Mobility Strategies for Swarms of Unmanned Aerial Vehicles using **Artificial Potential Fields and Global Path Planning**

Ema Falomir, Serge Chaumette, Gilles Guerrini

Context

Mission: detect suspicious events and **Suspiscious Behaviour Detection**

- Without human intervention _
- In unknown areas
- Quickly

Objectives

Whole project

Allow autonomous Unmanned Aerial Vehicles (UAVs) to quickly perform collaborative tasks, such as wide area surveillance. The UAVs communicate between each other and have similar characteristics: they make a swarm. They are considered as a unique entity as seen by an operator permitting to decrease workload of the operator.

PhD goal

Related Work

Some uses of swarms of UAVs

- Firemen Assistance
- Pesticides Spraying
- Park Cleaning
- Area Surveillance
- Search And Rescue

Some path planning methods

Artificial Potential Fields

Resilient Considered as a unique entity Quick intervention Precision due to low altitude

Develop & validate a distributed mobility model for a swarm of autonomous UAVs which takes into account the embedded sensors capacities to allow the realization of a mission.

- Virtual Forces
- Genetic Algorithms
- Chaotic Processes
- Particle Swarm Optimization

Principle of Artificial Potential Fields (APF) from the perspective of each UAV

- The UAV moves within an APF and goes towards the lowest potential.
- The APF is a combination of an **attraction** towards a target and a **repulsion** from obstacles.

A UAV has to reach a target while avoiding the obstacle.

Calculation of the APF related to the target and to the obstacle. Deduction of the path.

Our Approach

- The environment is discretized into square cells.
- The UAVs trajectories depend on the cells width.
- Addition of a potential field for the obstacle avoidance anticipation to the repulsive field around the obstacles (see figure below).
- Calculation of a global path for several iterations.
- Speed proportional to distance of next waypoint.

Each UAV has a mission represented by its own **objective** map, evolving all along the mission.

The UAVs collaborate to create a shared constraints map, updated all along the mission.

Motion Decision

Some Illustrative Results

Strategies based on Virtual Forces for Swarms of Autonomous UAVs in Constrained Environments. 14th International Conference on Informatics in Control, Automation and Robotics, July 2017.

E. Falomir, G. Guerrini, P. Garrec, Essaim constitué d'une pluralité de drones volants légers.

Publication & Patent

E. Falomir, S. Chaumette and G. Guerrini. Mobility

Avoidance anticipation area

Trajectories of 3 UAVs composing a swarm in an unknown environment. **Contact Information**

Ema Falomir efalomir@u-bordeaux.fr Pr. Serge Chaumette, Director schaumette@labri.fr Dr. Gilles Guerrini, industrial coordinator gilles.guerrini@fr.thalesgroup.com

