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Abstract

Computer science and especially heterogeneous dis-
tributed computing is an experimental science. Simula-
tion, emulation, or in-situ implementation are comple-
mentary methodologies to conduct experiments in this
context. In this paper we address the problem of defin-
ing and controlling the heterogeneity of a platform. We
evaluate the proposed solution, called Wrekavoc, with
micro-benchmark and by implementing algorithms of
the literature.

1. Introduction

Research on algorithms for heterogeneous platforms
is a very active domain. It encompasses the fields of
scheduling [12], load balancing [1], linear algebra [8],
data redistribution [3], etc. Unfortunately heterogene-
ity makes problems harder to solve. In few cases poly-
nomial algorithms are found, sometimes only approx-
imation algorithms are proposed while in many cases
no theoretical results are available. In the later case
an experimental approach can be used to test or com-
pare heuristics. In large-scale distributed heteroge-
neous systems, numerous parameters and complex in-
teractions between resources make models mostly in-
tractable. Moreover, even if in some cases theoretical
results are found, an experimental approach on a real
platform can also help in validating both the model-
ing and the algorithm. Since experimental evaluation
is mandatory in algorithmic (for heterogeneous plat-
form) research, several complementary methodologies
have been proposed.

Simulators focus on a certain part of the platform
and abstract the remaining of the system. Simula-

tions enable reproducible experiments and allow to test
a large set of platforms and experimental conditions.
Examples of simulators designed to test and compare
scheduling algorithms in large-scale distributed sys-
tems are Bricks [16], GridSim [4] or Simgrid [10]. It
is out of the scope of this paper to compare the rela-
tive merits of these simulators and the reader is referred
to [15] for further details and other simulators. Surpris-
ingly very few studies on the comparison between simu-
lation and real experiments have been conducted. The
validation of Bricks was performed by incorporating
NWS [18] into Bricks. Then, they run an applications
within Bricks and a real environment and compare the
behavior of NWS under both environments. Simgrid
validation was done by comparing simulation and an-
alytical results on a tractable scheduling problem.

In some situations complex behaviors and interac-
tions between the distributed resources cannot be sim-
ulated. This is due to the difficulty to capture and
extract all the factors that play a role during the execu-
tion of a given application (such as OS specific features:
for instance process scheduling, or hardware special ca-
pabilities: for instance hyperthreading, cache memory,
multi-core processors or runtime performance: for in-
stance the different versions or flavors of MPI). In-situ
experiments solve this problem by running a real soft-
ware on a realistic platform. Typically, experiments on
real-life heterogeneous platforms are made using the
available workstations of a laboratory. However, these
machine are often shared with other users making re-
producibility of experiments hard to achieve. Recently
experimental dedicated platforms have been proposed
to tackle this problem (Das-2 [5], Grid-explorer [7],
Grid’5000 [6], or Planet-Lab [14]). However, the de-
gree of heterogeneity of these platforms is very low
and fixed. This makes the evaluation of algorithms de-
signed for heterogeneous environment very hard to con-



duct and results hard to extrapolate for other heteroge-
neous cases. In order to tackle this problem, Latsovet-
sky et al. have proposed in [9] a new approach that con-
sists in comparing the efficiency of the heterogeneous
solution of a problem with the homogeneous one. In
this case, the homogeneous setting have the same ag-
gregate performance of of the heterogeneous one. But,
still the heterogeneity is not controllable.

Between simulation and real-life experiments stands
emulation (e.g., Microgrid [19]) which goal is to test
real applications (as in real-life experiments) with less
abstraction than with simulators. However, in Micro-
grid each program have to be linked against the Micro-
grid library that interprets system call leading to an
increase of the execution time.

In this paper we address the problem of control-
ling the heterogeneity of a cluster. Our objective is
to have a configurable environment that allows for re-
producible experiments on large set of configurations
using real applications with no emulation of the code.
Given an homogeneous cluster, our proposed solution
(called Wrekavoc) degrades the performance of nodes
and network links independently in order to build a
new heterogeneous cluster. Then, any application can
be run on this new cluster without modifications. This
paper describes this tool, and its evaluation with micro-
benchmark and by implementing algorithms for hetero-
geneous environments.

