
Algorithmique appliquée
Projet UNO

Paul Dorbec, Cyril Gavoille

The aim of this project is to encode a program as efficient as possible to
find the best sequence of cards that can be played by a single player in a
hand of UNO. We first recall quickly the rules (simplified) of UNO. Cards
bear a number and are of some color. A first card is chosen (here by the
player), and then every card played must be of the same color or bear the
same number as the previous card.

It is proven that this problem is NP-hard, with a reduction from the
problem of finding a longest path in a cubic graph (see that paper). Remark
that the reduction in the other direction is quite straightforward, so it seems
natural to adapt algorithms for the longest path problem to our problem
here.

In this project, we try to find an algorithm as efficient as possible that
would solve the problem.

1 Definition of the file format for storing UNO

games

We want to be able to deal with predefined instances of the problem. So
we want to read a file wherer the instance is described. We propose to simply
use the following format:

• a card is described with two numbers, one for its number, one for its
color. E.g., “5 3” stand for the 5 of the third color. The cards will be
described by that pair of values, separated by a blanck.

• a deck (set of cards) is described as a file where each line contains one
card. So the file contains as many line as there are cards, with two
numbers on each line.

1

https://arxiv.org/abs/1003.2851


Here is an example of a game with 12 cards, with a longest sequence on
9 cards (written on 3 columns).

0 1

1 0

5 3

2 6

1 5

2 1

0 3

3 4

5 2

4 2

0 5

5 4

2 Brute force: backtracking

We first consider backtracking algorithms (see Wikipedia).
The idea is to propose a recursive algorithm. Suppose that you have

already chosen a (possibly empty) beginning of a sequence. For each card
that can be possibly chosen to cover the current last card, select it, look
recursively for the best sequence using that card. Select the best sequence
among all this sequences and return it.

This is a simple algorithm, that has a very high complexity in the worst
case. Indeed, if all cards are of the same color, after picking each cards, you
may select all the other cards. So possibly, you try all the permutations of
the list of cards, that is n! = Θ

((
n
e

)n√
n
)
.

3 First algorithm based on dynamic program-

ming

The idea of dynamic programming is to compute some partial optimal
solution and to extend it step by step to the solution of the whole problem.

3.1 DFS

Here, we first use a separation of the deck of cards into some maximal
sequences obtained within a depth first search algorithm DFS. Explore the
whole card set with a DFS. All the paths from the root to a leaf in are
maximal paths. They form a sequence of subsets of cards S1, S2, etc. They
are represented with colors in Fig. 1 (S1, S2, S3).

The key observation of this exploral is that a valid sequence of cards that
uses two cards within different subsets Si and Si+1 must pass by cards which
are at the intersection Si ∩Si+1 of these subsets. For example, in Fig. 1, it is
not possible to join the node with label 4 to the node with label 6 without

2

https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Depth-first_search


4

3

2

1

6

5

7

∅1

2

3

4

5

6 7

Figure 1: DFS on a graph and the sets obtained, together with their inter-
sections.

going through 1 or 2. We will use this to make an efficient algorithm when
the intersections of the subsets are small.

3.2 Principle of the algorithm

Suppose we have a sequence of subsets of cards S1, S2, . . . , Sp as com-
puted by the DFS. Now we want to compute all the maximum sequences
by considering each subset independently. Valid sequences of cards may re-
main in one subset, or may visit more than one. For example, the sequence
6− 5− 7− 2− 4− 3− 1 starts in the green set, then goes through the red set
before returning to the blue set (see Figure 2, left). This can be decompose
into a sequence ending in 5 in the green set, then joining 5 to 2 in the red
set, and finishing from 2 in the blue set. For the computation within one set,
we don’t need to know the details of what happens in the other set, but just
how they interact with the current set, i.e. with the intersections.

Here is the process we follow. In a subset Si, we compute a maximal
sequence, taking into account possibilities of joining to cards by sequences in
neighbouring sets. Precisely, we need to define the signature of a sequence,
that is how the sequence behave on the intersection. Then, for each subset, we
consider a maximal sequence of cards together with possible extra moves, and
associate the length of the sequence to its signature for further computation.
This can be done iteratively, using the value of the signatures of the set Si−1
to define the value of the signature of Si that will be considered for further
computation.

3



3.3 Signatures

We now discuss precisely how the signature should be defined. There
is not a single way of defining the signatures, you can check Pr. Gavoille’s
webpage for another proposal (in French). We describe here one way of
computing the signature.

We consider the set of cards in the intersection Si∩Si+1 that are used by
a sequence. A card may be used for jumping from the card of one subset to
the other either from Si to Si+1 (from left to right) or in the other direction.
Note that if it jumped from left to right, the next jump must be from right
to left, and vice versa. In the signature, we store all the cards that are used
to jump from one set to the other in a sequence, and we remember if the first
jump is from left to right or from right to left with a signature type. This
implies in the signature:

• an ordered sequence of cards (e.g. (1, 2, 5)), that describes the order in
which the cards are jumped through in the intersection.

