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Abstract— Collaboration between several Unmanned Aerial
Vehicles (UAVs) can produce high-quality results in numerous
missions, including surveillance, search and rescue, tracking or
identification. Such a combination of collaborative drones is
referred to as a swarm. These several platforms enhance the
global system capabilities by supporting some form of resilience
and by increasing the number and/or the variety of embedded
sensors. Furthermore, several UAVs organized in swarm can be
considered as a single entity from an operator point-of-view.

In order to collaborate, the UAVs have to share information.
This is a task of prime importance to perform the mission
quickly. Nevertheless, the major task is definitely the path
planning that has to be achieved for each UAV, especially when
they evolve in unknown environments because decisions must be
taken dynamically. To deal with this issue, we have implemented
a three-dimensional (3D) mobility model for swarms of UAVs
using the Artificial Potential Fields (APF) principle and a global
path planning method. In our model, UAVs share their own
knowledge of the environment in order to allow the platforms
too far of obstacles to detect them to improve their trajectory
calculation. To provides a significant validation of our mobility
model, We have simulated real-world environments and sensors
performances, in the network simulator OMNeT++.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are key players today
to help perform numerous tasks in both civilian and military
applications. Even if drones are more and more technically
advanced, a single one is often not sufficient to perform
large-scale or complex (in terms of data collection) missions.
Indeed, the variety of tasks one would like to achieve
increases quicker than the capacity of a single UAV. Then,
swarming became quite recently a central field of research
[15]. Among the many advantages offered by swarms are:
continuous flight, multi-sensor capabilities, sensors reorga-
nization, resilience, information replication and hiding.

To collaborate, and thus offer high-quality performances,
the UAVs have to communicate between each other. Then,
additionally to various sensors, the platforms are equiped
with wireless network components that make it possible to
create data links between them to form a Flying Ad hoc
Network (FANET) [6].

The issue that we address here is that of moving the
elements of a swarm from a given area to another, which
is clearly a basic function that needs to be supported should
the swarm be usable for any sensible mission.

A large number of UAV swarm studies that address this
problem consider it from the perspective of area coverage (in-
cluding connectivity constraints [17], [14], [19] etc.) but most
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of them consider obstacle-free environments. We consider the
case, which we believe is more representative, of urban-like
areas. In this case, the UAVs have to not always fly above
building to get high-quality information and consequently,
obstacle avoidance is a task of prime importance.

In this paper we present our 3-dimensional mobility model
for autonomous swarms of UAVs based on the Artificial
Potential Fields (APF) principle and including a global
path planning. This model called 3DGAPF+ (3-Dimensional
Global APF+) extends one of our previous model, described
in [9], which we call APF+.

This work is organized as follows. Section II presents
related works on multi-UAVs mobility strategies and path
planning using APF. In section III, we describe the APF+
mobility model and the novel extension 3DGAPF+. Section
IV focuses on simulations and results, especially compared to
other mobility models for UAVs swarms. Finally, conclusion
and future works are presented in section V.

II. RELATED WORK

For decades, many path planning methods have been
studied in the robotic field. Here, we focus on methods
designed for FANETs and also on mobility strategies based
on the the APF principle (introduced in [10]).

A. Mobility Strategies for FANETs

Mobile Ad hoc Networks (MANETs), are continuously
self-configuring and infrastructure-less networks, composed
of mobile devices connected wirelessly [6]. FANETs are a
type of MANETs, composed of UAVs. When several UAVs
have to collectively fulfill a task, collaboration between the
platforms can enhanced the system performance. Indeed,
they can fulfill missions in larger areas, quicker,using higher
quality information thanks to the possible plurality of the
embedded sensors. Therefore, collaborative mobility models
are worth studying. Due to the huge quantity of existing path
planning methods, only a few examples are given here, the
most studied methods and those which are the closest to our
work.

