
On XPath with Transitive Axes and Data Tests∗

Diego Figueira
University of Edinburgh

Edinburgh, UK

ABSTRACT
We study the satisfiability problem for XPath with data
equality tests. XPath is a node selecting language for XML
documents whose satisfiability problem is known to be unde-
cidable, even for very simple fragments. However, we show
that the satisfiability for XPath with the rightward, leftward
and downward reflexive-transitive axes (namely following-
sibling-or-self, preceding-sibling-or-self, descendant-or-self) is
decidable. Our algorithm yields a complexity of 3ExpSpace,
and we also identify an expressive-equivalent normal form
for the logic for which the satisfiability problem is in 2Exp-
Space. These results are in contrast with the undecidabil-
ity of the satisfiability problem as soon as we replace the
reflexive-transitive axes with just transitive (non-reflexive)
ones.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Markup Languages; H.2.3
[Database Management]: Languages; H.2.3 [Languages]:
Query Languages

General Terms
Algorithms, Languages

Keywords
XML, XPath, unranked unordered tree, reflexive transitive
axes, data-tree, infinite alphabet, data values

∗
We acknowledge the financial support of the Future and Emerging

Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under the FET-
Open grant agreement FOX, number FP7-ICT-233599.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

1. INTRODUCTION
The simplest way of abstracting an XML document is by

seeing it as a tree over a finite alphabet of tags or labels.
However, this abstraction ignores all actual data stored in
the document attributes. This is why there has been an
increasing interest in data trees: trees that also carry data
from an infinite domain. Here, we consider an XML mod-
eled as an unranked ordered finite tree whose every node
contains a label, and a vector of data values, one for each
attribute. Labels belong to some finite alphabet, and data
values to some infinite domain. We call these models multi-
attribute data trees (see Figure 1). We study logics on these
models, that can express data properties, namely equality
of attributes’ data values.

Here, we show decidability of the satisfiability problem
for XPath where navigation can be done going downwards,
rightwards or leftwards in the XML document, that is, where
navigation is done using the reflexive-transitive XPath axes
descendant-or-self, following-sibling-or-self, and preceding-si-
bling-or-self.

Formalisms for trees with data values
Several formalisms have been studied lately in relation to
static analysis on trees with data values.

First-order logic.
One such formalisms is FO2(<h, succh, <v, succv,∼), first

order logic with two variables, and binary relations to nav-
igate the tree: the descendant <v, child succv, next sibling
succh and following sibling <h (i.e., the transitive closure
of succh); and an equivalence relation ∼ to express that
two nodes of the trees have the same data value. Although
the decidability status for the satisfiability problem of this
logic is unknown, it is known to be as hard as the reachabil-
ity problem for BVASS (Branching Vector Addition System
with States) [4]. If the signature has only the child and
next sibling relation—FO2(succh, succv,∼)—the logic is de-
cidable in 3NExpTime as shown in [4].

Automata.
There have also been works on automata models for trees

with data. Tree automata with registers to store and com-
pare data values were studied in [20] as an extension to a
similar model on words [19, 22]. A decidable alternating ver-
sion of these automata called ATRA was studied in [18], and
it was extended in [9, 12] to show decidability of the satisfia-
bility problem for forward-XPath. The work [3] introduces a
simple yet powerful automata model called Class Automata

on data trees that can capture FO2(<h, succh, <v, succv,∼),
XPath, ATRA, and other models. Although its emptiness
problem is undecidable, classes of data trees for which it is
decidable are studied in [1]. Other formalisms include tree
automata with set and linear constraints on cardinalities of
sets of data values [6, 23].

XPath.
Here we concentrate on XPath, which is incomparable in

terms of expressiveness with all the previously mentioned
formalisms (except for Class Automata).

XPath is arguably the most widely used XML query lan-
guage. It is implemented in XSLT and XQuery and it is
used as a constituent part of several specification and up-
date languages. XPath is fundamentally a general purpose
language for addressing, searching, and matching pieces of
an XML document. It is an open standard and constitutes a
World Wide Web Consortium (W3C) Recommendation [5].

Query containment and query equivalence are important
static analysis problems, which are useful to, for example,
query optimization tasks. In logics closed under boolean
operators—as the one treated here—, these problems reduce
to checking for satisfiability : Is there a document on which
a given query has a non-empty result? By answering this
question we can decide at compile time whether the query
contains a contradiction and thus the computation of the
query (or subquery) on the document can be avoided. Or,
by answering the query equivalence problem, one can test if
a query can be safely replaced by another one which is more
optimized in some sense (e.g., in the use of some resource).
Moreover, the satisfiability problem is crucial for applica-
tions on security [7], type checking transformations [21], and
consistency of XML specifications.

Core-XPath (term coined in [17]) is the fragment of XPath
1.0 that captures all the navigational behavior of XPath. It
has been well studied and its satisfiability problem is known
to be decidable even in the presence of DTDs. The extension
of this language with the possibility to make equality and
inequality tests between attributes of elements in the XML
document is named Core-Data-XPath in [4].

In an nutshell, the important formulas of Core-Data-XPath
(henceforth XPath) are of the form

〈α@i = β@j〉,

where α, β are path expressions, that navigate the tree using
axes: descendant, child, ancestor, next-sibling, etc. and can
make tests in intermediary nodes. Such a formula is true
at a node x of a multi-attribute data tree if there are two
nodes y, z in the tree that can be reached with the relations
denoted by α, β respectively, so that the ith attribute of y
carries the same datum as the jth attribute of z.

Unfortunately, the satisfiability problem for XPath is un-
decidable [16]. How can we regain decidability for satisfiabil-
ity of XPath then? We can restrict the models, or restrict
the logic. The first possibility is to restrict the classes of
documents in which one is interested, which is the approach
taken in [1]. Another, more studied, approach is to restrict
the syntax, which is the one taken here. One way to re-
gain decidability is to syntactically restrict the amount of
nodes that the XPath properties can talk about. In this
vein, there have been studies on fragments without negation
or without transitive axes [2, 16]. These fragments enjoy
a small model property and are decidable. However, they

cannot state global properties, involving all the nodes in an
XML document. Ideally, we seek fragments with the follow-
ing desirable features

• closed under boolean operators,

• having as much freedom as possible to navigate the
tree in many directions: up, down, left, right,

• having the possibility to reach any node of the tree,
with transitive axes, like descendant, following sibling
(the transitive closure of the next sibling axis), etc.

However, decidability results are scarce, and most fragments
with the characteristics just described are undecidable. There
are, however, some exceptions ([10]).

• The downward fragment of XPath, containing the child
and descendant axes, is decidable, ExpTime-complete
[8, 13].

• The forward fragment of XPath, extending the down-
ward fragment with the next sibling and the following
sibling axes, is decidable with non-primitive recursive
complexity [9, 12].

• The vertical fragment of XPath, extending the down-
ward fragment with the parent and ancestor axes, is
decidable with non-primitive recursive complexity [15].

• A last example is the present work: XPath with the re-
flexive transitive closure of the child, next-sibling and
previous-sibling relations is decidable.

All the non-primitive recursive (NPR) upper bounds of the
forward and vertical fragments are also matched with NPR
lower bounds. That is, there is no primitive recursive func-
tion that bounds the time or space needed by any algorithm
that computes the satisfiability for any of these two logics.
Moreover, it is known that any fragment of XPath contain-
ing a transitive rightward, leftward or upward axis has a
satisfiability problem which is either undecidable or decid-
able with a NPR lower bound [14].1 Further, as soon as we
have both the rightward and leftward transitive axes, the
satisfiability becomes undecidable [14]. (Indeed, the down-
ward fragment of XPath seemed to be the only one with
elementary complexity up to now.)

The aforementioned hardness results make use of non-
reflexive transitive relations. Surprisingly, the reductions
do not seem to work when the relations are also reflexive.
What is then the decidability status of the fragments of
XPath with reflexive-transitive relations? This was a ques-
tion raised in [14].

A partial answer to this question was given in [11]. There,
it was shown that XPath restricted to data words is decid-
able even when we have both a reflexive-transitive future
and past relations. (One can think of data words as XML
documents of height 1, with only one attribute per node.)
This result may seem surprising taking into account that if
one of these relations is non-reflexive it is no longer decid-
able; and if we have only one non-reflexive transitive relation
it is decidable with non-primitive recursive complexity. In
[11] it was shown that the satisfiability problem is in 2Exp-
Space (or ExpSpace if we adopt a certain normal form of

1These are the axes that are called preceding-sibling, following-
sibling and ancestor in the XPath jargon.

the formulas). This was a first step in our study of the com-
putational behavior of XPath with reflexive-transitive axes.
The present work corresponds to the second part, in which
we study XPath on XML documents (i.e., trees) instead of
words.

Contribution
We show decidability of the satisfiability for XPath with
data equality tests between attributes, where navigation can
be done going downwards, rightwards or leftwards in the
XML document. The navigation can only be done by reflexive-
transitive relations. These correspond to the XPath axes:
preceding-sibling-or-self, following-sibling-or-self, and descend-
ant-or-self axes.2 Here we denote these axes with ∗←, →∗
and ↓∗ respectively. As already mentioned, the fact that the
relations are reflexive-transitive (as opposed to just transi-
tive) is an essential feature to achieve decidability. Given the
known complexity results on XPath, this fragment seems to
be in balance between navigation and complexity. This work
then argues in favor of studying XPath-like logics for trees
with data with reflexive-transitive relations, since they may
behave computationally much better than the non-reflexive
counterpart, as evidenced here.

The extension of the prior work [11] on data words to
work with trees with a descendant axis is highly non-trivial,
requiring an altogether different formalism and algorithm
strategy. Whereas in [11] the main object of study is a tran-
sition system—which comes naturally when working with
words—this does not adapt well to working with trees. In-
stead, here we work with an algebra operating on abstrac-
tions of forests of multi-attribute data trees. Over this al-
gebra, we prove some monotonicity properties, which are
necessarily more involved than those used in [11] to account
for the interplay between horizontal and vertical navigation
of the logic.

Our algorithm yields a 3ExpSpace upper bound for the
satisfiability problem of this XPath fragment. We also show
that this can be lowered to 2ExpSpace if we work with
an expressive-equivalent normal form, called direct normal
form. Since XPath with just one reflexive-transitive relation
is already ExpSpace-hard (even when the formula is in di-
rect normal form) by [11], we cannot aim for much better
complexities.

2. PRELIMINARIES

Basic notation.
Let N0

def
= {0, 1, 2, . . . }, N def

= {1, 2, 3, . . . }, and let [n]
def
=

{1, . . . , n} for any n ∈ N. We fix once and for all D to be any
infinite domain of data values; for simplicity in our examples
we will consider D = N0. In general we use the symbols A,
B for finite alphabets, and the symbols E and F for any kind
of alphabet. By E∗ we denote the set of finite sequences
over E, by E+ the set of finite sequences with at least one
element over E. We write ‘ε’ for the empty sequence and
‘·’ as the concatenation operator between sequences. By |S|
we denote the length of S (if S is a finite sequence), or its
cardinality (if S is a set). We use (ai)i∈{j,...,j+n} as short
for ajaj+1 · · · aj+n.

2Strictly speaking, these axes do not exist in XPath [5]. They
must be interpreted as the reflexive version of the preceding-
sibling, following-sibling and descendant axes respectively.

a
@ :1 5
@ :2 8

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 3

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 5

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

node

label

attribute index

data value

subforest

node's position: 32

Figure 1: A multi-attribute data tree, where A =
{a, b, c} and k = 2.

Unranked finite trees with data.
By Trees(E) we denote the set of finite ordered and un-

ranked trees over an alphabet E. We view each position in
a tree as an element of N∗. Formally, we define POS ⊆ 2N

∗

as the set of sets of finite tree positions, such that: X ∈ POS
iff (a) X ⊆ N∗, |X| < ∞; (b) X is prefix-closed; and (c) if
n·(i + 1) ∈ X for i ∈ N, then n·i ∈ X. A tree is then a
mapping from a set of positions to labels of the alphabet

Trees(E)
def
= {t : P → E | P ∈ POS}. The root’s position is

the empty string ε. The position of any other node in the
tree is the concatenation of the position of its parent and
the node’s index in the ordered list of siblings.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of
t, which consists of the set of positions of the tree, and
alph(t) = E denotes the alphabet of the tree. From now on,
we informally refer by ‘node’ to a position x together with
the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that
pos(t1) = pos(t2) = P , we define t1 ⊗ t2 : P → (E×F) as

(t1 ⊗ t2)(x)
def
= (t1(x), t2(x)).

