
Ph.D. Thesis Summary

Reasoning on Words and Trees with Data
?

Author: Diego Figueira Supervisors: Luc Segoufin, Stéphane Demri

Abstract

A data word (resp. a data tree) is a finite
word (resp. tree) whose every position carries a
letter from a finite alphabet and a datum form
an infinite domain. In this thesis we investi-
gate automata and logics for data words and
data trees with decidable reasoning problems:
we focus on the emptiness problem in the case
of automata, and the satisfiability problem in
the case of logics. These problems are perti-
nent to areas such as software verification, data-
driven systems verification, and static analysis
of database query languages.

On data words, we present a decidable exten-
sion of a model of alternating register automata
studied by Demri and Lazić. Further, we in-
vestigate the satisfiability problem for a linear-
time temporal logic on data words. This logic
features one register for storing and comparing
data values seen along the data word. The logic
has been previously studied by Demri and Lazić,
here we show that this logic extended with quan-
tification over data values is decidable. In addi-
tion, we prove that even when the logic is re-
stricted to having only a ‘future’ modality (i.e.,
no next modality), its satisfiability problem has
a non-primitive-recursive lower bound.

On data trees, we consider three decidable
automata models with different expressive pow-
ers. We first introduce the Downward Data au-
tomaton (DD automata). Its execution consists
in a transduction of the finite labeling of the
tree, and a verification of data properties for ev-
ery subtree of the transduced tree. This model
is closed under boolean operations, although the
tests it can make on the order of the siblings is
limited. Its emptiness problem is in 2ExpTime.
On the contrary, the other two automata models
we introduce have an emptiness problem with

a non-primitive-recursive complexity, and are
closed under intersection and union, but not
complementation. They are both alternating
automata with one register to store and com-
pare data values. We introduce an automata
model that extends the alternating top-down
register automata model (ATRA) studied by Ju-
rdziński and Lazić. We exhibit similar decid-
able extensions as in the case of data words.
This class of automata can test for any regular
tree language—in contrast to DD automata. Fi-
nally, we consider a bottom-up alternating tree
automaton with one register (called BUDA). Al-
though BUDA are one-way, they can test data
properties by navigating the tree in both direc-
tions: upward and downward. In opposition to
the extension of ATRA, this automaton cannot
test for properties on the sequence of siblings
(like, for example, the order in which labels ap-
pear). In order to show decidability for these
automata models we introduce some novel ap-
proaches, revealing strong connections with the
theory of well-structured transition systems.

Each of these three models has a connec-
tion with the logic XPath—a logic conceived
for xml documents, which can be seen as data
trees. Through the aforementioned automata
we show that the satisfiability of three natural
fragments of XPath are decidable. These frag-
ments are: downward XPath, where navigation
can only be done by child and descendant axes;
forward XPath, where navigation also contains
the next sibling axis and its transitive closure;
and vertical XPath, whose navigation consists in
the child, descendant, parent and ancestor navi-
gation axes. Whereas downward XPath is Exp-
Time-complete, forward and vertical XPath have
non-primitive-recursive lower bounds.

? Thesis defended on December 6, 2010 at École Normale Supérieure de Cachan, in front of a jury composed
of: Stéphane Demri (supervisor), Georg Gottlob (reviewer), Ranko Lazić (examiner), Leonid Libkin (examiner),
Carsten Lutz (examiner), Thomas Schwentick (reviewer), and Luc Segoufin (supervisor).

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

1 Introduction

Words and trees are amongst the most studied structures in computer science. In this thesis, we
focus on words and trees that can contain elements from some infinite alphabet (that we call data
values), like for example the set of integers, or the set of words over the alphabet {a, b}. These
kind of structures are relevant to many areas.

For instance, in software verification, one may need to decide statically whether a program
satisfies some given specification; and the necessity of dealing with infinite alphabets can arise from
different angles. For example, in the presence of concurrency, we have an unbounded number of
processes running, each one with its process identification, and we must verify properties specifying
the interplay between these processes. Further, procedures may take parameters as input, and they
can hence exchange data from some unbounded domain. Infinite alphabets can also emerge as a
consequence of the use of recursive procedure calls, communication through FIFO channels, etc.

Also, in a database context, infinite alphabets are a common occurrence. Let us dwell on
static analysis tasks on xml documents and its query languages. In this context there are several
pertinent problems serving static analysis. For example, there is the problem of coherence: is there
a document in which a given query returns a non-empty result? The problem of inclusion: is it
true that for any document, the result answered by one given query is contained in the result of
another? And the problem of equivalence: do two given queries always return the same answers?
These questions are at the core of many static analysis tasks. For example, by answering the
coherence problem one can decide whether the computation of a query on a database can be
avoided because the query contains a contradiction; and by answering the equivalence problem if
one query can be safely replaced by a simpler one. All these queries recurrently need to specify
properties concerning not only the labels of the nodes, but also the actual data contained in the
attributes. In particular, they need to perform joins, that is, to describe when two data values
ought to be equal or not.

Still in the context of databases, we can also regard logics that express data properties as specifi-
cation languages. In verification of database-driven systems, we are provided with the specification
of a system that interacts with a database, and we need to check whether it is possible to reach
a state in which the database has some undesired property. In order to model the specification
of the system as well as the property of the database—for example through an automaton or a
logical formula—we typically need to take into account values from infinite domains.

Therefore, the study of formalisms to reason with words and trees that can carry elements from
some infinite domain is relevant to all the aforementioned areas, and possibly more. To begin our
study, first we need to fix once and for all the structure over which we intend to reason.

Data words and data trees are simple models that extend words and trees over finite alphabets.
A data word is a word (i.e., a finite sequence) where every position has a symbol from a finite
alphabet (a label), and an element from some infinite domain (a data value). Similarly, a data tree
is an unranked ordered finite tree, whose every node carries a label and a data value. By unranked
we mean that every node has unboundedly many children, and by ordered that the children of a
node are seen as an ordered list of subtrees, instead of a set or multiset. This model is in close
relation to an xml document. Indeed, all the results we obtain on data trees can be translated
into the xml setting.

To get familiar with these models, let us give some examples of possible data properties (i.e.,
properties whose satisfaction rely on the model’s data values) that one may be interested in veri-
fying in a data word or a data tree.

Example 1. We have several processes (or execution threads of a process) running concurrently.1

Each one of these has a process identifier (a number), and we model the history of execution of
these processes. In the history, we record when the process i begins a task with an element (b, i),

1This example is inspired on an example recurrently used by Thomas Schwentick.

2

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

root→ category stock

stock→ (id)∗

category→ (category)∗ (product)∗ featured?

product→ name id

Figure 1: A simple specification modeling the data trees of interest for our problem.

when it ended a task with (e, i), and when it reads (r, i) and writes (w, i) to the hard disk, during
the task. To make things interesting, suppose that once in a while there is a maintenance shutdown
of the disk (performed by a process with letter s). A possible history may be one like this one.

(b, 1) (b, 2) (r, 1) (r, 2) (w, 1) (e, 1) (b, 1) (e, 2) (e, 1) (s, 3) (b, 4) (w, 4) (e, 4) (s, 3)

In this example we see that process 1 performs two tasks, in the first one it reads and then writes,
and in the second one it does not read nor write. Interleaved with these tasks process 2 also
performs a reading task. Then the maintenance process 3 shutdowns the disk, etc.

Let us describe some possible properties one could want to verify over a history like this.

(W1) For every b there is a future e with the same data value.

(W2) Further, we can ask that for every data value, the data word restricted to that data value
belongs to (s + (b · {r,w}∗ · e))∗.

(W3) Every time a task starts, it will end before the shutdown. That is, for every b there exists
an e with the same data value, that occurs before the next s.

(W4) There exists a process whose first operation is a write.

(W5) Each time a s appears, all the processes occurred so far do not reappear in the future.

Example 2. Suppose now we have a data tree containing all the products that are being sold by
a website. Suppose that the shape and labels of the tree are specified with the DTD of Figure 1.
A DTD is basically a set of rules of the kind “if a node has label l, then the children have certain
labels”, which are read in the expected manner. For example, the root has two nodes, one with
label category and one labeled stock. Each node labeled category has a sequence of nodes labeled
category, a sequence of nodes labeled product, and finally perhaps a node labeled featured. The
idea is that the products are organized in a hierarchy of categories (described by the category child
of the root), and also we have under stock a set of product identifiers that are on stock. Further,
some categories may be “featured categories” of products, obtaining some special visibility in the
site, for all the products in the category and recursively in all subcategories. An example of a
possible tree is shown in Figure 2.

Given a data tree that models such scenario, there might be a number of properties that we
want to verify. In the spirit of depicting different sorts of properties, consider the following.