Using multiple UAVs can be very efficient for surveillance
missions thanks to collaboration between the platforms be-
cause, they propose a large number of capabilities (multi-
sensors, multi-plateforms, multi-modal capabilities). How-
ever, the on board communication systems have a limited
range. A compromise has thus to be found between two
adversary criteria: maximizing area coverage and preserving
network connectivity [17]. A method achieving these objec-
tives, based on chaotic dynamics and ant colony optimization
(ACO), has been presented by Rosalie et al. [17].



Boskovic and Moshtagh [7] proposed a global system in-
cluding mission planning, using evolutionary algorithms and
biologically-inspired swarm, designed for military activities.
Their solution is distributed and robust to communication
delays and loss. Furthermore, it uses a real-time learning
algorithm and provides dynamic mission re-planning.

Li et al. recently proposed a Particle Swarm Optimization
(PSO) mobility model designed for FANETs[12]. This PSO
method takes into account UAVs characteristics, including
kinematic and dynamic constraints. Their method generates
velocities and waypoints for each UAV, which are adjusted
to avoid collision with neighbors.

Li and Chen [11] proposed a global method in order
to search a single static target, comprising a collaborative
mobility model, information sharing and decision making to
continue or terminate the search. There is no obstacle in the
Area of Interest (AoI). Information on the presence of the
target in each cell of the discretized environment are shared
and each UAV builds its own map. They suppose that each
UAV is able to cover one cell in a single observation step.
At each iteration, each UAV analyzes its own cell, updates
its own map, shares it with the other UAVs, update again its
own map by merging it with the information received from
the other UAVs, eventually decides to stop the search if the
target is found, else chooses its next flying direction. For
this last step, each UAV has 2 choices: to go in one of the 4
adjacent cells or not to move. The criteria is to go towards
the cell with the highest probability of presence.

B. APF-based methods

The original APF method was introduced by Khatib in
1986 [10]. The APFs are composed of two kinds of fields:
an attractive one towards a target point and a repulsive one
for each obstacle. The robot (drone) moving direction is the
negative gradient of the resulting APF.

Numerous studies have been carried out on APF methods,
on one hand because they are easy to implement and have
low computational cost [20]. On the other hand, because
the original method presents some weaknesses, as the local
minima when UAV, obstacle and goal are in line, or the
the Goal Non Reachable with Obstacle Nearby (GNRON)
problem.

A way to avoid local minima has been proposed by Liu
and Zhao [13]. Their solution is composed of two steps.
First, if their is a superposition in the influence area of several
obstacles, they consider them as a single larger obstacle. This
step reduces the number of local minima. Second,if a UAV
nevertheless enters in such a minima, they create a temporary
waypoint allowing the platform (drone) to escape.

Very close to our approach, Sun et al. [18] propose
a collision avoidance model for cooperative UAVs based
on improved artificial potential fields. One can quote their
local solution to avoid the jitter problem. Furthermore,
their potential fields definition removes local minima, the
GNRON problem and the impossibility to go between close
obstacles. Their model performs well in 3D and examples
are given where all the UAVs go towards the same target

point. Nevertheless, the hypothesis description is not precise
enough to appreciate the results relevance.

III. OUR CONTRIBUTION: THE 3DGAPF+ MOBILITY
MODEL

In this section we briefly summarize our previous mobility
model, described in details in [9], which will be called APF+.
Then we will describe 3DGAPF+, an extension of APF+
which includes 3-dimensional environments and trajectories
additionally to global path planning. Both mobility models
were created for autonomous UAVs making up a swarm and
are based on the Artificial Potential Fields principle [10].

A. Common Features of APF+ and 3DGAPF+ Models

In the frame of our simulation, the UAVs evolve in a
bounded rectangular area containing obstacles they are not
aware of. The environment is meshed by square cells of
equal size defined by the user, which are at least as large
as a UAV in order to avoid collisions. The flying time is
also discretized in steps of one second, empirically. At each
iteration, the UAVs probe again the environment thanks to
their on board sensor and eventually detect obstacles around
them. Then, they calculate their next move in any direction
without any kinematic constraint.