The set of multi-attribute data trees over a finite
alphabet A of labels, k different attributes, and an infi-
nite domain D is defined as Trees(A×Dk). Note that every
tree t ∈ Trees(A×Dk) can be decomposed into two trees
a ∈ Trees(A) and d ∈ Trees(Dk) such that t = a ⊗ d. Fig-
ure 1 shows an example of a multi-attribute data tree. The
notation for the set of data values used in a data tree is
data(a ⊗ d)

def
= {d(x)(i) | x ∈ pos(d), i ∈ [k]}. With an

abuse of notation we write data(X) to denote all the ele-
ments of D contained in X, for whatever object X may be.

A forest is a sequence of trees, and the set of multi-
attribute data forests over A and k is (Trees(A×Dk))∗.
We will normally use the symbol t̄ for a forest of multi-
attribute data trees. That is, t̄ ∈ (Trees(A×Dk))∗. (Note
that in particular t̄ can be an empty forest.) For any (a, d̄) ∈
A×Dk, let us write (a, d̄)t̄ for the multi-attribute data tree
that results from adding (a, d̄) as a root of t̄. We call this
operation rooting. We will usually write t (resp. t̄) to de-
note multi-attribute data trees (resp. forests) and t (resp. t̄)
to denote trees (resp. forests) over a finite alphabet.

XPath.
Next we define transitive XPath, the fragment of XPath

where all axes are reflexive and transitive.
Transitive XPath is a two-sorted language, with path ex-

α, β ::= o | α[ϕ] | [ϕ]α | αβ o ∈ {ε, ↓∗, ↑∗,→∗, ∗←} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α@i = β@j〉 | 〈α@i 6= β@j〉 a ∈ A, i, j ∈ [k] .

[[↓∗]]t = {(x, x·i) | x·i ∈ pos(t)}∗ [[↑∗]]t = {(x·i, x) | x·i ∈ pos(t)}∗

[[→∗]]t = {(x·i, x·(i+ 1)) | x·i, x·(i+ 1) ∈ pos(t)}∗ [[∗←]]t = {(x·(i+ 1), x·i) | x·i, x·(i+ 1) ∈ pos(t)}∗

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | there exists y such that

[[[ϕ]]]t = {(x, x) ∈| x ∈ pos(t), x ∈ [[ϕ]]t} (x, y) ∈ [[α]]t, (y, z) ∈ [[β]]t}
[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α@i=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t, [[〈α@i 6=β@j〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t,d(y)(i) = d(z)(j)} (x, z) ∈ [[β]]t,d(y)(i) 6= d(z)(j)}

Figure 2: The syntax of transitive XPath; and its semantics for a multi-attribute data tree t = a⊗ d.

pressions (that we write α, β, γ, δ) and node expressions (that
we write ϕ,ψ, η). Path expressions denote binary relations,
resulting from composing the descendant, ancestor, preced-
ing sibling and following sibling relations (which are denoted
respectively by ↓∗, ↑∗, ∗←, →∗ respectively), and node ex-
pressions. Node expressions are boolean formulas that test
a property of a node like, for example, that is has a cer-
tain label, or that it has a descendant labeled a with the
same data value in attribute i as the attribute j of an an-
cestor labeled b, which is expressed by 〈↓∗[a]@i = ↑∗[b]@j〉.
We write XPath(↓∗, ↑∗,→∗, ∗←,=) to denote this logic, and
we write XPath(O,=) for some O ⊆ {↓∗, ↑∗,→∗, ∗←}, to
denote the logic containing only the axes in O. A for-
mula of XPath(↓∗, ↑∗,→∗, ∗←,=) is either a node expression
or a path expression of the logic. Its syntax and seman-
tics are defined in Figure 2. As another example, we can
select the nodes that have a sibling labeled a to the left
whose first attribute is the same as the second attribute
of some descendant of a right sibling by the formula ϕ =
〈∗←[a]@1 = →∗↓∗@2〉. Given a tree t as in Figure 1, we
have [[ϕ]]t = {ε, 2, 3, 4, 5, 311}.

We write t, x |= ϕ (resp. t, (x, y) |= α) for x ∈ pos(t) (resp.
x, y ∈ pos(t)) as short for x ∈ [[ϕ]]t (resp. (x, y) ∈ [[α]]t). We
write t |= ϕ as short for ε ∈ [[ϕ]]t.

In the case of XPath(∗←, ↓∗,→∗,=), we also extend the
evaluation to multi-attribute data forests. Let (a, d̄) be an
arbitrary fix element of A×Dk. Given a forest t̄ and x, y ∈
pos((a, d̄)t̄), x, y 6= ε, we define the satisfaction relation |=,
as t̄, x |= ϕ (resp. t̄, (x, y) |= α) if (a, d̄)t̄, x |= ϕ (resp.
(a, d̄)t̄, (x, y) |= α). (Note that since XPath(∗←, ↓∗,→∗,=)
has no ascending axes, whether t̄, x |= ϕ or not does not
depend on (a, d̄), we use it as a simple way of defining its
semantics.)

The satisfiability problem for XPath(O,=) (henceforth
noted SAT-XPath(O,=)) is the problem of, given a formula
ϕ of XPath(O,=), wether there exists a multi-attribute data
tree t such that t |= ϕ.

3. PROOF SKETCH
The main contribution of this paper is the following.

Theorem 3.1. SAT-XPath(∗←, ↓∗,→∗,=) is decidable in
3ExpSpace.

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 3

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 5

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

a
@ :1 5
@ :2 8

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

node

letter

attribute index

data value

subforest

multi-attribute data tree

Figure 1: A multi-attribute data tree.

xixe yeyi

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

Figure 2: A forest profile.

1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e

We define abstractions of forests of multi-attribute trees.
These are called forest profiles. They are the main object

of this paper. One must think of a forest profile as the
description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via expressions of non-
ascending XPath. Some ways of reaching the data value may
lie inside the forest, and some outside the forest. Take for
instance the forest in the middle of Figure 2. For every forest
there we identify 4 nodes: the leftmost root, the rightmost
root, the node to the left of the leftmost root (if any), and the
node to the right of the rightmost root (if any). These are
the nodes identified by xi, xe, yi, ye in the figure. The profile
of this forest is represented by all the paths that can reach 4,
all that can reach 2, etc. Take as an example the data value
5. This data value can be reached by →∗[a]@1 from ye, or
by ∗←[b]↓∗[a]@1 from yi, ro by →∗[a]→∗[b]↓∗[a]@1 from xi,
etc. The idea is that we limit ourselves that whenever there
are paths departing from xi or yi they must be inside the
forest, whenever there are paths from xe or ye they must be
outside the forest.

Let A be a finite alphabet of letters, let Aroot ⊆ A be
the set of root letters, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpre-
tation assigning true to a, and false to every other b ∈ A,
satisfies ψ. Let k be a fixed natural number, it is the num-
ber of attributes at each node. We say that i ∈ [k] is an
attribute index. We define the set of patterns, as any fi-
nite, subword-closed, reversal-closed, subset of (B(A))∗, and
we denote it by P. We generally use the symbols α, β, γ ∈ P
to denote patterns. For every letter a ∈ A we define the fol-
lowing set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. We define the set of composed patterns
as

Π
def
= (P \ {ε})× P × [k],

the intended meaning is that the first component operates
on the sibligns, the second on a downward path, and the
third retrieves a data value from an attribute index.

A forest profile f is a tuple

f
def
= (χ

↓e, χ
↓i, χ

↓ i, χ
↓e, R)

where R ⊆ D, and we call it the set of rigid values of f,
and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set of

left/right exterior/interior descriptions respectively. We
use χ̄ to denote the quadruple (χ

↓e, χ
↓i, χ

↓ i, χ
↓e). For every

χ ∈ {χ↓e, χ
↓i, χ

↓ i, χ
↓e}, we define

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) �= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f.
We say that a forest profile f = (χ̄, R) is valid if every

d so that χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some
(α, β, i) ∈ Π, is in R. We define F as the set of all valid
profiles.

The set of root patterns of a forest profile f, denoted by

a
@ :1 5
@ :2 8

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

node

letter

attribute index

data value

subforest

multi-attribute data tree

Figure 1: A multi-attribute data tree.

xixe yeyi

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

Figure 2: A forest profile.

1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e

We define abstractions of forests of multi-attribute trees.
These are called forest profiles. They are the main object

of this paper. One must think of a forest profile as the
description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via expressions of non-
ascending XPath. Some ways of reaching the data value may
lie inside the forest, and some outside the forest. Take for
instance the forest in the middle of Figure 2. For every forest
there we identify 4 nodes: the leftmost root, the rightmost
root, the node to the left of the leftmost root (if any), and the
node to the right of the rightmost root (if any). These are
the nodes identified by xi, xe, yi, ye in the figure. The profile
of this forest is represented by all the paths that can reach 4,
all that can reach 2, etc. Take as an example the data value
5. This data value can be reached by →∗[a]@1 from ye, or
by ∗←[b]↓∗[a]@1 from yi, ro by →∗[a]→∗[b]↓∗[a]@1 from xi,
etc. The idea is that we limit ourselves that whenever there
are paths departing from xi or yi they must be inside the
forest, whenever there are paths from xe or ye they must be
outside the forest.

Let A be a finite alphabet of letters, let Aroot ⊆ A be
the set of root letters, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpre-
tation assigning true to a, and false to every other b ∈ A,
satisfies ψ. Let k be a fixed natural number, it is the num-
ber of attributes at each node. We say that i ∈ [k] is an
attribute index. We define the set of patterns, as any fi-
nite, subword-closed, reversal-closed, subset of (B(A))∗, and
we denote it by P. We generally use the symbols α, β, γ ∈ P
to denote patterns. For every letter a ∈ A we define the fol-
lowing set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. We define the set of composed patterns
as

Π
def
= (P \ {ε})× P × [k],

the intended meaning is that the first component operates
on the sibligns, the second on a downward path, and the
third retrieves a data value from an attribute index.

A forest profile f is a tuple

f
def
= (χ

↓e, χ
↓i, χ

↓ i, χ
↓e, R)

where R ⊆ D, and we call it the set of rigid values of f,
and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set of

left/right exterior/interior descriptions respectively. We
use χ̄ to denote the quadruple (χ

↓e, χ
↓i, χ

↓ i, χ
↓e). For every

χ ∈ {χ↓e, χ
↓i, χ

↓ i, χ
↓e}, we define

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) �= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f.
We say that a forest profile f = (χ̄, R) is valid if every

d so that χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some
(α, β, i) ∈ Π, is in R. We define F as the set of all valid
profiles.

The set of root patterns of a forest profile f, denoted by

a
@ :1 5
@ :2 8

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

node

letter

attribute index

data value

subforest

multi-attribute data tree

Figure 1: A multi-attribute data tree.

xixe yeyi

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

Figure 2: A forest profile.

1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e

We define abstractions of forests of multi-attribute trees.
These are called forest profiles. They are the main object

of this paper. One must think of a forest profile as the
description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via expressions of non-
ascending XPath. Some ways of reaching the data value may
lie inside the forest, and some outside the forest. Take for
instance the forest in the middle of Figure 2. For every forest
there we identify 4 nodes: the leftmost root, the rightmost
root, the node to the left of the leftmost root (if any), and the
node to the right of the rightmost root (if any). These are
the nodes identified by xi, xe, yi, ye in the figure. The profile
of this forest is represented by all the paths that can reach 4,
all that can reach 2, etc. Take as an example the data value
5. This data value can be reached by →∗[a]@1 from ye, or
by ∗←[b]↓∗[a]@1 from yi, ro by →∗[a]→∗[b]↓∗[a]@1 from xi,
etc. The idea is that we limit ourselves that whenever there
are paths departing from xi or yi they must be inside the
forest, whenever there are paths from xe or ye they must be
outside the forest.