• a type (A or B) specifying whether the first card in the order is visited
from left to right (type A) or from right to left (type B).

Another case that must be considered is when some card of the intersec-
tion is used in the sequence but not as a jump from one subset to the other.
In that case, the same card should not be used in a later part of the sequence.
So in the signature, we need to store the set of cards that are forbidden for
later use.

• a set of forbiden card, that have been used already

For each signature, we want to store the maximal length of a sequence
with that signature. It is simpler to store the length of the signature as a
number of jumps (edges of the corresponding graph) than as a number of
cards, since the cards are in multiple sets. If to sequence have the same
signature, only the longest sequence need to be stored to find a global se-
quence of maximal length. From the example of Fig. 2, the first set gives the

4



∅1

2

3

4

5

6 7

{(1, 2), B, ∅} : 3

{(1, 2, 5), B, ∅} : 4

{(), A, ∅} : 6

∅1

2

3

4

5

6 7

{(1), A, {2}} : 3

{(5), A, {1, 2}} : 5

{(), A, ∅} : 6

Figure 2: Signatures used in the maximum sequences.

following signatures with the length of the optimal sequence:

{(1, 2), A, ∅} : 2
{(1, 2), B, ∅} : 3
{(1), A, {2}} : 3
{(1), A, ∅} : 2
{(2), A, {1}} : 3
{(2), A, ∅} : 2
{(), A, {1, 2}} : 3
{(), A, {1}} : 2
{(), A, {2}} : 2
{(), A, ∅} : 1

Note that the empty signature is also useful to store, since a maximum
sequence may use only cards from earlier subsets.

3.4 Details of the computation.

Suppose we have computed the signature of the previous set Si−1, and we
want to explore the set Si to define the signatures that will be used by the
set Si+1. Here we describe how wa can proceed.

The idea is to compute all the maximal sequences in Si with a backtrack.
We need to keep in mind that we may use subsequences in earlier subsets to

5



join cards in Si−1 ∩ Si, and that we may use subsequence in future subsets
for joining cards in Si∩Si+1. So we virtually add jumps between these cards
in the sets, and assume they may be used in the backtrack. Then it should
happen that the jump between two cards in Si ∩ Si+1 can be done either by
a direct jump or through a sequence in the future. In that case, it is better
to always consider this should be a sequence in the future, since it can be
decided then whether to finally take the direct jump or not. However, if two
cards in Si−1 ∩ Si can be jumped directly, we should consider both cases.
Similarly, if two cards are in Si−1∩Si∩Si+1, we need to consider both cases.

For each maximal sequence found by the backtrack in Si, we compute the
signature of this sequence in Si−1 ∩ Si and get the value v computed earlier
for this signature. Then we add to v the number of jumps made among
cards from Si \ Si+1, and set to the signature of our sequence in Si ∩ Si+1

the maximum of the newly computed value and the possible value it was
already attributed. We also need to consider the empty sequence and report
the signature for the empty intersection to the following.

Note that for the first and the last set, the same process can be used
considering that the intersection with the set that does not actually exist is
empty. Finally, the optimal length foun should appear as the optimal length
for the empty signature after the last set.

4 Probabilistic approach: dynamic program-

ming using color coding.

The third algorithms rely on a simple observation. If you assign a ran-
dom label from 1 to k to the UNO cards in your hand, there is a non zero
probability that you find a sequence of cards of length k such that each card
in the sequence is the only card with its label. (In terms of graphs, if you
assign a random color to the vertices of the graph, there is a chance that
a path of length k is rainbow, i.e. each pair of vertices in the path bear a
different color.)

Then finding a path of length k with only different colors can be done
with dynamic programming. The idea is to compute for each subset of labels
S ⊆ {1, . . . , k} and for each label ` ∈ S the set CS,` of cards bearing label `
of a sequence that uses all the labels from S. This can be done inductively
on the order of S:

• if S is of order 1, i.e. S = {`}, then every card with label ` is the last
card of a sequence of cards having all color in S. So C{`},` is all cards
with label ` for each ` ∈ {1, . . . , k}.

6



• otherwise, a card C with label ` is the end of such a sequence for S∪{`}
if and only if there is a label `′ ∈ S such that C is reachable from a
card with label `′ that is the last card in a sequence using all colors
from S. Thus CS∪{`},` contains all cards that are of label ` and of same
number or color than cards in CS,`′ sor some label `′ ∈ S.

The algorithm works as follows:

• assign a random label to each card, with range 1 to k.

• for each label `, define C{`},` as the set of cards with label `.

• for each size s from 2 to k, for each subset S of labels of size s in
{1, . . . , k}, for each ` ∈ S, compute the cards of CS,` following the rule
above.

• if there exist a label ` such that C{1,...,k},` is not empty, this is a success

• if it failed, restart up to ek times.

7


	Definition of the file format for storing UNO games
	Brute force: backtracking
	First algorithm based on dynamic programming 
	DFS
	Principle of the algorithm
	Signatures
	Details of the computation.

	Probabilistic approach: dynamic programming using color coding.