B. APF+ Mobility Model

The APF+ mobility model [9] follows the traditional APF
method by considering several potential fields with high
potentials for the obstacles and low potentials for the target
point1. The field linked to the target point is initialized at the
beginning of the mission and those related to the obstacles
that have been discovered are updated all along the mission.
The UAVs always try to go towards lower potentials. The
UAVs evolve in a discrete environment, and can move at each
iteration to one of the 8 adjacent cells. The UAVs always
choose to go towards the cell with the lowest potential.

This mobility model uses 3 matrices. The first one, noted
pot stores the APF described above. The second one, noted
avoid, is re initialized at each iteration and stores temporary
APFs linked to neighbors and the anticipation of obstacle
avoidance (see definition in [9], section IV-F). To choose
their next moves, the UAVs compare the sum of the potentials
stored in these two matrices for each adjacent cells. Finally,
the third matrix, obs, contains the cell status:

• there is no information about the cell;
• it does not contains an obstacle and is safe;
• it does not contains an obstacle but is not safe or has

already been revisited;
• it contains an obstacle;
• it is on a path already used by a UAV to reach the target.

This matrix is the only one shared between the platforms.
In this model, we introduced an innovative method allow-

ing to anticipate obstacle avoidance and preventing the local
minima problem.

1Contrary to the definition given in [9], we use the Euclidian norm to
calculate the APF related to the target because it reduces the number of
adjacent cells compared to the uniform norm.



C. 3DGAPF+ Mobility Model

In this extension of APF+, we kept the same potential
definitions and a UAV will still go towards lower potentials.
The two main enhancements are the following: 1) the UAVs
can evolve in 3D and 2) they calculate a global path towards
the target with as few waypoints as possible.

1) 3D: In order to move in 3D, the environment is
meshed as cuboids and the matrices supporting the potentials
thus also have 3 dimensions, as each element of a matrix
represents a cell of the discretized environment. Potentials
definitions are an extension in 3D of those defined in
APF+. The user can choose independently the horizontal and
vertical cells sizes (but cuboids bases are square).

2) Global Path: When movements are limited to sur-
rounding cells, only 8 directions can be taken in 2D and
26 in 3D. In order to shorten the paths, it is necessary to
authorize more directions. In this model, the UAVs compute
one or several waypoints at each iteration. The calculation
method depends on the locations of the UAVs and on the
characteristics of the obstacles (width, height, shape...). The
resulting waypoints are not necessarily in adjacent cells and
the UAVs are allowed to move in any direction. Their speed
is limited to a given value noted smax. We suppose that the
distance traveled by a UAV in one iteration at maximal speed
is smaller than the embedded obstacle sensor range. The
principle of our model is as follows: one move is decided at
each iteration. This move depends only on the first waypoint
of the computed path. If it is close enough to be reached
in one iteration, the UAV reaches it, else it goes towards it.
Consequently, to get paths as short as possible, the waypoints
should be as far as possible of the UAV.

Nevertheless, when a UAV is close to an obstacle, it is
not always possible to find safe waypoints far away from this
drone. For this reason, we have to consider 3 cases depending
on the UAV environment, in order to optimize the path:

1) No obstacle detected in the direction of the target
2) Obstacle detected in the direction of the target
3) UAV in a U-shape obstacle (dead-end)
When a UAV changes of mode, the path is reinitialized and

recalculated. Fig.1 illustrates the path calculation depending
on the UAV environment in 2D for more readability, but the
process is identical in 3D.

In the first mode, the UAV goes at maximal speed towards
the target (see Fig. 1(a), 1(f), 1(g) and 1(h)). While a UAV
is in this situation, it uses the shortest path to join the target.
The path is then composed of one single waypoint: the cell
closest to the target in the UAV sensor range.

