, the standard way
of answering it over an incomplete structure A is to find certain
answers �ϕ: that is, A |= �ϕ iff A′ |= ϕ for each A′ ∈ [[A]] (see
[1, 29]). In general, for arbitrary FO formulae, checking if A |= �ϕ
is an undecidable problem, as it is a form of finite validity. However,
if ϕ is an ∃Pos sentence, then

A |= �ϕ ⇔ A |= ϕ (1)

(cf. [29]). This says that to evaluate ϕwith certainty over an incom-
plete database, we just have to use the standard query evaluation
engine and simply evaluate ϕ itself. This is a very desirable prop-
erty, and thus it is natural to ask how far it extends. With the help of
hpt in the finite one can answer this: if (1) holds for an FO sentence
ϕ, then ϕ is equivalent to an ∃Pos sentence [33]. Thus, unions of
conjunctive queries are the maximal class of FO queries for which
certain answers can be found by straightforward query evaluation.

The connection between hpt and query evaluation does not stop
here: it extends to other relational semantics of incompleteness
and other notions of homomorphisms [25]. What is more problem-
atic is extending it to XML with incomplete information [2, 8].
Even though the underlying structure of XML documents is that
of trees, adding arbitrary data-equality predicates destroys their
small treewidth and all other properties for which the hpt is known
[6, 18].

Thus, in addition to the general interest in hpt results in finite
model theory, they come with concrete applications, and there are
open problems related to them, in particular in the context of XML
with data values. One of those will be settled in the next section.

5.2 HPT for the pattern logic
We first state formally what it means for a logic to satisfy the hpt
over a class C. Suppose we have a logic L that has an existential
positive fragment ∃PosL (for instance, FO, or FOPAT

σ , or FOLOC
τ). A

sentence ϕ of L is preserved under homomorphisms on C if for
every two structures A,B ∈ C such that there is a homomorphism
h : A → B, we have that A |= ϕ implies B |= ϕ. Then the

homomorphism preservation theorem (hpt) holds for L over C if
the following two conditions are equivalent for a sentence ϕ of L:

• ϕ is preserved under homomorphisms on C;
• ϕ is equivalent to an ∃PosL sentence on C.

We now state an hpt result for the pattern logic. Let C be a class
of στ -structures. Given a structure A, we say that a set X ⊆ A
is r-scattered if δ(x, y) > 2r for all distinct x, y ∈ X , and it is
σ, r-scattered if δσ(x, y) > 2r for all distinct x, y ∈ X . We say
that C is σ-wide if for all r,m > 0, there exists a number n so
that each A ∈ C with |A| > n has a σ, r-scattered set of size m.
An example is the class of structures whose σ-reducts have degree
bounded by a fixed number k.

Theorem 5.1. Let C be a class of finite στ -structures that is
closed under disjoint unions and induced substructures, and is
σ-wide. Then the homomorphism preservation theorem holds for
FOPAT

σ (στ) over C.

Before we outline the proof of this theorem, we mention a few
applications. We start with the class of data forests. Recall that
in this case, σ contains the child relation ch, while τ contains
unary labeling predicates and the binary data equality predicate
∼ (actually, it makes no difference whether the unary predicates
belong to σ or to τ). Note that the class of data forests DF is
closed under disjoint unions and induced substructures. Thus, the
hpt holds for every wide class of data forests with respect to the
child relation. Clearly, the class of ranked data forests is such, and
hence we get:

Corollary 5.2. The hpt holds for the pattern logic over DFk, for
every k > 0.

We can further extend this using the notion of moderate degree,
or degree bounded by no(1), from [40]. We say that a class C of σ-
structures is of moderate degree if all the degrees in their Gaifman
graphs are bounded by no(1) for all sufficiently large structures.
That is, for every ε > 0, there exists N > 0 so that for every
structure A ∈ C of size n ≥ N , the maximum degree in G(A) is
less than nε. A class C of data forests is of moderate degree if the
class of its ch-reducts (i.e., the trees themselves) is.

One can show that the class of data forests of moderate degree
is ch-wide. Thus:

Proposition 5.3. The hpt holds for the pattern logic over data
forests of moderate degree.

Proof. Let C be a class of forests of moderate degree; assume that
f(n) is the maximum degree in a forest having n nodes. We show
that C is ch-wide; that will suffice to conclude the corollary.

