Computing the throughput of probabilistic and replicated streaming applications

Anne Benoit, Fanny Dufossé, Matthieu Gallet, Bruno Gaujal and Yves Robert

Laboratoire de l'Informatique du Parallélisme Ecole Normale Supérieure de Lyon, France

Réunion Aleae, Bordeaux

Outline

2 Framework

- 3 Timed Petri Nets
- 4 Computing the throughput
- 5 Comparison results

Outline

- 2 Framework
- 3 Timed Petri Nets
- 4 Computing the throughput
- 5 Comparison results

6 Conclusion

Intro Framework TPNs Computing Comparison Conclusion

Problem description

• We are given

- (i) a streaming application, dependence graph = linear chain;
- (ii) a one-to-many mapping of application onto heterogeneous platform;
- (iii) a set of I.I.D. (Independent and Identically-Distributed) variables to model computation/communication time in the mapping.
- How can we compute the throughput of the application, i.e., the rate at which data sets can be processed?
- Two execution models: Strict and Overlap

Intro Framework TPNs Computing Comparison Conclusion

Problem description

• We are given

- (i) a streaming application, dependence graph = linear chain;
- (ii) a one-to-many mapping of application onto heterogeneous platform;
- (iii) a set of I.I.D. (Independent and Identically-Distributed) variables to model computation/communication time in the mapping.
- How can we compute the throughput of the application, i.e., the rate at which data sets can be processed?
- Two execution models: Strict and Overlap

Intro Framework TPNs Computing Comparison Conclusion

Problem description

• We are given

- (i) a streaming application, dependence graph = linear chain;
- (ii) a one-to-many mapping of application onto heterogeneous platform;
- (iii) a set of I.I.D. (Independent and Identically-Distributed) variables to model computation/communication time in the mapping.
- How can we compute the throughput of the application, i.e., the rate at which data sets can be processed?
- Two execution models: Strict and Overlap

Motivation

- No replication, i.e., one-to-one mapping: throughput dictated by critical hardware resource
- With replication, deterministic case: surprisingly difficult! (remember previous work, cases with no critical resources)
- Contributions:
 - (i) general method (exponential cost) to compute throughput with I.I.E. exponential laws;
 - (ii) bounds for arbitrary I.I.E. and N.B.U.E. (New Better than Used in Expectation) variables: between exponential and deterministic values;
 (iii) the problem of finding the optimal mapping is NP-complete.

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation

- No replication, i.e., one-to-one mapping: throughput dictated by critical hardware resource
- With replication, deterministic case: surprisingly difficult! (remember previous work, cases with no critical resources)
- Contributions:
 - (i) general method (exponential cost) to compute throughput with I.I.E. exponential laws;
 - (ii) bounds for arbitrary I.I.E. and N.B.U.E. (New Better than Used in Expectation) variables: between exponential and deterministic values;
 - (iii) the problem of finding the optimal mapping is NP-complete.

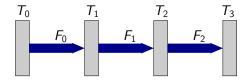
Outline

2 Framework

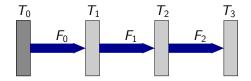
- 3 Timed Petri Nets
- 4 Computing the throughput
- 6 Comparison results

