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Abstract— A combination of several autonomous UAVs can
be used to perform collaborative tasks. Such a combination is
referred to as a swarm of drones. The use of multiple platforms
can extend the system global capacities thanks to the resulting
variety of embedded sensors and to information sharing. In
this case, path planning and thus obstacles avoidance is still a
major task. To deal with this issue, mobility models have to
be implemented. Our contribution presented in this paper is
a mobility model for swarms of UAVs based on the Artificial
Potential Fields (APF) principle. In our model, the involved
UAVs collaborate by sharing data about the obstacles that they
detected. By doing so, a UAV which is not close enough to
an obstacle to detect it thanks to its own sensors will still
have the proper data to take this obstacle into account in its
path planning. To validate our mobility strategies with realistic
constraints we simulate the performances of existing sensors
and transmitters, and consider real-world environment.

I. INTRODUCTION

Plenty of studies have been made on Unmanned Aerial
Vehicles (UAVs) in the last few years. Fixed wings and rotor
wings (or multi-rotors) are the two main families of UAVs.
Fixed wings are preferred for long flights but do not offer a
lot of maneuverability. In this paper, we will consider multi-
rotors. Indeed, in order to evolve in unknown environment,
possibly containing obstacles, rotor wings are often preferred
because they offer low speed maneuvering and hovering.

Unmanned Vehicles (UV) can be used to perform dull,
dirty, dangerous and deep (4D) missions using electronics
devices instead of humans, with low manufacturing cost, high
adaptability or no risk of casualties. Furthermore, several
UAVs can be used in a same Area of Interest (AoI) and fulfill
together a single mission with better performances than with
a single one (fulfill missions quicker or in larger areas for
instance). Usage of a several vehicles instead of a single
UAV can allow the system resilience; i.e. the lost of one or
several vehicle(s) does not cause the mission failure. We talk
of ”multi-platform” or ”swarm”. The term ”swarm” has no
widely admitted definition, then we will use the one proposed
in one of our previous papers[11]: a swarm refers to a set
of UAVs with similar characteristics (speed, maneuvering
etc.), able to establish peer-to-peer connections and can be
considered as a single entity from an operator point-of-
view. If this swarm is able to fulfill a mission without the
intervention of an external (artificial or human) entity, then
we qualify it of autonomous.
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A main task of UAVs collaboration is path planning,
including collision avoidance. The Artificial Potential Fields
(APF) principle is a famous path planning method that allows
smooth trajectory generation and do not require a search
of a global path. Furthermore, it is highly efficient and
has a computational cost low enough to be performed on
embedded systems [19]. Our model is based on this principle,
and details of APF will thus be given in section III along
with alternative methods.

In this paper, a mobility model for autonomous swarms
of UAVs based on APF is presented. It allows collaboration
between the platforms and collision avoidance. Problems of
unreachable targets and local minima have been solved and
an innovative repulsive potential field allows anticipation of
obstacle avoidance. The method is validated with several
simulations using the network simulator OMNeT++ [4].

This paper is composed of the following sections: section
II introduces possible applications of UAVs swarms and their
embedded sensors. Section III presents a state of the Art
of mobility strategies for UAVs especially using APF. Our
model is described in section IV as well as the method
hypothesis and pseudo-code. Finally, results of several sim-
ulations are analyzed in section V, before conclusions and
perspectives in section VI.

II. APPLICATIONS OF UAVS SWARMS AND EMBEDDED
SENSORS

In this paper we focus on UAVs of the multi-rotors type,
with a width of approximately 50 centimeters. This section
presents some applications of swarms of UAVs, and the
sensors that they can carry.

A. Applications of Multi-UAV Systems

Swarms of UAVs have many civil applications. For in-
stance, they are used to help firemen in the case of large
forest fires [20], to spray pesticides on crops [10], or to
survey points of interest [17] or AoIs [15].

In frame of military activities, some studies [5] have
been done about UAVs swarms in contexts of collaborative
mission planning for Intelligence, Surveillance and Recon-
naissance (ISR) missions. Path planning for multi-platform
have also been studied [21], including embedded sensors
capacities, in environments containing obstacles.

B. Radio Module

To fulfill collaborative tasks, the involved UAVs should
share information, for example concerning their environment.
To do that autonomously, they have to carry a radio module.



XBee platforms are communication modules that suit well
the applications of UAVs because they are small, have a light
weight, require little energy and are easily customizable and
programmable [1]. They are often used on multi-rotors, see
for example [17], [26].

In our application, we simulate the characteristics of a
XBee-PRO module [3]. In our study the two key character-
istics are the data rate (250 Kbps) and the communication
range in urban environment (90 meters).