Fix r,m > 0. Let d = (2r + 2)m, and let ε = 1
d+1

. Then,
for all n ≥ md+1, we have d

√
n/m ≥ nε. Thus, for some N0

depending on m and r, we have for all n ≥ N0:
n

m
≥ f(n)d . (2)

Indeed, otherwise we would have n
m
< f(n)d for arbitrarily large

n, and thus f(n) >
(
n
m

)1/d ≥ nε for arbitrarily large n, which is
impossible since C is of moderate degree.

Suppose we have a forest of size n for n > N0. Assume that
it has m or more connected components. Then it clearly has an r-
scattered set of size m. So assume it has fewer than m connected
components (trees); then at least one of them, t, is of size at least
n/m. We know that if we we have a tree of branching factor at most
k and size at least kd, then it has a branch of length at least d. Since
|t| ≥ n

m
≥ f(n)d, by (2), we see that t0 has a branch of length

d = (2r+ 2)m. Therefore, this branch alone has an r-scattered set
of size m. �

This has direct implications for evaluating queries over XML
documents with incomplete information. Such documents are mod-
eled as forests where each node is assigned a data value from either
a set C of constants or a set V of variables; one can think of them as
direct analogs of incomplete relational databases. We refer to them
as XML forests. These provide the actual model of incomplete XML
that is abstracted as data forests; in the latter, instead of having a po-
tentially infinite set of data values, we only have the data equality
predicate. Some models of incomplete XML deal with more com-
plex structural incompleteness than the forest structure [2, 8], but
we do not consider them here as they quickly lead to intractability
of query evaluation [8].

Query languages considered for incomplete XML documents
are usually pattern logics [2, 8, 13, 17] or their fragments. As ex-
plained in section 5.1, it is crucial for us to know when checking
A |= �ϕ is equivalent to checking A |= ϕ, i.e., when finding cer-
tain answers can be replaced by straightforward query evaluation.
In the database terminology, one says that naı̈ve evaluation works
for ϕ. While this is known for relational databases [33], for XML
the problem is open. We can now settle it for child-pattern queries
and the class of XML documents whose branching degree is not
very large.

Corollary 5.4. Let ϕ be a FOPAT
ch sentence and C a class of XML

incomplete documents of fixed or moderate degree. Then naı̈ve
evaluation works for ϕ over C if and only if ϕ is equivalent to
an ∃PosPAT

ch sentence over C.

This follows from Corollary 5.2 and Proposition 5.3, and the
result from [25] showing the equivalence of naı̈ve evaluation on a
class C and preservation under homomorphisms on the same class.

5.3 Proof of Theorem 5.1
Due to Proposition 3.1, it suffices to prove the result for FOLOC

τ . As
before, we omit the στ vocabulary from notations when it is clear
from the context. That each formula of ∃PosLOC

τ is preserved under
homomorphisms is immediate by a straightforward induction on
the structure of the formula. Thus, we prove the opposite direction.

We say that B is a segregated substructure of A if there are
pairwise disjoint subsets A1, . . . , An of A so that B = A|A1 ⊕
· · · ⊕A|An . We writevseg for the segregated substructure relation.
Note that a class of structures C is closed under disjoint unions
and induced substructures if and only if it is closed under disjoint
unions and segregated substructures.

For a sentence ϕ preserved under homomorphisms on a class of
structures C, we say that A ∈ C is a vseg-minimal model of ϕ in
C if A |= ϕ and for every proper substructure B vseg A, A 6vseg B
such that B ∈ C, we have B 6|= ϕ.

The term conjunctive query [1] denotes formulae of the form
∃x1, . . . , xn θ, where θ is a conjunction of atomic formulae. Every
finite structure A with n elements gives rise to a canonical con-
junctive query ϕA, which is the existential closure of its positive di-
agram, i.e., ϕA = ∃x̄∆A(x̄), where x̄ is the set of all variables used
in ∆A. Conversely, every conjunctive query ϕ = ∃x1, . . . , xn θ
gives rise to a canonical structure Aϕ with n elements, known as its
tableau [1], where the elements of A are the variables x1, . . . , xn,
and the relations of A consist of the tuples of variables in the con-
juncts of θ. The following is well known (cf. [1, 26]). If A and B
are two finite structures, then

∃ homomorphism A→ B ⇔ B |= ϕA ⇔ ϕB |= ϕA. (3)

Not all structures have a canonical conjunctive query that is a
formula of FOLOC

τ . Nevertheless, those structures A so that A =
τ -conn(A) do have a canonical FOLOC

τ conjunctive query.

