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Problem description

We are given

(i) a streaming application, dependence graph =
linear chain;

(ii) a one-to-many mapping of appliction onto
heterogeneous platform;

(iii) a set of I.I.D. (Independent and
Identically-Distributed) variables to model
computation/communication time in the
mapping.

How can we compute the throughput of the application, i.e.,
the rate at which data sets can be processed?

Two execution models: Strict and Overlap
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Motivation

No replication, i.e., one-to-one mapping: throughput dictated
by critical hardware resource

With replication, deterministic case: surprisingly difficult!
(remember previous work, cases with no critical resources)

Contributions:

(i) general method (exponential cost) to compute
throughput with I.I.E. exponential laws;

(ii) bounds for arbitrary I.I.E. and N.B.U.E. (New
Better than Used in Expectation) variables:
between exponential and deterministic values;

(iii) the problem of finding the optimal mapping is
NP-complete.
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Application

A linear workflow with many instances

T1 T2 T3T0

F1 F2F0
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Platform

A fully connected platform

Heterogeneous processors and communication links

P1

P2

P3

P0
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Mapping

A processor processes at most 1 task

A task is mapped on possibly many processors

Replication count of Ti : Ri

Round-Robin distribution of each task
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Mapping

A processor processes at most 1 task

A task is mapped on possibly many processors

Replication count of Ti : Ri

Round-Robin distribution of each task

Input data Path in the system
0 P0 → P1 → P3 → P6

1 P0 → P2 → P4 → P6

2 P0 → P1 → P5 → P6

3 P0 → P2 → P3 → P6

4 P0 → P1 → P4 → P6

5 P0 → P2 → P5 → P6

6 P0 → P1 → P3 → P6

7 P0 → P2 → P4 → P6
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Mapping

A processor processes at most 1 task

A task is mapped on possibly many processors

Replication count of Ti : Ri

Round-Robin distribution of each task

Theorem

Assume that stage Ti is mapped onto Ri distinct processors. Then
the number of paths is equal to R = lcm (R0, . . . ,Rn−1).
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Communication models

Strict:
receptions, computations and transmissions are sequential

Overlap:
overlap of computations by communications
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Random variables

Xi (n): time required by Pi to process its n-th data set

Yi ,j(n): time required by Pi to send its n-th file to Pj

Deterministic case

Exponential variables

I.I.D.: Independent and Identically-Distributed variables

N.B.U.E.: New Better than Used in Expectation variables
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Short presentation of Timed Petri Nets (TPN)

Some transitions
Some places
Connections between transitions and places. . . and between
places and transitions
Some tokens allowing transitions to be fired
Time between the consumption of the input tokens and the
creation of the output tokens
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Short presentation of Timed Petri Nets (TPN)

Some transitions
Some places
Connections between transitions and places. . . and between
places and transitions
Some tokens allowing transitions to be fired
Time between the consumption of the input tokens and the
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Timed Event Graph model

Transitions: communications and computations

Places: dependences between two successive operations

Each path followed by the input data must be fully developed
in the TPN

Exponential size of the TPN
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Overlap model

A communication cannot begin before the end of the computation
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Overlap model

Dependences due to the round-robin distribution of computations
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Overlap model

Dependences due to the round-robin distribution of outgoing
communications
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Overlap model

All dependences!
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Strict model

Dependences between communications and computations
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Strict model

Dependences due to the Strict model
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Computing the throughput – deterministic case

Equivalent to find critical cycles

C is a cycle of the TPN

L(C) is its length (total time of transitions)

t(C) is the total number of tokens in places traversed by C
A critical cycle achieves the largest ratio maxCcycle

L(C)
t(C)

This ratio gives the period P of the system

Can be computed in time O(M3R3)
(R = lcm (R0, . . . ,RM−1))
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Computing the throughput – deterministic case

(previous result)

Strict model: the TPN has an exponential size!

