Towards Real-Time, Many Task Applications on Large Distributed Systems

- focusing on the implementation of RT-BOINC

Sangho Yi (sangho.yi@inria.fr)

Content

- Motivation and Background
- RT-BOINC in a nutshell
 - Internal structures
 - Design & implementation
- Conclusions and future work

Motivation

- Demands for computing large-scale real-time(RT) tasks increased in distributed computing environment
 - Chess, Game of Go
 - Real-time Forensic Analysis
 - Ultra HD-level Real-time Multimedia Processing
 - •
- Lack of support for RT in existing Desktop Grids, and Volunteer Computing environment

About BOINC BOINC

- BOINC is tailored for maximizing task throughput, not minimizing latency on the order of seconds.
 - Same as XtreemWeb and Condor
- A BOINC project has
 - A BOINC server (web, storage, database, ...)
 - Multiple BOINC clients
 - Network connection between server clients

BOINC Projects SETTEMBLE

- Normally perform a few transactions in 1 sec with host clients.
 - 1~15 transactions in 1 sec (ref. http://boincstats.com)
- Send large chunk of computation to the host clients.
 - a couple of hours, or even days of computation
- Does not have RT guarantee
 - Because it is tailored for maximizing total amount of computation.

Significant Gaps here...

"I need a 10-second-car." - in the movie "Fast & Furious"

Significant Gaps here...

"We need a 10-second-completion." - in a "Chess game"

RT-BOINC in a Nutshell B

- RT-BOINC features
 - Providing low WCET (worst-case execution time) for all components
 - No database operations at run-time
 - O(1) interfaces for data structures
 - Reduced complexity for server daemons
 - Almost O(1)

Original BOINC Internal

RT-BOINC Internal

Data management

MySQL Database vs. In-memory data structures

Main Database

BOINC DB

(workunits, results, hosts, users, apps, platforms, and ...)
- based on MySQL

Complexity for lookup, insert, and remove: $O(log N) \sim O(N^2)$

(a) BOINC

In-Memory Data structures - O(1)

Lookup pools

In-memory data records with data format compaction (workunits, results, hosts, users, ...)
- based on shm-IPC

(b) RT-BOINC

Example 1) select from where;

Retrieving RESULT from the O(1) data structure

Example 2) insert into values(...);

• Inserting RESULT to the O(1) data structure

Example 3) delete from where;

Deleting RESULT from the O(1) data structure

Prototype Implementation

- Additional information
 - Compaction of BOINC's data format
 - Modification of PHP codes
 - Trade-offs between memory usage and WCET
 - Statically adjustable with parameters
 - Compatibility with BOINC
 - The rest parts are still compatible with BOINC.

Size of Data Structures

- RT-BOINC uses the <u>'shared memory segment' IPC</u> between server daemon processes to share the data structures.
- For 10,000 entries of hosts, results, workunits, it consumes totally 1.09GB in main memory.
 - Memory overhead for O(1) data structures is 38.6% of the total usage.
 - Using 1GB memory is reasonable on the common-off-theshelf 64-bit hardware platforms.

Detailed information on the Web

http://rt-boinc.sourceforge.net

REAL-TIME RT-BOINC stands for a Real-Time BOINC

It was designed for managing highly-interactive, short-term, and massively-parallel real-time applications. We designed and implemented RT-BOINC on top of BOINC server source codes. Contact information: Sangho Yi and Derrick Kondo

For users

Download RT-BOINC files
Project detail and discuss
Get support
Donate money

For developers

Join this project:

To join this project, please contact the project administrators of this project, as shown on the project summary page.

Get the source code:

Source code for this project may be available as <u>downloads</u> or through one of the SCM repositories used by the project, as <u>page</u>.

About RT-BOINC

Source code on the Web

http://sourceforge.net/projects/rt-boinc

Performance Evaluation

- Purpose: to measure real-time performance of BOINC and RT-BOINC
- Criteria: the worst-case and the average execution time
- Method: micro and macro benchmarks
 - Micro-benchmark: for each primary operation related to server process
 - Macro-benchmark: for each server process (including feeder, scheduler, transitioner, work-generator, assimilator, validator, and file-deleter)

Experimental Environment

- We used a little bit slow, common-off-the-shelf system. ;-)
 - For ease of reproduction of the results

Component	Description	Notes
Processor	1.60GHz, 3MB L2 cache	Intel Core 2 Duo
Main Memory	3GB (800 Mhz)	Dual-channel DDR3
Secondary Storage	Solid State Drive	SLC Type
Operating System	Ubuntu 9.10 (karmic)	Linux Kernel 2.6.31-19
BOINC version	Server stable version	Nov. 11, 2009 (from SVN)

Average execution time (in seconds)

Worst-case execution time (in seconds)

Performance improvement ratio (RT-BOINC / BOINC)

Performance gap between worst-case and average

Macro-benchmarks (low load)

Macro-benchmarks (high load)

Work-generator

Work-generator

Scheduler

Scheduler

 Difference of worst-case performance between low and high load condition

Conclusions

- RT-BOINC provides...
 - 30~100 times higher average performance than BOINC.
 - 300~1,000 times lower WCET(worst-case execution time) for the given load condition.
 - less difference between the average and the worst-case performance.
 - less difference between low and high load conditions.

Future work (The rest part)

Future work (Remaining issues)

- Providing 'dynamic shared-memory management' for reducing memory usage
- Studying trade-offs between time(WCET) and space(memory usage)
- Providing 'full functionality' including <u>locality scheduling</u>, and <u>homogeneous redundancy</u>
- Testing it with 'real' applications such as Chess, Game of Go, and etc.

Thanks! / Questions?

