A bijection between loopless maps and triangulations

Éric Fusy Projet ALGO, INRIA Rocquencourt and LIX, École Polytechnique (Paris)

Planar maps

 Planar map = graph drawn in the plane without edge-crossing, taken up to isotopy (continuous structure-preserving transformation)

• Rooted map = map + root edge

 Motivations: mesh compression, graph drawing + nice combinatorial properties

Families of planar maps

Triangulation

Loopless map

Irreducible triangulation (no separating triangle). – p.3/26

Families of planar maps

Triangulation

separating vertex

Loopless map

Nonseparable map (no separating vertex)

Irreducible triangulation (no separating triangle) - p.3/26

Families of planar maps

(no separating triangle) - p.3/26

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

1, 2 well known bijections (Tutte)

3 recursive bijection (Wormald)

This talk: • new bijective construction for (3) • first bijective construction for (4)

. - p.4/26

Well known bijections

Overview of the talk

1) Bijection nonseparable maps \simeq irreducible triang + new duality relation for bipolar orientations

2) Bijection loopless maps \simeq triangulations

nonseparable components

irreducible components

3) Applications to random generation and encoding

Bijection between nonseparable maps and irreducible triangulations

Bipolar orientations

Bipolar orientation = acyclic orientation with a unique source and a unique sink

Bipolar orientations

Bipolar orientation = acyclic orientation with a unique source and a unique sink

A map admits a bipolar orientation iff there is no separating vertex (nonseparable)

Transversal structures

Transversal structure = partition of inner edges into a red and a blue bipolar orientations that are transversal (introduced by Xin He'93)

Transversal structures

Transversal structure = partition of inner edges into a red and a blue bipolar orientations that are transversal (introduced by Xin He'93)

A triangulation of the 4-gon admits a transversal structure iff there is no separating triangle (irreducible)

Reformulating the bijection

Reformulating the bijection

Reformulating the bijection

How the bijection works

How the bijection works

Start with a plane bipolar orientation

Double the root edge

Insert a white vertex in each edge

Triangulate the faces by red edges

A first bijection:

A first bijection:

Remark: These are counted by the Baxter number: $B_n = \frac{2}{n(n+1)^2} \sum_{k=0}^{n-1} \binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}$

Start with an intransitive bipolar orientation

Triangulate the faces by blue edges

A second bijection:

Bijection between loopless maps and triangulations

Decomposing a loopless map

• Block decomposition

Decomposing a loopless map

• Block decomposition

• For rooted loopless maps:

Nonseparable core where each corner is possibly occupied by a loopless map

• Classical decomposition at separating triangles

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Here: the same after deleting an outer edge

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Here: the same after deleting an outer edge

Irreducible triangulation where each face is possibly occupied by a triangulation

The decompositions are parallel

The decompositions are parallel

Results obtained so far

Results obtained so far

Results obtained so far

Counting the families

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

$\begin{array}{c} \textbf{Triangulations} \leftrightarrow \textbf{quaternary trees} \\ \hline \end{array}$

Enumerative Results

Enumerative Results

Enumerative Results

Applications

$$maps \longleftrightarrow trees \longleftrightarrow "Dyck words"$$

• General scheme: (Schaeffer'99, Poulalhon-Schaeffer'03)

Applies here to :

irreducible triangulations
triangulations

