Upper Paired-Domination in Claw-Free Graphs

Paul Dorbec^{1,2} and *Michael A. Henning²

¹Equipe GraphComb - ERTé "Maths à modeler" LRI, bat 490, Université Paris Sud 11, 91405 Orsay, France E-mail: paul.dorbec@lri.fr

> ²School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa E-mail: henning@ukzn.ac.za

Abstract

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by $\Gamma_{\rm pr}(G)$. We establish bounds on $\Gamma_{\rm pr}(G)$ for connected claw-free graphs G in terms of the number n of vertices in G with given minimum degree δ . We show that $\Gamma_{\rm pr}(G) \leq 4n/5$ if $\delta = 1$ and $n \geq 3$, $\Gamma_{\rm pr}(G) \leq 3n/4$ if $\delta = 2$ and $n \geq 6$, and $\Gamma_{\rm pr}(G) \leq 2n/3$ if $\delta \geq 3$. All these bounds are sharp. Further, if $n \geq 6$ the graphs G achieving the bound $\Gamma_{\rm pr}(G) = 4n/5$ are characterized, while for $n \geq 9$ the graphs G with $\delta = 2$ achieving the bound $\Gamma_{\rm pr}(G) = 3n/4$ are characterized.

Keywords: claw-free graphs, minimum degree, upper paired-domination AMS subject classification: 05C69

^{*}Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.