In the second mode, the UAV cannot go directly towards
the target because of obstacles or neighbors. Then the APF+
algorithm is ran iteratively using the UAV current knowledge
of the environment to add waypoints to the path until the
target is reached (see Fig. 1(b), 1(c) and 1(d)).

Finally, as a UAV sensor range is limited, a drone can first
consider that two obstacles are around it, and later discover
that it is actually surrounded by a single building (or several
buildings too close to allow a passage between them). In

this case, the UAV is in a dead-end: it will retrace its steps
until the exit of the dead-end and significantly increase the
potential (in the pot matrix) of the cells inside this obstacle
in order to avoid them next time. In this mode, the path is
composed of the cells already crossed by the UAV, from the
most recent to the oldest, inside the dead-end.

As noticed before, only the first waypoint is used to make
the move decision at each iteration, independently of its
distance from the UAV. Then, in order to have flights as
short as possible, as few waypoints as possible should be
considered, and they should be as far as possible from the
UAV. We thus created a function to delete useless waypoints.
Let’s note WPi the ith waypoint in the path. If the cells
between WP0 and WP2 are safe, then the UAV deletes
WP1. It follows this procedure iteratively while it can delete
WP1 and while WP0 is within its sensor range. Such
deletion of waypoints has been performed on Fig. 1(b),
1(c) and 1(d) and makes it possible to reduce the necessary
number of iteration to reach the target.

IV. SIMULATIONS AND RESULTS

A. Embedded Equipments

Each UAV carries equipment to ensure communication
with its neighbors and obstacles detection.

1) Obstacle Detection: The recent drone ”DJI Mavic Air”
seems to have the most advanced collision avoidance system
of the small drones market [4], [16], [8]. To fulfill this
complex task, this UAV is equipped with several sensors [2],
[8] including forward, backward and downward dual vision
sensors. The best characteristics are those of the forward
stereo vision system, in particular a detection range up to
24 meters and fields of view of 50° in horizontal and 38° in
vertical [2]. In our context, the UAVs evolve in an unknown
environment and may have to go in any direction, while a
Mavic Air using its sense and avoid system follows a given
direction. Then, we chose to simulate an obstacle detection
sensor of 24-meter-range, representing 2 stereo cameras (one
on the top and one on the bottom) each mounted on a gimbal
supporting rotations. The UAVs then know their environment
in a sphere centered on themselves, as shown on Fig. 2.

2) Communication Module: In our model, the swarm
is collaborative because its UAVs share information on
the environment. Along with the APF+ model, the UAVs
carry XBee communication modules, which are particularly
adapted for multi-rotors application because they are small
require little energy, have light weight and are easily cus-
tomizable [1].

B. Experimental Setup

In order to simulate realistic communications characteris-
tics , we chose the highly customizable network simulator
OMNeT++ [5]. The main parameters used are the same as in
our previous paper [9] where they were given in appendix.
The sensor simulations are not as precise as the communica-
tion ones: we only suppose that UAVs have information on
the presence of obstacles within their sensors ranges. For all
the simulations, we make the following assumptions:



(a) Mode 1: straight on towards the
target.

(b) Obstacle detected on the way,
passing to mode 2, calculation of a
new path and suppression of unin-
teresting waypoints.

(c) No new obstacle and not pos-
sible to go straight on towards the
target, following the path and dele-
tion of waypoints.

(d) No new obstacle and not pos-
sible to go straight on towards the
target, following the path and dele-
tion of waypoints.

(e) Passing to mode 1, path cleaned
and creation of a single waypoint.

(f) Mode 1. (g) Mode 1. (h) Mode 1.

Fig. 1: Moves of a UAV in an unknown environment iteration by iteration. Small crosses represent the cells where the UAV
has been, and the large one represent the waypoints. The target cell is the white one, cells in black are unknown, the colored
one have been discovered. The color of each known cell corresponds to its potential (green: low potential, red: high, dark
blue: highest corresponding to obstacles).

