
SKETCHY TWEETS: TEN MINUTE
CONJECTURES IN GRAPH THEORY

ANTHONY BONATO AND RICHARD J.
NOWAKOWSKI

Comments by Richard Hamming in his ad-
dress You and Your Research [16] resonated with
us. On the one hand, Hamming says:

“What are the most important problems in your
field?”

which suggests working on hard problems. Yet
on the other, he exhorts us to:

“Plant the little acorns from which mighty oak
trees grow.”

Following this advice, we should look over the
big questions, then doodle and sketch out some
approaches. If you are an expert, then this is
easy to do, but most people do not want to wait
the requisite 10,000 hours before looking at in-
teresting problems. Graph Theory, our area of
expertise, has many hard-to-state and hard-to-
solve questions. However, like Number Theory, it
has many easy-to-state but difficult conjectures.
Some hark back to the recreational roots of the
area yet still keep their mystery. These “acorns”
can be planted on the backs of envelopes, on a
blackboard, and over a coffee.

Our goal is to collect some of these conjectures—
arguably some of the most intriguing—in one
place. We present 10 conjectures in Graph The-
ory, and you can read about each one in at most
10 minutes. As we live in the era of Twitter,
all the conjectures we state are 140 characters
or less (so “minute” here has a double meaning).
We might even call these sketchy tweets, as we
present examples for each conjecture that you
can doodle on as you read.

Hamming also references ambiguity : good re-
searchers can work both on proving and disprov-
ing the same statement, so we approach the con-
jectures with an open mind. He also mentions
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that a good approach is to reframe the problem,
and change the point of view. One example, from
Vizing’s conjecture, is the three page paper [2]
which, with a new way of thinking, reduced most
of the published work of 20 years to a corollary of
its main result! Given the size of modern Graph
Theory with its many smaller subfields (such as
structural graph theory, random graphs, topo-
logical graph theory, graph algorithms, spectral
graph theory, graph minors, or graph homomor-
phisms, to name a few) it would be impossible to
list all, or even the bulk of these conjectures in
the field. We are content instead to focus on a
few family jewels, which have an intrinsic beauty
and have provided some challenges for Graph
Theorists for at least two decades. There is some-
thing for everyone here, from the undergraduate
student taking their first course in Graph The-
ory, to the seasoned researcher in the field. For
additional reading on problems and conjectures
in Graph Theory and other fields, see the Open
Problem Garden maintained by IRMACS at Si-
mon Fraser University [24].

We consider only finite and undirected graphs,
with no multiple edges or loops (unless otherwise
stated). We assume the reader has some basic fa-
miliarity with graphs and their terminology (in-
cluding notions such as cycles Cn, paths Pn, com-
plete graphs Kn, the complete bipartite graphs
Km,n, degrees, and connected graphs). All the
background we need can be found in any text in
Graph Theory, such as those of Diestel [9] and
West [41]. For a graph G, we write V (G) for its
vertices, and E(G) for its edges. If two vertices
are joined by an edge, then we say they are ad-
jacent. The cardinality |V (G)| is the order of
G.

The conjectures

Some conjectures we present (such as Meyniel’s)
are lesser known and deserve more exposure, while
others (such as Hadwiger’s, for example) are more
well known. We provide no justification for our
bias toward one problem over another, so we
apologize upfront if your favorite conjecture is
missing.
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For each conjecture, we present it using mini-
mal technical jargon. To shorten the number ref-
erences on partial results, we cite surveys wher-
ever possible; we always cite the original authors
of the problem. To show no preference among
the problems, we present the conjectures in al-
phabetical order.

Double the fun. There is an old puzzle, found
in many books that feature “pencil-and-paper”
problems, of attempting to trace a diagram with-
out lifting the pen off the paper nor retracing
any line of the figure. Euler in his famous 1736
solution to the Königsberg bridge problem, es-
sentially solved this problem. The problem can
be restated as covering the diagram (represented
by a graph) with cycles, where every edge is in
exactly one cycle. Such graphs are now called
Eulerian, and are exactly those connected graphs
with every vertex of even degree. Our next con-
jecture may be thought of as a generalization of
this kind of problem to graphs with some vertices
of odd degree; however, we replace “exactly one
cycle” by “exactly two cycles”.

A bridge is an edge whose deletion disconnects
the graph. A graph with no bridges is bridgeless.1

For example, each edge of a tree is a bridge.