Lemma 5.5. For every A so that A = τ -conn(A), the canonical
conjunctive query ϕA is definable in FOLOC

τ .

Indeed, note that any two elements a, b of A related by a re-
lation T ∈ τ belong to the same connected component, and thus
δσ(a, b) ≤ n for n = |A|. It is then immediate that ϕA is definable
in FOLOC

τ .
Also, from the definition of FOLOC

τ we have that for every struc-
ture A and FOLOC

τ sentence ϕ,

A |= ϕ ⇔ τ -conn(A) |= ϕ. (4)

Lemma 5.6. Let C be a class of finite στ -structures closed under
segregated substructures and let ϕ be a FOLOC

τ sentence that is
preserved under homomorphisms on C. Then the following are
equivalent:

1. ϕ has finitely many vseg-minimal models in C up to isomor-
phism.

2. ϕ is equivalent on C to a ∃PosLOC
τ sentence.

Proof of the lemma. For the 1. ⇒ 2. direction, take any vseg-
minimal model A of ϕ. Note that A must be so that τ -conn(A) =
A, since otherwise τ -conn(A) would be a strict segregated sub-
structure of A where τ -conn(A) |= ϕ, by (4). Indeed, τ -conn(A) ∈
C by the hypothesis, and hence A would not be vseg-minimal. Let
ϕA be the canonical conjunctive FOLOC

τ query of A (it is definable
in FOLOC

τ due to Lemma 5.5). We define the existential positive for-
mula ψ as the disjunction of all ϕA for eachvseg-minimal model A
of ϕ. We next show that ψ and ϕ are equivalent.

Note that, by (3), we have that B |= ϕA iff there is a homo-
morphism from A to B. If B |= ψ then B |= ϕA for some disjunct
ϕA of ψ, and hence there is a homomorphism from A to B, by (3).
Since A |= ϕ and ϕ is closed under homomorphisms, then B |= ϕ.
Conversely, if B |= ϕ there must be some vseg-minimal A vseg B
so that A |= ϕ. Hence, ψ contains ϕA as a disjunct, meaning that
A |= ψ.

For the 2. ⇒ 1. direction, by propagating disjunctions, we can
convert every existential-positive ∃PosLOC

τ formula ϕ is equivalent
to a finite disjunction

∨m
i=1 ψi, where each ψi is a conjunctive

query. For each such conjunctive query ψi, let Ai be the canonical
finite structure associated with ψi, 1 ≤ i ≤ m. Note that such a
canonical structure Ai need not be a member of C. Nonetheless,
it is easy to see that every vseg-minimal model B of ϕ in C is
equal to a homomorphic image h(Ai) of one of the canonical finite
structures Ai, 1 ≤ i ≤ m. Thus, the cardinality of every vseg-
minimal model of ϕ in C is less than or equal to the maximum
cardinality of the canonical finite structures Ai, 1 ≤ i ≤ m, which
implies that ϕ has finitely many vseg-minimal models in C. This
proves the lemma.

The proof is based on the fact that ∃PosLOC
τ sentence is a union of

conjunctive queries (i.e., the ∃,∧ fragment of FOLOC
τ), and that the

canonical conjunctive query ϕA of a structure A (i.e., the existential
closure of the positive diagram of A) is definable in FOLOC

τ as long
as A = τ -conn(A).

The main consequence of Lemma 5.6 is that in order to establish
that C has the homomorphism preservation property, it suffices to
establish an upper bound on the size of the vseg-minimal models.
This is done by:

Proposition 5.7. Let C be a class of στ -structures that is closed
under disjoint unions and induced substructures. For every FOLOC

τ

sentence ϕ that is preserved under homomorphisms, there are
r,m ∈ N such that if A is a vseg-minimal model of ϕ, then A
does not contain a σ, r-scattered set of size m.