C. Obstacle Detection

There are three major technologies to deal with obsta-
cle detection for the kind of small scale drones that we
are addressing: SONAR (SOund Navigation And Ranging),
RADAR (RAdio Detection And Ranging) and LI DAR
(LIght Detection And Ranging). In the following, we discuss
the characteristics of each of them in the context of our
scenario, and select the most adapted.

SONAR technology relies on the uptake of the reflection
of a sound wave by a distant object in a given angular
area. SONARs are cheap, light and low-power. However this
technology is not appropriate for long range aerial detection
with a maximum range of 10 meters, which is far from
enough for our scenario.

RADARs use radio waves instead of sound waves, and so
allow long-distance obstacles detection. Nevertheless, only
small ones can be carried by multi-rotors and they have a
level of resolution too low for our application.

The LIDAR technology relies on the use of a laser beam
focused to a tight spot, thus providing a high level of
precision. Compact portable LIDARs can be used to detect
objects located at several tens of meters. As LIDARs capture
one measure per spot, they generates a lot of measurements.
They thus need more computational resources to deal with.

We have decided to use a LIDAR because of the precision
and of the distance to potential obstacles in the scenario
that we address. We have selected the LIDAR-Lite v3 by
Garmin which has a range of 40m, a resolution of 1cm and
a correct accuracy (when considering obstacle detection). Its
update rate is high (up to 500Hz), so we can mount it on a
servomotor in order to get information on wide angles.

D. Network Simulator: OMNeT++

In order to simulate the characteristics of the sensor and
transmitter presented above, we chose the network simulator
OMNeT++ [4]. It allows numerous degrees of realism in
the simulations, from ideal environment and performances
of each element, to the modeling of energy consumption,
antennas parameters or signal propagation. The main com-
munication parameters that we chose are given in appendix.

III. RELATED WORK

Many path planning methods for UVs exist. In this section
we will first focus on trajectory planning for UAVs, and then
on planning methods based on APF and finally on methods
designed for multi-platform systems.

A. Path Planning for Autonomous UAVs

A task of major importance for autonomous UVs is
path planning. This task is of increasing complexity if the
environment in which the drones operate are not known
prior to the mission (and contain obstacles) and thus need
to be calculated on board, in real-time. Some methods have
been extensively studied to solve this problem: APF methods
introduced by Khatib [16], that we detail in the following
section; virtual forces [11],[13]; Genetic Algorithms [14];
chaotic processes [23]; fuzzy logic [9]; Particule Swarm
Optimization (PSO) or Reinforcement Learning [8].

B. Path planning for UVs based on APFs

The APF method introduced by Khatib [16] has numerous
successors today. Indeed, this methods has some drawbacks
as ”Goal Non Reachable with Obstacle Nearby” (GNRON),
local minima, oscillations close to obstacles (jitter problem)
or the impossibility to go between two close obstacles [25].

Sun et al. [25] propose a collision avoidance method based
on APFs for cooperative UAVs, with a local adjustment to
overcome the jitter problem, and potential fields definition
removing the other problems (GNRON, local minima and
impossibility to go between two close obstacles). The col-
laboration process is not explained in this paper.

Additionally to the issues cited above, we can quote the
consideration of obstacles as points, which can be used only
for the small ones. Mac et al. [19] overcame this problem by
considering large obstacles as a sum of punctual ones. In this
paper, they also proposed a solution to the GNRON problem.
This approach seems to be efficient for a single UAV, but an
important part of our work consists in using collaboration
between drones to improve the the model performances. The
model defined by Mac et al. is not designed for swarming
and consequently we cannot use it as is.

The local minima problem can be solved by creating a
temporary and virtual waypoint, as presented by Liu and
Zhao [18]. In order to reduce the number of local minima,
they consider close obstacles as one single larger obstacle.
There is no simulation showing what happens if the goal is
inside the envelope of several close obstacles. Furthermore,
some of the other problems listed above are not mentioned.

Thanks to the several ways to solve the traditional APF
method problems, it is possible to use this kind of algorithms
for trajectory planning adapted to single and multi-platform,
as shown by Galvez et al. [12]. In their paper, they use APF
to maintain several quadrotors in formation on their way
(possibly containing obstacles) towards a target point. Note
that our objectives do not include formation control, then
their model is not adapted to our scenario.