The remaining of this paper is organized as follow.
In section 2 wrekavoc goals, model and implementation
are presented. In section 3 describes how to define and
control the heterogeneity of a cluster. Experimental re-
sults and validation of wrekavoc are given in Section 4.
We compare our approach with other solution in sec-
tion 5. Finally we conclude the paper section 6

2. Wrekavoc

2.1. Design Goals

Given a homogeneous cluster1 we want to transform
it into an heterogeneous one. We also want hetero-
geneity to be controlled and reproducible. One way of
transforming an homogeneous cluster into an heteroge-
neous one is to update the hardware with more power-
ful devices (upgrading the CPU, adding some memory,
etc.) . However, in this case, the heterogeneity is fixed
and not controllable. An other way is to degrades its
performances. This is the approach taken in this paper
because it leads to a controllable layout. We target the
degradation of the following characteristics:

1As a first approach we target Unix (preferably Linux) clus-
ters.

• CPU power,

• network bandwidth,

• network latency and

• memory.

The degradation of each characteristic has to be inde-
pendent (one can degrades CPU power without mod-
ifying network performance) and by software means
(without modifying each node or rebooting the clus-
ter). Lastly, we want to be able to configure a large
cluster easily and rapidly.

2.2. Implementation

Our solution (called Wrekavoc) is implemented us-
ing the client-server model. A server, with adminis-
trator privilege, is deployed on each node one wants
to configure and run as daemon. The client reads a
configuration file and sends orders to each node in the
configuration. The client can also order the nodes to
recover the original state. The overall software stack is
described in Fig. 1.

Figure 1. Software stack of Wrekavoc.

CPU Degradation. We have implemented several
methods for degrading CPU performance. The first
approach consists in managing the frequency of the
CPU through the kernel CPU-Freq interface. This in-
terface was designed to limit CPU frequency in order
to save the power on laptops. It is based on several
CPU technologies (such as powernow) which are not
always available on cluster nodes. However, only 10
different frequencies are available through CPU-Freq.
Therefore, if the required CPU technologies are not
available on the nodes or if the discretization is too
coarse we propose two other solutions. One is based
on CPU burning. A program that runs under real-
time scheduling policy burns a constant portion of the



CPU, whatever the number of processes currently run-
ning. More precisely, a CPU-burn sets the scheduler
to a FIFO policy and gives itself the maximum pri-
ority. It then compute the time it needs to make a
small computation. This computation is blocking and
therefore no other program can use the CPU. After the
computation the CPU burner then sleeps for the cor-
responding amount of time. It then restarts the whole
process. A small tuning time is needed to make sure
sleeping and calculation time are longer than 5ms, in
order to be executed by the scheduler. The system
call used to set the scheduler is sched setscheduler.
Thanks to the Unix sched setaffinity system call,
each CPU burner is tight to a given processor on a
multi-processor node. The main drawbacks of this ap-
proach is that the CPU limitation occurs for every pro-
cesses whatever its mode (kernel or user) and therefore,
the network bandwidth is limited by the same fraction
than the CPU. When an independent limitation of the
CPU and the network is required, we propose a third al-
ternative based on user-level process scheduling called
CPU-lim. A CPU limiter is a program that supervises
processes of a given user. Using the /proc pseudo-
filesystem, it suspends the processes when they have
used more than the required fraction of the CPU using
the SIGSTOP and SIGCONT. This alternative is used for
the experiments of Section 4.

Network Limitation. Limiting latency and band-
width is done using tc (traffic controller) [17] based on
Iproute2 a program that allows advanced IP routing.
With this tools it is possible to control both incoming
and outgoing traffic. Furthermore, the latest versions
(above 2.6.8.1) allows to control the latency of the net-
work interface. An important aspect of tc is that it
can alter the traffic using numerous and complicated
rules based on IP adresses, ports, etc. We use tc to
define a network policy between each pair of nodes. It
raises scalability issue as each nodes as to implement
n−1 rules with a configuration with n nodes. This issue
will be discussed in the experimental section. Degrada-
tion of network latency and bandwidth is implemented
using Class Based Queueing (CBQ): incoming or out-
going packets are stored into a queue according to the
given quality of service before being transmitted to the
TCP/IP stack. In order to work a kernel version above
2.6.8 is required and needs to be compiled with the
CONFIG NET SCH NETEM=m option.