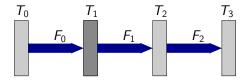
6 Conclusion

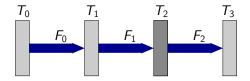
• A linear workflow with many instances

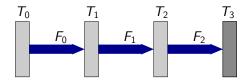


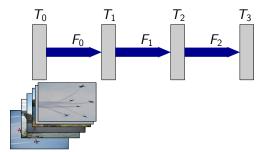
< 行い

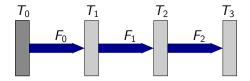


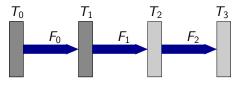


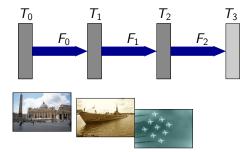


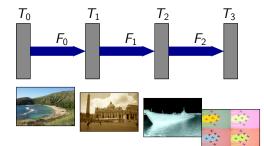


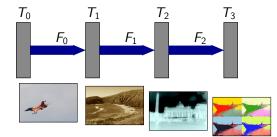


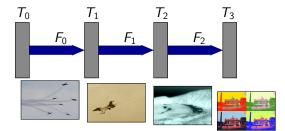


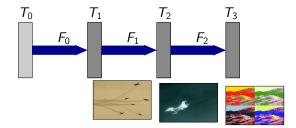


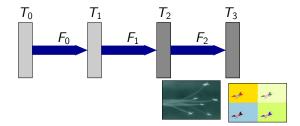


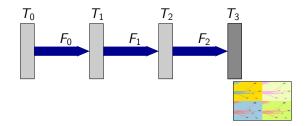








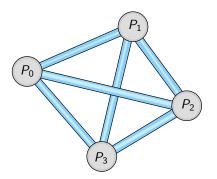




Platform

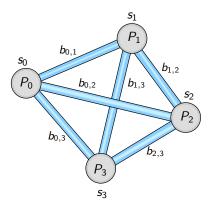
• A fully connected platform

• Heterogeneous processors and communication links

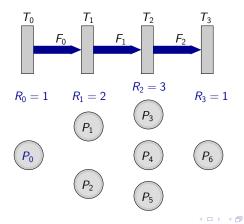


Platform

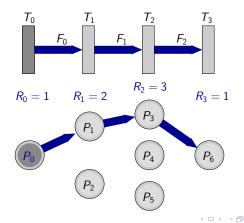
- A fully connected platform
- Heterogeneous processors and communication links



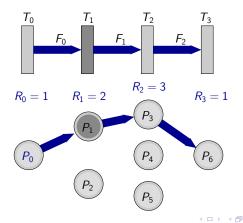
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



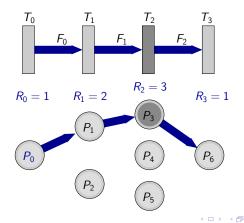
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



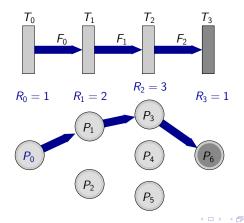
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



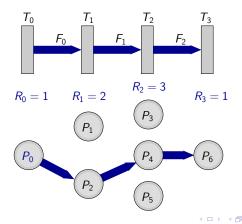
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



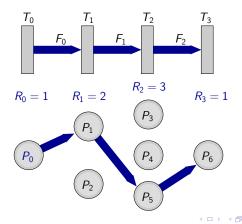
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



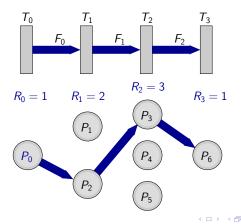
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



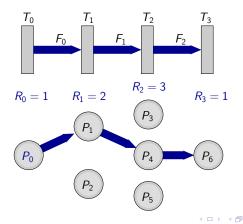
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



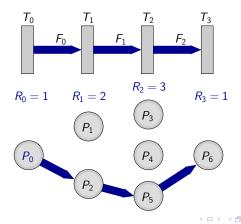
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



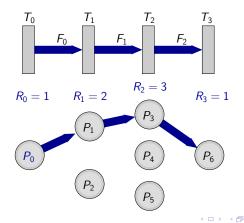
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



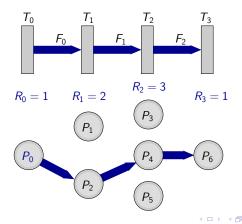
- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task



- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task

Input data	Path in the system
0	$P_0 \rightarrow P_1 \rightarrow P_3 \rightarrow P_6$
1	$P_0 \rightarrow P_2 \rightarrow P_4 \rightarrow P_6$
2	$P_0 \rightarrow P_1 \rightarrow P_5 \rightarrow P_6$
3	$P_0 \rightarrow P_2 \rightarrow P_3 \rightarrow P_6$
4	$P_0 \rightarrow P_1 \rightarrow P_4 \rightarrow P_6$
5	$P_0 \rightarrow P_2 \rightarrow P_5 \rightarrow P_6$
6	$P_0 \rightarrow P_1 \rightarrow P_3 \rightarrow P_6$
7	$P_0 \rightarrow P_2 \rightarrow P_4 \rightarrow P_6$

- A processor processes at most 1 task
- A task is mapped on possibly many processors
- Replication count of T_i : R_i
- Round-Robin distribution of each task

Theorem

Assume that stage T_i is mapped onto R_i distinct processors. Then the number of paths is equal to $R = lcm(R_0, ..., R_{n-1})$.