Finally, in all the improved APF that we found in the liter-
ature, the repulsive field linked to obstacles is symmetrical.
We believe that it should depend on the UV and target point
locations. Indeed, if a UV is close to its target, it is useless to
consider a repulsive potential field due to an obstacle located
at the back of the vehicle. Similarly, if an obstacle is not on
the path towards the target point of a UV, it should not have



any influence on the vehicle path planning. In our model,
we reduce the repulsive field to the safety distance if the
obstacle is not on the UAV path; if it is, then it has a great
influence, as detailed in section IV-F.1.

C. Path Planning for Multi-Platform Systems

Some path planning methods are particularly adapted for
multi-platform systems.

For example, we can quote Ant Colony Optimization
methods (introduced in [7], widely studied since then [6])
which are especially efficient for area coverage missions -
but this is not our main target scenario.

Models based on Boids are also widely studied. They
allow stabilization of compact formations, even in environ-
ments containing obstacles [24]. Rosalie et al. [22] recently
proposed a model combining Boids principle, Ant Colony
Optimization and chaotic dynamics to fulfill a mission of area
coverage while maximizing connectivity within the swarm.

Finally, we can quote Virtual Forces methods, that make it
possible to maintain formations in constrained environments
or to fulfill coverage missions [11]. Virtual Forces are also
adapted for systems that rely on leaders and followers [13].
Still, methods based on virtual forces have problems similar
to those of APF-based methods.

IV. OUR MOBILITY MODEL

A. Hypothesis

At the beginning of the mission (or simulation), all UAVs
are inside the AoI. They have to reach a common target
point, which is also inside the AoI. The UAVs always
instantly know with sufficient precision their own location,
the location of the target and the limits of the AoI. The UAVs
evolve in a discrete environment. At each iteration, they can
either move to the center of one of the 8 adjacent square-cell,
or stay at the same location. No mobile obstacle is considered
in this study. Each UAV carries a sensor allowing obstacles
detection (fix obstacles or other UAVs) which are located in a
given range (see section II-C) at 360◦. In our model, the cells
width must be greater than this sensor range. The UAVs can
communicate if the distance between them is smaller than
the radio range (see section II-B).

B. Notations

The environment in which the UAVs move is meshed. All
the cells are squares of equal size. Hence, we consider a
matrix of lmax lines and cmax columns, both finite numbers.
We note ci,j the cell in line i and column j where, (i, j) ∈
J1, lmaxK × J1, cmaxK. We note ti,j the cell in line ti and
column tj containing the target. Likewise, uavi,j represents
the cell containing a UAV in line uavi and column uavj .

Three matrices are considered for this model, each of size
lmax × cmax. The first one represents the potential field and
is noted pot. The second stores the locations of known fix
obstacles; it is noted obs. The third is used to anticipate
the fix obstacle avoidance (see below) and for the UAV
avoidance, and is noted avoid.

C. Principle

At each iteration, each UAV moves to the adjacent cell
with the smallest potential.

If an obstacle is (even partially) in a cell, the potential of
this cell is increased by a fixed positive value called obsInc.

D. Matrices Meanings and Initializations

The matrix obs is the only one exchanged by the UAVs.
Each cell of this matrix has a value representing if:

• there is no information about the cell;
• it does not contains an obstacle and is safe;
• it does not contains an obstacle but is not safe or has

been revisited;
• it contains an obstacle;
• it is on a path already used by a UAV to reach the target.
The matrix noted pot contains the APF related to the

target point, the APF related to the obstacles which have
been detected and the potential related to cells which have
already been visited.

The matrix noted avoid stocks the potential related to the
anticipation of fix obstacles avoidance and the temporary
potential linked to neighbors. It is the only one that is re-
initialized at each iteration.

The potential related to the target is initialized with the
distance between the cell and the target (in cell ti,j), using
the infinity norm, as given in the following equation:

poti,j = max (|ti − i|, |tj − j|) . (1)

At the beginning of the mission, the UAVs have no
information on the AoI (except its limits). Then, there is no
potential linked to obstacles, all the cells of the obs matrix
represent ”no information” and the avoid matrix is null.

E. Collision Avoidance

1) Collision Avoidance UAV-fix obstacle: We consider a
collision if a UAV is in a cell containing an obstacle. Hence,
when an obstacle is detected, the potential of its cell is
increased by a fixed value noted obsInc and all the adjacent
cells are increased by obsInc/2.

2) Collision Avoidance UAV-UAV: At each iteration, the
UAVs detect their neighbors in their sensor range. UAVs
consider each other as a temporary obstacle, and apply the
same increases as with fix obstacles: increase by obsInc on
the neighbor cell and obsInc/2 on the adjacent cells. These
potential increases are recorded in the avoid matrix, which is
re-initialized at each iteration, because the neighbors location
can change at each iteration.