The idea of the proof is as follows. Suppose ϕ is an FOLOC
τ

sentence preserved under homomorphisms. Let Σ = {ϕ1, . . . , ϕs}
be a collection of basic local sentences of the form (†) such that
ϕ is equivalent to a Boolean combination of them. It exists by
Theorem 4.4. For each i ≤ s, let ti be the locality radius, ni the

width and ψti,σi (x) the local condition of ϕi. Also, let t = maxi ti
and n = maxi ni. We take r = 2t and m = 2s+|στ | + 1. For each
i, we write θi(y) for the formula ∃x

(
δσ(x, y) ≤ ti ∧ ψti,σi (x)

)
.

By means of contradiction, suppose that A is a model of ϕ so
that A contains an σ, r-scattered set {c1, . . . , cm} of size m. Then,
by definition N

A|σ
r (ci) ∩ N

A|σ
r (cj) = ∅ for i 6= j. Furthermore,

since m > 2s+|στ |, there are i and j with i 6= j such that

• for all l, A |= θl(ci) if, and only if, A |= θl(cj); and

• for all S ∈ στ , (ci, . . . , ci) ∈ SA if, and only if, (cj , . . . , cj) ∈
SA.

We then prove that there is some relation R ∈ στ so that there
is some tuple ē ∈ RA so that ē includes ci and some other element
a 6= ci. This implies that B = A|A\{ci} ⊕ A|{ci} is a proper
segregated substructure of A, and thus B ∈ C. Take Bn to be the
disjoint union of n copies of B. We then prove

A⊕ Bn |= ϕ iff Bn |= ϕ. (5)

To prove this, we show that no ϕl distinguishes between A ⊕ Bn
and Bn. By symmetry, we restrict our attention to the case l = 1.

[⇐] Since Bn is isomorphic to an induced substructure of A ⊕
Bn, A⊕ Bn satisfies ϕ1 if Bn does.

[⇒] We suppose that (A⊕Bn)|σ has a σ, 2t1-scattered subsetX
of cardinality n1 such that N

(A⊕Bn)|σ
t1

(x) |= ψ1(x) for all x ∈ X
and prove that Bn has such a subset X ′ as well. The case n1 > 1
is easy. In this case, the t1-neighborhood of some x ∈ X does not
contain any of the tuples of Eci . Then, N

B|σ
t1

(x) = N
A|σ
t1

(x) and
therefore each of the n summands of Bn has a t1-neighborhood
isomorphic to N

A|σ
t1

(x). Since n ≥ n1, we can take n1 distinct
elements {x1, . . . , xn1} = X ′ from Bn so that for every j ∈
[1, n1], xj is in the jth summand of Bn and N

B|σ
t1

(xj) = N
A|σ
t1

(x)
(and therefore satisfies ψ1).

Suppose then that n1 = 1 and let x be the only element of
X . It suffices to prove that A contains an element y such that
N

A|σ
t1

(y) does not contain any of the tuples of Eci and N
A|σ
t1

(y) |=
ψ1(y). If N

A|σ
t1

(x) does not contain any of the tuples of Eci , we
have finished; so suppose that N

A|σ
t1

(x) contains ē ∈ Eci . Then
δσ(ci, x) ≤ t1 and therefore N

A|σ
2t1

(ci) satisfies θ1(ci). Recall that
ci is equivalent to cj and δσ(ci, cj) > 2r ≥ 4t1. Hence N

A|σ
2t1

(cj)
satisfies θ1(cj) and does not contain any of the tuples ofEci . Hence
there exists y ∈ A such that N

A|σ
t1

(y) |= ψ1(y) and N
A|σ
t1

(y) is
included in N

A|σ
2t1

(cj) and therefore does not contain any of the
tuples of Eci . This concludes the proof of (5).

Since ϕ is preserved under homomorphisms, and by assumption
A |= ϕ, the existence of a homomorphism A → A ⊕ Bn implies
A ⊕ Bn |= ϕ. By (5), we get Bn |= ϕ, and since we have a
homomorphism Bn → B, we conclude B |= ϕ. As B is a proper
segregated substructure of A in C, we have that A is not a vseg-
minimal model of ϕ. This contradiction proves the proposition.