Cycle Double Cover Conjecture: Every
bridgeless graph contains a set of cycles so that
every edge is contained in exactly two cycles.

Figure 1. A CDC in K4, with
the cycles in different colors.
What would be a CDC of Kn for
general n?

1The famous graph of the Königsberg Bridge problem
is about bridges, but it is itself bridgeless!

Such a set of cycles, as in the conjecture, is
called a CDC. See Figure 1 for an example. The
conjecture was formulated independently by Szek-
eres in 1973 [34] and Seymour in 1979 [30]. See
the survey [19] and book [44] for additional back-
ground and references on the conjecture.

The conjecture has connections to embeddings
of graphs on surfaces; that is, drawings of graphs
on different surfaces so that no two edges cross.
The simplest case being planar graphs which have
an embedding in the plane (see Hadwiger’s con-
jecture for more on planar graphs). If each face
in the embedding corresponds to a cycle in the
graph, then the faces form a CDC as in Figure 1,
as is true for all connected, bridgeless, planar
graphs. That there is an embedding where each
face corresponds to a cycle is the Strong Embed-
ding conjecture.

In the other direction, much is known about a
minimum counter-example, if it exists: every ver-
tex has degree 3, it is not 3-edge-colorable (that
is, there is no coloring of the edges with three col-
ors so that each edge is incident with an edge of
the same color), it is cyclically-4-connected (that
is every partition of the vertices into two parts
with a cycle in each part has at least four edges
that go between the parts), and the smallest cy-
cle has length at least 10. Such graphs, without
the smallest cycle restriction, are called snarks.
A different conjecture says that there are not any
snarks with the smallest cycle length at least 10.
See Figure 2 for an example of a snark.

Figure 2. The flower snark J5.

A related conjecture is the Small Cycle Double
Cover conjecture: every bridgeless graph on n
vertices contains a set of at most n cycles so that
every edge is contained in exactly two cycles.
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Party, but know your limits. Frank Ramsey,
who died at the early age of 26, wrote a paper
[26] in mathematical logic that has gone on to
have applications in many fields, including Graph
Theory. To motivate Ramsey numbers, consider
a party with 6 people, some of whom are friends,
and some are strangers. An observation is that
there are always 3 people who are all mutually
friends, or all mutually strangers. The reader
should convince themselves this never happens
in smaller parties. All of this together can be
neatly summarized by saying that R(3) = 6.

Ramsey numbers generalize this setting from
3 to n mutual friends or strangers. For a positive
integer n, define the nth Ramsey number, written
R(n), to be the minimum integer r such that any
coloring of the edges of Kr with red or blue (red
equals friends and blue equal strangers) results in
a complete subgraph of order n which has edges
all one color. How large a party do we need to
realize such patterns?

One immediate question is whether the Ram-
sey numbers even exist. Calculating them di-
rectly is hard; while R(4) = 18, the value of R(5)
is unknown (although it is between 43 and 49;
see [25] for a dynamic survey of the known small
Ramsey numbers). So we must be content with
lower and upper bounds. An inductive argument
gives that R(n) ≤ (

2n−2
n−1

)
. In an early application

of the probabilistic method, Erdős [11] proved
the lower bound:

(1 + o(1))
1

e
√

2
n2n/2 ≤ R(n),

which has not been substantially improved to
this day (Spencer [32] improved the constant 1√

2

to
√

2). The best known upper bound for R(n)
was given by Thomason [36]:

R(n) ≤ n−1/2+c/
√

log n

(
2n− 2
n− 1

)
.

Erdős 1947 posed the following asymptotic con-
jecture, and it remains one of the major topics
in Ramsey numbers.

Erdős’ Ramsey Number Conjecture:
limn→∞R(n)1/n exists.

Solve this conjecture and you will be awarded
$100. There are, however, much easier ways to

make this money! From the bounds stated above,
if the limit exists, then it is between

√
2 and 4

(finding the value of the limit is worth $250).
Hence, we can think of the conjecture as way to
better understand which bound for R(n) stated
above is more accurate. For more on Erdős and
his questions on Ramsey numbers, see [8].

Saving grace. Graph labelling problems, where
vertices or edges are labelled by numbers subject
to some constraints, are often tough in general.
A graph with n vertices is graceful if there is a
numbering 1, 2, . . . , n of the vertices such that
n − 1 distinct differences appear on the edges.
Graceful graphs have received ample attention
in the literature. See Figure 3 for an example.