Overlap model:

Theorem

Consider a pipeline of M stages T0, . . . , TM−1, such that stage Ti

is mapped onto Ri distinct processors. Then the average
throughput of this system can be computed in time

O
(∑M−2

i=0

(
(RiRi+1)3

))
.
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Computing the throughput – exponential laws

General case:

Theorem

Let us consider the system (X ,Y ) formed by the mapping of an
application onto a platform. Then the throughput can be
computed in time O

(
exp(lcm1≤i≤N(Ri ))3

)
.
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Computing the throughput – exponential laws

General case:

model the system by a timed Petri net
Exponential in the size of the system

transform this timed Petri net into a Markov chain
Exponential in the size of the TPN

compute the stationary measure of this Markov chain

derive the throughput from the marginals of the stationary
measure
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Computing the throughput – exponential laws

Transformation into a Markov chain: each marking of the TPN
becomes a state

c

d fe

a b

P6

P4

P12P8
P7 P10P9 P11

P2 P3

P1

P5
P3

P4

P5

P6

P2

T3T2
F2

P2

P2

P3

P3

P3

P2

P4

P4

P5

P6

P5

P6
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Computing the throughput – exponential laws

Transformation into a Markov chain: list of all possible states

(0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0)

(1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1)

(0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0)

(0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1)

(0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0)

(0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1)

(0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0)

(0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0)

(1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1)(1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1)

d

d

d
b

a
f

f

b

a

c

f

a

b

e

e

e

c c
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Computing the throughput – exponential laws

Overlap model:

Theorem

Let us consider the system (X ,Y ) formed by the mapping of an
application onto a platform. Then the throughput can be
computed in time

O

(
N exp( max

1≤i≤N
(Ri ))3

)
.
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Computing the throughput – exponential laws

Overlap model:

split the timed Petri net into columns Ci , with 1 ≤ i ≤ 2N − 1

separately consider each column Ci

separately consider each connected component Dj of Ci

single component Dj : many copies of the same pattern Pj , of
size uj × vj

transform Pj into a Markov chain Mj

determine a stationary measure of Mj

compute the throughput of Pj in isolation

combine the inner throughputs of all components to get the
global throughput of the system
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Computing the throughput – exponential laws

Overlap model:
Communication column:

T2T0 T1 T3F1 F2F0
P3

P4

P5

P4

P5

P6

P1

P0 P1

P2

P2

P2

P1

P0 P6

P0 P6

P3P0 P6

P0 P6

P0 P6

R0 = 5,R1 = 21,R2 = 27,R3 = 11Anne.Benoit@ens-lyon.fr ALEAE meeting, March 2010 Computing the throughput, probabilistic and replicated 26/ 38



Intro Framework TPNs Computing Comparison Conclusion

Computing the throughput – exponential laws

Overlap model:
Communication column:

F0 F1 F2
P1

P4

P5

P1

P1

P2

P2

P2

P0 P6

P0 P6

P3P0 P6

P0 P6

P0 P6

P3P0 P6

P4

P5

R0 = 5,R1 = 21,R2 = 27,R3 = 11Anne.Benoit@ens-lyon.fr ALEAE meeting, March 2010 Computing the throughput, probabilistic and replicated 26/ 38



Intro Framework TPNs Computing Comparison Conclusion

Computing the throughput – exponential laws

Overlap model:
Communication column:

9 columns

7 rows

55 patterns

R0 = 5,R1 = 21,R2 = 27,R3 = 11
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Computing the throughput – exponential laws

Overlap model:

split the timed Petri net into columns Ci , with 1 ≤ i ≤ 2N − 1

separately consider each column Ci

separately consider each connected component Dj of Ci

single component Dj : many copies of the same pattern Pj , of
size uj × vj

transform Pj into a Markov chain Mj

determine a stationary measure of Mj

compute the throughput of Pj in isolation
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Computing the throughput – exponential laws

Overlap model:
Representation of a valid marking on the TPN

i

u

j

Fired k + 1 times

v
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Computing the throughput – exponential laws

Overlap model:
Representation of a valid marking with Young diagrams

u − i

v − j

(v , 0)
i

(0, 0)

j

(0, v) (u, v)

