Distributing Chess Computation
for Desktop GRID

Emmanuel Jeannot, Derrick Kondo, Sangho Yi
INRIA
Mescal and Runtime Team

Emmanuel.Jeannot@inria.fr

Introduction

. RT-Boinc is a desktop grid framework that takes
into account “real-time constraint”

. Playing Chess requires to take into account hard
and soft deadline

. Porting a chess program to RT-Boinc is a nice
way to test and evaluate it

Chess Engine

Many chess engines are available

Some of them are really strong

Most of them communicate with GUIs or other environment
through a standard protocol called UCI (Universal Chess
Interface)

UCI chess engines

All engines (32-bit) Free engines (32-bit) Open source engines (32-bit)
1-2-CPU engines (32-bit) Free 1-2-CPU engines (32-bit) Open source 1-2-CPU engines (32-bit)

Single-CPU engines (32-bit) Free single-CPU engines (32-bit) Open source single-CPU engines (32-bit)

Pure lists for complete database

Pure database download

To save space, pure database has all moves stripped out, it contains PGN header and results only. This pure database
is useful only for rating calculation or similar analysis, it does not have actual games, only the results.

[glenan:src/Chess/rtboinc-chess] ejeannot¥ stockfish-171/Mac/stockfish-171-64-ja

Download pure datab 32'917 0.10 MB
| pu — | Stockfish 1.7.1. By Tord Romstad, Marco Costalba, Joona Kiiski.
2 3 , go depth 190
CCRL 40/40 Rating List — Pure all engines info depth 1
Ponder off, General book (up to 12 moves), 3-4-5 piece EGTB ; 5
Time control: Equivalent to 40 moves in 40 minutes on Athlon 64 X2 4600+ (2.4 GHz) :g:: Z:z:: ; sconejcpiicitimelofinodesycoinpsiie pviglid
Ci ted on October 1, 2010 with Bayeselo based on 32'917
SmpueCol d S ER B e ames info depth 2 score cp 12 time 97 nodes 47 nps 484 pv glf3 g8f6
ng Average info depth 3
Rank Name ELO + - Score Opponentnrawseames Los info depth 3 score cp 68 time 97 nodes 146 nps 1505 pv gl1f3 g8f6 blc3
1 Rybka 4 64-bit ACPU 3259 (-4) +26 -25 731% -154.0 442% 518 info depth ¢
2 Stockfish 1.7.1 64-bit ACPU 3219 (+2) +26 -25 66.0% -103.0 49.7% 471 ?nfo depth 4 score cp 12 time 98 nodes 292 nps 2959 pv glf3 g8f6 blc3 b8cb
3 Naum 4.2 64-bit 4CPU 3190 (+5) +26 -26 62.7% -83.0 49.3% 444 info depth 5
4 Deep Shredder 12 64-bit OA On 4CPU 3128 (+2) +21 -21 58.5% -53.6 47.5% 697 ?ngo depth z score cp 28 time 98 nodes 613 nps 6255 pv g1f3 g8f6 blc3 b8c6 d2dé
5 Zappa Mexico Il 64-bit 4CPU 3082 (+8) +21 -21 57.14% -46.6 46.3% info depth
6 Komodo 1.2 64-bit 3066 (+10) +21 -21 43.1% +42.2 50.7% 698 j.nff:o gept: ? score cp 12 time 102 nodes 1267 nps 10670 pv glf3 g8f6 blc3 b8c6b d2d4 d7d5
7 Thinker 5.4C Inert 64-bit ACPU 3044 (+13) +22 -21 54.5% -30.7 38.6% Anto Cept ;
8 Spark 0.4 64-bit 4CPU 3043 (+1) +34 -35 31.5% +122.7 43.3% 275 }n:o :ep:: ; score cp 32 time 118 nodes 2188 nps 18542 pv g1f3 g8f6 blc3 b8cb d2d4 d7d5 clf4
9 Deep Sjeng WC2008 64-bit ACPU 3041 (+9) +19 -19 49.7% +1.9 39.4% 921 nvo dep .
10 Hiarcs 12.1 4CPU 3018 (+9) +23 -23 45.7% +258 43.5% 605 }n:o gep:: ; score cp 12 time 121 nodes 4528 nps 37256 pv g1f3 g8f6 blc3 b8cb d2dé d7dS5S clfé c8f5
11 Toga Il 1.4.1SE 4CPU 3008 (0) +21 -21 54.5% -28.6 41.4% 707 LNro:Oep
12 Brizhto.4a4CPU 3005 E"“)i) 22 -22 53_0./: 215 39.8"/: 664 info depth 9 score cp 12 time 144 nodes 10297 nps 71526 pv gl1f3 g8f6 blc3 d7d5 d2dé4 bB8c6 dld3 e7e6 eled
13 Deep Fritz 10.1 4CPU 3002 (+9) +35 -35 58.3% -58.5 33.9% 271 }n:o :ep:: ;score cp 28 time 165 nodes 27298 nps 165442 pv e2eé g8f6 e4e5 f6d5 c2cé dSbé d2d4 b8cb blc3
14 Loop M1-T 64-bit 4CPU 2952 (-2) +21 -21 43.5% +41.3 449% 695 InTo.oon .
15 Crafty 23.1 64-bit 4CPU 2934 (+25) +36 -36 51.7% 75 36.9% 241 ’_mfo depth 1@ score cp 16 hmn": 180 nodes 35334 nps 196322 pv ele4 g8f6 e4eS5 f6d5 c2cé dSbé d2dé d7d6 a2a3 béc
16 Deep Junior 10 4CPU 2931 (+21) +32 -32 50.0% -2.7 33.5% info nodes 51775 nps 260175 time 199 hashfull @
17 Onno 1.0 64-bit 2928 (+0) +36 -37 353% +92.7 43.2% bestmove e2e4 ponder g8f6
18 Spike 1.2 Turin 2843 (-5) +16 -16 49.5% +3.3 36.9%
19 Scorpio 2.0 4CPU 2838 (+4) +39 -40 33.0% +115.1 35.9%
20 Delfi 5.4 2CPU 2835 (+7) +23 -23 42.2% +54.0 37.0%
21 Bison 9.11 2832 (+5) +32 -32 62.5% -84.9 36.8%
22 Ktulu8 2823 (+16) +21 -21 52.0% -11.6 35.5%
23 Twisted Logic 20080620 2822 (-1) +27 -27 56.5% -40.9 39.8%
24 Chess Tiger 2007.1 2801 (-5) +21 -21 53.2% -17.9 457%
25 SmarThink 1.10 32-bit 2800 (-22) +39 -38 60.9% -76.0 33.5%
26 Booot4.15.0 2797 (-1) +25 -25 54.0% -23.8 49.1%
27 Frenzee Feb08 32-bit 2791 (-9) +22 -22 52.2% -144 39.2%
28 Movei 00.8.438 (10 10 10) 2770 (-4) +20 -20 52.4% -16.1 40.3% 769 S
29 Chessmaster 11 2769 (-1) +28 -28 52.2% -15.7 31.8% 424W‘
T P R e —