Memory Limitation. Wrekavoc is able to limit the
largest malloc a user can make. This is possible
through the security module PAM. However, we have
not been able to limit the whole memory usable by all

the processes yet.

3. Configuring and Controlling Nodes
and Links

The configuration of a homogeneous cluster is made
through the notion of islet. An islet is a set of nodes
that share similar limitation. Two islets are linked to-
gether by a virtual network which can also be limited
(see figure 2).

Figure 2. Islets logical view.

Defining an Islet. An islet is defined as a union of
IP addresses (or machine names) intervals. The limi-
tation parameters of each node of the islet take a value
that can be defined in two ways. It can follow a Gaus-
sian distribution2 of the form [mean;std. dev.] or can
follow a uniform distribution of the form [min-max].
For each islet we define several parameters. SEED is an
integer that is used for the random distributions (-1
means a random seed). CPU is a distributed value of
the CPU frequency in MHz of the noes of the islet.
BPOUT (resp. BPIN) is a distributed value of the out-
going (resp. incoming) bandwidth in kB/s. LAT is the
distributed value of network latency in ms. USER is the

2each node can have exactly the same value if we set 0 for the
standard deviation.



islet1 : [192.168.1.1-192.168.1.10] {
SEED: 1
CPU : [1000;0]
BPOUT : [125000;0]
BPIN : [125000;0]
LAT : [0.05;0]
USER : user1
MEM : [80000;0]

}
islet2 : [192.168.2.1-192.168.2.10]-[192.168.3.1-192.168.3.10] {

SEED : -1
CPU :[100-2000]
BPOUT : [12500;0]
BPIN : [12500;0]
LAT : [0.05;0]
USER : user1
MEM :[80000;0]

}
!INTER : [islet1;islet2] [1250;0] [2500;0] [120;0] 1

Figure 3. Configuring two islets

name of the user for which the limitation are made.
MEM is the distributed value of the maximum malloc in
kB.

Linking Islets Together. Each islet configuration
is stored into a configuration file. At the end of this file
is described the network connection (bandwidth and
latency) between each islet using the !INTER keyword.
The last number of the !INTER line is the seed used for
the random distribution.

Example. Figure 3 shows how to emulate two clus-
ters within two islets. Of course, this configuration
have to be executed on a cluster having at most the
required performance. In this example, Islet1, is made
of 10 nodes at 1 GHz with giga-ethernet interconnect
(1Gb/s (125000 kB/s) bandwidth and 50 µs latency)
and Islet2 comprises 20 heterogeneous nodes with fre-
quency between 100 MHz and 2GHz and a fast ether-
net network (bandwidth: 100 Mbit/s, latency: 50 µs).
The two clusters are linked by a network with a band-
width of 10 Mbit/s and a latency of 120 ms from islet1
to islet2 and a bandwidth of 20 Mbit/s from islet2 to
islet1. Remark that using -1 as seed for islet2 means
that each time we configure the nodes we will get a dif-
ferent configuration of the nodes (reproducibility of the
nodes configuration is done by using positive seeds).

4. Validation and Experimentation

All the experiments performed in this section were
done using the Grid-explorer [7] cluster with 216 nodes.
Each node has two 2 GHz AMD Opteron 246 with 2 GB
of RAM. It runs under Linux Debian 3.1 with kernel
2.6.8.

4.1. Deployment Time.

The client reads the configuration file, parses the
file and builds an XML file for each nodes. Then, it
sends this sub-configuration to each node. When a
node receives a configuration file it configures its own
characteristics according to this file (see figure 4)

Figure 5 shows the configuration time against the
number of nodes. 4 curves are shown: one islet, two
islets, two nodes per islet and one node per islet. Re-
sults show that the configuration time increases with
the number of nodes. The worst case occurs when we
have one node per islet (the same number of islets as
nodes). Even in this case configuring 130 nodes takes
only 22 seconds, while with two nodes per islets it takes
less than 10 seconds.