We now conclude the proof. Let ϕ ∈ FOLOC
τ be preserved under

homomorphisms on C. By Proposition 5.7, there are r,m > 0 so
that any vseg-minimal model A of ϕ does not have a σ, r-scattered
set of size m. Since the class is σ-wide, this implies that there
is n > 0 so that every vseg-minimal model A of ϕ has size at
most n. Thus, up to isomorphism, there are finitely many vseg-
minimal models A of ϕ in C. This, by Lemma 5.6, implies that
ϕ is equivalent to a ∃PosLOC

τ sentence.

6. Decidability of pattern logics
The main initial direction in the study of the data equality predicate
for tree-like structures was to extend decidability results of logics
for words and trees to those that admit data values as well [14–
16, 41]. The motivation for this is static analysis of XML queries.
The well known correspondence of XML structural properties and
tree automata (cf. [44]) gives us many decidable static analysis
tasks, but the connection with automata fails when data values from
an infinite set are added. Indeed, FO is undecidable over data trees
(even data words). Hence, it was necessary to impose restrictions.
The usual way of doing so is by restricting the number of variables:
[16] showed that FO2, first-order logic with two variables, is de-
cidable over data trees, while FO3 is not. Similar results hold for
data words even in the presence of an order [15], and some ex-
tensions, of more automata-theoretic flavor, have been proposed as
well [14, 42].

The problem with FO2 is that it is quite restricted for XML
querying. While some useful queries, in particular some fragments
of XPath, can be captured by it [35], more expressive fragments of
XPath, and crucially, more expressive queries that can use more
complex patterns [3, 17, 35, 36, 44] are not captured at all by
restricting the number of variables. At the same time, many such
querying mechanisms are based on patterns, so perhaps one can
recover decidability using pattern logics?

6.1 Decidability of pattern logics
By decidability of course we mean decidability of the satisfiability
problem. A logic L is decidable on a class C if the following
problem is decidable: given a sentence ϕ of L, check whether there
exists A ∈ C so that A |= ϕ.

Our results show that in particular, the pattern logic is decidable
on the class of ranked data trees. In fact we prove a more general
result that allows other auxiliary relations on trees, not just the
data equality predicate (e.g., other equivalence relations or linear
orders).

Recall that by τ -trees we mean {ch} t τ -structures where ch
is interpreted as a child relation of a tree. Thus, we deal with
the pattern logic FOPAT

ch ({ch} t τ) over τ -trees. We now define
conditions on τ that make it decidable. Those will go beyond
having a single data-equality predicate ∼ in τ (i.e., beyond data
trees).

Recall that root(A) stands for the root of a τ -tree, and A�a is
the {ch} t τ -substructure induced by the subtree rooted at a. For
τ -trees A1, . . . ,Am ∈ C we define ΣC(A1, . . . ,Am) as the set

{A ∈ C | root(A) has exactly m children a1, . . . , am,
and for all i ≤ m we have A�ai = Ai}.

We say that C is an effective inductive class of τ -trees if three
conditions hold:

1. Testing whether a structure A is in C is decidable;

2. C is closed under subtrees, i.e., for every A ∈ C and a ∈ A,
the structure A�a is in C;

3. for each r ≥ 0 and structures A1, . . . ,Am ∈ C, the set
{NA|σ

r (root(A)) | A ∈ ΣC(A1, . . . ,Am)} is computable from
{NAi|σ

r (root(Ai)) | 1 ≤ i ≤ m}.
Theorem 6.1. Let C be an effective inductive class of k-ranked
τ -trees. Then FOPAT

ch ({ch} t τ) is decidable on C.

Before sketching the proof, we give a few corollaries. An exam-
ple of an effective inductive class is the class of trees with

• the sibling order relation sib,
• n equivalence relations ∼1, . . . ,∼n,

• m linear orders ≤1, . . . ,≤m, and
• l partial orders �1, . . . ,�l.

This is an extension of the class of data trees, since one of the
equivalence relations can be viewed as the data equality predicate.

Corollary 6.2. The pattern logic FOPAT
ch is decidable on ranked data

trees, even expanded with a sibling order and an arbitrary number
of equivalence relations and partial and linear orders.