Communication models

• Strict:

receptions, computations and transmissions are sequential

• Overlap:

overlap of computations by communications

Communication models

• Strict:

receptions, computations and transmissions are sequential

• Overlap:

overlap of computations by communications

Random variables

- $X_i(n)$: time required by P_i to process its *n*-th data set
- $Y_{i,j}(n)$: time required by P_i to send its *n*-th file to P_j
- Deterministic case
- Exponential variables
- I.I.D.: Independent and Identically-Distributed variables
- N.B.U.E.: New Better than Used in Expectation variables

Random variables

- $X_i(n)$: time required by P_i to process its *n*-th data set
- $Y_{i,j}(n)$: time required by P_i to send its *n*-th file to P_j
- Deterministic case
- Exponential variables
- I.I.D.: Independent and Identically-Distributed variables
- N.B.U.E.: New Better than Used in Expectation variables

Outline

2 Framework

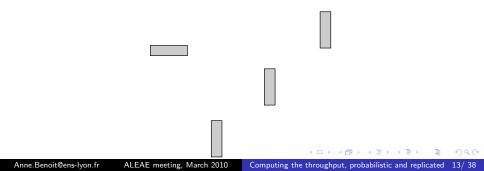
- 4 Computing the throughput
- 5 Comparison results

6 Conclusion

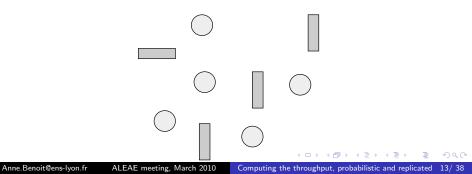
Short presentation of Timed Petri Nets (TPN)

Some transitions

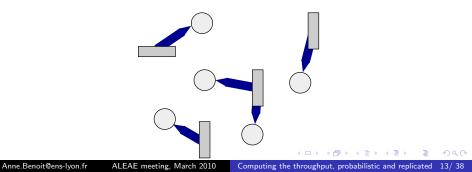
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



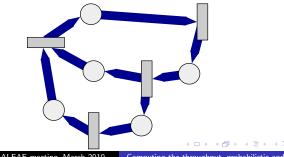
- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



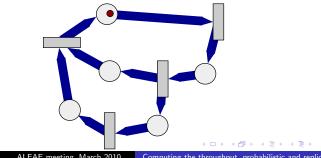
- Some transitions
- Some places
- Connections between transitions and places... and between
 - places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens

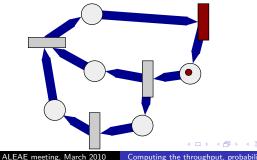


Short presentation of Timed Petri Nets (TPN)

- Some transitions
- Some places

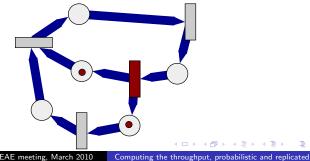
Anne.Benoit@ens-lyon.fr

- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



Short presentation of Timed Petri Nets (TPN)

- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired

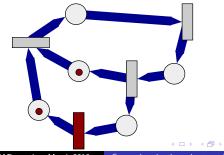


13/38

Anne.Benoit@ens-lyon.fr

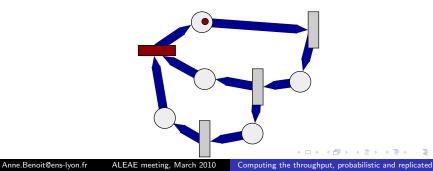
ALEAE meeting, March 2010

- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



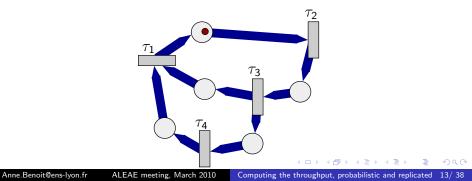
Short presentation of Timed Petri Nets (TPN)

- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



13/38

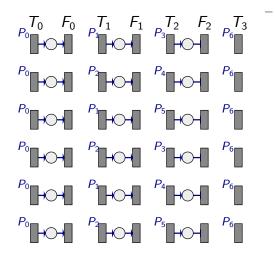
- Some transitions
- Some places
- Connections between transitions and places... and between places and transitions
- Some tokens allowing transitions to be fired
- Time between the consumption of the input tokens and the creation of the output tokens



Timed Event Graph model

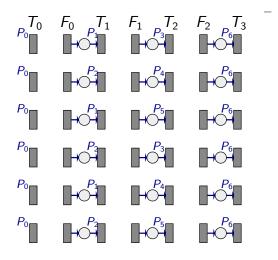
- Transitions: communications and computations
- Places: dependences between two successive operations
- Each path followed by the input data must be fully developed in the TPN
- Exponential size of the TPN

A communication cannot begin before the end of the computation



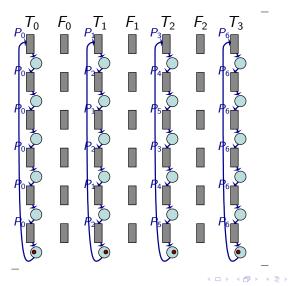
3

A computation cannot begin before the end of the communication



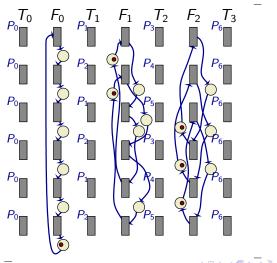
3

Dependences due to the round-robin distribution of computations

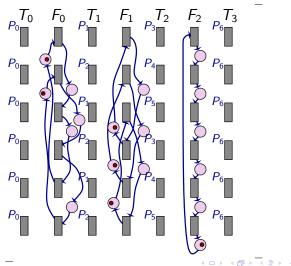


ALEAE meeting, March 2010

Dependences due to the round-robin distribution of outgoing communications



Dependences due to the round-robin distribution of incoming communications

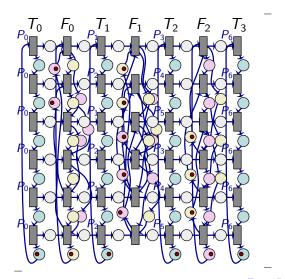


Anne.Benoit@ens-Iyon.fr

ALEAE meeting, March 2010

Computing the throughput, probabilistic and replicated 15/38

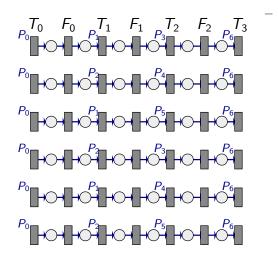
All dependences!



3) 3

Strict model

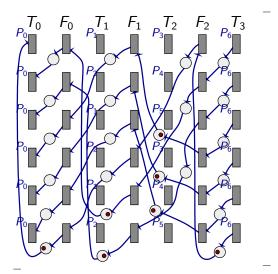
Dependences between communications and computations



3

Strict model

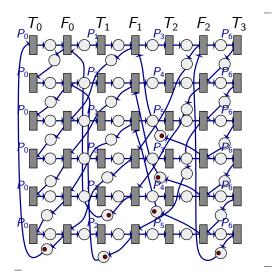
Dependences due to the Strict model



ALEAE meeting, March 2010

Strict model

All dependences!