4.2. Micro-benchmark.

We have tested separately each kind of degradation
using micro-benchmark.



Figure 4. Steps for configuring a cluster
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Figure 5. Configuration time for different islet sizes.

set latency 1 5 10 50 100 500 1000
RTT 2.12 10.05 20.12 100.058 200.20 1000.05 1999.75

Table 1. Round-trip-time against desired latency in ms.
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Figure 6. CPU micro-benchmark.
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Figure 7. Bandwidth micro-benchmark.

CPU Tests. To measure how performance degrada-
tion impacts on the execution of a computation, we use
the ratio between the expected and the actual duration
times. The expected duration time is computed by ap-

plying the percentage of degradation to the time with-
out degradation. When this ratio equals 1 this means
that execution times matches the expected time. We
can see on Figure 6 that the absolute value of this ra-
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Figure 8. Testing the impact of CPU degradation against available bandwidth between two nodes
linked by Gb Ethernet.

tio is never above 1.01 (i.e. less than 1% of difference).
Therefore the CPU limitation behaves as expected and
is able to handle bi-processors node.

Bandwidth Tests. Figure 7 shows the obtained
bandwidth versus the desired bandwidth for different
data size (between 15 MB and 10 kB). The ideal line
shows what one should obtain theoretically. The re-
sults show that the obtained bandwidth is always very
close to the desired one. We see that for 10 kB the we
obtain a slightly greater bandwidth than the limited
bandwidth. This is due to the fact that TC use some
bucket to limit the bandwidth. The limitation starts
when the bucket is completely filled. The amount of
packets to fill the bucket being fixed, we see, for small
messages that the real bandwidth is a little bit higher
than the desired one. For this same size of data, we see
that it is not possible to achieve the peak bandwidth.
This is the same phenomena that happen in real net-
work. Indeed, further investigations have shown that
we obtain exactly the same bandwidth (320 Mbit/s) for
1 Gbit/s network card without network degradation for
10 kB messages.

Latency Tests. Table 1, shows the average round-
trip-time (RTT) obtained by the ping command with
various degraded latency. Results show that the RTT

is exactly twice the value of the desired latency which is
exactly what one should obtained theoretically as the
latency is paid twice when doing a round trip.

4.3. Independent degradation

We have tested how the bandwidth degradation in-
terfere with the CPU speed: we exchanged a file at
different bandwidth speed while running a CPU inten-
sive process. In this case, we have not seen any impact
of the variation of the bandwidth with regards to the
execution time.

Figure 8 show the obtained bandwidth against the
CPU frequency on a Giga-ethernet network. Under 500
MHz the available bandwidth decreases with the CPU
frequency. This is due to the fact that Gbit bandwidth
is not achievable with slow CPU. In order to confirm
that, we have exchanged data between two old PCs
(PII at 400 MHz and PIII at 550 MHz) with a Gb PCI
ethernet card under linux kernel 2.6.12 at runlevel 1. In
this case the best achievable bandwidth was 340 Mb/s
with UDP or TCP.
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Figure 10. Testing two matrix multiplication algorithms.

4.4. Implementing Algorithms of the Liter-
ature.

We have tested Wrekavoc on several algorithms de-
signed for heterogeneous environments.

First a static load-balancing algorithm of [11] page
160 and inspired from [13] is studied. We have chosen
to balance a load composed of 500 tasks on 20 nodes
when 5 nodes run at 100%, 5 at 75%, 5 at 50% and 5



 0.1

 1

 10

 100

 1000

 1000

T
im

e 
in

 s
ec

on
d

Matrix size

Beaumont algorithm
Lastovetsky algorithm

Figure 11. Comparing time of two matrix multiplication algorithms.