F. Algorithm

1) Obstacle Avoidance Anticipation: In the case of the
traditional APF, the influence of an obstacle is symmetrical.
In our mobility strategy, an obstacle has an influence on
a UAV while it is on its way towards the target point. In
other words, if a UAV has information about an obstacle
located between itself and its target point, it will increase
the potential of all the cells between itself and the obstacle.
Fig. 1 shows the variations of potential in this case.



Fig. 1. Illustration of the potential field in the case of obstacle avoidance
anticipation. UAV is represented by a dark empty square, the obstacle is
represented in dark blue. The cells colored in green are not submitted to
any increase. The cells submitted to a potential increase are represented
with gradation from brown (smallest) to red (highest).

Data: uavi,j , ti,j , oi,j ∗

Calculate min and max line and column of the whole
obstacle: oiMin, oiMax, ojMin, ojMax;

Calculate min and max oriented angle
obstacle-UAV-target: aMin, aMax;

for i← min(uavi, oiMin) to max(uavi, oiMax) do
for j ← min(uavj , ojMin) to max(uavj , ojMax)
do

if aMin < angle(ci,j ,uavi,j, gi,j) < aMax and
dist(ci,j , oi,j) < dist(uavi,j, oi,j) then

avoidi,j = ceil
(

obsInc
dist((ci,j ,oi,j)+1

)
;

end
end

end

ALGORITHM 1. Obstacle Avoidance Anticipation (OAA)
∗ oi,j is the considered cell containing an obstacle on the way toward the
target

Data: uavi,j ,pot matrix;
avoid← 0lmax,cmax

;
if uavi,j has already been visited then

poti,j ← poti,j + 1 ∗;
else

Add uavi,j to visited cells;
end
Detect fix obstacles;
foreach obstacle stored in avoid do

OAA(uavi,j, gi,j , oi,j);
end
Detect other UAVs and increase potential around them;
Calculate the minimum potential of the adjacent cells∗∗;
Store the cell with minimum potential in mminPot;
if mminPot = uavi,j then

poti,j = mean of adjacent cells;
end
Next cell ← mminPot;

ALGORITHM 2. Move decision by each UAV.
∗ The increase is of 1 because it is the difference between the potential
of two adjacent cells when there is no influence of obstacles. Then, it is
enough to favor the exploration of other cells, and is small enough not to
interfere with obstacles (anticipation) avoidance.
∗∗ If several of these cells have the smallest potential, the one closest to
the target is recorded.

This anticipation of obstacle avoidance is particularly
efficient if the UAVs can detect obstacles at a long distance,
or if they get information from other sources (other UAVs in
our case). UAVs have information on obstacle presence cell
by cell. Then, if one cell containing an obstacle is on their
way towards the target, they verify the presence in all the
cells at a distance 2 (calculated with the infinity norm) to
deduce the whole obstacle location. We consider a safety
distance around obstacle of one cell, then two obstacles
separated by 2 cells are considered as a single one, as
shows Fig. 1. Algorithm 1 is the pseudo-code describing this
process.

2) Mobility Strategy: The motion decision of a UAV at
each iteration depends on the location of its target point,
of its close neighbors and on the discovered obstacles, as
detailed in algorithm 2.

When a UAV reaches the target point, it sets the cells of
the avoid matrix corresponding the ones crossed to ”on a
way already used to reach the target”. When the other UAVs
receive this information, they decrease the potential of theses
cells by a fix value. Then, if a UAV is on a cell on a way to
the target, it will follow this path which ensures the arrival.

V. SIMULATIONS

A. Simulated Environment

One application of our model is the identification of an
intruder in restricted areas. Then, we used the open source
French land register [2] to reproduce the buildings of the
Blayais nuclear power station (France). We focused on a part
of this area of 500m large and 500m long, as shows Fig. 2.

B. Parameters

As the considered UAVs are 0.5m large, we state a 1.5m
safety distance. Then, the minimal cell size of the mesh is
2m. Considering the 500m times 500m area, the obstacles
matrix has 250 lines and 250 columns. Each cell of this ma-
trix contains one of the 5 different states described in section
IV-D, represented by integers. We used integers coded on
8bits, then the data in the matrix is coded on 500kbit. The

Fig. 2. Environment of simulations. Obstacles are represented in red.
Trajectories of the 3 UAVs composing the swarm are plotted from their
initial location (circles) toward their target point called T2 (represented by
a green pentagon). The target point T1 is represented by a red square and
T3 by a blue triangle.



Fig. 3. The trajectories of the 3 UAVs composing the swarm from their
initial location toward their target point T2.