(T1) It cannot happen that a category has the same name as a product.

(T2) All the product id’s under the category subtree are different. Also, all the product id’s under
the stock node are different.

(T3) The name of a product allows to identify a product inside a category. In other words, all the
product name in a category are different.

(T4) Every product in stock is categorized under some category.

(T5) All the categories have different names.

3

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

root
-

category
all

category
electronics category

music

category
phones

category
notebooks

product
-

name
android

id
381

product
-

name
iPad

id
104

product
-

name
Air - Moon Safari

id
257

stock
-

id
257

id
381

featured
-

Figure 2: An example of a data tree with information about the products sold by a web site.

(T6) There is at least one product in stock that is in some descendant category of a featured
category.

(T7) The same product cannot be in two categories in the ancestor-descendant relation.

These examples intend to show the variety of properties we may need to verify in an environment
with data. We consider two sorts of formalisms for specifying these properties: either by means
of logics, or by means of accepting runs of automata. However, it can be shown that there is
no decidable logic or class of automata that is able to express all these desirable properties and is
closed under conjunction or intersection, neither in the case of trees nor in the case of words. At the
same time, most of these independent properties can be expressed by some decidable formalism in
the literature closed under intersection. The general outlook is that there are not many expressive
formalisms that are decidable, and there is also a need for more general techniques to allow to
treat data values to prove decidability results.

The thesis explores expressive logics and automata with decidable reasoning tasks. We give
several new results on decidable logics on these data models, and we introduce new decidable
automata models. The intention of this work is to devise new approaches and techniques to work
with data values, and to give new insights on the limits of what is decidable on these models.

Preliminaries

We fix some basic notation. We define N = {1, 2, 3, . . . }, and [n] = {1, . . . , n}. We fix D to be any
infinite domain of data values; in our examples we consider D = N. In general we use letters A,
B for finite alphabets, the letter D for an infinite alphabet and the letters E and F for any kind
of alphabet. By E∗ we denote the set of finite sequences over E, by E+ the set of finite sequences
with at least one element over E. We use ‘·’ as the concatenation operator between sequences.

2 Related work

We mention briefly some works closely related to the thesis. For a broader and more detailed
discussion we refer the reader to Sections 1.3, 3.2, 4.4, 5.1.1, 6.1 and 7.1.1 of the thesis.

Register Automata Kaminski and Francez (1994) introduce the class of register automata on
data words, its expressiveness studied by Neven, Schwentick, and Vianu (2004). This model was
extended to data trees by Kaminski and Tan (2008). The model of one-way alternating register

4

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

automata ARA is an extension studied by Demri and Lazić (2009). It has also been extended to
trees, as an alternating top-down tree register automata (ATRA) by Jurdziński and Lazić (2008).
Bouyer, Petit, and Thérien (2003) studied a class of automata, inspired by timed languages, coining
the term data word. In fact, automata for timed languages and register automata are very closely
related, since most problems in one model can be reduced into similar problems in the other
(Figueira, Hofman, and Lasota, 2010). We extend the models ARA and ATRA while preserving
decidability of the emptiness problem.

Linear temporal logics The logic for data-words most relevant to this thesis is the temporal
logic LTL extended with one register for storing and comparing data values. It is denoted by LTL↓,
and it was studied in (Demri and Lazić, 2009). We investigate decidable extensions and lower
bounds of restrictions of this logic.

First-order logic The satisfiability of first-order logic with two variables and data equality
tests is explored by Bojańczyk, Muscholl, Schwentick, Segoufin, and David (2006). The logic
FO2(∼, <,+1) is shown to have a decidable satisfiability problem. This is first-order logic where
we have only two variables x and y (that we can however reuse), and three binary relations: < is
interpreted as the order of positions in the word, +1 denotes the relation of consecutive positions,
and ∼ relates two positions that have the same data value. This logic can equivalently be seen as
an automaton called data automaton, or as a class memory automata (Björklund and Schwentick,
2010). However, these formalisms are incomparable in terms of expressiveness with respect to the
automata and logics we study in this thesis. For example, data automata can express property
(W2) that cannot be expressed by any of the formalisms of the thesis, but they cannot express
(W3). This model was extended by Björklund and Bojańczyk (2007) to work on bounded-depth
unranked data trees. If we consider that the domain is linearly-ordered, finite satisfiability for
FO2(<,+1,∼,≺) becomes undecidable (Bojańczyk et al., 2006). However, Schwentick and Zeume
(2010) show that it becomes decidable if we disallow the +1 operator. Bojańczyk and Lasota
(2010) introduce a simple and powerful —undecidable— automata model called class automata on
data trees that captures FO2(∼, <,+1), data automata, XPath, ATRA, and some other models.

XPath Benedikt, Fan, and Geerts (2008) studied the satisfiability problem for many XPath
fragments containing downwards and upwards axes, but no horizontal axes. In (Geerts and Fan,
2005), several XPath fragments with horizontal axes are treated. In this thesis we continue this
study exhibiting large decidable fragments of XPath.

Bojańczyk et al. (2009) shows the decidability of XPathε(↑, ↓,←,→,=) with sibling and upward
axes but restricted to local elements accessible by a “one step” relation, and to data formulas of
the kind 〈ε = α〉 (or 6=). We, on the other hand, work with fragments that can perform tests of
nodes at possibly distant positions of the tree.

Finally, Jurdziński and Lazić (2008) shows decidability of XPathε(↓, ↓∗,→,→∗,=), a fragment
of with forward axes (i.e., downwards and rightwards) and where the data tests are restricted as
before. This is done by translating formulas of this fragment into ATRA automata. In our work
we show that in fact the full, unrestricted, forward fragment of XPath is decidable.

Well-structured transition systems We make use of techniques involving well-structured
transition systems. The theory of well-structured transition systems (wsts) is a development
born in the field of verification of infinite state systems. Paraphrasing Finkel and Schnoebelen
(2001), these are transition systems where the existence of a well-quasi-ordering over the infinite
set of states ensures the termination of several algorithmic methods. wsts’s are an abstract
generalization of several specific structures and they allow decidability results in many fields.

5

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

3 Contribution

The contribution of this thesis is divided into two parts: data words and data trees. We make this
distinction since in general we cannot always view a word as a special case of a tree. For example,
notice that a move to the left followed by a move to the right in a word goes back to the same
position on the word, while not necessarily in the tree case (a move to the parent followed by a
move to a child may end up in a sibling node). In fact, both have useful applications, for instance
one can model the traces of runs of processes, the other can model a database of products.

In both parts we study automata models and logical formalisms. We use the automata models
for showing decidability of the logical formalisms we present, but the automata models are useful
on their own. In fact, the automata models are more powerful than the corresponding logics we
study, and we believe that they can also have applications on verification of database systems,
consistency of specifications, etc.

3.1 Data words

We consider a finite word over E as a function w : [n] → E for some n ∈ N, and we define the
set of words as Words(E) := {w : [n] → E | n ∈ N}. We write pos(w) = {1, . . . , n} to denote
the set of positions (that is, the domain of w). Given w ∈ Words(E) and w′ ∈ Words(F) with
pos(w) = pos(w′) = P , we write w⊗w′ ∈Words(E× F) for the word such that pos(w⊗w′) = P
and (w⊗w′)(x) = (w(x),w′(x)). A data word is a word from Words(A×D), where A is a finite
alphabet of letters and D is an infinite domain of data values.

We investigate alternating register automata and temporal logics for data words. This corre-
sponds to Chapter 3 in the thesis, and is also included in (Figueira and Segoufin, 2009; Figueira,
2012a). We define a one-way alternating automata model over data words, with one register for
storing data and comparing them for equality, and two other operators that add more expressive
power, extending existing results of Demri and Lazić (2009).

Our work on register automata aims at two objectives: (1) simplifying the existent decidability
proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable
extensions for these models.

From the logical perspective, we work with the temporal logic LTL extended with one register
for storing and comparing data values (denoted by LTL↓). This logic contains a ‘freeze’ operator to
store the current datum and a ‘test’ operator to test the current datum against the stored one. We
show that (a) in the case of data words, satisfiability of LTL↓ with quantification over data values
is decidable; and (b) the satisfiability problem for very weak fragments of LTL↓ with one register
are non-primitive-recursive—markedly, these fragments have no “next element” X modality.

3.1.1 Alternating register automata

On data words, we focus on automata with one register and alternating control called ARA (for
Alternating Register Automata). ARA are one-way automata with alternating control and one
register to store data values for later comparison. This automata class is known to have a decidable
emptiness problem (Demri and Lazić, 2009) through a non-trivial reduction to the emptiness
problem for Incrementing Counter Automata2. However, the emptiness problem for ARA cannot
be decided by any algorithm whose time or space is bounded by any primitive-recursive function
—in this case, we say that it has non-primitive-recursive complexity.3

2An Incrementing Counter Automaton is a Minsky Counter Automaton whose runs may contain ‘errors’ that
increase one or more counters non-deterministically throughout the run. This makes its emptiness problem decidable.