Let A be a finite alphabet of letters, let Aroot ⊆ A be
the set of root letters, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpre-
tation assigning true to a, and false to every other b ∈ A,
satisfies ψ. Let k be a fixed natural number, it is the num-
ber of attributes at each node. We say that i ∈ [k] is an
attribute index. We define the set of patterns, as any fi-
nite, subword-closed, reversal-closed, subset of (B(A))∗, and
we denote it by P. We generally use the symbols α, β, γ ∈ P
to denote patterns. For every letter a ∈ A we define the fol-
lowing set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. We define the set of composed patterns
as

Π
def
= (P \ {ε})× P × [k],

the intended meaning is that the first component operates
on the sibligns, the second on a downward path, and the
third retrieves a data value from an attribute index.

A forest profile f is a tuple

f
def
= (χ

↓e, χ
↓i, χ

↓ i, χ
↓e, R)

where R ⊆ D, and we call it the set of rigid values of f,
and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set of

left/right exterior/interior descriptions respectively. We
use χ̄ to denote the quadruple (χ

↓e, χ
↓i, χ

↓ i, χ
↓e). For every

χ ∈ {χ↓e, χ
↓i, χ

↓ i, χ
↓e}, we define

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) �= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f.
We say that a forest profile f = (χ̄, R) is valid if every

d so that χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some
(α, β, i) ∈ Π, is in R. We define F as the set of all valid
profiles.

The set of root patterns of a forest profile f, denoted by

a
@ :1 5
@ :2 8

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

node

letter

attribute index

data value

subforest

multi-attribute data tree

Figure 1: A multi-attribute data tree.

xixe yeyi

b
@ :1 5
@ :2 3

a
@ :1 4
@ :2 8

b
@ :1 2
@ :2 8

a
@ :1 5
@ :2 3

c
@ :1 5
@ :2 5

b
@ :1 9
@ :2 2

a
@ :1 5
@ :2 3

c
@ :1 2
@ :2 7

c
@ :1 9
@ :2 4

Figure 2: A forest profile.

1. INTRO
We are interested in reasoning on XML documents. Where

XML document is considered not just a mere squeleton of
the node types, but with the actual data. We study hier-
archically structured data. It is a tree whose every node
contains: a letter from a finite alphabet, and a data value
from an infinite domain for each attribute.

2. TRANSITIVE XPATH

Theorem 1. Full transitive XPath is non primitive re-
cursive.

Proof. We prove this by using the results of [FS09].
There, it is shown that XPath with one non-reflexive func-
tional transitive axis is enough to prove non-primitive recur-
siveness. Here, however, we feature reflexive-transitive axes
instead of only transitive. Therefore, in principle we cannot
use this result. However, note that we can code ↑+ with
→∗[a]↑∗[¬a].

Theorem 2. Non-ascending transitive XPath is decidable
in 2NEXPSPACE.

Theorem 3. Non-ascending direct transitive XPath is de-
cidable in NEXPSPACE.

3. FOREST PROFILES
x
↓ i x

↓e x
↓i x

↓e

We define abstractions of forests of multi-attribute trees.
These are called forest profiles. They are the main object

of this paper. One must think of a forest profile as the
description, for every data value d ∈ D, of all the possible
ways of reaching the data value d via expressions of non-
ascending XPath. Some ways of reaching the data value may
lie inside the forest, and some outside the forest. Take for
instance the forest in the middle of Figure 2. For every forest
there we identify 4 nodes: the leftmost root, the rightmost
root, the node to the left of the leftmost root (if any), and the
node to the right of the rightmost root (if any). These are
the nodes identified by xi, xe, yi, ye in the figure. The profile
of this forest is represented by all the paths that can reach 4,
all that can reach 2, etc. Take as an example the data value
5. This data value can be reached by →∗[a]@1 from ye, or
by ∗←[b]↓∗[a]@1 from yi, ro by →∗[a]→∗[b]↓∗[a]@1 from xi,
etc. The idea is that we limit ourselves that whenever there
are paths departing from xi or yi they must be inside the
forest, whenever there are paths from xe or ye they must be
outside the forest.

Let A be a finite alphabet of letters, let Aroot ⊆ A be
the set of root letters, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of A. For
any a ∈ A and ψ ∈ B(A), we write a |= ψ if the interpre-
tation assigning true to a, and false to every other b ∈ A,
satisfies ψ. Let k be a fixed natural number, it is the num-
ber of attributes at each node. We say that i ∈ [k] is an
attribute index. We define the set of patterns, as any fi-
nite, subword-closed, reversal-closed, subset of (B(A))∗, and
we denote it by P. We generally use the symbols α, β, γ ∈ P
to denote patterns. For every letter a ∈ A we define the fol-
lowing set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. We define the set of composed patterns
as

Π
def
= (P \ {ε})× P × [k],

the intended meaning is that the first component operates
on the sibligns, the second on a downward path, and the
third retrieves a data value from an attribute index.

A forest profile f is a tuple

f
def
= (χ

↓e, χ
↓i, χ

↓ i, χ
↓e, R)

where R ⊆ D, and we call it the set of rigid values of f,
and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set of

left/right exterior/interior descriptions respectively. We
use χ̄ to denote the quadruple (χ

↓e, χ
↓i, χ

↓ i, χ
↓e). For every

χ ∈ {χ↓e, χ
↓i, χ

↓ i, χ
↓e}, we define

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) �= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f.
We say that a forest profile f = (χ̄, R) is valid if every

d so that χ
↓e(α, β, i) = {d} or χ

↓e(α, β, i) = {d} for some
(α, β, i) ∈ Π, is in R. We define F as the set of all valid
profiles.

The set of root patterns of a forest profile f, denoted by

Figure 3: A multi-attribute data forest, with its left
and right forests.

We reduce the problem of whether a formula ϕ of our
logic XPath(∗←, ↓∗,→∗,=) is satisfiable, to the problem of
whether one can obtain an element with a certain prop-
erty by repeated applications of operations in some algebra,
starting from a basic set of elements. We call it the deriva-
tion problem. First we introduce the algebra (Section 4), we
then solve the derivation problem (Section 5) and finally we
show the reduction from the logic into the derivation prob-
lem (Section 6).

We first introduce forest profiles in Section 4, which con-
stitute the algebra domain. A forest profile is an abstraction
of a multi-attribute data forest inside a context, where the
context consists of the two (possibly empty) forests that are
to the left and to the right. Figure 3 depicts one such possi-
ble forest, together with the left and right context forests. A
forest profile contains, for each data value d and each path
expression, the information of whether d can be reached by
the path expression, and where it can be reached, either

• inside the main forest, starting from the leftmost root
(the node x

↓i in Figure 3),

• inside the main forest but starting with the rightmost
root (the node x

↓ i in Figure 3),

• in the left context forest (starting from the node x
↓e in

Figure 3), or

• in the right context forest (starting from the node x
↓e

in Figure 3).

In this setting, path expressions are called patterns and their
navigation is greatly simplified. Patterns can go first to the
left, and then down, or first to the right and then down,
or only down. They correspond to path expressions like,
for example, →∗[a]→∗[b]↓∗[c]↓∗[a ∨ b]@1, or ∗←[¬a]↓∗[a]@2.
Further, node expressions contained in patterns are simple
boolean combinations of tests for labels.

A forest profile also keeps track of a set of important data
values called the rigid values. These are data values that
play a determined function in the forest containing the ab-
stracted forest (i.e., in the concatenation of the left, main
and right forests). Intuitively, a data value is rigid in a for-
est if it can be pinpointed by a path expression, in the sense
that it is the only data value that can be reached with some
path expression α@i. At this level of detail, we just mention
that some special care must be taken for these rigid data
values.

We equip the set of forest profiles with two operations,
one that corresponds to concatenating two of the forests
being abstracted, and another operation that corresponds
to adding a root to the forest, converting it into a tree.
This algebra is introduced in Section 4.2. In particular, the
root operation is restricted to work only with forest profiles
that are from certain set of consistent profiles. Consistent
profiles will play an important role in the reduction from
the logic to the algebra. The idea is that they are those
profiles that are not in contradiction with the formula ϕ to
test for satisfiability, that is, that could abstract subforests
of a model of ϕ.

A root profile, is a profile that comes from the applica-
tion of the root operation with a certain label of a certain
alphabet Aroot of root labels. An empty profile is the profile
corresponding to the empty forest with an empty context.
In Section 5 we define the derivation problem for forest pro-
files as the problem of whether there is a way of obtaining a
root profile from the empty profile by repeated applications
of the algebra operations.

We show that the derivation problem is decidable in 2Exp-
Space in Section 5. We first define a partial ordering on pro-
files in Section 5.2, this ordering will be of chief importance
in our decidability result. We show a series of monotonic-
ity properties that show that the set of derivable profiles
is upward-closed. The purpose of the partial ordering is to
reduce the derivation problem on the infinite set of forest
profiles into a problem on a finite set of minimal profiles.
The fact that the derivable profiles is upward-closed is in-
deed a key ingredient for this reduction to work.

However, one problem we need to face is that the order-
ing has infinite antichains: every two profiles with different
set of rigid values are incomparable. We tackle this in Sec-
tion 5.4, where we show that we can bound the set of rigid
values, obtaining an equivalent derivation problem on pro-
files with a small set of rigid values. Once we obtain this
bound, the set of minimal profiles becomes finite, doubly
exponential. Next, in Section 5.5 we show that, thanks to
the monotonicity properties enjoyed by the algebra, we can
work only with minimal elements. Finally, in Section 5.6 we
give the concrete saturation-style algorithm that solves the
derivation problem using doubly exponential space.

In Section 6 we show that the satisfiability problem for
XPath(∗←, ↓∗,→∗,=) can be reduced to the derivation prob-
lem in ExpSpace. In Section 6.1 we show a normal form,
called direct unnested normal form, where direct unnested

path expressions correspond, precisely, to the pattern ex-
pressions used in the forest profiles (basically all path ex-
pressions are of the form already described). We then show
in Section 6.2 that one can reduce, in ExpSpace, the sat-
isfiability problem for formulas in this normal form into
the derivation problem, obtaining a 3ExpSpace decidabil-
ity procedure for SAT-XPath(∗←, ↓∗,→∗,=), obtaining The-
orem 3.1.

4. FOREST PROFILES
We define abstractions of forests of multi-attribute data

trees. These are called forest profiles. They are the main
construct in our solution. One must think of a forest profile
as the description, for every data value d ∈ D, of all the pos-
sible ways of reaching the data value d via path expressions
of XPath(∗←, ↓∗,→∗,=). Some ways of reaching the data
value may lie inside the forest being abstracted, and some
outside the forest. Take for instance the forest in the mid-
dle of Figure 3. For every forest there we identify 4 nodes:
the leftmost root, the rightmost root, the node to the left of
the leftmost root (if any), and the node to the right of the
rightmost root (if any). These are the nodes identified by
x
↓ i, x

↓i, x
↓e, x

↓e respectively in the figure. The profile of this
forest is represented by all the paths that can reach the data
value 4, all those that can reach 2, etc. Take as an example
the data value 5; this data value can be reached by

(i) →∗[a]@1 from x
↓e,

(ii) ∗←[b]↓∗[a]@1 from x
↓ i,

(iii) →∗[a]→∗[b]↓∗[c]@1 from x
↓i, etc.

Remember that expressions are evaluated in a forest and, for
example, an expression starting with →∗ denotes the possi-
bility to move forward in the sequence of tree roots of the
forest. The idea is that we limit ourselves that whenever
there are paths departing from x

↓i or x
↓ i they must be inter-

nal to the forest (i.e., internal to the gray forest in Figure 3),
whenever there are paths from x

↓e or x
↓e they must be ex-

ternal to the forest (i.e., either in the forest depicted to the
left or to the right of the gray forest in Figure 3).

Let A be a finite alphabet of labels, let Aroot ⊆ A be
the set of root labels, and let D be an infinite domain of
data values. The set B(A) is the boolean closure of tests
for labels from A. For any a ∈ A and ψ ∈ B(A), we write
a |= ψ if the interpretation assigning true to a, and false to
every other b ∈ A, satisfies ψ. Let k ∈ N be a fixed natural
number, corresponding to the number of attributes at each
node. We say that i ∈ [k] is an attribute index. We define
the set of patterns, as any finite, subword-closed, subset
of (B(A))∗, and we denote it by P. We generally use the
symbols α, β, γ, δ ∈ P to denote patterns. For every label
a ∈ A we define the following set of patterns σa ⊆ P

σa
def
= {ψ1 · · ·ψk ∈ P | a |= ψ1 ∧ · · · ∧ ψk}.