Methodology Simulation Emulation In-Situ L&R Wrekavoc
(Simgrid) (Microgrid) (hom. cluster) perf. analysis

Real app. No Yes Yes Yes Yes
Abstraction Very high High No No Low
Execution time Speedup Slowdown Same Same Same
Proc. folding Mandatory Possible No No No
Heterogeneity Controllable Controllable No Yes Controllable

Table 2. Comparing different experimental methodologies

at 25%. For this simple case the algorithm balance the
load inversely proportional to the speed of the machine
(resp. 40 tasks, 30 tasks, 20 tasks and 10 tasks). Since
the load balancing is perfect every node should theo-
retically finish at the same time. In Figure 9, on the
y-axis, we plot the ratio M

m where M is the finishing
time of the last processor and m the finishing time of
the first processor. This ratio is equal to 1 when all
the processors finish at the same time. On the x-axis
we plot the duration of one task on the 100% proces-
sor. Results show that the ratio is always under 1.1
and it decreases as the task duration increases. When
task duration is greater than 0.1 second (on the fastest
processor) the precision of the emulation is better than
5%.

Second we have run two matrix multiplication algo-
rithms for heterogeneous environments. The first one

of Beaumont et al. [2] is based on geometric partition
of the column on the processors. The second one of
Lastovetsky et al. [8] uses a data partitioning based on
a performance model of the environment. Figure 10
shows the percentage 100× M−m

m (where M is the fin-
ishing time of the last processor and m the finishing
time of the first processor) against the matrix size for
both algorithms. We see that the emulation is cor-
rect as this percentage is under 5% for Lastovetsky
algorithm. The fact that the percentage is worst for
the Beaumont algorithm than for the Lastovetsky one
means that the later algorithm provides a better load
balancing with regards to the former one. We also pro-
vide the execution time of both algorithms for different
matrix sizes in Figure 11. We see here that Lastovet-
sky algorithm outperforms the Beaumont one. How-
ever, the fact that these experiments shows that the



Lastovetsky algorithm outperforms the Beaumont al-
gorithm should be consider as a side effect of this paper
and not as a real contribution. Further studies such as
implementation issues, degree of heterogeneity and so
on, are required to assess or not this statement. What
is shown here, is that Wrekavoc is a suitable tool for
doing such comparison.

5. Related works

Studying and comparing heterogeneous parallel al-
gorithms have been tackled by many researcher. Sev-
eral tools and methodologies have been proposed to
asses the performance of such algorithms. Several char-
acteristics have to be defined in order to compare those
approaches :

• the ability to execute a real application or just to
simulate its execution.

• the level of abstraction of the target platform. The
less abstraction, the better is the confidence in the
obtained results.

• the speed of execution. Emulation tends to slow-
down the execution while simulation tends to
speed-up the execution time.

• the ability to fold several processors onto a sin-
gle one. This enable the execution of a parallel
application on only one processor.

• The management of heterogeneity. It is possible
to have heterogeneity? Is it controllable?

In table 2 we compare simulation (i.e. simgrid [10]),
emulation (i.e. microgrid [19]), in-situ (GdX [7]), Las-
tovseky and Reddy approach [9] and wrekavoc. We see
that none of the proposed approaches have only advan-
tages. This means that depending of the experimenta-
tion goal the methodology have to be chosen carefully.

6. Conclusion

Computer-science and especially heterogeneous dis-
tributed computing is an experimental science. Indeed,
it is not always possible to obtain theoretical results for
heuristics designed in this context. Moreover, it is very
hard to derive tractable models of such environment.

Simulation (e.g., Simgrid) emulation(e.g., Micro-
grid) or in-situ implementation (e.g., Grid 5000) are
complementary methodologies that have been pro-
posed to conduct experiments on heterogeneous plat-
forms. They all present advantages and drawbacks. In
this work we propose a new approach called Wrekavoc.

The goal of Wrekavoc is to define and control the
heterogeneity of a given platform by degrading CPU,
network or memory capabilities of each node com-
posing this platform. Our current implementation of
Wrekavoc have been tested on an homogeneous cluster.
We have shown that configuring a set of nodes is very
fast. Micro-benchmarks show that we are able to in-
dependently degrade CPU, bandwidth and latency to
the desired values. Tests on algorithms of the literature
(load balancing and matrix multiplication) confirm the
previous results and show that Wrekavoc is a suitable
tool for developing, studying and comparing algorithms
in heterogeneous environments.

Future works are directed toward applying this work
to other platforms (such as Windows) or other kind of
Unix. If CPU burning works for any cases, the other
approaches and the network degradation needs to de-
velop innovative solutions.
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