3More precisely, this problem sits in the class Fω of the Fast Growing Hierarchy (Löb and Wainer, 1970)—
an extension of the Grzegorczyk Hierarchy for non-primitive-recursive functions—by a reduction to the emptiness
problem for Incrementing Counter Automata (Demri and Lazić, 2009), which is in Fω (Figueira et al., 2011, §7.2).

6

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

We extend these automata with operators that add expressive power, while preserving decid-
ability. These operators are used to transfer the decidability to the satisfiability problem for a logic.
In our work, decidability of these models is shown by interpreting the semantics of the automaton
in the theory of well-structured transition systems (wsts) (see Finkel and Schnoebelen, 2001).
The object of this alternative proof is twofold. On the one hand, we propose a direct, unified and
self-contained proof of the main decidability results of Demri and Lazić. Whereas in (Demri and
Lazić, 2009) decidability results are shown by reduction to a class of faulty counter automata, here
we avoid such translation, and we provide a simple decidability argument directly interpreting the
configurations of the automata in the theory of well-structured transition systems. That is, we
avoid an intermediary reduction to a faulty counter system. We stress, however, that the underly-
ing techniques used here are somewhat similar to those used to prove decidability for Incrementing
Counter Automata. On the other hand, we further generalize these results. Our proof can be
easily extended to show the decidability of the nonemptiness problem for two extensions. These
extensions consist in the following abilities:

(a) the automaton can nondeterministically guess any data value of the domain and store it in
the register; and

(b) it can make a universal quantification over all the data values seen along the run of the
automaton, and in particular over the data values seen so far.

We name these extensions guess and spread respectively. These extensions can be added to the
ARA model preserving decidability, although losing closure under complementation.4 We call the
model of alternating tree register automata with these extensions by ARA(guess, spread). We show
that any of these extensions add expressive power. In fact, we can now express (W4) or (W5),
that were not possible to express before.

We now give more details on the automata model. An alternating register automaton of
ARA(spread, guess) consists of a finite alphabet, a finite set of states, an initial state, and a transition
function that associates to each state one of the following formulas: a, ā, B?, B̄?, store(q), eq, eq,
q ∧ q′, q ∨ q′, Bq, guess(q), spread(q, q′); where a is a letter from the alphabet and q, q′ are states.

Here, a and ā are to test that the current element of the data word has (or has not) the letter
a; B? and B̄? are to test if we are at the last element of the word (or not); B is to move to the
next position to the right on the data word; store(q) stores the current datum in the register and
continues the execution with state q; and eq and eq test that the current node’s value is (or is
not) equal to the stored. As usual, ∧ and ∨ are used for alternation and nondeterminism. This
formalism without the guess and spread transitions is equivalent to the ARA model of (Demri and
Lazić, 2009) on finite data words. It can express properties like, e.g., (W3).

As this automaton is one-way, we define its semantics as a set of ‘threads’ for each node that
progress synchronously. Each thread is a pair (q, d) where q is a state and d is a data value.
All threads at a node move one step forward simultaneously and then perform some non-moving
transitions independently. A configuration then contains a set of threads that must be verified.
For example, if a transition q1 ∧ q2 is triggered from a thread (q, d), then (q, d) is removed from
the configuration and (q1, d), (q2, d) are added. And whenever a thread (q, d) executes a successful
test (say, for example, eq), the thread is removed from the configuration.

The guess instruction extends the model with the ability of storing any datum from the domain
D. And the spread instruction is an unconventional operator in the sense that it depends on the
data of all threads in the current configuration with a certain state. Whenever spread(q2, q1) is
executed, a new thread (q1, d) is added to the configuration for each thread (q2, d) present in the
configuration. With this operator we can code, for example, a universal quantification over all the
previous data values of the data word.

4In fact, we show that if we add the dual operator of any of these two extensions, the automata model becomes
undecidable.

7

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

The set of transitions then defines in a natural way a relation between configurations. An ac-
cepting run on a data word is then a sequence of configurations consistent with the aforementioned
relation and the data word, that starts with a configuration containing only one thread in the
initial state and the first data word, and ends in a configuration with no threads. Our main result
here is the following.

Theorem 3.5. The emptiness problem for ARA(guess, spread) is decidable.

We demonstrate that these extensions are also decidable if the data domain is equipped with a
linear order and the automata model is extended accordingly (§3.3.3). Our investigation on register
automata also yields new results on a class of timed automata, called alternating 1-clock timed
automaton (§3.3.4).5 These results are included in §3.3 of the thesis and in (Figueira, 2012a).

3.1.2 Linear temporal logics

On the logical side, we center our attention on linear temporal logics.

Preliminaries

The logic LTL↓n(O) is a logic for data words that corresponds to the extension of the Linear
Temporal Logic LTL(O) on data words, where O is a subset of the usual navigation modalities,
for example {F,U,X}. The logic is extended with the ability to use n different registers for storing
a data value for later comparisons, and it was studied in (Demri and Lazić, 2009; Demri et al.,
2005). The freeze operator ↓i ϕ permits to store the current datum in register i and continue the
evaluation of the formula ϕ. The operator ↑i tests whether the current data value is equal to the
one stored in register i. We use the usual navigation modalities: the next (X), future (F) and until
(U) temporal operators, together with its inverse counterparts (X−1, F−1, U−1).

As it was shown by Demri and Lazić (2009), LTL↓1(U,X) has a decidable satisfiability problem
with non-primitive-recursive complexity. However, as soon as n ≥ 2, satisfiability of LTL↓n(U,X)

becomes undecidable. We write LTL↓(O) as short for LTL↓1(O). We focus on decidable upper
bounds for extensions of LTL↓(X,U), and on lower bounds for some fragments.

We define the semantics of the logic with only one register. Fix a finite alphabet A. Sentences
of LTL↓(O), where O ⊆ {X,F,U,X−1,F−1,U−1} are defined as follows, where a is a letter from A,

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | a | ↑ | ↓ ϕ | oϕ . (o ∈ O)

Table 1 shows the definition of the satisfaction relation |=. For example, in this logic we can
express (W1), or a property like “for every a element there is a future b element with the same data
value” as G(¬a∨ ↓ (F(b ∧ ↑))). We say that ϕ satisfies w = a⊗d, written w |= ϕ, if w, 1 |=d(1) ϕ.

We show that LTL↓(U,X) can be extended with quantification over data values, extending
the previous decidability results. On the other hand, we investigate the lower bounds for very
weak fragments. By the lower bounds given in (Demri and Lazić, 2009), the complexity of the
satisfiability problem for LTL↓(U,X) is non-primitive-recursive. Here we show that even LTL↓(F)
has non-primitive-recursive complexity, and that already LTL↓(F,F−1) is undecidable. Further, if

two registers are allowed, LTL↓2(F) is also undecidable.

Upper bounds Our work on ARA(guess, spread) yields new decidability results on the satisfia-
bility for some extensions of the temporal logic with one register LTL↓(U,X). Our automata model
captures an extension of this logic with quantification over data values, where we can express for
any ϕ ∈ LTL↓(U,X):

5This is because the problems of nonemptiness, language inclusion, language equivalence and universality are
equivalent—modulo an ExpTime reduction—for timed automata and register automata over a linearly ordered data
domain (Figueira et al., 2010).

8

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

(w, i) |=d a iff a(i) = a

(w, i) |=d ↑ iff d = d(i)

(w, i) |=d ↓ ϕ iff (w, i) |=d(i) ϕ

(w, i) |=d U(ϕ,ψ) iff for some i ≤ j ∈ pos(w) and for all i ≤ k < j we have (w, j) |=d ϕ, (w, k) |=d ψ

(w, i) |=d Xϕ iff i+ 1 ∈ pos(w) and (w, i+ 1) |=d ϕ

Table 1: Semantics of LTL↓(X,F,U,X−1,F−1,U−1) for a data word w = a ⊗ d and i ∈ pos(w). The
interpretation of ∧, ∨ and ¬ is standard. As usual, we define the future modality as Fϕ := U(ϕ,>) ∨ ϕ,
and U−1, F−1, X−1 as the symmetric of U, F, X.

• “for all data values in the past, ϕ holds” with the formula ∀↓≤ϕ, and

• “there exists a data value in the future where ϕ holds” with the formula ∃↓≥ϕ.