• At the beginning of the mission, all the UAVs are within
the AoI, they know how many they are in the swarm,
they know the AoI limits.

• The only moving obstacles within the AoI are the UAVs
composing the swarm.

• Calculation power and battery are sufficient.
• Each UAV knows with sufficient precision its own

location and its target point location (inside the AoI).
• Each UAV is equipped with an XBee communication

module and with sensors allowing obstacle detection in
a range of 24 meters.

• UAVs maximum speed is 10m.s-1 and they are not
submitted to kinematics constraints.

Xbee data rate is up to 250 kbits.s-1 and is a half-duplex
system. Then, if we want the UAVs to communicate every

Fig. 2: Embedded sensors allowing obstacle detection.

two seconds, the maximal possible volume of the exchanged
matrix is 500kbit. One matrix is exchanged between the plat-
form, containing as many elements as cells in the discretized
environment, and each element contains an integer coded on
8bits. Furthermore, the whole AoI is 500m-large, 500m-long,
and UAVs can eventually fly between 4m (to avoid people
and the vehicles) and 24m (camera range) of altitude. So
a meshing constituted of cubes with edge lengths of 4m is
adapted. Each UAV has a unique ID. Every 2 seconds, one
UAV sends its vision of the environment, by increasing ID.

C. Comparison with APF+
The first step to evaluate our model was to compare the

trajectories computed with 3DGAPF+ to those computed
with APF+, in a real environment: the Blayais power station,
of which we reproduced the buildings from the French land
register [3]. Fig. 3 shows some examples of simulations
performed in 2 dimensions. The trajectories followed by the
UAVs with 3DGAPF+ model are smoother and shorter than
with APF+. There were no collision either.

More precisely, the UAVs paths computed considering
a cell width of 2 meters are clearly shorter than those
considering larger cells (see Fig. 4). Indeed, the discretization
is thin enough to allow the passage between close obstacles,
especially in areas c and d (defined on Fig. 3(d)). With
a cell width of 4 meters, it is not possible to cross area
c anymore. In this case, the median traveled distance is
significantly shorter with 3DGAPF+ than with APF+. The
substantial difference with APF+ is due to two factors. First,
when several UAVs are in area b, they needed a large



(a) 9-UAV swarm, horizontal dis-
cretization of 2m.

(b) 3-UAV swarm, horizontal dis-
cretization of 4m.

(c) 3-UAV swarm, horizontal
discretization of 6m.

(d) Areas legend.

Fig. 3: Trajectories followed by autonomous swarms of
UAVs. On the the left, calculations made with APF+, on
the right, calculation made with 3DGAPF+

number of moves to escape this complex area while avoiding
collisions with the neighbors, because at each iteration the
move decision is taken independently from the previous and
next one. Second, when many drones were close to area
c, some escaped this passage and preferred area d to avoid
collisions. These two solutions increase the traveled distance.
3DGAPF+ solves both problems and most of the UAVs easily
escape from area c. Finally, a cell width of 6 meters forbids
the passage to area d in addition to area c. As a result, the
traveled distance with both models are substantially longer.
Nevertheless, with 3DGAPF+ more than 25% of the UAVs
travel was shorter than 600m, which is the shortest possible
path in this configuration (distance traveled by the red UAV
Fig. 3(c)). The UAVs whose path measured approximatively
800 meters had a trajectory close to the orange and black
drones shown on Fig. 3(c). For all these platforms, the path
cannot be shorter because of their limited vision of the
environment. Finally, one can notice that the longest traveled
distance with cell width of 6 meters are followed by UAVs
in the largest swarms. This is due to the collision avoidance
system between the platforms which reduces the optimization
of the path, by decreasing the deletion of waypoints.