Note that ε ∈ σa. The set of composed patterns is

Π
def
= (P \ {ε})× P × [k].

The intended meaning is that the first component operates
on the siblings, the second on a downward path, and the
third retrieves a data value from an attribute index. We
will sometimes use the symbol ᾱ to represent elements from

Π, or (α, β, i) if we need to explicit the components of the
composed pattern.

A forest profile f is a tuple

f = (χ
↓e, χ

↓i, χ
↓ i, χ

↓e, R)

where R ⊆ D, and we call it the set of rigid values of
f, and χ

↓e, χ
↓i, χ

↓ i, χ
↓e ⊆ D × Π, and we call them the set

of left/right external/internal descriptions respectively. In
the example before, one shall interpret (i) as (5, a, ε, 1) ∈ χ

↓e,
(ii) as (5, b, a, 1) ∈ χ

↓ i and (iii) as (5, a·b, c, 1) ∈ χ
↓i. We use

χ to denote a subset of D×Π; and we write χ̄ (resp. χ̄i) to
denote the 4-uple (χ

↓e, χ
↓i, χ

↓ i, χ
↓e) (resp. (χ

↓e
i , χ

↓i
i , χ

↓ i
i, χ

↓e
i)).

Likewise, we use f (resp. fi) to denote (χ̄, R) (resp. (χ̄i, Ri)).
We define, for every χ ⊆ D×Π,

χ(d)
def
= {(α, β, i) ∈ Π | (d, α, β, i) ∈ χ},

χ(α, β, i)
def
= {d ∈ D | (d, α, β, i) ∈ χ}, and

χ̄(d)
def
= (χ

↓e(d), χ
↓i(d), χ

↓ i(d), χ
↓e(d)).

We define data(f)
def
= R ∪ {d ∈ D | χ̄(d) 6= (∅, ∅, ∅, ∅)}. We

call data(f) \ R the set of flexible values of f. We use the
symbol π̄ to denote (π

↓e, π
↓i, π

↓ i, π
↓e) where π

↓e, π
↓i, π

↓ i, π
↓e ⊆

Π. We further say that π̄ is the description of d ∈ D in f
if χ̄(d) = π̄.

4.1 Rigid and flexible values
In a forest satisfying some XPath formula, different data

values have different roles. We distinguish here two cate-
gories of data values: rigid and flexible. Rigid data values
are important for the satisfaction of the formula and special
care is needed to treat these, whereas flexible values are not
crucial, and they can be sometimes removed from the tree.
Let us give some more precise intuition. We use the logic
XPath to make this intuition clear, but we will then state
the definitions in terms of forest profiles.

Given a multi-attribute data forest t̄ where t̄, i |= ϕ, sup-
pose there is a data value d such that: there is some position
1 ≤ j ≤ |t̄| and some path expression α of ϕ of the form
α =→∗ β@k or α = ∗←β@k so that d is the only data value
that can be reached through α from j. When there is such a
d we call it a rigid value for j, since the logic can identify
it and pinpoint it from the rest of the data values. If d is
rigid for at least one position j ∈ {1, . . . , |t̄|} we say that d is
rigid for t̄. All the remaining data values of t̄ (which are the
flexible values) play the role of assuring that “there are at
least two data values reachable through α from position j”
for some α and j. As such, its importance is only relative.
In particular, if t̄ is a forest satisfying ϕ and containing d
as a flexible value, consider t̄′ as the result of replacing, for
some fresh data value d′, every tree t′′ of t̄ with the forest
t′′·(t′′[d 7→ d′]), where t′′[d 7→ d′] is the result of replacing
the data value d with d′ in t′′, and leaving all the structures
and labels as they were. Indeed, t̄′ will continue to satisfy
ϕ; but this is not necessarily true if d was a rigid value. The
same notions hold for our algebra on forest profiles. This is
a key property that we need to exploit and hence the need
to make explicit the set of rigid values of any given profile.
We formalize this by defining an ordering on profiles corre-
sponding to the operation just described, so that the forest
profile abstracting t̄′ is bigger than the profile abstracting
t̄. We make explicit (in Lemma 5.1) the aforementioned
argument as a monotonicity property of the algebra.

We say that a forest profile f = (χ̄, R) is valid if every
d ∈ D so that χ

↓e(α, β, i) = {d} or χ
↓e(α, β, i) = {d} for

some (α, β, i) ∈ Π, is in R. We define F as the set of all
valid profiles.

4.2 Algebra
We equip F with two operations. The idea is that these

operations correspond to the concatenation of two forests,
and to the addition of a root to a forest (called rooting),
turning it into a tree.

Preliminaries
The set of root patterns of a forest profile f, denoted by
[f]→, →[f] ⊆ P is defined as follows

[f]→ def
= {α | (d, α, β, i) ∈ χ

↓i for some d, β, i},
→[f]
def
= {α | (d, α, β, i) ∈ χ

↓ i for some d, β, i}.
Given P ⊆ P and χ ⊆ D×Π, we define the extension of

χ by P , denoted by P ·χ, as the set

P ·χ def
= χ ∪ {(d, α′ · α, β, i) ∈ D×Π | (d, α, β, i) ∈ χ,

α′ ∈ P}.
It is easy to see that the extension operation distributes
over union (i.e., P ·(χ ∪ χ′) = P ·χ ∪ P ·χ′ and (P ∪ P ′)·χ =
P ·χ ∪ P ′·χ).

Fingerprints
We now define the fingerprint of a forest profile. It contains
a summary information, sufficient to decide whether the tree
abstracted by the profile satisfies a formula of XPath—as we
show in Section 6.

Let A = { ◦↓ , ◦↓, ◦↓, ◦}. Given a profile f ∈ F and a ∈ A,
we define the set f.χa as

• χ
↓ i ∪ →[f]·χ↓e if a = ◦↓ ,

• χ
↓i ∪ [f]→·χ↓e if a = ◦↓,

• {(d, α′, β, i) ∈ D × Π | ∃α.(d, α, β, i) ∈ χ
↓ i ∪ χ

↓i} if
a = ◦↓, or

• {(d, α, β, i) ∈ χ
↓i ∪ χ↓ i | β = ε} if a = ◦.

Note that f.χa(α, β, i) is independent of α when a = ◦↓,
but it takes an element of Π as argument for the sake of
uniformity of notation. The fingerprint of a profile f, noted
ξ(f), is an element of

F def
= Π×A → {0, 1, 2+} ∪

Π×A×Π×A → {0, 1+},
where for ᾱ, ᾱ′ ∈ Π, a, a′ ∈ A, we define ξ(f)(ᾱ, a, ᾱ′, a′) as
0 or 1+ depending on whether |f.χa(ᾱ) ∩ f.χa′(ᾱ

′)| = 0 or
not; and we define ξ(f)(ᾱ, a) as 0, 1, or 2+ depending on
|f.χa(ᾱ)| being 0, 1 or greater than 1 respectively.

We fix the set of consistent fingerprints, as a set of fin-
gerprints Γ ⊆ F . The usefulness of this set will become ap-
parent in the reduction from XPath to the derivation prob-
lem of forest profiles in Section 6.2, but we can anticipate
that this set will represent all the profiles abstracting multi-
attribute data trees that do not contradict the formula we
are trying to satisfy. For the moment, however, the reader
may simply consider Γ as a given arbitrary set of finger-
prints.

Concatenation
For every two f1, f2 ∈ F so that

(a) R1 = R2,

(b) χ
↓e
1 = χ

↓i
2 ∪ [f2]→·χ↓e2 , and

(c) χ
↓e
2 = χ

↓ i
1 ∪ →[f1]·χ↓e1 ;

we define the concatenation of f1 and f2, denoted as f1 + f2
as f3, where

R3 = R1 = R2 (+1)

χ
↓e
3 = χ

↓e
2 (+2)

χ
↓e
3 = χ

↓e
1 (+3)

χ
↓i
3 = χ

↓i
1 ∪ [f1]→·χ↓i2 (+4)

χ
↓ i
3 = χ

↓i
2 ∪ →[f2]·χ↓ i1. (+5)

Notice that

• the concatenation is associative ((f1 + f2) + f3 = f1 +
(f2 + f3)),

• the extension operation · distributes over the concate-
nation operation + ([f1 + f2]→·χ = [f1]→·([f2]→·χ)),

• if f1 + f2 = f3 and f1, f2 ∈ F, then f3 ∈ F.

Rooting
Given a ∈ A, and d̄ ∈ Dk, we define (a, d̄)f1 ⊆ F, where
f2 ∈ (a, d̄)f1 if

(a) ξ(f2) ∈ Γ,

(b) χ
↓e
1 = χ

↓e
1 = ∅,

(c) χ
↓i
2 = χ

↓ i
2 = {(d, α, β·γ, i) ∈ D × Π | ∃α′.(d, α′, γ, i) ∈

χ
↓i
1∪ χ

↓ i
1, α, β ∈ σa}∪

⋃
i∈[k]({d̄(i)}×(σa\{ε})×σa×{i})

We say that f2 is a rooting of f1 with (a, d̄).
Notice that since the root pattern of any pair of profiles

f1, f2 ∈ (a, d̄)f3 is the same, it is idempotent and absorbing
([f1]→·[f2]→·χ = [f1]→·χ = [f2]→·χ, [f1]→·χ↓i1 = χ

↓i
1).

4.3 The derivation problem
We define the empty profile as f∅

def
= (∅, ∅, ∅, ∅, ∅). Note

that f∅ ∈ F. The set of profiles that can be obtained from
empty profiles by applying the rooting and concatenation
operations is called the set of derivable profiles, and noted
D. We say that f is a derivable root profile if χ

↓e = χ
↓e =

∅ and f ∈ (a, d̄)f′ for some f′ ∈ D, a ∈ Aroot and d̄ ∈ Dk.
Let a derivation tree for f be a tree t whose every node
is labeled by a forest profile and an element from A × Dk,
except the leaves that are labeled only by the forest profile
f∅ and

• the root is labeled with f,

• every internal node x of t labeled with a forest profile
f′ and (a, d̄) is so that f′ ∈ (a, d̄)(f1 + · · · + fn), where
f1, . . . , fn are the labels of the children of x.

Similarly, a derivation forest t̄ for f is a forest of derivation
trees t̄ = t1 · · · tn for some profiles f1, . . . , fn so that f =
f1 + · · · + fn. Therefore, a profile f is derivable if, and only
if, there is a derivation forest for f.

We can now state the derivation problem, that is, whether
there exists a derivable root profile, given A, Aroot, P and Γ.

Problem: The derivation problem
Input: A finite alphabet A, Aroot ⊆ A,

a set of patterns P,
a set of fingerprints Γ ⊆ F .

Question: Is there a derivable root profile?

In the next section we show that this problem is decidable.
Later, in Section 6, we show that this problem is reducible
from SAT-XPath(∗←, ↓∗,→∗,=).

5. COMPUTING DERIVABLE PROFILES
In this section we solve the derivation problem, showing

that it is decidable in 2ExpSpace. To show this problem
we work with some partial ordering on forest profiles (Sec-
tion 5.2) that has some good monotonicity closure properties
with our forest profile algebra (Section 5.3). This allows us
to reduce the problem to a restricted derivation problem
in which solutions can be found by only inspecting profiles
with a bounded number of rigid values (Section 5.4), that
are minimal elements of the ordering (Section 5.5). These
are bounded and computable, allowing us to produce an al-
gorithm solving the problem (Section 5.6).

5.1 Preliminaries
Given f1, f2 ∈ F we define that f1 and f2 are equivalent,

and we note it f1 ∼ f2, if there is some bijection g : D → D
so that f2 is the result of replacing d by g(d) in f1; in this
case we write g(f1) = f2. For a set C ⊆ F, we write f ∈∼ C if
there is f′ ∼ f so that f′ ∈ C. Given a forest profile f and two
data values d ∈ data(f), d′ 6∈ data(f), we define f[d 7→ d′] as
the result of replacing d by d′ in f. Note that f[d 7→ d′] ∼ f.
Given two data values d, d′ we write f[d 7→ d, d′] to denote
f′ where R′ = R, χ̄′(d′) = χ̄(d) and χ̄′(e) = χ̄(e) for every
other e 6= d′. Note that if d ∈ data(f) \ R and d′ 6∈ data(f),
we have that if f ∈ F then f[d 7→ d, d′] ∈ F.