The satisfiability problem for FOPAT
ch is not affected by adding a

prefix of existential monadic second order quantifiers: the proof
goes through as before, with extra unary relations. Thus, if we
define ∃MSOPAT

σ (στ) as formulae of the form ∃X1 . . . Xn ϕ, where
ϕ is an FOPAT

σ (σ t τ t {X1, . . . , Xn}) formula and X1, . . . , Xn
are unary predicates, then we obtain:

Corollary 6.3. The logic ∃MSOPAT
ch is decidable on ranked data

trees even with a sibling order and an arbitrary number of equiva-
lence relations and partial and linear orders.

The reason Corollary 6.3 is useful is that many static analysis
tasks for XML are considered with respect to a regular tree lan-
guage [41], as regular languages provide a standard abstraction of
XML schema languages [44]. Thus, satisfiability of a logic L rel-
ative to a tree automaton is the following problem: given a tree
automaton TA, and a formula ϕ of L, is there a tree (with extra
relations such as the data equality relation) that satisfies ϕ and is
accepted by TA?

Since encoding a tree automaton on a ranked tree is expressible
in ∃MSO over vocabulary {ch, sib}, with references to sib local
(i.e., restricted to ch-neighborhoods of radius 2), we obtain:

Corollary 6.4. If C is an effective inductive class of ranked τ -
trees, then the satisfiability problem for FOPAT

ch ({ch}t τ) relative to
a tree automaton is decidable on C.

In particular, it is decidable whether a data tree satisfying a
FOPAT

ch sentence exists in a given regular tree language.

Sketch of the proof of Theorem 6.1. The decidability result is
another consequence of Gaifman locality theorem for the pattern
logic. Let σ = {ch}, and let ϕ be a FOPAT

σ (στ) sentence, where τ
is as in the statement of the theorem. In the proof we assume that
τ contains a sibling order relation sib. This is without any loss of
generality, since it can be shown that any effective inductive class
of ranked trees continues to be effective inductive if we add the
sibling order relation. By Theorem 4.4, ϕ is equivalent to a Boolean
combination of basic FOPAT

σ local sentences. Let r be the bound on
the locality radius and let n be the bound on the width of these basic
FOPAT

σ local sentences.
The sibling number of an element a of a tree A is one plus the

number of previous siblings it has in the order sib (note that the
sibling number of the root is 1). Given two elements a, a′ from a
tree A so that a is an ancestor of a′, we write path(a, a′) ∈ N∗ to
denote the string representing the path between a and a′:

• if a = a′ then path(a, a′) = ε, the empty string,
• otherwise, path(a, a′) = path(a, a′′) · i where i is the sibling

number of a′, and a′′ is the parent of a′.

For any k-ranked ordered τ -tree A with root a, consider the
function ξA with domain [1, r] × [1, n], so that for every r̂ ∈
[1, r] and n̂ ∈ [1, n], its value ξA(r̂, n̂) is the set of all n̂-tuples
〈(NA|σ

r̂ (a1), p1), . . . , (N
A|σ
r̂ (an̂), pn̂)〉 so that a1, . . . , an̂ ∈ A, the

distance δσ(ai, aj) is greater than 2 · r̂ whenever i 6= j, and pi is
defined as path(a, ai) if δσ(a, ai) ≤ 2 · r̂ and as∞ otherwise, for
all i ≤ n. Note that there can be at most one i ∈ [1, n̂] so that
|pi| ≤ r̂ in each tuple (if there were two, they must be at distance

≤ 2 · r̂ from each other). Note also that the sizes of N
A|σ
r̂ (ai) are

bounded by a function on k and r since C contains only k-ranked
trees. Thus, it follows that once r and n are fixed,

Ξ
def
= {(ξA,NA|σ

2r (root(A))) | A ∈ C}
is finite (assuming, of course, that we do not distinguish isomorphic
structures). We will call (ξA,N

A|σ
2r (root(A))) the neighborhood

description of A. Note that by Gaifman locality, whether A |= ϕ
holds is determined by ξA (and there is an effective procedure to
verify this). We now show how to compute Ξ.

The key property to do this is the following lemma.

Lemma 6.5. Let a be the root of A ∈ C and let a1, . . . , am,
for m ≤ k, be the children of a. Then ξA is computable from
ξA�a1 , . . . , ξA�am and N

A|σ
2r (a).

