
Distributing Chess Computation
for Desktop GRID

Emmanuel Jeannot, Derrick Kondo, Sangho Yi
INRIA

Mescal and Runtime Team
Emmanuel.Jeannot@inria.fr

Introduction

•  RT-Boinc is a desktop grid framework that takes
into account “real-time constraint”

•  Playing Chess requires to take into account hard
and soft deadline

•  Porting a chess program to RT-Boinc is a nice
way to test and evaluate it

Chess Engine

•  Many chess engines are available

•  Some of them are really strong

•  Most of them communicate with GUIs or other environment
through a standard protocol called UCI (Universal Chess
Interface)

UCI chess engines

http://www.computerchess.org.uk/ccrl/4040/rating_list_pure.html

Stockfish

•  Open-source

•  Portable (Mac/Linux/Windows)

•  Multithreaded

•  Very strong

•  Comes with a opening book

Chess AI

Basically:

–  Tree search (each node being a position each edge
being a move).

–  Evaluation function of position
–  Pruning techniques to accelerate search (min/max

alpha/beta). Up to 1200kn/s.
–  Time management
–  Opening book

Chess on Desktop Grid

Constraints:

•  No communications between workers

•  Minimal communication between workers
and server (task and result)

•  Potentially many workers but not always

•  Churn

•  Some workers may never return an answer

•  No time to generate a different task for
each work

Impossible to use min/max algorithm in
this context

Problem

The server has a position.

It needs RT-Boinc to compute the best possible move in a given
amount of time

How to distribute the search of the tree among the workers

Solution: a randomized
algorithm

Principle:

•  Each worker receives:
–  the same position Ps,

–  an integer n and,

–  a soft real constraint t.
•  Each worker i plays n moves at random: reach position Pi

•  Each worker i asks the chess engine to process Pi until time t

•  At time t, the worker returns the best move found by the chess
engine with an evaluation and the n moves required to reach Pi

•  The server aggregates clients results using min/max algorithm
and compute the best result for position Ps with its evaluation

Example (n=2)

Ps

e2f3

Pi

f8f3

Engine exploration of the subtree from Pi
After time t, returns:

 the best move of Pi (e.g. g2f3)
 with an evaluation (e.g. -4.5)

The workers returns:
• Ps
• e2f3 ; f8f3
• Pi
• g2f3
• -4.5

Server aggregation

Get all workers answer

Aggregates answers to built a tree T’

Apply min/max on T’ to determine the best move

Question: how far is T’ from the real tree T?

Uniform Random Choose

How many workers are required such that almost surely all the
nodes of depth n will be considered?

Hits: the average arity of a chess tree is 30.

At depth n we have m=30n nodes. If we assume that each node is
selected uniformly.

Formally, I have m coins in a bag, I pick one uniformly and
replace it. How many picks do I need such that there is
probability ε that I did not pick all of them at least once.

Uniform Random Choice
(Cnt.)

Approximation of the solution:

1/m: probability that a node (a position) is explored

1-1/m: probability that a node is not explored

(1-1/m)p: probability that a node is not explored after p trials

1-(1-1/m)p: probability that a node is explored after p trials

(1-(1-1/m)p)m: probability that all nodes are explored after p trials

Example: n=3, m=27000, ε=0.01

(1-(1-1/27000)p)27000=0.99, p≈400000

n=2, m=300, ε=0.01

(1-(1-1/300)p)300=0.99, p≈4450

Towards a Bias Random
Choice

Uniform random choice:

–  Requires many workers to be sure that we did not miss a good move

Not all choices are equivalent

Need to bias the search towards “the best” moves.

Question: how to rapidly estimate what are the best choices?

Best Moves Fast Estimation

Evaluating a move at a fixed shallow depth (5), is fast (orders of
ms).

How good is this evaluation?

In general it appears to be good but this is not always the case.

Evaluating the Quality of
Depth 5 Evaluation

Question:
–  Given a position
–  The best move for this position
–  What was the rank of this move at depth 5, among all possible

moves?

Experiment:
–  We took 1407 positions from the (all games of 1972 Spassky-Fischer

world championship match, removed opening book positions)

–  Most of them are tight positions (21 games, 11 draws)

–  The engine analyzes each position for 20 minutes

–  We record the rank of the best move when the search reaches depth 5

Results

47.47% of the “best” moves are ranked 1 at depth 5

17.48% of the “best” moves are ranked 2 at depth 5

9.17% of the “best” moves are ranked 3 at depth 5

…

0.07% of the “best” moves are ranked 28 at depth 5

Biased Random Choice

Method:

 For each position

 Enumerate each possible moves

 Rank them according to the depth-5 estimation

 A move is chosen according to the empirical law shown before
(N°1 with 47.47%, N°2 with 17.48% etc.)

Advantage:

 The more likely a move is to be good the more chance it has to
be chosen

 Redundancy of good position (tolerance to churn and failure)

Conclusion

Distributed mechanism for chess computation

Random algorithm on the client side for scalability and reliability

Bias random choice based on empirical analysis of positions

Todo:
–  Evaluation of the model
–  Improved model (taking into account the arity of each node)
–  Taking into account the heterogeneity of workers when doing the

aggregation