We say that a data value d ∈ D is an external data value
of f if χ

↓e(d)∪ χ↓e(d) 6= ∅. If further χ
↓i(d)∩ χ↓ i(d) = ∅, we say

that d is a strict external data value of f. If d ∈ data(f) is
not a strict external data value, it is then an internal data
value, and if it is not en external data value, it is then a
strict internal data value.

5.2 Ordering on profiles
We define a partial order � on forest profiles, that follows

from our discussion of Section 4 on the role of flexible and
rigid data values. It is the order in which we can make
a profile bigger by adding a fresh data value to it, with
the same description as that of a flexible data value already
contained in it.

Given f1, f2 ∈ F, we define f1 � f2 if either f1 = f2, or
there is a flexible datum d of f1 so that f1[d 7→ d, d′] � f2 for
some d′ 6∈ data(f1). Note that � is recursive, reflexive and
transitive, and it is hence a partial order.

Note that if f1 � f2 then →[f1] = →[f2] and [f1]→ = [f2]→. Note
also that if f � f′ then ξ(f) = ξ(f′).

We write f - f′ if f � f′′ for some f′′ ∼ f′. We say that a set
of forest profiles G ⊆ F is upward closed (resp. downward
closed) with respect to -, if for every f ∈ G and f′ % f (resp.
f % f′), we have f′ ∈ G. We write

↑G def
= {f ∈ F | f % f′ for some f′ ∈ G}

↓G def
= {f ∈ F | f′ % f for some f′ ∈ G}

D
×

Π
|∃
α
�.(d

,α
�,γ

,i)∈
χ ↓

i4 ∪
χ ↓

i4 ,α
,β
∈
σ

a }∪ �
i∈

[k
] ({

d
[i]}×

σ
a ×

σ
a ×

{
i}

)
a
s

d
esired

.
H

en
ce,

co
n
d
itio

n
(c)

h
o
ld

s,
a
n
d

w
e

h
av

e
th

a
t

f3 ∈
(a

,d̄
)f4 .

N
ow

w
e

a
p
p
ly

L
em

m
a

5
.6

,
o
b
ta

in
in

g
th

a
t

th
ere

is
n
∈

N
a
n
d

f �i ∈∼
(a

,d̄
)f4

fo
r

ev
ery

i∈
[n

]
so

th
a
t

f �1
+

···
+

f �n
=

f1 .
T

h
is

co
n
clu

d
es

th
e

p
ro

o
f.

5.2
B

ounding
the

rigid
values

In
th

is
sectio

n
w

e
sh

ow
th

a
t

w
e

ca
n

w
o
rk

w
ith

p
ro

fi
les

th
a
t

h
av

e
b
o
u
n
d
ed

ly
m

a
n
y

rig
id

va
lu

es.

L
e
m
m
a

5
.1

2
.

If
th

ere
is

a
d
eriva

ble
roo

t
p
ro

fi
le,

th
ere

is
o
n
e

su
ch

th
a
t

a
ll

th
e

p
ro

fi
les

in
its

d
eriva

tio
n

tree
h
a
ve

n
o

m
o
re

th
a
n

2|Π|
d
a
ta

va
lu

es.

P
r
o
o
f
.

S
u
p
p
o
se

w
e

h
av

e
f

=
f1

+
···

+
fn

.
L
et

u
s

fi
rst

sh
ow

th
a
t

fo
r

ev
ery

(α
,β

,i)
∈

Π
th

ere
ca

n
b
e

a
t

m
o
st

o
n
e

d
a
ta

va
lu

e
d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d
�

th
en

th
ere

w
o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R

χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1)

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1)
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1)+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m

a
fo

llow
s.

L
et

F
b

b
e

th
e

set
o
f

a
ll

f∈
F

th
a
t

h
av

e
n
o

m
o
re

th
a
n

2|Π|
rig

id
va

lu
es.

L
et

D
b

b
e

th
e

set
o
f
d
eriva

b
le

p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th

ere
is

a
ro

o
t

d
eriva

b
le

p
ro

fi
le

in
D

if
a
n
d

o
n
ly

if
th

ere
is

a
ro

o
t
d
eriva

b
le

p
ro

fi
le

in
D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w

a
rd

clo
sed

.

R
e
m
a
r
k

5
.1

3
.

D
b

=
↑
D

b .

In
th

e
n
ex

t
sectio

n
w

e
sh

ow
th

a
t

D
b

is
eff

ectiv
e.

(a
,d̄

)

∈

�
(a

,d̄
)

∈

(a
,d̄

)

∈

�
�

�

(bounded)

f

f �1
+

···
+

f �m
f̂

f �

f ��

C ∈

f �C ∈

f �1
+

···
+

f �m

C ∈

f

Lem
m

a 5.11

by construction
by construction

F
ig

u
re

8
:

R
e
p
re

se
n
ta

tio
n

o
f

th
e

p
ro

fi
le

s
a
n
d

re
la

-
tio

n
s

u
se

d
in

th
e

p
ro

o
f
o
f
L
e
m

m
a

5
.1

5
.

5.3
T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈

(a
,d̄

)f
so

th
a
t

f1 �∈
↑
C

,
a
n
d

a
d
d

f1
to

C
.

If
th

ere
isn

’t
a
n
y,

g
o

to
n
ex

t
step

.

3
.

F
o
r
ev

ery
�

e
x
t -m

in
im

a
l
f∈

C
,
a
d
d

a
ll

b
o
u
n
d
ed

ex
ten

sio
n
s

to
C

.

4
.

If
th

ere
a
re

tw
o

f1 ,f2
∈

C
∼

th
a
t

a
re

b
o
u
n
d
ed

ex
ten

sio
n
s

o
f�

e
x
t -m

in
im

a
l
p
ro

fi
les

o
f

C
so

th
a
t

f1
+

f2
�∈
↑
C

,
th

en
a
d
d

f1
+

f2
to

C
.

R
ep

ea
t.

G
o

to
step

2
.

5
.

O
u
tp

u
t

C
.

N
o
te

th
a
t

step
2

ca
n

o
n
ly

b
e

rep
ea

ted
a
s

m
a
n
y

tim
es

a
s

th
ere

a
re

m
in

im
a
l
elem

en
ts

in
F

b ,
w

h
ich

is
ex

p
o
n
en

tia
l.

Id
em

w
ith

3
a
n
d

4
.

S
o

it
is

ea
sy

to
ch

eck
th

a
t

th
is

a
lg

o
rith

m
u
ses

ex
p
o
n
en

tia
l

sp
a
ce.

N
ow

w
e

p
rov

e
th

a
t

it
is

co
rrect,

a
s

a
co

n
seq

u
en

ce
o
f
th

e
lem

m
a
s

p
resen

ted
b
efo

re.

L
e
m
m
a

5
.1

4
.

T
h
e

a
lgo

rith
m

u
ses

a
t
m

o
st

expo
n
en

tia
l
spa

ce.

L
e
m
m
a

5
.1

5
.
↑
C

=
D

b .

P
r
o
o
f
.

[⊆
]
T

h
is

is
im

m
ed

ia
te,

sin
ce

b
y

co
n
stru

ctio
n

C
⊆

D
b

a
n
d

b
y

R
em

a
rk

5
.1

3
D

b
is

u
p
w

a
rd

clo
sed

.
[⊇

]
L
et

f∈
D

b .
T

h
en

,
th

ere
m

u
st

b
e

a
fo

rest
t̄
o
f
d
eriva

tio
n

trees
fo

r
p
ro

fi
les

f1 ,...,fn
∈

D
b
so

th
a
t
f
=

f1 +
···+

fn
,
w

h
ere

n
≥

1
.

W
e

p
ro

ceed
b
y

in
d
u
ctio

n
o
n

th
e

size
o
f
t̄.

•
If

t̄
h
a
s

o
n
ly

o
n
e

n
o
d
e,

th
en

it
is

triv
ia

l.
T

B
C

.
•

If
t̄

=
t

is
a

tree
w

ith
h
eig

h
t

n
>

0
.

S
u
p
p
o
se

th
a
t

th
e

ro
o
t

is
la

b
eled

w
ith

f
a
n
d

w
ith

so
m

e
(a

,d̄
)
∈

A
×

D
k
.

L
et

t̄ �
b
e

th
e

fo
rest

o
f
im

m
ed

ia
te

su
b
trees

o
f
t,

let
m

=
|t̄ �|.

F
o
r

ev
ery

1
≤

i≤
m

,
let

f �i
b
e

th
e

p
ro

fi
le

la
b
el

o
f
th

e
ro

o
t

o
f
t̄ �(i)

fo
r

ev
ery

i∈
[m

].
L
et

u
s

sh
ow

th
a
t

th
ere

is
so

m
e

f ��∈
C

so
th

a
t

f ���
f.

W
e

h
av

e
th

a
t

f �1
+

···
+

f �m
∈
↑
C

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis,
let

f ��
f �1

+
···

+
f �m

fo
r

f �∈∼
C

.
F
u
rth

er,
let

u
s

a
ssu

m
e

th
a
t

f �

is
�

-m
in

im
a
l
a
m

o
n
g

th
e

p
ro

fi
les

o
f
C

.
L
et

f �i
∈∼

C
so

th
a
t

f �i
�

fi .
If

m
=

1
it

is
triv

ia
l.

If
m

>
1
,
th

ere
m

u
st

b
e

so
m

e
f �2

�
f2

+
···

+
fm

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis.
•

If
t̄
=

t̄
1 ·t̄

2
w

ith
t̄
1 ,t̄

2 �=
ε...

X
X

X
X

X
F
ig

u
re

9
d
ep

icts
th

e
g
en

era
l
id

ea
o
f
th

e
a
rg

u
m

en
t.

D
×

Π
|∃
α
�.(d

,α
�,γ

,i)∈
χ ↓

i4 ∪
χ ↓

i4 ,α
,β
∈
σ

a }∪ �
i∈

[k
] ({

d
[i]}×

σ
a ×

σ
a ×

{
i}

)
a
s

d
esired

.
H

en
ce,

co
n
d
itio

n
(c)

h
o
ld

s,
a
n
d

w
e

h
av

e
th

a
t

f3 ∈
(a

,d̄
)f4 .

N
ow

w
e

a
p
p
ly

L
em

m
a

5
.6

,
o
b
ta

in
in

g
th

a
t

th
ere

is
n
∈

N
a
n
d

f �i ∈∼
(a

,d̄
)f4

fo
r

ev
ery

i∈
[n

]
so

th
a
t

f �1
+

···
+

f �n
=

f1 .
T

h
is

co
n
clu

d
es

th
e

p
ro

o
f.

5.2
B

ounding
the

rigid
values

In
th

is
sectio

n
w

e
sh

ow
th

a
t

w
e

ca
n

w
o
rk

w
ith

p
ro

fi
les

th
a
t

h
av

e
b
o
u
n
d
ed

ly
m

a
n
y

rig
id

va
lu

es.

L
e
m
m
a

5
.1

2
.

If
th

ere
is

a
d
eriva

ble
roo

t
p
ro

fi
le,

th
ere

is
o
n
e

su
ch

th
a
t

a
ll

th
e

p
ro

fi
les

in
its

d
eriva

tio
n

tree
h
a
ve

n
o

m
o
re

th
a
n

2|Π|
d
a
ta

va
lu

es.

P
r
o
o
f
.