Using the lemma, we can show that the following is the correct
procedure to compute Ξ:

1. Let Ξ0 contain all (ξA,A) such that A ∈ C andA is a singleton.

2. Set Ξ := Ξ0.

3. Let (ξ1,A1), . . . , (ξm,Am) ∈ Ξ for some m ∈ [1, k]. Thus,
there are structures A′i ∈ C so that Ai = N

A′
i|σ

2r (root(A′i)) and
ξi = ξA′

i
for all i ∈ [1,m].

4. Let A′ ∈ {NA|σ
2r (root(A)) | A ∈ ΣC(A1, . . . ,Am)}. All

such A′ can be computed, since C is effective inductive and
Ai = N

A′
i|σ

2r (root(A′i)) for each i ≤ m.

5. Compute ξ′ from {ξi}i∈[1,m] and A′ as in Lemma 6.5.

6. Add (ξ′,A′) to Ξ.

7. Repeat steps 3–6 until there is no change to Ξ.

Now the decision procedure is simple: to verify whether ϕ is
satisfiable, it suffices to test whether there is a neighborhood de-
scription in Ξ of a structure in which ϕ holds. Due to Gaifman lo-
cality theorem, whether A |= ϕ depends only on the neighborhood
description of A and ϕ, and thus the theorem follows. �

6.2 Undecidability results
A natural question is whether the decidability result continues to
hold if trees need not be ranked. The answer to this is negative.
We start with a simple observation that gives us undecidability for
pattern logics with the next-sibling order relation sib.

Corollary 6.6. The pattern logic FOPAT
ch,sib is undecidable on un-

ranked data trees, even of height 1.

This is a consequence of the undecidability of FO on data
words [15], since the entire tree of height one becomes a radius-
one neighborhood of the root, and in the presence of the sibling
ordering, it contains full FO on the data word of the root’s children.

But even without the sibling order, the pattern logic is undecid-
able once the restriction to ranked trees is removed.

Theorem 6.7. The logic FOPAT
ch is undecidable over arbitrary data

trees.

The proof is by encoding of 2-counter Minsky machines and
reduction from the undecidability of their emptiness problem.

7. Conclusions
We have shown that pattern logics over structures with auxiliary
relations behave quite well and preserve several properties of the
underlying logic. We showed strong versions of Hanf and Gaif-
man locality theorems that do not use auxiliary relations in defin-
ing vertices of neighborhoods. We established a general homomor-

phism preservation theorem that covers classes of structures not
covered by previously known homomorphism preservation results.
Finally, we proved decidability of the pattern logic for a large class
of data trees. Note that the very notion of pattern logic is directly
inspired by querying modern data models such as XML and graph
databases. In fact our results can be applied to querying XML and
graph data with incomplete information and to reasoning about
XML with data values.

A few questions remain. The best homomorphism preservation
result that we have is for unranked trees of moderate degree. We
do not yet know if this restriction can be lifted. For instance, we do
not know if the homomorphism preservation theorem holds if the
σ-reduct has bounded treewidth, nor do we know what happens on
unranked trees with the sibling order/successor. We also would like
to explore connections between our results and those on invariance,
in particular, we would like to see whether our techniques can be
used to provide new results on the behavior of invariant queries.
The fact that some common auxiliary relations (e.g., successor) can
be defined locally, suggests that this might be a possible route for
establishing new results in a notoriously hard area.

Acknowledgments We are very grateful to anonymous reviewers
for their comments, especially for pointing out the current simple
proofs of locality theorems in Section 4. Work supported by EP-
SRC grant J015377.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying
XML with incomplete information. ACM TODS, 31(1):208–254,
2006.

[3] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree
pattern query minimization. VLDB J., 11(4):315–331, 2002.

[4] M. Anderson, D. van Melkebeek, N. Schweikardt, and L. Segoufin.
Locality of queries definable in invariant first-order logic with arbi-
trary built-in predicates. In ICALP, pages 368–379, 2011.

[5] A. Atserias. On digraph coloring problems and treewidth duality. In
LICS, pages 106–115, 2005.

[6] A. Atserias, A. Dawar, and P. Kolaitis. On preservation under homo-
morphisms and unions of conjunctive queries. J. ACM, 53(2):208–
237, 2006.

[7] P. Barceló. Querying graph databases. In PODS, pages 175–188,
2013.