1 32 45

Figure 3. The path P5 is grace-
ful. Show that all the paths Pn

are graceful.

Ringel 1964 [27] introduced the conjecture, which
is now sometimes called the Ringel-Kotzig con-
jecture (since, if the conjecture were true, it would
imply conjectures of both authors on certain de-
compositions of complete graphs).

Graceful Tree Conjecture: Every tree is
graceful.

Over 200 papers have been written on prov-
ing special cases of this conjecture, and a bewil-
dering number of variants on graceful labellings
have been proposed and studied. See the dy-
namic survey of Gallian [13] for further back-
ground and references on graceful (and other) la-
bellings. Kotzig labelled the collective work on
proving the conjecture a “disease”. We note that
graceful labellings of graphs were introduced by
Rosa as β-labellings, and renamed “graceful” by
Golumb. A few of the classes of trees where we
know the conjecture holds include: caterpillars
(that is, a tree where the removal of its end-
vertices leaves a path), trees with at most four
end-vertices, trees with diameter at most 5, and
trees with at most 35 vertices.
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Much of the research on the conjecture tries
to settle it in the affirmative. One class of trees
where the conjecture remains open are lobsters (a
tree where the removal of the end-vertices leaves
a caterpillar).

No minors allowed. Coloring has both fasci-
nated and perplexed Graph Theorists since the
early days of the field to the present. The chro-
matic number of G, written χ(G), is the mini-
mum integer n with the property that V (G) may
be partitioned into n many independent sets; that
is, the minimum n so that G is n-colorable. The
most famous theorem proved so far in Graph
Theory is the Four Color theorem [1], which states
that every planar graph is 4-colorable. All the
proofs of this fact that are known are computer-
assisted.

A graph is a minor of G if it results by repeat-
edly performing one of the following operations:
i) deleting a vertex, ii) deleting an edge, or iii)
contracting an edge (that is, shrinking an edge
to a vertex and preserving adjacencies and non-
adjacencies with vertices outside the edge). A
beautiful result of Kuratowski [23] states that a
graph is planar if and only if it contains no K5

or K3,3 minor. The reader can show that the Pe-
tersen graph (see Figure 8) has a K5 minor, and
so is not planar.

Hadwiger’s conjecture, dating back to 1943 [15]
relates graph coloring to minors.

Hadwiger’s Conjecture: For m ≥ 2, a graph
with no Km minor is (m− 1)-colorable.

Hadwiger’s conjecture is open for all m ≥ 7.
The most startling case for small m is m = 5,
which was shown by Wagner [40] to reduce to
the Four Color theorem. Hence, Hadwiger’s con-
jecture may be viewed as a broad generalization
of that theorem. The case m = 6 was settled by
Robertson, Seymour, and Thomas [28] by show-
ing that a minimal counter-example to the con-
jecture is planar after the removal of one vertex
(and so also reduces also to the Four Color The-
orem).

The cases m = 2, and 3 are elementary (for
example, a graph with no K2 minor has no edges,
and with no K3 minor is a forest). Dirac [10] and
Hadwiger [15] proved the case m = 4, by showing

that graphs with no K4 minor have a vertex of
degree at most 2, and so can be 3-colored using
a greedy algorithm. Although m = 7 is open, in
2005, Kawarabayashi and Toft [20] proved that
any 7-chromatic graph has K7 or K4,4 as a minor.

X marks the spot. As with Hadwiger’s conjec-
ture, our next conjecture also deals with coloring,
but adds graphs products to the mix. All the
references in this section can be found in three
surveys on the conjecture: [29, 35, 45].

A graph product makes new graphs from old.
We consider one of the most well known prod-
ucts: the categorical product. For graphs G and
H, define G×H to have vertices V (G)× V (H),
with (a, b) adjacent to (c, d) if a is joined to c in
G, and b is joined to d in H. See Figure 4 which
justifies the notation for this product.

=

Figure 4. The graph K2 ×K2.

Hedetniemi’s conjecture gives a simple formula
for the chromatic number of the categorical prod-
uct, and was posed by him in 1966 [17] while he
was a graduate student.

Hedetniemi’s Conjecture: For graphs G and
H,

χ(G×H) = min{χ(G), χ(H)}.