Indeed, we show that none of these two types of properties can be expressed in the formalism of
Demri and Lazić. These quantifiers may be added to LTL↓(U,X) without losing decidability.

Theorem 3.31. The satisfiability problem for LTL↓(U,X) extended with ∃↓≥ and ∀↓≤ (occurring
as positive appearances) is decidable.

What is more, we show that decidability is preserved if the data domain is equipped with a
linear order accessible by the logic. However, adding the dual of any of these operators results in
an undecidable logic. These results are included in §3.5 of the thesis as well as in (Figueira, 2012a).

Lower bounds Our second contribution on these logics is on lower bounds. Thanks to Demri and
Lazić we know that LTL↓(F,X) is has a non-primitive-recursive lower bound, and that LTL↓(F,F−1,X)
is undecidable. We show that these results carry over even in the absence of X.

Theorem 3.38. The satisfiability problem for LTL↓(F) is non-primitive-recursive; the satisfia-
bility problem for LTL↓(F,F−1) is undecidable.6

Theorem 3.39. The satisfiability for LTL↓2(F) is undecidable.6

These results are joint work with Luc Segoufin and are included in §3.6 of the thesis as well as
in (Figueira and Segoufin, 2011).

3.2 Data trees

We define Trees(E), the set of finite, ordered and unranked trees over an alphabet E. A position
in the context of a tree is an element of N∗. The root’s position is the empty string and we note
it ‘ε’. The position of any other node in the tree is the concatenation of the position of its parent
and the node’s index in the ordered list of siblings. Thus, for example x·i—where x ∈ N∗ and
i ∈ N—is a position which is not the root, that has x as parent position, and such that there
are i − 1 siblings to the left of x·i. The set of trees over E, noted Trees(E), is the set of labeling
functions t : P → E, where P is a set of tree positions.7 We informally refer by ‘node’ to a position
x of t together with the value t(x). Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) with the same
set of positions P , we define t1⊗ t2 : P → (E×F) as (t1⊗ t2)(x) = (t1(x), t2(x)). The set of data
trees over a finite alphabet A and an infinite domain D is defined as Trees(A×D). Note that every
tree t ∈ Trees(A×D) can be decomposed into two trees a ∈ Trees(A) and d ∈ Trees(D) such that
t = a⊗ d. Figure 3 shows an example of a data tree.

6These lower bounds hold both when F is considered a strict or a non-strict (reflexive) modality.
7A set of tree positions is any finite subset of N∗0 closed under prefix, such that if x·(i+ 1) is in the set, so is x·i.

9

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

a

a b

b b b

a b b

2

2 2

9 5 3

2 1 2

t a d= ⊗
Trees({a, b}) Trees(IN)

∈

Trees({a, b}× IN)

∈∈

Figure 3: A data tree.

In the case of data trees we consider a widely used logic for trees with data called XPath.
Although the satisfiability problem for this logic is undecidable, we exhibit three large fragments
—called downward, forward, and vertical XPath— that are decidable. The first one is in ExpTime
and the two others have non-primitive-recursive complexity (these bounds are optimal). The
decidability proofs are in each case based in a reduction to the emptiness problem for one of the
automata models we introduce.

From the automata side, we consider three decidable automata models with different character-
istics that allow to express different kinds of data properties. All these three models of automata
have a decidable emptiness problem, and they all have connections with the logic XPath. Our work
also gives alternative, arguably simpler, decidability proofs for the known results from (Jurdziński
and Lazić, 2008). This simplification allows us to extend the decidability results with operators
that add expressive power (as in the case for data words).

3.2.1 Preliminaries: XPath

XPath is a logic for xml documents (which are essentially data trees). Expressions of this logic
can navigate the tree by composing binary relations from a set of basic relations, that can contain
the parent relation (noted ↑), child (↓), ancestor (↑∗), descendant (↓∗), next sibling to the right
(→) or to the left (←), and their transitive closures (→∗, ∗←). For example “↑[a]↑↓[b]” defines
the relation between two nodes x, y such that y is an uncle of x labeled b and the parent of x is
labeled a. Boolean tests are built by using these compound relations. An expression like 〈α〉 (for
α a relation) tests that there exists a node accessible with the relation α from the current node.
Most importantly, a data test like 〈α = β〉 (resp. 〈α 6= β〉) tests that there are two nodes reachable
from the current node with the relations α and β that have the same (resp. different) data value.
We consider three natural fragments of XPath, according to which set of basic relations (usually
called axes) we use: downward ↓, ↓∗; forward ↓, ↓∗,→,→∗; or vertical ↓, ↓∗, ↑, ↑∗. We call these
fragments respectively the downward, forward and vertical fragments.

We define XPath over data trees. We prefer to define and work with data trees because it is a
simpler model. In the thesis we show that every result obtained for data trees holds also for xml
documents (§4.3, §5.4.3, §6.4.4, §7.4.1).8

XPath is arguably the most widely used xml query language. It is implemented in XSLT and
XQuery and it is used as a constituent part of several specification and update languages. XPath
is fundamentally a general purpose language for addressing, searching, and matching pieces of an
xml document. It is an open standard and constitutes a World Wide Web Consortium (W3C)
Recommendation (Clark and DeRose, 1999), implemented in most languages and xml packages.

An important static analysis problem of a query language is that of optimization, which can
reduce to the problem of query containment and query equivalence. In logics closed under boolean

8Indeed, this is basically a consequence of considering an xml document as a data tree where the attributes are
at leaf positions.

10

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

operators, these problems reduce to satisfiability checking: does a given query express some prop-
erty? That is, is there a document where this query has a non-empty result? By answering this
question we can decide at compile time whether the query contains a contradiction and thus the
computation of the query on the document can be avoided, or if one query can be safely replaced
by another one. Moreover, this problem becomes crucial for many applications on security, type
checking transformations, and consistency of xml specifications.

Core-XPath (introduced by Gottlob et al. (2005)) is the fragment of XPath that captures all the
navigational behavior of XPath. It has been well studied and its satisfiability problem is known
to be decidable even in the presence of DTDs. The extension of this language with the possibility
to make equality and inequality tests between attributes of elements in the xml document is
named Core-Data-XPath in (Bojańczyk et al., 2009). The satisfiability problem for this logic is
undecidable, as shown by Geerts and Fan (2005). It is then reasonable to study the interaction
between different navigational fragments of XPath with equality tests to be able to find decidable
and computationally well-behaved fragments.

Definition

XPath is a two-sorted language, with path expressions (that we write α, β, γ) and node expressions
(ϕ,ψ, η). The fragment XPath(O,=), with

O ⊆ {↓, ↓∗, ↓+, ↑, ↑∗, ↑+,→,→∗,→+,←, ∗←,+←}

is defined by mutual recursion as follows:

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β o ∈ O ∪ {ε} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A .

A formula of XPath(O,=) is either a node expression or a path expression of the logic. XPath(O)
is the fragment of XPath(O,=) without the node expressions of the form 〈α = β〉 or 〈α 6= β〉. By
regXPath(O,=) we refer to the extension of path expressions with the Kleene star operator.9

We formally define the semantics of XPath in Table 2. As an example, if t is the data tree
defined by Figure 3, then [[〈↓∗[b ∧ 〈↓[b] 6= ↓[b]〉]〉]]t = {ε, 1, 12}, where the formula reads: “there
is a descendant node labeled b, with two children labeled b with different data values.” We write
t |= ϕ to denote [[ϕ]]t 6= ∅. In this case we say that t ‘satisfies’ ϕ. We say that two formulas ϕ,ψ
of XPath are equivalent iff [[ϕ]]t = [[ψ]]t for all data tree t.

Fragments We define several natural fragments of XPath. Each fragment is defined by the
set of axes that the path expressions can use. We call the downward fragment of XPath to
XPath(↓∗, ↓,=). In fact, all our results apply also to regXPath(↓∗, ↓,=). The forward fragment
is an extension of the downward fragments with horizontal navigation in only one sense. In
our notation, forward XPath is then XPath(↓∗, ↓,→∗,→,=). The vertical fragment is another
extension of the downward fragment with upward axes, that is XPath(↓∗, ↓, ↑∗, ↑,=). Finally, we
also show some lower bounds for some horizontal fragments of XPath, that is, fragments of XPath
running on data words. These lower bounds will then be transferred to fragments that contains
horizontal or upwards axes, or that can force a model to be linear (like, e.g., XPath(↓∗, ↓,→,=)).

9 More precisely, by regXPath(O,=) we refer to the language where path expressions are extended

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ O

by allowing the Kleene star on any path expression. Although this extension is not enough to already have the
expressiveness of MSO—as shown by ten Cate and Segoufin (2008)—, it does give an intuitive language with some
counting ability.