S
u
p
p
o
se

w
e

h
av

e
f

=
f1

+
···

+
fn

.
L
et

u
s

fi
rst

sh
ow

th
a
t

fo
r

ev
ery

(α
,β

,i)
∈

Π
th

ere
ca

n
b
e

a
t

m
o
st

o
n
e

d
a
ta

va
lu

e
d
∈

D
so

th
a
t

th
ere

is
so

m
e

j
∈

[n
]

w
ith

χ ↓

ej
(α

,β
,i)

=
{
d}

.
B

y
m

ea
n
s

o
f
co

n
tra

d
ictio

n
,
if

th
ere

w
ere

tw
o

d
a
ta

va
lu

es
d
,d
�

th
en

th
ere

w
o
u
ld

b
e

tw
o

fj ,fk
w

ith
j�=

k
so

th
a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

a
n
d
χ ↓

ek
(α

,β
,i)

=
{
d
�}

.
S
u
p
-

p
o
se

w
ith

o
u
t

a
n
y

lo
ss

o
f

g
en

era
lity

th
a
t

j
<

k
.

T
h
en

,
b
y

d
efi

n
itio

n
o
f

+
,

w
e

m
u
st

h
av

e
th

a
t

—
sin

ce
d
∈
χ ↓

ej
(α

,β
,i)

a
n
d

fj
+

···+
fk

is
d
efi

n
ed

—
d
∈
χ ↓

ek
(α

,β
,i).

T
h
is

is
in

co
n
-

tra
d
ictio

n
w

ith
th

e
fa

ct
th

a
t
χ ↓

ej
(α

,β
,i)

=
{
d}

.
T

h
e

sa
m

e

h
a
p
p
en

s
b
y

sy
m

m
etry

w
ith

χ ↓
e.

L
et

u
s

d
efi

n
e

R
lχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
rχ̄
1
,...,χ̄

n

d
e
f

=
{
d
∈

D
|
χ ↓

ej
(α

,β
,i)

=
{
d}

fo
r

so
m

e
(α

,β
,i)∈

Π
a
n
d

j∈
[n

]}

R
χ̄
1
,...,χ̄

n

d
e
f

=
R

lχ̄
1
,...,χ̄

n
∪

R
rχ̄
1
,...,χ̄

n
.

B
y

th
e

a
b
ov

e
d
iscu

ssio
n

it
fo

llow
s

th
a
t

|R
χ̄
1
,...,χ̄

n |≤
2|Π|.

C
o
n
sid

er
f �,f �1 ,...,f �n

b
e

a
s

f,f1 ,...,fn
b
u
t

w
ith

R
χ̄
1
,...,χ̄

n
a
s

th
e

set
o
f
rig

id
va

lu
es.

B
y

co
n
stru

ctio
n

o
f
R

χ̄
1
,...,χ̄

n
w

e
h
av

e
th

a
t

f �
=

f �1
+

···+
f �n

.
In

o
th

er
w

o
rd

s
w

e
h
av

e
th

e
fo

llow
in

g
.

C
l
a
im

5
.1

2
.1

.
F
o
r

every
(R

,χ̄
)

=
(R

,χ̄
1)

+
···+

(R
,χ̄

n
)

w
e

h
a
ve

th
a
t

(R
χ̄
1
,...,χ̄

n
,χ̄

)
=

(R
χ̄
1
,...,χ̄

n
,χ̄

1)
+

···
+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
).

L
et

t
b
e

a
d
eriva

tio
n

tree
fo

r
a

ro
o
t

p
ro

fi
le

(R
,f).

L
et

t �

b
e

th
e

resu
lt

o
f
rep

la
cin

g
ev

ery
m

a
x
im

a
l
seq

u
en

ce
o
f
sib

lin
g
s

(R
,χ̄

1),...,(R
,χ̄

n
)
w

ith
(R

χ̄
1
,...,χ̄

n
,χ̄

1)+
···+

(R
χ̄
1
,...,χ̄

n
,χ̄

n
)

in
t.

It
th

en
fo

llow
s

th
a
t

t �
is

a
d
eriva

tio
n

tree
fo

r
(R

χ̄
,f).

(N
o
te

th
a
t
th

is
is

tru
e

b
eca

u
se

in
th

e
ro

o
tin

g
o
p
era

tio
n

th
ere

is
n
o

restrictio
n

o
n

w
h
ich

sh
o
u
ld

b
e

th
e

set
o
f
rig

id
va

lu
es

o
f

th
e

p
a
ren

t
p
ro

fi
le.)

It
is

im
m

ed
ia

te
th

a
t

(R
,f)

is
a

ro
o
t

p
ro

-
fi
le

if
a
n
d

o
n
ly

if
(R

χ̄
,f)

is
a

ro
o
t

p
ro

fi
le.

T
h
u
s,

th
e

lem
m

a
fo

llow
s.

L
et

F
b

b
e

th
e

set
o
f

a
ll

f∈
F

th
a
t

h
av

e
n
o

m
o
re

th
a
n

2|Π|
rig

id
va

lu
es.

L
et

D
b

b
e

th
e

set
o
f
d
eriva

b
le

p
ro

fi
les

restricted
to

F
b .

B
y

th
e

L
em

m
a

a
b
ov

e,
th

ere
is

a
ro

o
t

d
eriva

b
le

p
ro

fi
le

in
D

if
a
n
d

o
n
ly

if
th

ere
is

a
ro

o
t
d
eriva

b
le

p
ro

fi
le

in
D

b .
A

lso
,

n
o
te

th
a
t

D
b

is
u
p
w

a
rd

clo
sed

sin
ce

D
is

u
p
w

a
rd

clo
sed

.

R
e
m
a
r
k

5
.1

3
.

D
b

=
↑
D

b .

In
th

e
n
ex

t
sectio

n
w

e
sh

ow
th

a
t

D
b

is
eff

ectiv
e.

(a
,d̄

)

∈

�
(a

,d̄
)

∈

(a
,d̄

)

∈

�
�

�

(bounded)

f

f �1
+

···
+

f �m
f̂

f �

f ��

C ∈

f �C ∈

f �1
+

···
+

f �m

C ∈

f

Lem
m

a 5.11

by construction
by construction

F
ig

u
re

8
:

R
e
p
re

se
n
ta

tio
n

o
f

th
e

p
ro

fi
le

s
a
n
d

re
la

-
tio

n
s

u
se

d
in

th
e

p
ro

o
f
o
f
L
e
m

m
a

5
.1

5
.

5.3
T

he
algorithm

W
e

sh
ow

a
n

a
lg

o
rith

m
to

co
m

p
u
te

a
fi
n
ite

set
C

so
th

a
t

D
b

=
↑
C

.
W

h
en

w
e

w
rite

C
∼

w
e

m
ea

n
{
f|

f∼
f �∈

C
}

a
n
d

b
y
↑
C

=
{
f∈

F
b |

f�
f �,f �∈

C
}
.

1
.

L
et

C
=

{
f∅ }

.

2
.

T
a
k
e

a
n
y
�

-m
in

im
a
l
f∈

C
∼

a
n
d

a
�

-m
in

im
a
l
f1 ∈

(a
,d̄

)f
so

th
a
t

f1 �∈
↑
C

,
a
n
d

a
d
d

f1
to

C
.

If
th

ere
isn

’t
a
n
y,

g
o

to
n
ex

t
step

.

3
.

F
o
r
ev

ery
�

e
x
t -m

in
im

a
l
f∈

C
,
a
d
d

a
ll

b
o
u
n
d
ed

ex
ten

sio
n
s

to
C

.

4
.

If
th

ere
a
re

tw
o

f1 ,f2
∈

C
∼

th
a
t

a
re

b
o
u
n
d
ed

ex
ten

sio
n
s

o
f�

e
x
t -m

in
im

a
l
p
ro

fi
les

o
f

C
so

th
a
t

f1
+

f2
�∈
↑
C

,
th

en
a
d
d

f1
+

f2
to

C
.

R
ep

ea
t.

G
o

to
step

2
.

5
.

O
u
tp

u
t

C
.

N
o
te

th
a
t

step
2

ca
n

o
n
ly

b
e

rep
ea

ted
a
s

m
a
n
y

tim
es

a
s

th
ere

a
re

m
in

im
a
l
elem

en
ts

in
F

b ,
w

h
ich

is
ex

p
o
n
en

tia
l.

Id
em

w
ith

3
a
n
d

4
.

S
o

it
is

ea
sy

to
ch

eck
th

a
t

th
is

a
lg

o
rith

m
u
ses

ex
p
o
n
en

tia
l

sp
a
ce.

N
ow

w
e

p
rov

e
th

a
t

it
is

co
rrect,

a
s

a
co

n
seq

u
en

ce
o
f
th

e
lem

m
a
s

p
resen

ted
b
efo

re.

L
e
m
m
a

5
.1

4
.

T
h
e

a
lgo

rith
m

u
ses

a
t
m

o
st

expo
n
en

tia
l
spa

ce.

L
e
m
m
a

5
.1

5
.
↑
C

=
D

b .

P
r
o
o
f
.

[⊆
]
T

h
is

is
im

m
ed

ia
te,

sin
ce

b
y

co
n
stru

ctio
n

C
⊆

D
b

a
n
d

b
y

R
em

a
rk

5
.1

3
D

b
is

u
p
w

a
rd

clo
sed

.
[⊇

]
L
et

f∈
D

b .
T

h
en

,
th

ere
m

u
st

b
e

a
fo

rest
t̄
o
f
d
eriva

tio
n

trees
fo

r
p
ro

fi
les

f1 ,...,fn
∈

D
b
so

th
a
t
f
=

f1 +
···+

fn
,
w

h
ere

n
≥

1
.

W
e

p
ro

ceed
b
y

in
d
u
ctio

n
o
n

th
e

size
o
f
t̄.

•
If

t̄
h
a
s

o
n
ly

o
n
e

n
o
d
e,

th
en

it
is

triv
ia

l.
T

B
C

.
•

If
t̄

=
t

is
a

tree
w

ith
h
eig

h
t

n
>

0
.

S
u
p
p
o
se

th
a
t

th
e

ro
o
t

is
la

b
eled

w
ith

f
a
n
d

w
ith

so
m

e
(a

,d̄
)
∈

A
×

D
k
.

L
et

t̄ �
b
e

th
e

fo
rest

o
f
im

m
ed

ia
te

su
b
trees

o
f
t,

let
m

=
|t̄ �|.

F
o
r

ev
ery

1
≤

i≤
m

,
let

f �i
b
e

th
e

p
ro

fi
le

la
b
el

o
f
th

e
ro

o
t

o
f
t̄ �(i)

fo
r

ev
ery

i∈
[m

].
L
et

u
s

sh
ow

th
a
t

th
ere

is
so

m
e

f ��∈
C

so
th

a
t

f ���
f.

W
e

h
av

e
th

a
t

f �1
+

···
+

f �m
∈
↑
C

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis,
let

f ��
f �1

+
···

+
f �m

fo
r

f �∈∼
C

.
F
u
rth

er,
let

u
s

a
ssu

m
e

th
a
t

f �

is
�

-m
in

im
a
l
a
m

o
n
g

th
e

p
ro

fi
les

o
f
C

.
L
et

f �i
∈∼

C
so

th
a
t

f �i
�

fi .
If

m
=

1
it

is
triv

ia
l.

If
m

>
1
,
th

ere
m

u
st

b
e

so
m

e
f �2

�
f2

+
···

+
fm

b
y

in
d
u
ctiv

e
h
y
p
o
th

esis.
•

If
t̄
=

t̄
1 ·t̄

2
w

ith
t̄
1 ,t̄

2 �=
ε...

X
X

X
X

X
F
ig

u
re

9
d
ep

icts
th

e
g
en

era
l
id

ea
o
f
th

e
a
rg

u
m

en
t.

f3

(a, d̄)

∈f2

�

f1

f3

(a, d̄)

f1 = f�1 + · · · + f�n

f3

(a, d̄)

Figure 4: Statement of Lemma 5.1.

�

�
��

� f��1 f��2

f1 f2+

f�1 f�2

� �� �
f3

+

f�1 f�2

� �� �

f3

(bounded)

(bounded)

Figure 5: Statement of Lemma 5.3.

for the upward and downward closure of G with respect to
-. We say that G is ↑↓-closed, if it is both upward and
downward closed, that is, G = ↑↓G.

5.3 Monotonicity properties
In order to devise an algorithm that tests the existence

of a derivable root profile, we will need some monotonicity
lemmas evidencing the relationship between � and the root-
ing and concatenation operations on profiles. The ultimate
goal of these lemmas is to restrict the derivation problem to
profiles that are minimal with respect to -.