These simulations show that the smaller the cells, the
shorter the path. Nevertheless, UAVs wingspan is approx-

(a) Results for APF+ mo-
bility model. The 72 UAVs
reached the target.

(b) Results for 3DGAPF+ mo-
bility model. 3 UAVs out of 72
did not reach the target.

Fig. 4: Superposition for a given cell width (2, 4 and 6m) of
the distances traveled until the goal by each individual UAV
in swarms of 3, 5, 7 and 9 vehicles in the 2-dimensional
environment represented Fig. 3.

imately 50cm so it would not be useful to use thinner
discretization. Furthermore, the mobility model is based on
three matrices representing the environment (see section III)
which contain as many elements as cells. Then, the smaller
the cells the larger the matrices. Because one of these three
matrices is exchanged between the platforms and as the XBee
data rate is limited, a very thin discretization would not allow
collaboration between the platforms.

To conclude, our mobility model performs well in a
complex environment in 2 dimensions, especially with a thin
discretization.

Nevertheless, 3DGAPF+ has a weakness: in 2 simulations
out of 12, some UAVs remained in local minima. Indeed,
they alternated with the mode 1 and a path calculation. Fig.
5 shows such a simulation, were the dark blue UAV never
reaches the target point.

Fig. 5: Trajectories followed by 9 autonomous UAVs evolv-
ing in swarm in 2 dimensions, with a discretization of 4m.



D. Comparison with Sun et al.’s Model

As explained in section II-B, Sun et al. study [18] is close
to ours. Then, we reproduced one of their testing environ-
ment to compare the trajectories calculated by their and our
model (see Fig. 6 of their paper [18]). Their experimental
setup is not clearly given, but from their figure we suppose
that the environment was 110m long and 70m high, and we
arbitrary chose a width of 15m. In order to allow the UAVs to
pass these thin passages, we chose a vertical discretization
of 1m. Fig. 6 shows a sectional view of a 6-UAV swarm
trajectory in this environment and Fig. 7 shows a 3D view
of such a configuration.

There were not any collision, between UAVs or with an
obstacle. As for Sun et al. results, the UAVs use different
ways to reach the target point. One can note that the trajecto-
ries are smooth except for some UAVs which shift from their
shortest trajectories to avoid collisions with others, especially
when close to obstacles. Furthermore, the distance traveled
in one iteration is much larger in obstacle-free environment
than in thin passages, because only few waypoints can be
deleted there. To conclude, our model performs well in this
3-dimensional complex environment, and can take advantage
of obstacle-free areas to increase the speed of the UAVs.

E. Swarm in Complex 3-Dimensional Environment

Finally, we tested our mobility model in 3D in the Blayais
power station. Fig. 8 shows the trajectories of a 4-UAV
swarm in this complex environment. One can note that in
this test, the UAVs have different goals. Indeed, as the
collaborative process is based on the obstacle location shar-
ing, the mobility model can be used as-it-is with individual
departures position and/or targets.

Furthermore, the UAVs performs horizontal or vertical
obstacle avoidance, depending on the building height and
on their neighbors location. In this test also, there were no
collision.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a 3D mobility model for swarms of
collaborative UAVs based on APF method. In this paper
we introduced 3DGAPF+ mobility model for swarms of
collaborative UAVs, an extension of APF+ mobility model, to
which we added a global path planning method and the third
dimension. The method is validated using OMNeT++ with
swarms of 3 to 9 UAVs in several environments containing
3D obstacles. Simulations are used for comparisons with a
mobility model of Sun et al. [18] and for comparison with
our previous work [9] in a real environment. Communication
between the platforms precisely simulate XBee module, and
simulations of embedded sensors allowing obstacle detection
are also performed. In future work, we will target even more
realistic simulations. In particular we will work on a kinetic
model of multi rotors and sensors. Then, we will work on
complete missions with complex scenarios.

Fig. 6: Projections in a vertical plan of the trajectories
of a 6-UAV swarm, with a vertical discretization of 1m
and horizontal discretization of 1, 2, 3 and 4m, towards a
common target point represented by a red square.