11

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

[[→]]
t

= {(x·i, x·(i+ 1)) | x·(i+ 1) ∈ pos(t)} [[←]]
t

= {(x·(i+ 1), x·i) | x·(i+ 1) ∈ pos(t)}

[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[↑]]t = {(x·i, x) | x·i ∈ pos(t)}

[[α
+

]]
t

= the transitive closure of [[α]]
t

[[α
∗
]]
t

= the reflexive transitive closure of [[α]]
t

[[ε]]
t

= {(x, x) | x ∈ pos(t)} [[αβ]]
t

= {(x, z) | there exists y such that

[[α ∪ β]]
t

= [[α]]
t ∪ [[β]]

t
(x, y) ∈ [[α]]

t
, (y, z) ∈ [[β]]

t}

[[α[ϕ]]]
t

= {(x, y) ∈ [[α]]
t | y ∈ [[ϕ]]

t} [[[ϕ]α]]
t

= {(x, y) ∈ [[α]]
t | x ∈ [[ϕ]]

t}

[[a]]
t

= {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]
t}

[[¬ϕ]]
t

= pos(t) \ [[ϕ]]
t

[[ϕ ∧ ψ]]
t

= [[ϕ]]
t ∩ [[ψ]]

t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]
t
, [[〈α6=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]

t
,

(x, z) ∈ [[β]]
t
,d(y) = d(z)} (x, z) ∈ [[β]]

t
,d(y) 6= d(z)}

Table 2: Semantics of XPath for a data tree t = a⊗ d.

Decision problems We study the satisfiability problem for various fragments. That is, for any
fixed fragment P of XPath, the problem of, given a formula ϕ ∈ P, whether there exists a data
tree t such that t |= ϕ. All the logics we deal with are closed under boolean operations. Hence,
the inclusion problem (i.e., the problem of whether [[ϕ]]t ⊆ [[ψ]]t for every t) reduces to that of
satisfiability. The inclusion problem for ϕ,ψ yields a ‘yes’ iff the satisfiability problem for ϕ ∧ ¬ψ
yields ‘no’. Similarly, the equivalence problem (i.e., the problem of whether [[ϕ]]t = [[ψ]]t for every
t) reduces to that of satisfiability. Hence, since all the logics we deal with are closed under boolean
operations, we only focus in the satisfiability problem.

3.2.2 Downward navigation

We investigate the satisfiability problem for downward-XPath, the fragment of XPath that includes
the child and descendant axes, and tests for (in)equality of data values. We prove that this
problem is decidable, ExpTime-complete. These bounds also hold when path expressions allow
closure under the Kleene star operator. To obtain these results, we introduce a Downward Data
automata model (DD automata) over trees with data, which has a decidable emptiness problem.
All these results are included in Chapter 5 of the thesis as well as in (Figueira, 2012b, 2009).

Automata model We introduce an automata model that can make rich tests between distant
positions of the subtree, but can only perform some limited tests over the order of the siblings.
This model has a 2ExpTime emptiness problem, or a ‘modest’ ExpTime complexity for some
restricted subclass. We call this model the Downward Data automata (or DD automata for short).

A run of a DD automaton consists of two steps: (1) the run of a transducer, and (2) the
verification of data properties of the transduced tree.

For a data tree t = a⊗d, the first step consists in the translation of a into another tree b with
the same shape (i.e., the same set of positions). This is done using a nondeterministic letter-to-
letter transducer over unranked trees. We adopt a more detailed definition, where the transducer
explicitly has as a parameter the class C of regular properties that it can test over a siblinghood10

at each transition. If we take this parameter to be the set of all regular properties, this automaton
is a standard transducer over unranked trees. However, the emptiness problem for DD automata
has a non-primitive-recursive lower bound unless we restrict C to be a suitable subclass of regular
languages. For this reason we define the class of extensible languages, that we note E . One can
think of them as all the regular languages defined by regular expressions such that every letter
appears under at least one Kleene star (E -languages are a bit more general).

10In the context of a tree t, a siblinghood is a maximal sequence of siblings. That is, a sequence of positions
x·1, . . . , x·l of t such that x·(l + 1) is not a position of t. That is, it is the sequence of children of a node.

12

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

∈ L1L2 !

=

∈ L1

L2 !
=

Figure 4: A property tested by the verifier, where the marked nodes are those labeled by a.

a⊗ d a⊗ b b⊗ d

⇐⇒

R V(R , V)

∈ ∈ ∈

Figure 5: Acceptance condition of a DD automaton (R ,V).

In the second step, for every subtree of the transduced tree b⊗d, a property on the data values
of the tree is verified. We call this automaton the verifier. The letter at the root of the subtree
under inspection determines the property to verify. The properties are boolean combinations of
tests verifying the existence of data values shared by nodes in the subtree, hanging from branches
satisfying some regular expression. This automaton can test, for example, that all the nodes labeled
with an ‘a’ have two descendants with equal data value, one reachable with a path whose labeling
is in a regular language L1, and another in a language L2, as in Figure 4.

A C -Downward Data automaton (C -DD for short) is then a pair (R ,V) made of a C -
transducer R ⊆ Trees(A×B) and a verifier V ⊆ Trees(B×D). A data tree a ⊗ d is accepted by
(R ,V) iff there exists b ∈ Trees(B) such that a⊗ b ∈ R and b⊗ d ∈ V , as depicted in Figure 5.
The main result is that if we restrict C to be the class of extensible languages E , then the emptiness
problem is decidable in 2ExpTime.

Theorem 5.9. The emptiness problem for E -DD automata is in 2ExpTime.

The proof of this theorem is divided into four parts. In the first part (§5.3.1) we define some
decoration or marking of the nodes of a data trees that in some sense witnesses the acceptance of
a run of a DD automaton. These decorations of the tree are the main structures with which we
work with in our proof.

The second part (§5.3.2) is dedicated to proving two properties. The first property states that
if a DD automaton is nonempty, it accepts a tree decorated with some guidance system that marks
the paths to be covered in order to verify the properties imposed by the verifier. In some sense, it
decorates the tree as in Figure 4, avoiding having two paths going through the same node. The
guidance system is called certificate and this property is called admissibility of correct certificates.
The second property states that if a DD automaton is nonempty, then it accepts a tree whose
data values are in a certain normal form, as follows: Every pair of subtrees rooted at two different
children of a node, have a disjoint set of data values, with the exception of some polynomially
bounded many (this is called the disjoint values property).

The third part (§5.3.3) is centered around proving that DD automata have the exponential
width model property. That is, if a DD automaton has a nonempty language, then it accepts a
tree whose width is exponentially bounded in the size of the automaton.

In the fourth part (§5.3.4) we give the algorithm for testing emptiness of DD automata, which
is based on the bound on the width and the two other properties: the disjoint values property and

13

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

↓ ↓∗ = Complexity Details

• PSpace-complete Cor. 5.50

• PSpace-complete Thm. 5.54

• • ExpTime-complete Marx (2004)

• • PSpace-complete Prop. 5.49

• • ExpTime-complete Thm. 5.45, Thm. 5.46

• • • ExpTime-complete Thm. 5.45, Thm. 5.46

regXPath(↓,=) ExpTime-complete Thm. 5.45, Thm. 5.46

XPath6 ε(↓∗,=) PSpace-complete Prop. 5.56

regXPath(↓,=) + Etree ExpTime-complete Thm. 5.57, Thm. 5.46

Table 3: Summary of results on downward XPath.

the admissibility of correct certificates.

Downward XPath We show that any XPath(↓∗, ↓,=) formula —moreover, any regXPath(↓,=)
formula— can be efficiently translated into an equivalent E -DD automaton. Although this au-
tomata model has a 2ExpTime emptiness problem, it can be shown to be decidable in ExpTime
when restricted to the sub-class of automata needed to capture regXPath(↓,=). In this way we
obtain an ExpTime procedure of the satisfiability for regXPath(↓,=).