The next Lemma 5.1 states that for any two profiles f1 �
f2, f1 can be seen as a concatenation of profiles that share
the same descriptions of internal values as f1, under certain
restrictions, as it is shown next. This is a crucial property
that follows from our discussion in Section 4.1.

Lemma 5.1 (Figure 4). For every f1 � f2 ∈ (a, d̄)f3,
there is n ∈ N, and f′i ∈∼ (a, d̄)f3 for every i ∈ [n] so that

f1 = f′1 + · · ·+ f′n.

The lemma above implies that the set of derivable profiles
is upward closed.

Lemma 5.2. D = ↑D.

We finally state two other monotonicity properties that
will be required to reduce the derivation problem into a
similar problem that works only with minimal profiles in
Section 5.5.

We say that a profile f′ is a bounded extension of a
profile f if f � f′ and |data(f′)| ≤ |data(f)| + 3|Π|4. The
following lemma tells us that for any G ⊆ F and any profiles
f1, f2 ∈ ↑G, there are bounded extensions f′′1 , f

′′
2 of profiles of

G so that f′′1 + f′′2 - f1 + f2, as in Figure 5.

Lemma 5.3 (Figure 5). If f1 + f2 = f3 and f′1 � f1,
f′2 � f2, then f′′1 + f′′2 � f3, for some f′′1 , f

′′
2 ∈ F so that f′′i is a

bounded extension of f′i, for all i ∈ {1, 2}.
A similar lemma holds for the rooting operation.

(a, d̄)

f1

f5f2

∈

�
(a, d̄)

f1 f3

f4 f5f2

∈

(a, d̄)

∈

� �

�

(bounded)

Figure 6: Statement of Lemma 5.4.

Lemma 5.4 (Figure 6). For every f1 ∈ (a, d̄)f2 and
f2 � f5, there is f4 � f5 and f3 ∈∼ (a, d̄)f4 so that |data(f4)| ≤
|data(f5)|+ |Π|4 + |R1| and f3 � f1, f4 � f2.

5.4 Bounding the rigid values
In this section we show that we can reduce the derivation

problem into a similar problem where all the profiles have
boundedly many rigid values. This will be combined with
the result of the next sections, stating that the derivation
problem restricted to profiles with boundedly many rigid
values is decidable in 2ExpSpace, to solve the derivation
problem.

Lemma 5.5. If there is a derivable root profile, then there
is a derivation tree for a root profile so that all the profiles
in the forest have no more than 2|Π| rigid values.

Let Fb be the set of all f ∈ F that have no more than 2|Π|
rigid values. Let Db be the set of derivable profiles restricted
to Fb.

Remark 5.6. By Lemma 5.5 and in light of the defini-
tion of bounded extension, it follows that Lemma 5.4, when
applied to profiles of Fb, yields a profile f4 that is a bounded
extension of f5.

By the Lemma just shown, we have the following

Lemma 5.7. There is a derivable root profile in D if and
only if there is a derivable root profile in Db.

We have then reduced the derivation problem into a sim-
pler problem, the bounded derivation problem: testing
whether there is a derivable root profile in Db.

Remark 5.8. We have that Db is upward closed since D
is upward closed. That is, Db = ↑Db.

Note that Fb has boundedly many --minimal elements.
In the next section we show how to restrict the problem to
a problem that uses only these --minimal profiles. We will
show how this yields a 2ExpSpace algorithm in Section 5.6.

5.5 Restricting to minimal elements
Thanks to the result from the previous section stating that

Db is upward closed, we can now show that we can work only
with the minimal elements of Fb. The main necessary prop-
erty concerns all those profiles f′ ∈ Fb that are ‘--related’
to a profile f′′ ∈ Db, in the sense that f′ % f - f′′ ∈ Db for
some f. (Note that this set of profiles is precisely ↑↓Db.) The
property states that the forest profiles algebra preserves the
--relatedness.

Given G ⊆ Fb, let

R(a,d̄)
up (G)

def
= {f ∈ Fb | f ∈ (a, d̄)f′, f′ ∈ G}

for (a, d̄) ∈ A× Dk,

Rup(G)
def
=

⋃

(a,d̄)∈A×Dk

R(a,d̄)
up (G),

R+(G)
def
= {f ∈ Fb | f = f1 + f2 where f1, f2 ∈ G},

R(G)
def
= Rup(G) ∪R+(G).

Lemma 5.9. R(↑↓Db) ⊆ ↓Db.

5.6 The algorithm
In this section we show how to compute, in 2ExpSpace,

whether there exists a derivable root profile in Db, solving
thus the derivation problem.

For G ⊆ Fb, we define G∼
def
= {f | f ∼ f′ for some f′ ∈

G}. We define G/∼ as the set containing one representative
profile of G for each ∼-equivalence class. We define min(G)
as the set of --minimal elements of G,

min(G)
def
= {f ∈ G | for all f′ ∈ G so that f′ - f

we have f ∼ f′}.
For any f ∈ F, we write |f|—the size of f—, as the size
needed to write f. Note that for all f ∈ min(Fb), |f| is at
most exponential in |P|. For any G ⊆ F, we write |G| to
denote

∑
f∈G |f|.

Let us define C i for every i ∈ N0 as

C 0
def
= {f∅},

C i+1
def
= C i ∪ min

(
↓R(↑↓C i)

)
/∼.

Let k0 ∈ N0 be the first index so that C∼k0 = C∼k0+1.

Remark 5.10. For every i ∈ N0, Ci ⊆ min(Fb).

As a consequence of the property of the preceding section,
we have that this algorithm computes min(↓Db).

Lemma 5.11. C∼k0 = min(↓Db).

We further have that this computation is in 2ExpSpace
since |min(Fb)/∼| is doubly exponential in |P|, hence we
obtain the following.

Proposition 5.12. The derivation problem is decidable
in 2ExpSpace.

6. FROM XPATH TO FOREST PROFILES
In this section we reduce the satisfiability problem for

XPath(∗←, ↓∗,→∗,=) into the derivation problem for forest
profiles.

In Section 6.1 we define a normal form for XPath(∗←, ↓∗,
→∗,=), called direct unnested normal form, and in Section
6.2 we show the reduction from the satisfiability problem
of direct unnested XPath(∗←, ↓∗,→∗,=) formulas into the
derivation problem for forest profiles.

6.1 Normal forms
We will assume a certain normal form of the formula

ϕ ∈ XPath(∗←, ↓∗,→∗,=) to test for satisfiability. This will
simplify the reduction into the derivation problem for forest
profiles.

The normal form has two main properties. Firstly, it con-
tains only path expressions that are direct, in the sense that
the navigation consists in going left and then down, or go-
ing right and then down. And secondly, path expressions do
not contain data tests as node expressions, in other words
the formula is unnested. Next, we explain in detail these
properties.

Preliminaries
Let α = a1 · · · an with n > 0 be a XPath(∗←, ↓∗,→∗,=)
path expression, where for every i, ai = [ψ] for some node
expression ψ, or ai ∈ {ε, ∗←, ↓∗,→∗}. We say that α is in
alternating path normal form if either α = ε, or n is
even and for all 1 ≤ i ≤ n
• if i is even, ai = [ψ] for some node expression ψ,

• if i is odd, ai ∈ {∗←, ↓∗,→∗}.
In other words, the path alternates between axes and tests
for node expressions. We say that a formula is in alternating
path normal form if all its path expressions are in alternating
path normal form. Note that one can turn any formula
ϕ ∈ XPath(∗←, ↓∗,→∗,=) into an equivalent formula ϕ′ in
alternating path normal form in polynomial time, using the
equivalences

〈[ψ]α@i � β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},
〈α@i � [ψ]β@j〉 ≡ ψ ∧ 〈α@i � β@j〉 for � ∈ {=, 6=},

α[ψ1][ψ2]β ≡ α[ψ1 ∧ ψ2]β, and,

if αβ 6= ε, αβ ≡ α[>]β and αεβ ≡ αβ.

(4)

For simplicity and without any loss of generality we can
further assume that all our formulas do not contain formulas
of the type 〈α〉, since it is equivalent to 〈α@1 = α@1〉. We
will henceforth assume that all the formulas we work with
are in this form.

We say that a path expression in alternating path normal
form is a rightward path expression, if it starts with
→∗ and all the axes in it are →∗ (similarly with leftward,
downward and ∗←, ↓∗). Notice that, for example, a left-
ward expression may contain node tests using rightward or
downward axes. For example, ∗←[〈↓∗[a]〉]∗←[b] is a leftward
expression while ∗←[a]↓∗[〈∗←[a]〉] is not.

Direct normal form
The object of the direct normal form is to avoid having un-
necessary mixed directions in path formulas, that use per-
haps →∗ and ∗← in the same expression, or that contain a
∗← (or →∗) axis after a ↓∗ axis. That is, we avoid having
formulas like

〈 →∗[a]∗←@1 = ↓∗[b]→∗@2 〉
in favor of equivalent formulas with a more direct navigation,
like

〈 →∗[〈→∗[a]〉]@1 = ↓∗[〈∗←[b]〉]@2 〉 ∨
〈 [〈→∗[a]〉]∗←@1 = ↓∗[〈∗←[b]〉]@2 〉.

(‡)

In the formula above we factor the loops that may be in
the navigation of the path expression to obtain a simple
navigation that goes in only one horizontal direction.

We say that a formula ϕ ∈ XPath(∗←, ↓∗,→∗,=) is in di-
rect normal form, if every path expression is ε, or of the
form α·β, where α·β 6= ε (i.e., it is not the empty string),
α is leftward, rightward or empty, and β is downward or
empty. Note that, strictly speaking, the formula (‡) is not
in direct normal form since its second disjunct is not in al-
ternating path normal form, but the equivalent alternating
path expression—using (4)—is in direct normal form.

Lemma 6.1 (Direct normal form). There exists an
exponential time translation that for every node expression

ϕ ∈ XPath(∗←, ↓∗,→∗,=) returns an equivalent node expres-
sion ψ in direct normal form.

Unnested normal form
The second normal form consists in having formulas without
nesting of data tests. That is, we avoid treating formulas
like, for example

〈 ↓∗[〈 ∗←[a]@1 =→∗[b]@1 〉︸ ︷︷ ︸
nested data test

]@1 = →∗[c]@2 〉 .

If a formula is such that all its path expressions α contain
only (boolean combinations of) tests for labels we call it a
non-recursive formula.

We say that ϕ is in unnested normal form if ϕ = ϕ1 ∧ ϕ2

where ϕ1 ∈ B(A) and ϕ2 is a conjunction of tests of the
form “if a node has some of the labels {a1, . . . , an} then
it satisfies ψ” for some non-recursive formula ψ and labels
a1, . . . , an ∈ A. Formally, ϕ2 contains a conjunction of tests
of the form

¬〈 ↓∗[τ ∧ ¬ψ] 〉
for τ a disjunction of labels and ψ a non-recursive formula.
Given ϕ = ϕ1 ∧ϕ2 in unnested normal form, we write γϕ(a)
for a ∈ A to denote the function where γϕ(a) is the conjunc-
tion of all the formulas ψ such that ϕ2 contains ¬〈→∗[τ∧¬ψ]〉
as a subformula, for some disjunctive formula τ containing
the label a.

Then, we obtain the following.

Lemma 6.2 (Unnested normal form). There exists
an exponential time translation that for every formula η ∈
XPath(∗←, ↓∗,→∗,=) returns a formula ϕ in unnested nor-
mal form such that η is satisfiable iff ϕ is satisfiable. Fur-
ther, the translation of a formula in direct normal form is
in direct normal form.

Corollary 6.3. About the translation of Lemma 6.2:

1. The set of path subformulas resulting from the translation
has cardinality polynomial in η.

2. Every path subformula resulting from the translation can
be written using polynomial space.

6.2 Reduction to the derivation problem
In this section we show how we can reduce the satisfiability

problem of direct unnested XPath(∗←, ↓∗,→∗,=) formulas
into the derivation problem for forest profiles.

Let us fix φ = φ1 ∧ φ2 in direct unnested normal form,
where A as the finite alphabet, k as the number of attributes,
D as any infinite domain, and Aroot is the set of all a ∈ A
that make φ1 true.