Fig. 7: 3-dimensional perspective of the simulation with 6
UAVs and horizontal and vertical discretization of 1m.

(a) Upper view of the trajectories.

(b) 3D view of the trajectories.

Fig. 8: Trajectories of a 4-UAV swarm in 3D with an
horizontal discretization of 4m and a vertical one of 4m
between 4 and 24m of altitude.
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Hoc Networks (FANETs): A survey. Ad Hoc Networks, 11(3):1254–
1270, May 2013.

[7] Jovan Boskovic, Nathan Knoebel, Nima Moshtagh, Jayesh Amin, and
Gregory Larson. Collaborative Mission Planning & Autonomous Con-
trol Technology (CoMPACT) System Employing Swarms of UAVs.
In AIAA Guidance, Navigation, and Control Conference, Chicago,
Illinois, August 2009. American Institute of Aeronautics and Astro-
nautics.

[8] Fintan Corrigan. Top Collision Avoidance Drones
And Obstacle Detection Explained. https://www.
dronezon.com/learn-about-drones-quadcopters/
top-drones-with-obstacle-detection-collision-avoidance-sensors-explained/,
June 2018.

[9] Ema Falomir, Serge Chaumette, and Gilles Guerrini. A Mobility
Model Based on Improved Artificial Potential Fields for Swarms of
UAVs. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, page 6, Madrid, October 2018. IEEE.

[10] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The international journal of robotics research, 5(1):90–
98, 1986.

[11] X. Li and J. Chen. An Efficient Framework for Target Search
with Cooperative UAVs in a FANET. In 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications
and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC), pages 306–313, December 2017.

[12] Xianfeng Li, Tao Zhang, and Jianfeng Li. A Particle Swarm Mobility
Model for Flying Ad Hoc Networks. In GLOBECOM 2017 - 2017
IEEE Global Communications Conference, pages 1–6, December
2017.

[13] Yuecheng Liu and Yongjia Zhao. A virtual-waypoint based artificial
potential field method for UAV path planning. In Guidance, Navigation
and Control Conference (CGNCC), 2016 IEEE Chinese, pages 949–
953. IEEE, 2016.

[14] M. Messous, S. Senouci, and H. Sedjelmaci. Network connectivity and
area coverage for UAV fleet mobility model with energy constraint.
In 2016 IEEE Wireless Communications and Networking Conference,
pages 1–6, April 2016.

[15] Kamesh Namuduri, Serge Chaumette, Jae H. Kim, and James P. G.
Sterbenz. UAV Networks and Communications. Cambridge University
Press, November 2017.

[16] Drew Prindle. Pocket-sized and practically perfect, the Mavic Air
is DJI’s best drone yet. https://www.digitaltrends.com/
drone-reviews/dji-mavic-air-review/, July 2018.

[17] Martin Rosalie, Matthias R. Brust, Gregoire Danoy, Serge Chaumette,
and Pascal Bouvry. Coverage Optimization with Connectivity Preser-
vation for UAV Swarms Applying Chaotic Dynamics. pages 113–118.
IEEE, July 2017.

[18] Jiayi Sun, Jun Tang, and Songyang Lao. Collision Avoidance for Co-
operative UAVs With Optimized Artificial Potential Field Algorithm.
IEEE Access, 5:18382–18390, 2017.

[19] E. Yanmaz. Connectivity versus area coverage in unmanned aerial
vehicle networks. In 2012 IEEE International Conference on Com-
munications (ICC), pages 719–723, June 2012.

[20] Min Zhang, Yi Shen, Qiang Wang, and Yibo Wang. Dynamic artificial
potential field based multi-robot formation control. In 2010 IEEE
Instrumentation & Measurement Technology Conference Proceedings,
pages 1530–1534, Austin, TX, USA, 2010. IEEE.