In fact, E -DD automata are more expressive than regXPath(↓,=), and this is true even for
the aforementioned sub-class of automata. For example, although regXPath(↓,=) does not include
any horizontal axis, E -DD automata can test for certain horizontal properties. Whereas typical
properties that can be expressed by both downward XPath and E -DD are (T1), (T6), and (T7),
the E -DD model can further express, for instance, that the sequence of children of the root is
described by the regular expression (a b c)∗. It then follows that the satisfiability problem for
regXPath(↓,=) under the regular constraints that can be expressed by E -DD automata remains
decidable in ExpTime. This is a particularly well-behaved class of regular properties, since the
satisfiability problem of regXPath(↓,=) restricted to regular tree languages is known to have non-
primitive-recursive complexity.11

Finally, we give the exact complexity of the satisfiability problem for several fragments of
downward-XPath. We prove that the fragment XPath(↓∗,=) without the ↓ axis is ExpTime-hard,
even for a restricted fragment of XPath(↓∗,=) without unions of path expressions. This reduction
seems to rely on data equality tests, as the corresponding fragment XPath(↓∗) without unions is
shown to be PSpace-complete. We thus prove that the satisfiability problems for XPath(↓∗,=),
XPath(↓∗, ↓,=) and regXPath(↓,=) are all ExpTime-complete. Additionally, we present a natural
fragment of XPath(↓∗,=) that is PSpace-complete (named XPath6 ε(↓∗,=)). We complete the pic-
ture by showing that satisfiability for XPath(↓,=) is also PSpace-complete. Our results, together
with the results of Benedikt et al. (2008) and Marx (2004), establish the precise complexity for all
downward fragments of XPath with and without data tests (see Table 3).

3.2.3 Forward navigation

We investigate logics and automata for data trees with a forward behavior, in the sense that we can
not only move downwards in the tree, but we can also navigate (in only one sense) the sequence of
siblings. We extend the model ARA(guess, spread) to a model ATRA(guess, spread) of Alternating
Tree Register Automata that run over data trees (instead of data words). The decidability of the
emptiness follows from an extension of the well-quasi-ordering argument for the decidability result
for ARA(guess, spread). As in the case of data trees, this model allows to show the decidability of
a logic.

11This is a corollary of our lower bounds on data words.

14

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

From the logics perspective, we investigate the satisfiability of forward XPath. The satisfiability
problem for this logic follows by a reduction to the emptiness problem of ATRA(guess, spread).
This reduction is not trivial, since XPath is closed under negation and our automata model is not
closed under complementation. Indeed, ATRA(guess, spread) and forward XPath have incomparable
expressive power. These results are included in Chapter 6 of the thesis, as well as in (Figueira,
2010, 2012a).

Automata model An Alternating Tree Register Automaton (ATRA) consists in a top-down tree
walking automaton with alternating control and one register to store and test data. This model
is essentially the same automaton presented for data words, that works on a (unranked, ordered)
data tree instead of a data word. The only difference is that instead of having one instruction B
that means “move to the next position”, we have two instructions B and O meaning “move to
the next sibling to the right” and “move to the leftmost child”. Its emptiness problem is known
to be decidable (Jurdziński and Lazić, 2008), as in the case of ARA, through a reduction to a
class of incrementing counter automata on data trees. We simplify the proof of (Jurdziński and
Lazić, 2008) as we did for the ARA model, easily obtaining decidability by a minor extension to
the proof of emptiness for ARA. Here, as in the case of data words, we consider an extension with
the operators spread and guess. We call this model ATRA(spread, guess).

As for ARA, the ATRA model is closed under all boolean operations (Jurdziński and Lazić,
2008). However, the extensions introduced guess and spread, while adding expressive power, are
not closed under complementation as a trade-off for decidability.

We show that the emptiness problem for this model is decidable, extending the approach
used for ARA and show the decidability of the two extensions spread and guess. This model of
computation enables us to show decidability of a large fragment of XPath.

Forward XPath We prove the decidability of the satisfiability problem for the forward fragment
of XPath, that is XPath(↓, ↓∗,→,→∗,=).

Jurdziński and Lazić show that ATRA captures a fragment of forward XPath where for all sub-
formulas 〈α = β〉 and 〈α 6= β〉 we have α = ε. We call this fragment XPathε(↓, ↓∗,→,→∗,=).12

ATRA can easily capture the Kleene star operator on any path formula, obtaining decidability
of regXPathε(↓, ↓∗,→,→∗,=). However, these decidability results cannot be generalized to the
full unrestricted forward fragment XPath(↓, ↓∗,→,→∗,=) as ATRA is not powerful enough to cap-
ture the full expressivity of the logic. Neither ATRA nor regXPathε(↓, ↓∗,→,→∗,=) can express,
for instance, that there are two different leaves with the same data value. On the other hand,
ATRA(guess, spread) can express this property. But it cannot express the negation of the property!
It is worth noting that XPath(↓, ↓∗,→,→∗,=), contrary to XPathε(↓, ↓∗,→,→∗,=), can express
unary key constraints (i.e., whether for some symbol a, all the a-elements in the tree have different
data values) like (T5), as well as (T6), (T7).

Indeed, the ATRA(guess, spread) model cannot capture XPath(↓, ↓∗,→,→∗,=). Indeed, data
tests of the form ¬〈α = β〉 are impossible to perform for ATRA(guess, spread) as this would require—
in some sense—the ability to guess two disjoint sets of data values S1, S2 such that all α-paths
lead to a data value of S1, and all β-paths lead to a data value of S2. Still, we show that
there exists a reduction from the satisfiability of regXPath(↓, ↓∗,→,→∗,=) to the emptiness of
ATRA(guess, spread), and hence that the former problem is decidable. This result settles an open
question left in (Jurdziński and Lazić, 2008) regarding the decidability of the satisfiability problem
for forward XPath. The main result is the following.

Theorem 6.9. Satisfiability of regXPath(↓, ↓∗,→,→∗,=) in the presence of DTDs (or any
regular language) and unary key constraints is decidable, non-primitive-recursive.

12By XPathε(O,=) (resp. regXPathε(O,=)) we denote the fragment of XPath(O,=) (resp. of regXPath(O,=))
where node expressions are defined by ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈ε = α〉 | 〈ε 6= α〉 for a ∈ A.
That is, the data tests are performed between the data value of the current node and some node accessed by α.

15

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

To show this, we prove that for every formula ϕ of regXPath(↓, ↓∗,→,→∗,=) there is a com-
putable ATRA(guess, spread) automaton A such that A is nonempty iff ϕ is satisfiable. This proof
can be sketched as follows:

1. We show that for every nonempty automaton A ∈ ATRA(guess, spread) there is an accepting
run on a data tree with the disjoint values property, which is a property of the data values of
the tree with respect to the data values appearing in the run.

2. We give an effective translation from a given forward XPath formula η to an ATRA(guess, spread)
automaton A such that: (1) any tree accepted by a run of the automaton A with the disjoint
values property verifies the XPath formula η, and (2) any tree verified by the formula η is
accepted by a run of the automaton A with the disjoint values property.

3.2.4 Vertical navigation

Two-way automata on data words and trees have frequently an undecidable emptiness problem.
We introduce a decidable automata model that, while being bottom-up, presents several features
that allows to make tests by navigating the tree in both directions: upwards and downwards. This
two-way flavor is witnessed by the fact that these automata can decide vertical XPath.

We introduce a novel decidable class of automata over unranked data tree, that we denote
BUDA, for Bottom-Up alternating 1-register Data tree Automata. The BUDA are essentially alter-
nating bottom-up tree automata with one register, without the ability of testing for “horizontal”
properties on the siblings of the tree, such as for example bounding the rank of the tree. However,
an automaton of this class has the ability to test rich data properties on the subtrees, which in
some sense corresponds to a downward behavior.

The decidability of this automaton is proven using a wsts, with somewhat similar techniques
as for ARA and ATRA models. However, finding the correct wqo that is compatible with the
automaton is not easily derivable from the automaton’s run. Since the automaton can faithfully
simulate an ARA when going up to the root, the complexity of the emptiness problem is necessarily
non-primitive-recursive. We stress that the absence of horizontal tests is essential to obtain our
decidability results. In fact, one can see that the model would become undecidable could it force
a bound on the tree’s rank.

As a result of the “two-wayness” flavor of the automata model, it can capture the vertical
fragment of XPath. The vertical fragment XPath(↓, ↓∗, ↑, ↑∗,=) is the one containing downward
axes ↓, ↓∗ and upward axes ↑, ↑∗. Our main result on XPath is then the following.

Theorem 7.1. The satisfiability problem for regXPath(↓, ↓∗, ↑, ↑∗,=) is decidable.

In this way we answer positively to the open question raised by Benedikt and Koch (2008,
Question 5.10) and Benedikt et al. (2008), regarding the decidability of the satisfiability for vertical
XPath.

All these results are joint work with Luc Segoufin and are contained in Chapter 7 of the thesis
as well as in (Figueira and Segoufin, 2011).

Automata model We consider a bottom-up alternating tree automata with one register. Al-
though the automaton is one-way, it has features that allow to test data properties that can navigate
the tree in both directions: upward and downward. We call this automaton model BUDA.

The BUDA model is essentially a bottom-up tree automata with one register and an alternating
control and 1 register. We show that these automata are at least as expressive as vertical XPath.