Fig. 4. Example of UAVs trajectories with targets T1 and T3, with various
cell width.

XBee data rate is up to 250kbit/s and the communication is
half-duplex. Thus a single UAV can broadcast its updated
matrix every two seconds. Even though collaboration allows
the UAVs to reach the target quicker, the low communication
rate is not a safety issue as UAVs do not require collaboration
to evolve safely towards the target. The simulated sensor for
obstacle detection is a LIDAR-Lite (see section II-C), with
a detection range up to 40m. We suppose that it is mounted
on a platform allowing detection all around the UAV. So as
to test the model in different conditions, we performed the
simulations using multiple cell widths (2, 4, 6, 8 and 10m),
several swarms sizes (3, 5, 7 and 9 UAVs), and with three
different targets.

C. Collision Avoidance

For all the simulations performed, the distance between a
UAV and another object (building or UAV) was greater than
half of the cell width, so there were no any collision.

D. UAVs Trajectories

Fig. 2 and 3 represent the trajectories of the 3 UAVs
composing a swarm moving toward the target point T2 using
different cell widths. The part of the trajectory circled in
the case of a 8m-large cell illustrates well the collaboration
between the UAVs: a first one detects an obstacle, avoids it
and transmit the information to the others that anticipate the
best path toward the goal.

Fig. 5. Superposition for a given cell width (2, 4, 6, 8 and 10) of the
distances traveled towards the target T2 by each individual UAV in swarms
of 3, 5, 7 and 9 vehicles,.

It has to be noted that our mobility strategy allows the
UAVs to reach all these targets, including surrounded by
obstacles (case of target T3). In other words, our model
solves the ”Goal Non Reachable with Obstacle Nearby”
(GNRON) problem. Furthermore, our model also allows the
UAV to go between two close obstacles (Fig 3 and 4).

E. Influence of the Cell Width

Cell width is an important parameter in our model. First,
we consider that a cell is either empty or filled with an
obstacle since a building has at least one square meter
(precision of the environment model) within it. The larger
the cells, the larger the forbidden areas. This leads in one
hand to longer path to avoid these areas (see Fig. 3 and 5)
and on the other hand to non reachable goals as in the case
of T1 and T3 for cells larger than 6 meters. Fig. 5 represents
the travel distance of UAVs from their launch point to the
target T2 with swarms from 3 to 9 UAVs. It shows that the
smaller the cell, the shortest the path to the goal.

Furthermore, fewer iterations are required to travel the
same distance with large cells than with small ones and so the
process is less calculation intensive. Also, the larger the cell,
the smaller the matrices. The messages exchanged between
the UAVs are thus smaller with large cells.

Finally, the UAVs travel from a cell to an adjacent one
at each iteration. Then, the larger the cell, the longer the
distance at each iteration, and so the quicker at the target.

VI. CONCLUSION AND FUTURE WORK

This paper presents a new mobility strategy for au-
tonomous swarms of collaborative UAVs. Our method uses
the principle of APF but differs from the traditional one:
in our solution, the influence of obstacles depends on the
locations of the UAVs and the location of their target.
This allows anticipation of obstacles avoidance and solve
the ”Goal Non Reachable with Obstacle Nearby” problem.
We validated the efficiency of our mobility strategy with
simulations under OMNeT++, in a realistic environment and
with the simulation of existing sensors performances.



In future work for the optimization of our method we will
consider moving obstacles and simulate the 3 dimensions.
Furthermore, we plan to combine these potential fields with
a global path planning algorithm (such as A*), in order to
shorten the UAVs trajectories.

APPENDIX
Main Communication Parameters used is OMNeT++:
• Wireless Local Area Network (WLAN)

– type name: ”IdealWirelessNic”
– communication range: 90m
– full duplex: false

• Routing
– destination address: 10.0.255.255
– forwarding: false
– optimize routes: false

• UDP application
– type name: own model based on ”UDPBasicApp”
– send interval: 500ms
– message length: 62500B (see section V-B)
– bitrate: 250kbits/s

• Radio
– radio type: ”APSKScalarRadio”
– radio medium type: ”APSKScalarRadioMedium”
– carrier frequency: 2.4Ghz
– bandwith: 2MHz
– background noise power: -90dBm
– transmitter power: 63mW
– receiver sensitivity: -102dBm
– receiver snir threshold: 4dB
– receiver ignore interference: false
– transmitter header bit length: 192b

• Environment
– ground type: ”FlatGround”
– ground elevation: 0m
– path loss type: ”TwoRayGroundReflection”
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