Given a pattern α = ψ1 · · ·ψk ∈ P, and an axis o ∈
{∗←, ↓∗,→∗}, we can convert α into a path expression as
follows:

Po(ε)
def
= ε if k = 0,

Po(ψ1 · · ·ψk)
def
= o[ψ1] o · · · o[ψk] if k > 0.

Note that Po is injective.
Let us define Pφ as the set of patterns consisting of

• the constant > and the empty string ε,

• ψ, for every ψ ∈ B(A) that is a subformula of φ,

• every α ∈ (B(A))∗ so that P→∗(α), P∗←(α), or P↓∗(α)
is a substring of φ.

It follows that Pφ is finite and subword-closed.
For any direct non-recursive formula ψ that is a boole-

an combination of subformulas of φ and forest profile f, we
define f ` ψ as follows. If ψ ∈ A, then f ` ψ if and only if
there is some d ∈ D and i ∈ [k] so that (ψ, ε, i) ∈ χ

↓i(d). For
all the boolean cases ` is homomorphic. Suppose now that
ψ = 〈α·β@i 6= γ·δ@j〉 where α is leftward, ε or empty, γ is
rightward, ε or empty, and β, δ are downward or empty. We
define f ` ψ if there are some d, d′ ∈ D so that d 6= d′ and

• if α = ε or α = ε, (>,P−1
↓∗ (β), i) ∈ χ

↓ i(d),

• if α 6= ε, α 6= ε, (P−1
∗←(α),P−1

↓∗ (β), i) ∈ (→[f]·χ↓e∪ χ↓ i)(d),

• if γ = ε or γ = ε, (>,P−1
↓∗ (δ), j) ∈ χ

↓i(d′),

• if γ 6= ε, γ 6= ε, (P−1
→∗(γ),P−1

↓∗ (δ), j) ∈ ([f]→·χ↓e∪ χ↓i)(d′).
Note that if α = ε then β = ε (resp. with γ and δ). If
both α and γ are rightwards or leftwards it is defined in
an analogous way. The case for = is also analogous, where
d = d′. The idea is that f ` ψ makes only sense when the
derivation forest for f is a tree, and the multi-attribute data
tree t associated to the derivation tree is so that t |= ψ.

For example, testing ψ is the same as testing if there is
some pattern (ψ, ,) in χ

↓ i or χ
↓i. In a similar way, checking

a formula like

〈→∗[a]↓∗[b]@1 = ↓∗[c]@2〉
reduces to checking if there is a data value d ∈ D that can
be reached with (>, c, 2) in the main forest (i.e., in χ

↓ i or
χ
↓i), and either

• d can be reached by (a, b, 1) in the main forest, that
is, (a, b, 1) ∈ χ

↓i (or equivalently χ
↓ i), or

• d can be reached in the right forest by (a, b, 1), where
a could be tested in the main forest (i.e., a ∈ [f]→), that
is, (a, b, 1) ∈ [f]→·χ↓e.

Note that checking f ` ψ takes polynomial time in the size
of f and ψ. Also, whether f ` ∧a∈A(a⇒ γϕ(a)) holds or not
depends only on ξ(f).

Lemma 6.4. Given a direct non-recursive formula ψ that
is a boolean combination of subformulas of φ, and two forest
profiles f, f′ ∈ F so that ξ(f) = ξ(f′) then f ` ψ if, and only
if, f′ ` ψ.

We can then write ξ |= ψ for ξ ∈ F instead of f |= ψ
for any f so that ξ(f) = ξ. We define the set of consistent
profiles Γφ as all ξ ∈ F so that ξ ` ∧a∈A(a ⇒ γϕ(a)). The
following lemma follows straight from the above definition
of `.

Lemma 6.5. f ` ∧a∈A(a⇒ γϕ(a)) iff ξ(f) ∈ Γφ.

Abstractions.
Given multi-attribute data forests t̄l, t̄, t̄r, we define

abs(t̄l, t̄, t̄r)

as the forest profile that abstracts the forest t̄ in the con-
text of the forests t̄l to the left and t̄r to the right. We

have already discussed the idea of this abstraction in Sec-
tion 4. For example, for the forest of Figure 3, assuming
P = {>, b·c, b, c, ε}, we would obtain an abstraction where

χ
↓e = {(5, b, b, 1), (5, b, ε, 1), (3, b, ε, 2), (2, b, c, 1), . . . }.

We have that abs is basically an algebra morphism be-
tween multi-attribute data forests with rooting and concate-
nation and forest profiles with profile rooting and profile
concatenation. Further, the profile abs(ε, t, ε) is a derivable
root profile whenever t |= φ; and every derivable root profile
is the abstraction of some tree t so that t |= φ.As a corollary
from these properties, we have the following.

Corollary 6.6. There is a derivable root forest profile
if, and only if, φ is satisfiable.

By the above Corollary 6.6 and Proposition 5.12, we can
check in 2ExpSpace if there is a derivable root profile. This
is 2ExpSpace in the size of Pφ. Although bringing a formula
ϕ into direct unnested normal form may result in a doubly
exponential formula, by Corollary 6.3 it can be stored in
exponential space, and Pφ is then singly exponential. Hence,
the procedure is 3ExpSpace in the original formula ϕ. Thus,
the decision procedure is in 3ExpSpace and Theorem 3.1
follows.

Note that if the input formula is in direct normal form
then we save one exponential in the reduction and we hence
obtain a 2ExpSpace decision procedure.

Theorem 6.7. The satisfiability problem for formulas of
XPath(∗←, ↓∗,→∗,=) in direct normal form is decidable in
2ExpSpace.

7. DISCUSSION
We have shown that XPath with downward, rightward and

leftward reflexive-transitive axes is decidable. To show this,
we devised an algebra with good monotonicity properties.
This seems to be the right kind of approach to work with
transitive relations, and it generalizes and simplifies, in some
aspects, the work of [11].

Upward axes
One natural question that stems from the result presented
here is whether it can be extended to work with an upward
axis as well. However, we claim (without a proof) that al-
ready SAT-XPath(↑∗,→∗,=) has a non-primitive recursive
lower bound. Indeed, this can be proved by reusing the re-
sults on lower bounds of [14]. The cited work shows that
XPath with one non-reflexive transitive axis is enough to
prove non-primitive recursiveness provided that the axis is
functional (i.e., the transitive closure of an axis like→,←, ↑
but unlike ↓). Here, however, we feature reflexive-transitive
axes instead of only transitive. Therefore, in principle we
cannot use this result. However, one can somehow code ↑+
with →∗[a]↑∗[¬a] for some label a. We leave the proof of
this claim for the journal version of the present work.

By the previous claim, although it could be that full tran-
sitive XPath is decidable, it would have a non-primitive
recursive lower bound. We can then answer negatively to
the conjecture proposed in [11, Conjecture 2], stating that
XPath(∗←, ↓∗, ↑∗,→∗,=) be decidable in elementary time.

Future work
• The present work can be seen as a step forward in

answering [11, Conjecture 1], suggesting that the ex-
tension of XPath(∗←, ↓∗,→∗,=) with the child axis is
decidable with elementary complexity. Our approach
may perhaps be extended to handle the child relation.

• We suspect that XPath(∗←, ↓∗,→∗,=) is in fact hard
for 2ExpSpace, even when the formulas are in direct
normal form, and hence that SAT-direct-XPath(∗←,
↓∗,→∗,=) is 2ExpSpace-complete.

• We would also like to investigate further the approach
taken in this paper to attempt to generalize it to work
with the class of reflexive-transitive closures of regular
languages.

8. REFERENCES
[1] Vince Bárány, Miko laj Bojańczyk, Diego Figueira, and

Pawe l Parys. Decidable classes of documents for
XPath. In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer
Science (FSTTCS’12), Leibniz International
Proceedings in Informatics (LIPIcs), Hyderabad,
India, 2012. Leibniz-Zentrum für Informatik.

[2] Michael Benedikt, Wenfei Fan, and Floris Geerts.
XPath satisfiability in the presence of DTDs. Journal
of the ACM, 55(2):1–79, 2008.

[3] Miko laj Bojańczyk and S lawomir Lasota. An
extension of data automata that captures XPath. In
Annual IEEE Symposium on Logic in Computer
Science (LICS ’10), 2010.

[4] Miko laj Bojańczyk, Anca Muscholl, Thomas
Schwentick, and Luc Segoufin. Two-variable logic on
data trees and XML reasoning. Journal of the ACM,
56(3):1–48, 2009.

[5] James Clark and Steve DeRose. XML path language
(XPath). Website, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

[6] Claire David, Leonid Libkin, and Tony Tan. Efficient
reasoning about data trees via integer linear
programming. ACM Transactions on Database
Systems, 37(3):19, 2012.

[7] Wenfei Fan, Chee Yong Chan, and Minos N.
Garofalakis. Secure XML querying with security
views. In ACM SIGACT-SIGMOD-SIGART
International Conference on Management of Data
(SIGMOD’04), pages 587–598. ACM Press, 2004.

[8] Diego Figueira. Satisfiability of downward XPath with
data equality tests. In ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’09), pages 197–206. ACM
Press, 2009.

[9] Diego Figueira. Forward-XPath and extended register
automata on data-trees. In International Conference
on Database Theory (ICDT’10). ACM Press, 2010.

[10] Diego Figueira. Reasoning on Words and Trees with
Data. Phd thesis, Laboratoire Spécification et
Vérification, ENS Cachan, France, December 2010.

[11] Diego Figueira. A decidable two-way logic on data
words. In Annual IEEE Symposium on Logic in
Computer Science (LICS’11), pages 365–374, Toronto,
Canada, 2011. IEEE Computer Society Press.

http://www.w3.org/TR/xpath

[12] Diego Figueira. Alternating register automata on
finite data words and trees. Logical Methods in
Computer Science, 8(1), 2012.

[13] Diego Figueira. Decidability of downward XPath.
ACM Trans. Comput. Log., 13(4), 2012.

[14] Diego Figueira and Luc Segoufin. Future-looking
logics on data words and trees. In Int. Symp. on
Mathematical Foundations of Comp. Sci. (MFCS’09),
volume 5734 of LNCS, pages 331–343. Springer, 2009.

[15] Diego Figueira and Luc Segoufin. Bottom-up
automata on data trees and vertical XPath. In
International Symposium on Theoretical Aspects of
Computer Science (STACS’11), Leibniz International
Proceedings in Informatics (LIPIcs). Leibniz-Zentrum
für Informatik, 2011.

[16] Floris Geerts and Wenfei Fan. Satisfiability of XPath
queries with sibling axes. In International Symposium
on Database Programming Languages (DBPL’05),
volume 3774 of Lecture Notes in Computer Science,
pages 122–137. Springer, 2005.

[17] Georg Gottlob, Christoph Koch, and Reinhard
Pichler. Efficient algorithms for processing XPath
queries. ACM Transactions on Database Systems,
30(2):444–491, 2005.

[18] Marcin Jurdziński and Ranko Lazić. Alternating
automata on data trees and xpath satisfiability. ACM
Trans. Comput. Log., 12(3):19, 2011.

[19] Michael Kaminski and Nissim Francez. Finite-memory
automata. Theoretical Computer Science,
134(2):329–363, 1994.

[20] Michael Kaminski and Tony Tan. Tree automata over
infinite alphabets. In Pillars of Computer Science,
volume 4800 of Lecture Notes in Computer Science,
pages 386–423. Springer, 2008.

[21] Wim Martens and Frank Neven. Frontiers of
tractability for typechecking simple xml
transformations. J. Comput. Syst. Sci., 73(3):362–390,
2007.

[22] Frank Neven, Thomas Schwentick, and Victor Vianu.
Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435,
2004.

[23] Tony Tan. An automata model for trees with ordered
data values. In Annual IEEE Symposium on Logic in
Computer Science (LICS’12), pages 586–595. IEEE
Computer Society Press, 2012.

	Introduction
	Preliminaries
	Proof sketch
	Forest Profiles
	Rigid and flexible values
	Algebra
	The derivation problem

	Computing derivable profiles
	Preliminaries
	Ordering on profiles
	Monotonicity properties
	Bounding the rigid values
	Restricting to minimal elements
	The algorithm

	From XPath to forest profiles
	Normal forms
	Reduction to the derivation problem

	Discussion
	References