We aim at defining a decidable class of automata that can express data properties both in
the downwards and the upwards directions. To obtain such a model of automata, the switch
from top-down to bottom-up is essential. As a result, this class can capture vertical XPath,
and in particular is expressively incomparable with respect to ATRA or ATRA(guess, spread). (It
also makes the decidability of its emptiness problem significantly more difficult.) The ATRA and

16

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

ATRA(guess, spread) automata models are top-down instead of bottom-up, and they can test for
horizontal properties. For example, they can express that every node has at most one child,
something that cannot be tested by BUDA. On the other hand, BUDA can test properties like
(T7), that cannot be expressed by these models of automata, or any inclusion dependency constraint
property such as (T4). But, on the other hand, the BUDA automata cannot test for a property on
the siblings.

An automaton A ∈ BUDA that runs over data trees of Trees(A × D) is defined as a tuple
A = (A,B, Q, q0, δε, δup,S, h) where A is the finite alphabet of the tree, B is an internal finite
alphabet of the automaton (whose purpose will be clear later), Q is a finite set of states, q0 is the
initial state, S is a finite semigroup, h is a semigroup homomorphism from (A × B)+ to S, δε is
the ε-transition function of A, and δup is the up-transition function of A.

δup is a partial function from states to formulas. For q ∈ Q, δup(q) is either undefined or a
formula consisting in a disjunction of conjunctions of states. δε is also a partial function from
states to disjunctions of conjunctions of ‘atoms’ of one of the following forms:

p | guess(p) | univ(p) | store(p) | eq | eq |
| 〈µ〉= | 〈µ〉 6= | 〈µ〉= | 〈µ〉 6= | root | root | leaf | leaf | a | ā | b | b̄

where µ ∈ S, p ∈ Q, a ∈ A, b ∈ B.
We first describe the battery of tests the automata can perform. All these tests are explicitly

closed under negation, denoted with the · notation, and of course they are also closed under
intersection and union using the alternating and nondeterministic control of the automata. The
automata can test the label and internal label of the current node and also whether the current
node is the root, a leaf or an internal node. The automata can test (in)equality of the current data
value with the one stored in the register (eq and eq). Finally the automata can test the existence
of some downward path, starting from the current node and leading to a node whose data value
is (or is not) equal to the one currently stored in the register, such that the path satisfies some
regular property on the labels. These properties are specified using the finite semigroup S and
the morphism h : (A × B)+ → S over the words made of the label of the tree and the internal
label. For example, 〈µ〉= tests for the existence of a path that evaluates to µ via h, which starts
at the current node and leads to a node whose data value matches the one currently stored in the
register. Similarly, 〈µ〉6= tests that it leads to a data value different from the one currently in the
register.

Based on the result of these tests, the automata can perform the following actions. They can
change state, store the current data value in the register (store(p)), or store an arbitrary data value
nondeterministically chosen (guess(p)). Finally, a transition can demand to start a new thread in
state p for every data value of the subtree with the operation univ(p). The automata can also
decide to move up in the tree according to the up-transition function.

We stress that the automata model is not closed under complementation because its set of
actions are not closed under complementation: guess is a form of existential quantification while
univ is a form of universal quantification, but they are not dual. Actually, adding any of their dual
would yield undecidability of the model. We show that this model is decidable.

Theorem 7.5. The emptiness problem for BUDA is decidable.

In order to achieve this, we associate to each BUDA a wsts that simulates its runs. The
transition system works on sets of abstract configurations. Given an automaton, an abstract
configuration is meant to contain all the information that is necessary to collect at the root of
a given subtree in order to continue the simulation of the automaton from there. The aforesaid
transition system works with sets of such abstract configurations in order to capture the bottom-
up behavior of the automaton on unranked trees. The transition relation of the wsts essentially
corresponds to the transitions of the automaton except for the up-transition. An up-transition of

17

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

Diego Figueira and Luc Segoufin 11

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.

STACS’11

Diego Figueira and Luc Segoufin 11

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.

STACS’11

Figure 6: The grow and merge operations.

the automaton is simulated by a succession of two types of transitions of the wsts, called grow
and merge. The object of doing this is to avoid having transitions that take an unbounded number
of arguments (as the up relation in the run of the automaton does). The grow transition adds
a node on top of the current root, and the merge transition identifies the roots of two abstract
configurations. Intuitively, these transitions correspond to the operations on trees of Figure 6. This
is necessary because we do not know in advance the arity of the tree and therefore the transition
system has to build one subtree at a time. We then exhibit a well-quasi-order (wqo) on abstract
configurations and show that the transition system is compatible with respect to this wqo.

Vertical XPath We prove that the class BUDA captures regXPath(↓, ↓∗, ↑, ↑∗,=), and hence that
vertical-XPath has a decidable satisfiability problem. Given a formula η of regXPath(↓, ↓∗, ↑, ↑∗,=),
we say that a BUDA A is equivalent to η if a data tree t is accepted by A iff [[η]]t 6= ∅. We then
obtain the following.

Proposition 7.25. For every η ∈ regXPath(↓, ↓∗, ↑, ↑∗,=) there exists an equivalent A ∈ BUDA
computable from η.

The idea is that it is easy to simulate any positive test 〈α = β〉 or 〈α 6= β〉 of vertical XPath
by a BUDA using guess, 〈µ〉= and 〈µ〉6=. For example, consider the property 〈↓∗[a] 6= ↑↓[b]〉, which
states that there is a descendant labeled a with a different data value than a sibling labeled b.
A BUDA automaton can test this property as follows: (1) It guesses a data value d and stores it
in the register. (2) It tests that d can be reached by ↓∗[a] with a test 〈µ〉= for a suitable µ. (3)
It moves up to its parent. (4) It tests that a different value than d can be reached in one of its
children labeled with b, using the test 〈µ〉6= for a suitable µ.

The simulation of negative tests (¬〈α = β〉 or ¬〈α 6= β〉) is more tedious as BUDA is not closed
under complementation. Nevertheless, the automaton has enough universal quantifications (in the

operations univ, 〈µ〉= and 〈µ〉 6=) in order to do the job, through a more involved coding.
We mention that even though XPath(↓, ↓∗,→,→∗,=) (i.e., forward-XPath) on data words has a

non-primitive-recursive complexity, the results of (Figueira, 2011) suggest that XPath(↓, ↓∗,→∗,=)
or even XPath(↓, ↓∗,→∗, ∗←,=) may be decidable in elementary time (cf. Figueira, 2011, Conjec-
ture 1).

3.2.5 XPath on data words

In our work on lower bounds for LTL↓ (in §3.6 of the thesis and (Figueira and Segoufin, 2011)),
we identify a fragment of LTL↓(F), called simple, that has a very simple navigation, and that has
connections with the logic XPath. In fact, they have the same expressive power. Then, our lower
bounds for LTL↓ yield the following bounds (contained in §4.5 of the thesis).

Logic Complexity Details

XPath(↓+,→,=) non-primitive-recursive Corollary 4.3

XPath(↓+, ↑+,=) non-primitive-recursive Corollary 4.5

XPath(↓+, ↑+,→,=) undecidable Corollary 4.7

XPath(→+, ↓, ↑,=) undecidable Corollary 4.8

The strictness of the axes —that is, the fact of having ↑+ instead of ↑∗— seems to be necessary.
Surprisingly, whereas XPath(→+,=) has a non-primitive-recursive lower bound, XPath(→∗,=) has

18

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

a 2ExpSpace upper bound (Figueira, 2011). Moreover, whereas XPath(→+, ∗←,=) is undecidable,
XPath(→∗, ∗←,=) is decidable in 2ExpSpace (Figueira, 2011)!13

4 Conclusions

This work had as objective the development of techniques and decidable formalisms to work with
data values. We have seen several automata models that are decidable over data trees, and one
over data words. We introduced formalisms that can express different kind of properties, and are
on the limit of decidability.

Automata All the automata for data trees introduced are incomparable in expressive power
(cf. Chapter 8 of the thesis), and they exploit the tree structure of the model. For example, the
BUDA automata would have an undecidable emptiness problem would it run on data words, or
even k-ranked trees for some k, and similarly the DD automata model would have a non-primitive-
recursive emptiness problem. We also mention that for some automata (ARA, ATRA, BUDA) we
showed connections with well-structured transition systems, devising new techniques to interpret
runs of automata as a transition system with certain compatibility properties.

Logics On XPath, we showed decidability of the downward, forward, and vertical fragments,
thus settling some open questions. We have now a clearer landscape of the decidability status
of XPath according to the set of axes that it uses. The main results are summarized in Table 4.
In the presence of DTDs (or regular languages) we obtain that the forward and downward XPath
fragments are decidable with a non-primitive recursive lower bound, and that vertical XPath is
undecidable. These results are stated in terms of XPath fragments but they must also be seen
more generally as results about logics that navigate trees with data. For example, our results on
downward-XPath could also be applied to a logic like CTL with one register to store and compare
data values (like in LTL↓) and some restricted policy of testing for data values.