We note that the conjecture was stated inde-
pendently by Burr, Erdős and Lovász in 1976.
Most experts think the conjecture is true. For
starters, G × H may be visualized as replacing
each vertex v of G by a copy of the vertices of H.
Label these vertices as (v, h). Then add the edges
(v, h)(w, j) just if v is adjacent to w and h is adja-
cent to j. See Figure 5. Now take a proper color-
ing of G. For each vertex v of G, color all vertices
(v, h) with the same color as v. Since (v, h) and
(v, h′) are not adjacent, then this is also a proper
coloring of G × H. Hence, χ(G × H) ≤ χ(G).
The same construction, but considering vertices
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Figure 5. The graph P3 × K3

with the independent sets differ-
ent colors.

of H, gives χ(G×H) ≤ χ(H). The reader should
try this coloring with the graph in Figure 5.

Since this conjecture has received a lot of at-
tention over the past 45 years, if there was a
counter-example surely it would have been found
by now! The conjecture has a restatement which
is often used. For a positive integer n, define

H(n): If χ(G×H) = n, then either χ(G) = n
or χ(H) = n.

Hedetniemi’s conjecture is equivalent to H(n)
being true for all n ≥ 1, and so allows for an in-
cremental approach. Indeed, it is not too difficult
to show that H(1) and H(2) are true. El-Zahar
and Sauer proved in 1985 that H(3) is true, but
nothing is known about H(n) for n > 3.

Burr, Erdős, and Lovász in their 1976 paper
showed that if G is a graph which has every ver-
tex in a Kn and H is a connected graph with
χ(G×H) = n, then min {χ(G), χ(H)} = n. This
is not too surprising since the presence of Kn is
a trivial reason why the chromatic number is at
least n. Proofs of the conjecture then, or the
search for a counter-example, have to take into
account graphs that have large chromatic num-
ber and small complete subgraphs.

The strangest result arising out of the work
on the conjecture has to do with a special case.
Define the function

g(n) = min{χ(G×H) : χ(G) = χ(H) = n}.
It is known that g(1) = 1, g(2) = 2, g(3) = 3, and
g(4) = 4. However, several authors discovered
the striking fact that either g is unbounded or
g(n) ≤ 9, for all n.

We mention in passing (and without explana-
tion of the jargon!) that Hedetniemi’s conjec-
ture is equivalent to the meet-irreducibility of the
complete graphs in the lattice of cores. For this
reason, there is ample interest in the conjecture
not only among experts in graph coloring, but
those working on graph homomorphisms.

The long arm of the law. Many of us played
games like Cops and Robbers (or other pursuit
games) as children, and our next conjecture con-
siders such a game played on graphs. In the
graph game of Cops and Robbers there are two
players, a set of cops and a robber, who move
from vertex-to-vertex along edges in the graph
or can pass. The game is played with alternate
moves of the players, with the cops going first.
The cops win if eventually they capture or land
on the vertex with the robber; the robber wins if
he can indefinitely evade capture. The game is
perfect information, in the sense that both play-
ers can see and remember each others moves.
Placing a cop on each vertex gives an easy win for
the cops. The minimum number of cops needed
to win the game is the cop number of a graph.
The readers should verify that the cop number
of the snark J5 in Figure 2 is 3.

As the cop number of a disconnected graph is
the sum of the cop number of its components,
a more interesting situation arises if we consider
only connected graphs. For functions f and g on
positive integers taking positive real numbered
values, we set f = O(g) if there is a constant d,
such that for large enough n, f(n) ≤ dg(n).

Meyniel’s Conjecture: If G is a connected
graph, then

c(G) = O(
√
|V (G|).

So Meyniel’s conjecture tells us that about
√

n
many cops are sufficient to capture the robber in
a connected graph of order n (and there are ex-
amples of graphs needing this many cops). Inter-
estingly, Aigner and Fromme 1984 proved that
the cop number of a planar graph is at most
three.

Meyniel’s conjecture may be one of the more
lesser known major unsolved conjectures in Graph
Theory, but it has received a fair bit of recent
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attention. For further background on the con-
jecture, see Chapter 3 of the book [3]. Meyniel’s
conjecture was communicated by Frankl [12], who
could only prove that

c(G) = O

(
n

log log n

log n

)
.

The best known bound for general graphs we
have is the following, recently discovered by three
independent sets of researchers:

c(G) = O

(
n

2(1−o(1))
√

log2 n

)
.

Even to prove that c(G) = O(n1−ε), for some
ε > 0 is open! The conjecture was settled for
bipartite graphs with diameter three, and An-
dreae proved it is true in graph classes formed
by omitting a fixed graph as a minor (in fact,
the cop number is bounded by a constant in such
graphs).