[8] P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo. XML with incom-
plete information. J. ACM, 58(1):4, 2010.

[9] P. Barceló, L. Libkin, and J. Reutter. Querying regular graph patterns.
J. ACM, 61(1), 2014.

[10] M. Benedikt and L. Segoufin. Towards a characterization of order-
invariant queries over tame graphs. J. Symb. Log., 74(1):168–186,
2009.

[11] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based
data access: a study through disjunctive datalog, CSP, and MMSNP.
In PODS, pages 213–224, 2013.

[12] H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive
queries over trees using schema information. In MFCS, pages 132–
143, 2008.

[13] H. Björklund, W. Martens, and T. Schwentick. Conjunctive query
containment over trees. J. Comput. Syst. Sci., 77(3):450–472, 2011.

[14] M. Bojańczyk. Automata for data words and data trees. In RTA, pages
1–4, 2010.

[15] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data words. ACM TOCL, 12(4):27,
2011.

[16] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

[17] C. David, A. Gheerbrant, L. Libkin, and W. Martens. Containment of
pattern-based queries over data trees. In ICDT, pages 201–212, 2013.

[18] A. Dawar. Homomorphism preservation on quasi-wide classes. J.
Comput. Syst. Sci., 76(5):324–332, 2010.

[19] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer, 1995.

[20] K. Etessami and N. Immerman. Reachability and the power of local
ordering. Theor. Comput. Sci., 148(2):261–279, 1995.

[21] R. Fagin and P. Kolaitis. Local transformations and conjunctive-query
equivalence. In PODS, pages 179–190, 2012.

[22] R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs.
monadic co-NP. Inf. & Comput., 120(1):78–92, 1995.

[23] W. Fan. Graph pattern matching revised for social network analysis.
In ICDT, pages 8–21, 2012.

[24] H. Gaifman. On local and non-local properties. In Proceedings
Herbrand Symposium Logic Colloquium, North Holland, 1981, pages
105–135, 1982.

[25] A. Gheerbrant, L. Libkin, and C. Sirangelo. When is naı̈ve evaluation
possible? In PODS, pages 75–86, 2013.

[26] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, and
S. Weinstein. Finite Model Theory and its Applications. Springer,
2008.

[27] M. Grohe and T. Schwentick. Locality of order-invariant first-order
formulas. ACM Trans. Comput. Log., 1(1):112–130, 2000.

[28] W. P. Hanf. Model-theoretic methods in the study of elementary logic.
In The Theory of Models, pages 132–145. North Holland, 1965.

[29] T. Imielinski and W. Lipski. Incomplete information in relational
databases. J. ACM, 31(4):761–791, 1984.

[30] N. Immerman. Descriptive Complexity. Springer, 1999.
[31] J. J. Karaganis. On the cube of a graph. Canadian Math. Bull., 11:295–

296, 1968.
[32] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[33] L. Libkin. Incomplete information and certain answers in general data

models. In PODS, pages 59–70, 2011.
[34] L. Libkin and D. Vrgoč. Regular path queries on graphs with data. In

ICDT, pages 74–85, 2012.
[35] M. Marx. Conditional XPath. ACM TODS, 30(4):929–959, 2005.
[36] G. Miklau and D. Suciu. Containment and equivalence for a fragment

of XPath. J. ACM, 51(1):2–45, 2004.
[37] H. Niemistö. On locality and uniform reduction. In LICS, pages 41–

50, 2005.
[38] B. Rossman. Successor-invariant first-order logic on finite structures.

J. Symb. Log., 72(2):601–618, 2007.
[39] B. Rossman. Homomorphism preservation theorems. J. ACM, 55(3),

2008.
[40] T. Schwentick. On winning Ehrenfeucht games and monadic NP. Ann.

Pure Appl. Logic, 79(1):61–92, 1996.
[41] L. Segoufin. Static analysis of XML processing with data values.

SIGMOD Record, 36(1):31–38, 2007.
[42] T. Tan. An automata model for trees with ordered data values. In LICS,

pages 586–595, 2012.
[43] B. ten Cate and P. Kolaitis. Structural characterizations of schema-

mapping languages. In ICDT, pages 63–72, 2009.
[44] V. Vianu. A Web odyssey: From Codd to XML. In PODS, pages 1–15,

2001.