We remark that although we showed that each of the aforesaid fragments is decidable, this
does not mean that we can combine these results. Our results do not yield the possibility to test
the satisfiability of a boolean combination of formulas where each of them belong to one of these
fragments. Indeed, this problem is undecidable.

Perspectives

All our investigation on XPath focuses on the satisfiability problem. As already mentioned, the
problem of query equivalence and inclusion reduce to this problem. But this concerns only queries of
node expressions. Whether the techniques we developed can be adapted to show similar decidability
results on the problems of query equivalence and query containment of path expressions is a moot
point. We leave then the question: What is the decidability status of the inclusion and equivalence
problems of path expressions of downward, forward and vertical XPath?

The fragments treated here are all navigational fragments of XPath 1.0. However XPath 2.0
has many rich features that we do not consider. We leave open the question of whether the results
of this thesis can be extended to incorporate some of the distinctive features of XPath 2.0.

Another relevant issue is to try to add more domain specific relations to our models of au-
tomata. In that direction, we discussed that a linear order can be added to ARA(guess, spread)
without losing decidability. Moreover, with the same kind of analysis it can be further extended
to ATRA(guess, spread). It would be interesting to explore other relations. For example if the data
domain is the set of strings D = A∗, we may want to have the substring, prefix, and suffix relations;
and if it is numerical D = N we may want to use some arithmetic. A possible future work would
be hence to extend the automata treated here with some relations or functions of this kind.

13The 2ExpSpace upper bound result (Figueira, 2011) is not part of the thesis.

19

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

↓ ↓+ ↑ ↑+ → →+ ← +← Complexity

• PSpace-complete

• ExpTime-complete

• • ExpTime-complete

• • • • Decidable, NPR

• • • • Decidable, NPR

• Decidable, NPR

• • Decidable, NPR

• • • Undecidable

• • Undecidable

• • • Undecidable

Table 4: Summary of main results on XPath with data values. NPR stands for a non-primitive recursive
lower bound.

References

Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of DTDs. Journal
of the ACM (JACM), 55(2):1–79, 2008. doi:10.1145/1346330.1346333.

Michael Benedikt and Christoph Koch. XPath leashed. ACM Computing Surveys, 41(1), 2008. doi:

10.1145/1456650.1456653.

Henrik Björklund and Miko laj Bojańczyk. Bounded depth data trees. In International Colloquium on Au-
tomata, Languages and Programming (ICALP’07), volume 4596 of Lecture Notes in Computer Science,
pages 862–874. Springer, 2007. doi:10.1007/978-3-540-73420-8_74.

Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages. Theoretical
Computer Science, 411(4-5):702–715, 2010. doi:10.1016/j.tcs.2009.10.009.

Miko laj Bojańczyk and S lawomir Lasota. An extension of data automata that captures XPath. In Annual
IEEE Symposium on Logic in Computer Science (LICS ’10), 2010.

Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data trees
and XML reasoning. Journal of the ACM (JACM), 56(3):1–48, 2009. doi:10.1145/1516512.1516515.

Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. Two-variable
logic on words with data. In Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
7–16. IEEE Computer Society Press, 2006. doi:10.1109/LICS.2006.51.

Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data languages and timed
languages. Inf. Comput., 182(2):137–162, 2003. doi:10.1016/S0890-5401(03)00038-5.

Balder ten Cate and Luc Segoufin. XPath, transitive closure logic, and nested tree walking automata.
In ACM Symposium on Principles of Database Systems (PODS’08), pages 251–260. ACM Press, 2008.
doi:10.1145/1376916.1376952.

James Clark and Steve DeRose. XML path language (XPath). Website, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM Transactions
on Computational Logic (TOCL), 10(3), 2009. doi:10.1145/1507244.1507246.

Stéphane Demri, Ranko Lazić, and David Nowak. On the freeze quantifier in constraint LTL: Decidability
and complexity. In International Symposium on Temporal Representation and Reasoning (TIME’05),
pages 113–121. IEEE Computer Society Press, 2005. doi:10.1016/j.ic.2006.08.003.

Diego Figueira. Satisfiability of downward XPath with data equality tests. In ACM Symposium on
Principles of Database Systems (PODS’09), pages 197–206. ACM Press, 2009. doi:10.1145/1559795.

1559827.

Diego Figueira. Forward-XPath and extended register automata on data-trees. In International Conference
on Database Theory (ICDT’10). ACM Press, 2010. doi:10.1145/1804669.1804699.

20

http://dx.doi.org/10.1145/1346330.1346333
http://dx.doi.org/10.1145/1456650.1456653
http://dx.doi.org/10.1145/1456650.1456653
http://dx.doi.org/10.1007/978-3-540-73420-8_74
http://dx.doi.org/10.1016/j.tcs.2009.10.009
http://dx.doi.org/10.1145/1516512.1516515
http://dx.doi.org/10.1109/LICS.2006.51
http://dx.doi.org/10.1016/S0890-5401(03)00038-5
http://dx.doi.org/10.1145/1376916.1376952
http://www.w3.org/TR/xpath
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.1145/1559795.1559827
http://dx.doi.org/10.1145/1804669.1804699

Diego Figueira Reasoning on Words and Trees with Data Ph.D. Thesis Summary

Diego Figueira. A decidable two-way logic on data words. In Annual IEEE Symposium on Logic in
Computer Science (LICS’11), pages 365–374, Toronto, Canada, June 2011. IEEE Computer Society
Press. doi:10.1109/LICS.2011.18.

Diego Figueira. Alternating register automata on finite data words and trees. Logical Methods in Computer
Science (LMCS), 8(1:22), 2012a. doi:10.2168/LMCS-8(1:22)2012.

Diego Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic (TOCL),
13(4), 2012b. To appear.

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In Annual IEEE Symposium on Logic in Com-
puter Science (LICS’11), pages 269–278, Toronto, Canada, June 2011. IEEE Computer Society Press.
doi:10.1109/LICS.2011.39.

Diego Figueira, Piotr Hofman, and S lawomir Lasota. Relating timed and register automata. In Interna-
tional Workshop on Expressiveness in Concurrency (EXPRESS’10), 2010. doi:10.4204/EPTCS.41.5.

Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees. In International Sym-
posium on Mathematical Foundations of Computer Science (MFCS’09), volume 5734 of LNCS, pages
331–343. Springer, 2009. doi:10.1007/978-3-642-03816-7_29.

Diego Figueira and Luc Segoufin. Bottom-up automata on data trees and vertical XPath. In International
Symposium on Theoretical Aspects of Computer Science (STACS’11). Springer, 2011.

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

Floris Geerts and Wenfei Fan. Satisfiability of XPath queries with sibling axes. In International Symposium
on Database Programming Languages (DBPL’05), volume 3774 of Lecture Notes in Computer Science,
pages 122–137. Springer, 2005. doi:10.1007/11601524_8.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for processing XPath queries.
ACM Transactions on Database Systems, 30(2):444–491, 2005. doi:10.1145/1071610.1071614.

Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and XPath satisfiability. Com-
puting Research Repository (CoRR), 2008. arXiv:0805.0330.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer Science, 134(2):
329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

Michael Kaminski and Tony Tan. Tree automata over infinite alphabets. In Pillars of Computer Science,
volume 4800 of Lecture Notes in Computer Science, pages 386–423. Springer, 2008. doi:10.1007/

978-3-540-78127-1_21.

M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archiv für Mathematische Logik
und Grundlagenforschung, 13:39–51, 1970. doi:10.1007/BF01967649.

Maarten Marx. XPath with conditional axis relations. In International Conference on Extending Database
Technology (EDBT’04), volume 2992 of Lecture Notes in Computer Science, pages 477–494. Springer,
2004. doi:10.1007/b95855.

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over infinite alpha-
bets. ACM Transactions on Computational Logic (TOCL), 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. In EACSL Annual
Conference on Computer Science Logic (CSL’10), 2010.

21

http://dx.doi.org/10.1109/LICS.2011.18
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://arxiv.org/abs/1007.2989
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1007/11601524_8
http://dx.doi.org/10.1145/1071610.1071614
http://arxiv.org/abs/0805.0330
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/978-3-540-78127-1_21
http://dx.doi.org/10.1007/978-3-540-78127-1_21
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1007/b95855
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562

	Introduction
	Related work
	Contribution
	Data words
	Alternating register automata
	Linear temporal logics

	Data trees
	Preliminaries: XPath
	Downward navigation
	Forward navigation
	Vertical navigation
	XPath on data words

	Conclusions