House of cards. The Reconstruction conjec-
ture appears to be notoriously difficult, and sug-
gests how much more there is to learn about
graphs. The deck of a graph G is the multiset
consisting of all subgraphs of G formed by delet-
ing a vertex. Each such point-deleted subgraph
is a card. See Figure 6 for an example.

, ,

Figure 6. Which graph has this deck?

The conjecture was posed independently by
both Kelly 1957 [21] and Ulam 1960 [38].

Reconstruction Conjecture: If two graphs
with at least three vertices have the same deck,
then they are isomorphic.

It is easy to see that a path of length two and
its complement have the same deck, hence, the
modest requirement in the conjecture on the or-
der. Given a deck, we immediately know the or-
der of G, and some thought derives the number

of edges and degrees of all the vertices. For ref-
erences to results on the conjecture, see the sur-
vey [4]. Kelly 1957 proved that regular graphs
are reconstructible from their deck. McKay 1997
shows that the conjecture is true for all graphs
with at most 11 vertices. The conjecture also
holds for trees, for disconnected graphs, and out-
erplanar graphs. Bollobás proved that with prob-
ability tending to 1 as n tends to infinity, there
exist three cards which determine the graph. Sur-
prisingly, the conjecture remains open for planar
graphs.

Go with the flow. A fundamental application
of Graph Theory is to networks in the real world.
We may view the edges as a series of pipes trans-
porting some liquid (or electric current, or in-
formation, and so on) between nodes. Usually
edges have a maximum capacity for carrying ma-
terials, and what enters into a node must equal
what must come out. Further, these flows, as
they are called, usually move in one direction, so
some orientation must be assigned to the edges
of the network. Flows have deep connections to
the Four Color Theorem, and Tutte’s conjecture
on flows extends these connections beyond the
context of planar graphs.

To be more precise an integer flow on a graph
is a pair consisting of an orientation of the graph,
and an assignment of integer weights to the edges
such that for each vertex, the total weight on
exiting edges equals the total weight on entering
edges. It is a k-flow if all weights have absolute
value less than k, and it is nowhere-zero if weight
0 is never used. See Figure 7.

, ,

...

Figure 7. Find a nowhere-zero
4-flow for this sequence of graphs.
Do CDCs help?

Nowhere-zero k-flows were introduced by Tutte
[37] as a generalization of face coloring problems
in planar graphs (where we color the faces so no
adjacent faces receive the same color). The fa-
mous Four Color Theorem is equivalent to saying
that every planar bridgeless graph has a nowhere-
zero 4-flow. Unfortunately, this result cannot be
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extended to arbitrary bridgeless graphs since the
Petersen graph has no nowhere-zero 4-flow. See
Figure 8.

Figure 8. The Petersen graph.

Tutte 1954 therefore, considered 5-flows in-
stead, and conjectured the following in [37].

Tutte’s 5-Flow Conjecture: Every bridgeless
graph has a nowhere-zero 5-flow.

The conjecture holds for planar graphs, and
follows from the duality of flows and coloring,
and the Five Color theorem (every planar graph
is 5-colorable). We may therefore view the 5-flow
conjecture as a generalization of the Five Color
theorem to graphs which are not planar.

Jaeger [18] proved that every bridgeless graph
has a nowhere-zero 8-flow. Seymour [31] im-
proved upon this result by showing that bridge-
less graphs have nowhere-zero 6-flows. Celmins [6]
proved that a smallest counter-example to the
conjecture must be a cyclically 5-edge-connected
snark with girth at least 7 (see also the Cycle
Double Cover conjecture). The conjecture can be
reduced to the 3-regular case, and Steinberg [33]
proved the conjecture for graphs which can be
drawn in the projective plane without edge cross-
ings.

You are so square. We state another conjec-
ture about products, this time related to domi-
nation. No, not the kinds with whips and chains!
For graphs G and H, define the Cartesian prod-
uct of G and H, written G¤H, to have vertices
V (G) × V (H), with (a, b) adjacent to (c, d) if
a = c and b is joined to d in H, or b = d and
a is joined to c in G. See Figure 9 which justifies
the notation for this product.

In a graph G, a set S of vertices is a dominating
set if every vertex not in S has a neighbor in
S. The domination number of G, written γ(G),

=

Figure 9. The graph K2¤K2.

is the minimum order of a dominating set. For
example, see Figure 10.

