Monochromatic Hamiltonian *t*-tight Berge-cycles in hypergraphs

Paul Dorbec

Sylvain Gravier

Institut Fourier 100 rue des Maths, BP74 38402, Saint Martin d'Hères, France paul.dorbec@ujf-grenoble.fr Institut Fourier 100 rue des Maths, BP74 38402, Saint Martin d'Hères, France sylvain.gravier@ujf-grenoble.fr

Gábor N. Sárközy^{*}

Computer Science Department Worcester Polytechnic Institute Worcester, MA, USA 01609 gsarkozy@cs.wpi.edu and Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518

September 3, 2007

Abstract

In any r-uniform hypergraph \mathcal{H} for $2 \leq t \leq r$ we define an r-uniform t-tight Berge-cycle of length ℓ , denoted by $C_{\ell}^{(r,t)}$, as a sequence of distinct vertices $v_1, v_2, \ldots, v_{\ell}$, such that for each set $(v_i, v_{i+1}, \ldots, v_{i+t-1})$ of t consecutive vertices on the cycle, there is an edge E_i of \mathcal{H} that contains these t vertices and the edges E_i are all distinct for $i, 1 \leq i \leq \ell$ where $\ell + j \equiv j$. For t = 2 we get the classical Berge-cycle and for t = r we get the so-called tight cycle. In this note we formulate the following conjecture. For any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_n^{(r)}$, the complete r-uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible.

^{*}Research supported in part by the National Science Foundation under Grant No. DMS-0456401.