Outline

2 Framework

- 3 Timed Petri Nets
- 4 Computing the throughput
- 5 Comparison results

6 Conclusion

Computing the throughput – deterministic case

- Equivalent to find critical cycles
- \mathcal{C} is a cycle of the TPN
- $\mathcal{L}(\mathcal{C})$ is its length (total time of transitions)
- $t(\mathcal{C})$ is the total number of tokens in places traversed by \mathcal{C}
- A critical cycle achieves the largest ratio $\max_{\mathcal{C} \in \mathcal{C}} \frac{\mathcal{L}(\mathcal{C})}{t(\mathcal{C})}$
- $\bullet\,$ This ratio gives the period ${\cal P}$ of the system
- Can be computed in time $\mathcal{O}(M^3R^3)$ $(R = \operatorname{lcm}(R_0, \dots, R_{M-1}))$

Computing the throughput – deterministic case

(previous result)

- Strict model: the TPN has an exponential size!
- Overlap model:

Theorem

Consider a pipeline of M stages T_0, \ldots, T_{M-1} , such that stage T_i is mapped onto R_i distinct processors. Then the average throughput of this system can be computed in time $\mathcal{O}\left(\sum_{i=0}^{M-2} \left((R_iR_{i+1})^3\right)\right)$.

Computing the throughput – exponential laws

General case:

Theorem

Let us consider the system (X, Y) formed by the mapping of an application onto a platform. Then the throughput can be computed in time $O\left(\exp(\operatorname{lcm}_{1\leq i\leq N}(R_i))^3\right)$.

Computing the throughput – exponential laws

General case:

- model the system by a timed Petri net Exponential in the size of the system
- transform this timed Petri net into a Markov chain Exponential in the size of the TPN
- compute the stationary measure of this Markov chain
- derive the throughput from the marginals of the stationary measure

Computing the throughput – exponential laws

General case:

- model the system by a timed Petri net Exponential in the size of the system
- transform this timed Petri net into a Markov chain Exponential in the size of the TPN
- compute the stationary measure of this Markov chain
- derive the throughput from the marginals of the stationary measure

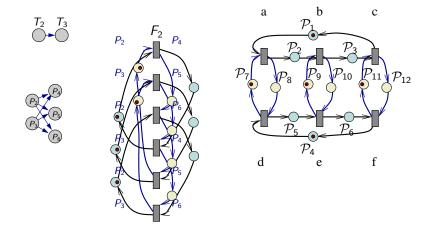
Computing the throughput – exponential laws

General case:

- model the system by a timed Petri net Exponential in the size of the system
- transform this timed Petri net into a Markov chain Exponential in the size of the TPN
- compute the stationary measure of this Markov chain
- derive the throughput from the marginals of the stationary measure

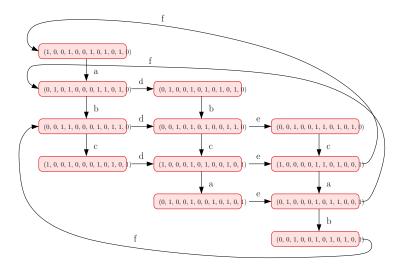
Computing the throughput – exponential laws

Transformation into a Markov chain: each marking of the TPN becomes a state



Computing the throughput – exponential laws

Transformation into a Markov chain: list of all possible states



Computing the throughput – exponential laws

Overlap model:

Theorem

Let us consider the system (X, Y) formed by the mapping of an application onto a platform. Then the throughput can be computed in time

$$O\left(N\exp(\max_{1\leq i\leq N}(R_i))^3\right)$$

Computing the throughput – exponential laws

Overlap model:

- split the timed Petri net into columns C_i , with $1 \le i \le 2N 1$
- separately consider each column C_i
- separately consider each connected component D_j of C_i
- single component D_j : many copies of the same pattern \mathcal{P}_j , of size $u_j \times v_j$
- transform \mathcal{P}_j into a Markov chain \mathcal{M}_j
- determine a stationary measure of \mathcal{M}_j
- compute the throughput of \mathcal{P}_j in isolation
- combine the inner throughputs of all components to get the global throughput of the system

Computing the throughput – exponential laws

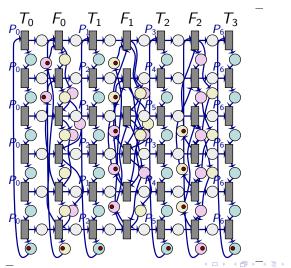
Overlap model:

- split the timed Petri net into columns C_i , with $1 \le i \le 2N 1$
- separately consider each column C_i
- separately consider each connected component D_j of C_i
- single component D_j: many copies of the same pattern P_j, of size u_j × v_j
- transform \mathcal{P}_j into a Markov chain \mathcal{M}_j
- determine a stationary measure of \mathcal{M}_j
- compute the throughput of \mathcal{P}_j in isolation
- combine the inner throughputs of all components to get the global throughput of the system

Computing the throughput – exponential laws

Overlap model:

Communication column:

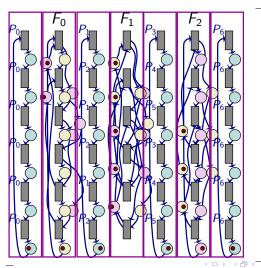


Anne.Benoit@ens-lyon.fr

Computing the throughput – exponential laws

Overlap model:

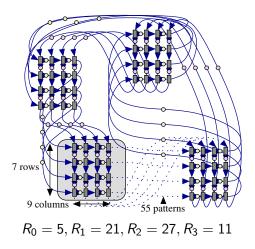
Communication column:



Computing the throughput – exponential laws

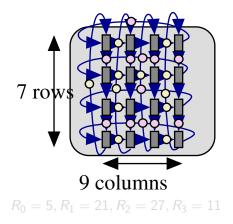
Overlap model:

Communication column:



Computing the throughput – exponential laws

Overlap model: Communication column:



・ 何 ト ・ ヨ ト ・ ヨ ト

Computing the throughput – exponential laws

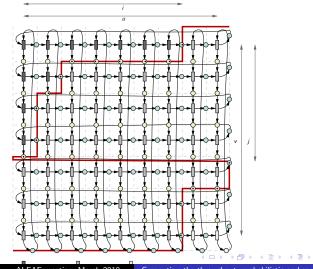
Overlap model:

- split the timed Petri net into columns C_i , with $1 \le i \le 2N 1$
- separately consider each column C_i
- separately consider each connected component D_j of C_i
- single component D_j : many copies of the same pattern \mathcal{P}_j , of size $u_j \times v_j$
- transform \mathcal{P}_j into a Markov chain \mathcal{M}_j
- determine a stationary measure of \mathcal{M}_j
- compute the throughput of \mathcal{P}_j in isolation
- combine the inner throughputs of all components to get the global throughput of the system

Computing the throughput – exponential laws

Overlap model:

Representation of a valid marking on the TPN

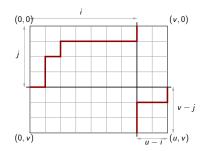


Anne.Benoit@ens-lyon.fr

Computing the throughput – exponential laws

Overlap model:

Representation of a valid marking with Young diagrams



 \Rightarrow Number of states easily determined Polynomial number of states in each connected component

Computing the throughput - exponential laws

Overlap model, homogeneous communication network:

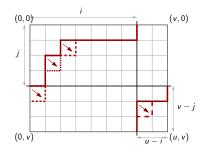
Theorem

Let us consider the system (X, Y) formed by the mapping of an application onto a platform, following the **Overlap** communication model with a homogeneous communication network. Then the throughput can be computed in polynomial time.

Computing the throughput – exponential laws

Overlap model:

Reachable states from a given position



- \Rightarrow Same number of incoming and outgoing states
- + Same firing rate (homogeneous communication network)
- = Invariant measure is uniform

Outline

- 2 Framework
- 3 Timed Petri Nets
- 4 Computing the throughput
- 5 Comparison results

6 Conclusion

Comparison between two systems

Theorem

Consider two systems $(X^{(1)}, Y^{(1)})$ and $(X^{(2)}, Y^{(2)})$. If we have for all n, $\forall 1 \le p \le M, X_p^{(1)}(n) \le_{\text{st}} X_p^{(2)}(n)$ and $\forall 1 \le p, q \le M, Y_{p,q}^{(1)}(n) \le_{\text{st}} Y_{p,q}^{(2)}(n)$, then $\rho^{(1)} \ge \rho^{(2)}$.