Figure 10. Find a dominating
set of order 4 in C4¤C4.

The following was proposed by Vizing 1968 [39].

Vizing’s Conjecture: For graphs G and H,

γ(G¤H) ≥ γ(G)γ(H).

This is a conjecture everyone thinks is true.
All the references below appear in [5].

For graphs which have efficient dominating sets
(where most vertices are adjacent to at most one
vertex of the dominating set, such as in com-
plete graphs) it is easy to show that the con-
jecture is true. What about graphs with ineffi-
cient dominating sets such as C4? In this case,
γ(C4¤C4) = γ(C4)γ(C4) = 4. Check this in Fig-
ure 10.

An important theorem from 1979 was not ap-
preciated (or apparently not even known) for the
next 16 years. During some collaboration of Rall
and the second author of this article, the Math
Review MR0544028 was discovered. From that
brief description, in a couple of days Hartnell
and Rall were able to piece together the whole
of the original paper (which was in Russian)2.

2No translation was involved.
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The main theorem of [2] reduced much of the
work from 1968 through to 1996, to a corollary
of their main theorem!

From [2] a graph G is called decomposable if
γ(G) = k and the vertex set of G is contained
in the union of k complete graphs. Hartnell and
Rall 1995 and Bres̆ar and Rall 2009 used decom-
positions with subgraphs other than complete
graphs to extend the family of graphs for which
Vizing’s conjecture is known to be true.

As with several of the conjectures considered
so far, many experts think that if the conjec-
ture were false then a minimal counter-example
would have been found. But since a proof has not
been found, where would one look for a counter-
example? For example, a minimal counter-example
to Vizing’s conjecture must have domination num-
ber larger than 3; adding an edge between two
non-adjacent vertices decreases the domination
number; and every vertex belongs to a minimum
dominating set.

Don’t get cross. Our next and final conjec-
ture has its origins in a 1940’s labor camp in
Budapest. The famous Mathematician Turán
was imprisoned there, watching trucks to move
bricks along rails from kilns to storage areas. Ev-
ery once in awhile, the trucks would cross each
other’s path and the bricks would come crash-
ing down. No doubt as a kind of liberation from
the monotony, Turán began thinking about min-
imizing the crossings of the trucks, assuming the
general situation that there were m kilns and n
trucks.

We may formalize Turán’s problem in the fol-
lowing way. The crossing number of G, written
cr(G), is the minimum number of pairwise cross-
ings of edges in a drawing of G in the plane. Some
readers may recall the Three Utilities Problem,
which reduces to showing that K3,3 has crossing
number 1.

Crossing number problems tend to be hard
to calculate exactly, in no small part from the
fact that determining the crossing number of a
graph is an NP-complete problem. The follow-
ing conjecture is named after Zarankiewicz who
published a flawed proof of it [43], but it is also
called Turán’s Brick Factory conjecture (see [14]
for a survey of the history of the conjecture).

Zarankiewicz’s Conjecture:

cr(Km,n) =
⌊m

2

⌋⌊
m− 1

2

⌋⌊n

2

⌋⌊
n− 1

2

⌋
.

The best exact result on the conjecture was
proved by Kleitman 1970 [22] who confirmed it
for n ≤ 6. Kleitman also proved that the smallest
counter-example must occur for m and n odd.
Woodall [42] discovered the crossing numbers
cr(K7,7) = 81 and cr(K7,9) = 144. Hence, the
smallest unsolved cases are for K7,11 and K9,9.
As b4

2cb3
2cb5

2cb4
2c = 8, the drawing in Figure 11

satisfies the conjectured bound.

Figure 11. A drawing of K4,5

with 8 crossings, which is the min-
imum number possible.

A recent result in [7] states that if for a fixed
m, the conjecture holds for all values n smaller
than some constant depending on m, then the
conjecture holds for all n. Hence, for each m there
is an algorithm which verifies the conjecture for
all n or gives a counter-example.

Epilogue

Now it is your turn to finish this survey and
solve (or partially solve) one or more of these
conjectures in Graph Theory. And when you are
done with those, we have a few others that might
keep you busy such as Barnette’s conjecture, the
Berge-Fulkerson conjecture, the Erdős-Sós con-
jecture, the Middle Levels conjecture, or Shee-
han’s conjecture.

We close with our version of another Hamming
quote [16], which nicely summarizes where we
would like to leave off.

“Go forth, then, and doodle great work!”
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