⇒ Number of states easily determined
Polynomial number of states in each connected component
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Computing the throughput – exponential laws

Overlap model, homogeneous communication network:

Theorem

Let us consider the system (X ,Y ) formed by the mapping of an
application onto a platform, following the Overlap communication
model with a homogeneous communication network. Then the
throughput can be computed in polynomial time.
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Computing the throughput – exponential laws

Overlap model:
Reachable states from a given position

(0, v) (u, v)u − i

v − j

(v , 0)
i

(0, 0)

j

⇒ Same number of incoming and outgoing states
+ Same firing rate (homogeneous communication network)
= Invariant measure is uniform
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Comparison between two systems

Theorem

Consider two systems (X (1),Y (1)) and (X (2),Y (2)). If we have for
all n,
∀1 ≤ p ≤ M,X

(1)
p (n) ≤st X

(2)
p (n) and

∀1 ≤ p, q ≤ M,Y
(1)
p,q (n) ≤st Y

(2)
p,q (n), then ρ(1) ≥ ρ(2).
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Comparison between two systems with I.I.D. laws

Theorem

Let us consider two systems with I.I.D. communication and
processing times (X (1),Y (1)) and (X (2),Y (2)). If we have for all n,

∀1 ≤ p ≤ M,X
(1)
p (n) ≤icx X

(2)
p (n) and

∀1 ≤ p, q ≤ M,Y
(1)
p,q (n) ≤icx Y

(2)
p,q (n), then ρ(1) ≥ ρ(2).
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Bounds on the expected throughput

Theorem

Let us consider any system (X (1),Y (1)), such that X
(1)
p (n) and

Y
(1)
p,q (n) are N.B.U.E.. Let us also consider two new systems

(X (2),Y (2)) and (X (3),Y (3)) such that:

∀1 ≤ p ≤ M,X
(2)
p (n) has an exponential distribution, and

E[X
(2)
p (n)] = E[X

(1)
p (n)],

∀1 ≤ p, q ≤ M,Y
(2)
p,q (n) has an exponential distribution, and

E[Y
(2)
p,q (n)] = E[Y

(1)
p,q (n)],

∀1 ≤ p ≤ M,X
(3)
p (n) is deterministic and for all n,

X
(3)
p (n) = E[X

(1)
p (n)],

∀1 ≤ p, q ≤ M,Y
(3)
p,q (n) is deterministic and for all n,

Y
(3)
p,q (n) = E[Y

(1)
p,q (n)].

Then we have:
ρ(3) ≥ ρ(1) ≥ ρ(2).
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Numerical experiments

Evolution of the measured throughput with the number of samples

Exponential laws

 1.115
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 100  1000  10000  100000  1e+06

T
h

ro
u

g
h

p
u

t

Number of events

Constant values

 1.11

Distribution Constant Exponential Uniform Uniform Pareto
value c mean c c/2 - 3c/2 c/10 - 19c/10 mean c

Throughput 2.0299 2.0314 2.0304 2.0305 2.0300

Table: Throughput obtained with several distributions of same mean.

Anne.Benoit@ens-lyon.fr ALEAE meeting, March 2010 Computing the throughput, probabilistic and replicated 36/ 38



Intro Framework TPNs Computing Comparison Conclusion

Outline

1 Introduction

2 Framework

3 Timed Petri Nets

4 Computing the throughput

5 Comparison results

6 Conclusion

Anne.Benoit@ens-lyon.fr ALEAE meeting, March 2010 Computing the throughput, probabilistic and replicated 37/ 38



Intro Framework TPNs Computing Comparison Conclusion

Conclusion and future work

Even if the mapping is given, the throughput is hard to
determine

Expectation of the throughput can be computed in many
cases:

General case with exponential laws: exponential time
Overlap model with exponential laws: smaller exponential time
Overlap model, homogeneous communications: polynomial
time
General case, N.B.U.E. laws: bounds can be established

Determining the mapping that maximizes the throughput is
an NP-complete problem, even in the simpler deterministic
case with no communication costs

Future work:

Design efficient mapping heuristics
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