Comparison between two systems with I.I.D. laws

Theorem

Let us consider two systems with I.I.D. communication and processing times $(X^{(1)}, Y^{(1)})$ and $(X^{(2)}, Y^{(2)})$. If we have for all n, $\forall 1 \leq p \leq M, X_p^{(1)}(n) \leq_{icx} X_p^{(2)}(n)$ and $\forall 1 \leq p, q \leq M, Y_{p,q}^{(1)}(n) \leq_{icx} Y_{p,q}^{(2)}(n)$, then $\rho^{(1)} \geq \rho^{(2)}$.

Bounds on the expected throughput

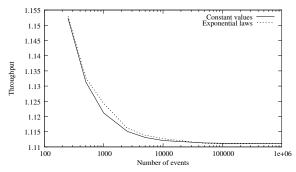
Theorem

Let us consider any system $(X^{(1)}, Y^{(1)})$, such that $X_{n}^{(1)}(n)$ and $Y_{p,q}^{(1)}(n)$ are N.B.U.E.. Let us also consider two new systems $(X^{(2)}, Y^{(2)})$ and $(X^{(3)}, Y^{(3)})$ such that: $\forall 1 \leq p \leq M, X_p^{(2)}(n)$ has an exponential distribution, and $\mathbf{E}[X_{n}^{(2)}(n)] = \mathbf{E}[X_{n}^{(1)}(n)].$ $\forall 1 \leq p, q \leq M, Y_{p,q}^{(2)}(n)$ has an exponential distribution, and $\mathbf{E}[Y_{n,q}^{(2)}(n)] = \mathbf{E}[Y_{n,q}^{(1)}(n)].$ $\forall 1 is deterministic and for all n,$ $X_{n}^{(3)}(n) = \mathbf{E}[X_{n}^{(1)}(n)].$ $\forall 1 < p, q < M, Y_{p,q}^{(3)}(n)$ is deterministic and for all n, $Y_{p,q}^{(3)}(n) = \mathbf{E}[Y_{p,q}^{(1)}(n)].$ Then we have:

$$\rho^{(3)} \ge \rho^{(1)} \ge \rho^{(2)}.$$

Numerical experiments

Evolution of the measured throughput with the number of samples



Distribution	Constant	Exponential	Uniform	Uniform	Pareto
	value <i>c</i>	mean <i>c</i>	c/2 - 3c/2	<i>c</i> /10 - 19 <i>c</i> /10	mean c
Throughput	2.0299	2.0314	2.0304	2.0305	2.0300

Table: Throughput obtained with several distributions of same mean.

Outline

- 2 Framework
- 3 Timed Petri Nets
- 4 Computing the throughput
- 6 Comparison results

Conclusion and future work

- Even if the mapping is given, the throughput is hard to determine
- Expectation of the throughput can be computed in many cases:
 - General case with exponential laws: exponential time
 - Overlap model with exponential laws: smaller exponential time
 - **Overlap** model, homogeneous communications: polynomial time
 - General case, N.B.U.E. laws: bounds can be established
- Determining the mapping that maximizes the throughput is an NP-complete problem, even in the simpler deterministic case with no communication costs

Future work:

• Design efficient mapping heuristics

Conclusion and future work

- Even if the mapping is given, the throughput is hard to determine
- Expectation of the throughput can be computed in many cases:
 - General case with exponential laws: exponential time
 - Overlap model with exponential laws: smaller exponential time
 - **Overlap** model, homogeneous communications: polynomial time
 - General case, N.B.U.E. laws: bounds can be established
- Determining the mapping that maximizes the throughput is an NP-complete problem, even in the simpler deterministic case with no communication costs

Future work:

• Design efficient mapping heuristics

Conclusion and future work

- Even if the mapping is given, the throughput is hard to determine
- Expectation of the throughput can be computed in many cases:
 - General case with exponential laws: exponential time
 - Overlap model with exponential laws: smaller exponential time
 - **Overlap** model, homogeneous communications: polynomial time
 - General case, N.B.U.E. laws: bounds can be established
- Determining the mapping that maximizes the throughput is an NP-complete problem, even in the simpler deterministic case with no communication costs

Future work:

• Design efficient mapping heuristics