http://www.computerchess.org.uk/ccrl/4040/rating list pure.html

Stockfish

Open-source

Portable (Mac/Linux/Windows)
Multithreaded

Very strong

Comes with a opening book

Chess Al

Basically:

- Tree search (each node being a position each edge
being a move).

- Evaluation function of position

- Pruning techniques to accelerate search (min/max
alpha/beta). Up to 1200kn/s.

- Time management
— Opening book

Chess on Desktop Grid

Constraints:
No communications between workers

Minimal communication between workers
and server (task and result)

Potentially many workers but not always OS5 |-
Churn

Some workers may never return an answer

No time to generate a different task for
each work

Impossible to use min/max algorithm in
this context

Problem

The server has a position.

It needs RT-Boinc to compute the best possible move in a given
amount of time

How to distribute the search of the tree among the workers

Solution: a randomized
algorithm

Principle:

Each worker receives:

~ the same position P,

— an integer n and,

— a soft real constraint t.
Each worker / plays n moves at random: reach position P;
Each worker i/ asks the chess engine to process P; until time ¢

At time t, the worker returns the best move found by the chess
engine with an evaluation and the n moves required to reach P,

The server aggregates clients results using min/max algorithm
and compute the best result for position P with its evaluation

Example (n=2)

The workers returns:
P,
oe2f3 ; f8f3
P,
*g2f3
4.5

Engine exploration of the subtree from P;
fter time t, returns:

the best move of P;(e.g. g2f3)

with an evaluation (e.g. -4.5)

Server aggregation

Get all workers answer

Aggregates answers to built a tree T’

Apply min/max on T’ to determine the best move

Question: how faris T’ from the real tree T?

Uniform Random Choose

How many workers are required such that almost surely all the
nodes of depth n will be considered?

Hits: the average arity of a chess tree is 30.

At depth n we have m=30" nodes. If we assume that each node is
selected uniformly.

Formally, | have m coins in a bag, | pick one uniformly and
replace it. How many picks do | need such that there is
probability € that | did not pick all of them at least once.

Uniform Random Choice
(Cnt.)

Approximation of the solution:

1/m: probability that a node (a position) is explored

1-1/m: probability that a node is not explored

(1-1/m)P: probability that a node is not explored after p trials
1-(1-1/m)P: probability that a node is explored after p trials

(1-(1-1/m)P)™: probability that all nodes are explored after p trials

Example: n=3, m=27000, £€=0.01
(1-(1-1/27000)P)?7000=0.99, p=400000
n=2, m=300, €=0.01
(1-(1-1/300)P)300=0.99, p=4450

Towards a Bias Random
Choice

Uniform random choice:

— Requires many workers to be sure that we did not miss a good move

Not all choices are equivalent

Need to bias the search towards “the best” moves.

Question: how to rapidly estimate what are the best choices?

Best Moves Fast Estimation

Evaluating a move at a fixed shallow depth (5), is fast (orders of
ms).

How good is this evaluation?

In general it appears to be good but this is not always the case.

Evaluating the Quality of
Depth 5 Evaluation

Question:

- Given a position
- The best move for this position

- What was the rank of this move at depth 5, among all possible
moves?

Experiment:

- We took 1407 positions from the (all games of 1972 Spassky-Fischer
world championship match, removed opening book positions)

- Most of them are tight positions (21 games, 11 draws)
- The engine analyzes each position for 20 minutes
- We record the rank of the best move when the search reaches depth 5

Results

47.47% of the “best” moves are ranked 1 at depth 5
17.48% of the “best” moves are ranked 2 at depth 5
9.17% of the “best” moves are ranked 3 at depth 5

0.07% of the “best” moves are ranked 28 at depth 5

ECDF

1.0

0.9

0.8

0.7

0.6

0.5

0.4

15

20 25 30

Biased Random Choice

Method:

For each position

Enumerate each possible moves
Rank them according to the depth-5 estimation

A move is chosen according to the empirical law shown before
(N°1 with 47.47%, N°2 with 17.48% etc.)

Advantage:

The more likely a move is to be good the more chance it has to
be chosen

Redundancy of good position (tolerance to churn and failure)

Conclusion

Distributed mechanism for chess computation

Random algorithm on the client side for scalability and reliability

Bias random choice based on empirical analysis of positions

Todo:

— Evaluation of the model
—- Improved model (taking into account the arity of each node)

— Taking into account the heterogeneity of workers when doing the
aggregation

