Upper k-tuple domination in graphs

Gerard Jennhwa Chang¹²³* Paul Dorbec^{4†‡} Hye Kyung Kim^{5§} André Raspaud^{4¶‡} Haichao Wang⁶ Weiliang Zhao^{7**}

¹Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

²Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

³National Center for Theoretical Sciences, Taipei Office, Taiwan

⁴Université de Bordeaux–CNRS, LaBRI, 351 cours de la Libération, 33405 Talence Cedex, France

⁵Department of Mathematics Education, Catholic University of Daegu, Kyongsan 712-702, Republic of Korea

⁶Department of Mathematics, Shanghai University of Electric Power, Shanghai 200090, China ⁷Zhejiang Industry Polytechnic College, Shaoxing 312000, China

December 27, 2011

Abstract

For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V(G) such that $|N[v] \cap S| \ge k$ for every vertex v, where $N[v] = \{v\} \cup \{u \in V(G): uv \in E(G)\}$. The upper k-tuple domination number of G, denoted by $\Gamma_{\times k}(G)$, is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on $\Gamma_{\times k}(G)$ for r-regular graphs G with $r \ge k$, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on $\Gamma_{\times 2}(G)$ for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Keywords: Upper *k*-tuple domination, *r*-regular graph, bipartite graph, split graph, chordal graph, NP-completeness.

[¶]E-mail: andre.raspaud@labri.fr.

^{||}Email: whchao2000@163.com. Supported in part by the Foundation for distinguished Young Teachers, Shanghai Education Committee (No. sdl10023) and the Research Foundation of Shanghai University of Electric Power (No. K-2010-32).

**Email: zwl@shu.edu.cn.

^{*}E-mail: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC99-2923-M-002-007-MY3.

[†]E-mail: paul.dorbec@u-bordeaux1.fr.

[‡]Supported in part by Agence Nationale de la Recherche under grant ANR-09-blan-0373-01.

[§]E-mail: hkkim@cu.ac.kr. Supported in part by the Basic Science Research Program, the National Research Foundation of Korea, the Ministry of Education, Science and Technology (2011-0025989).