
Scheduling Strategies for the Bicriteria Optimization of the
Robustness and Makespan

Louis-Claude Canon and Emmanuel Jeannot
LORIA, INRIA, Nancy University, CNRS, France

Email: {louis-claude.canon,emmanuel.jeannot}@loria.fr

Abstract

In this paper we study the problem of scheduling a
stochastic task graph with the objective of minimizing
the makespan and maximizing the robustness. As these
two metrics are not equivalent, we need a bicriteria ap-
proach to solve this problem. Moreover, as comput-
ing these two criteria is very time consuming we pro-
pose different approaches: from an evolutionary meta-
heuristic (best solutions but longer computation time)
to more simple heuristics making approximations (bad
quality solutions but fast computation time). We com-
pare these different strategies experimentally and show
that we are able to find different approximations of the
Pareto front of this bicriteria problem.

1 Introduction

The problem of scheduling an application modeled
by a task graph with the objective to minimize its exe-
cution time is a well studied problem [6, 9]. However, in
general the duration of the tasks that compose the ap-
plication and the communications between these tasks
are subject to some uncertainties (due to the unpre-
dictability of the behavior of the application and its
sensitiveness of the input data). A schedule is said ro-
bust if it is able to absorb part of the uncertainty and
gives an allocation whose duration (makespan) is still
close to a predicted value.

In this paper we tackle the bicriteria problem of
scheduling an application with the objective of mini-
mizing the makespan and maximizing the robustness.
The context of this study is heterogeneous computing
where machines have different speeds and capabilities
for which the robustness of a schedule is even harder
to achieve.

Metaheuristics such as evolutionary algorithms
(EA) are well known for their capabilities to produce

solutions close to the optimal [2]. Multi-objective EA
(MOEA) like NSGA-II [5] are designed for seeking close
to the optimal solutions for multicriteria problems.
However, one of the drawbacks of metaheuristics is the
extensive computation time to find solutions. This is
especially the case for our problem where the evalua-
tion of a single solution is #P-complete. On the other
hand, classic heuristics have the advantage to be ex-
tremely fast and the drawback to find solutions farther
from the optimal than metaheuristics.

The contribution of this paper is the following. We
propose a complete suit of strategies (including heuris-
tics and a MOEA) for our problem. The objective
is to let the user choose a trade-off between rapidity
and optimality of the proposed solutions. Moreover,
we present theoretical facts in order to prove that our
MOEA converges to the optimal solution. Lastly, for
each of the proposed strategies, we are able to give
an approximation of the Pareto front (the set of non-
dominated solutions) of our bicriteria problem. This
will help the user in choosing another trade-off between
robustness and makespan.

This paper is organized as follows. In Section 2, we
describe the problem. In Section 3 we propose a MOEA
and introduce theoretical elements for its convergence.
Our heuristics are presented in Section 4. Experiments
are shown in Section 5 and final conclusions are given
in Section 6.

2 Problem description

We consider an application modeled by a stochas-
tic task graph. A stochastic task graph is a directed
acyclic graph (DAG) where nodes represent tasks and
edges dependencies between these tasks. Each node
and edge is valuated to represent respectively the ex-
ecution cost (number of instructions) and the commu-
nication cost (number of bytes to be transmitted). To
model the uncertainty, these costs are given by a ran-
dom variable (RV). Each RV gives the probability that

1

an execution or communication cost is in a given inter-
val.

The platform where executes the task graph is com-
posed of a set of heterogeneous processors with a com-
plete topology. A schedule consists then in allocating
tasks to the processors respecting the precedence con-
straints (given by the edges of the DAG), and the re-
source constraints (no processor can execute two tasks
at the same time). We use the related model to simulate
the tasks execution on the resources. For instance let
us assume that task Ti has been allocated to processor
Pj . Since the cost of the task is modeled by a RV, we
compute one execution by instantiating its cost using
the law of its RV. Assuming that the drawn cost is ci,
then the duration is given by the product ciτj , where
τj is the time to execute one instruction on processor
Pj . To compute the communication time between two
tasks we proceed similarly (drawing the communica-
tion cost – number of bytes to be transmitted – from
the corresponding RV and computing the transfer time
using the bandwidth and latency of the link used).

Since we use RV to compute communication time
and task execution time, the makespan (length of the
schedule) of each execution of the tasks on the resources
can be different. This poses two problems:

• First of this, a schedule usually tells when a task
must start. Due to the stochastic model we use, it
is not possible to ensure the start time of each task.
To address this problem, tasks are dynamically ex-
ecuted using an eager strategy where they start as
soon as possible on their allocated processor while
respecting the order given by the schedule.

• The second problem is that we need to compute
the distribution of the makespan in order to opti-
mize our criteria. However, computing the distri-
bution of the makespan is extremely difficult. It is
known to be #P-complete1 (see [8] for the details).
Therefore, having an accurate evaluation of this
distribution is extremely costly. We propose two
methods. The first one is a Monte Carlo method
that consists in simulating the makespan a suffi-
cient number of times to obtain a good approx-
imation of the distribution. The second method
assumes some degree of independence in the graph
in order to compute in polynomial time an approx-
imation of the distribution.

Once we have a distribution of the makespan we
have to define which metrics have to be optimized.

1intuitively a #P problem consists in counting the number of
solutions of an NP problem.

Concerning the schedule length, we use the average
makespan of the distribution. Indeed, minimizing this
metrics means that on the average we will minimize
the overall execution time.

The problem of defining what robustness is has been
studied in the literature. There exists several metrics
for describing the robustness of the schedule with re-
gards to the makespan. In [4] we have shown that a
good metric is the makespan standard deviation. The
idea is that a schedule is robust if it always gives a solu-
tion close to a given value. Therefore, if one considers
the probability density of the makespan distribution,
the narrower this distribution the greater the chance to
always have a solution close to the average makespan.
Since, how narrow is a distribution is directly related
to its standard deviation, we have chosen this criterion
as the robustness metric.

Finally, let us sum up the problem. We are given
a stochastic graph and a heterogeneous environment.
The goal is to schedule the tasks on the processors
such that the average makespan and the standard de-
viation of the makespan are both minimized. Since
minimizing the makespan is known to be a NP-hard
problem [9] and computing the makespan distribution
is #P-complete, this problem is then noted: NP#P.
Besides, generally, several Pareto-optimal solutions ex-
ist. Hence, it requires bicriteria scheduling strategies.

3 A provably convergent MOEA

In a bicriteria problem we need to find the Pareto
front, which is the set of every non-dominated solution.
Indeed, more than one solution can be optimal since we
are dealing with a partially ordered set of solutions (two
solutions are incomparable if one is better than the
other for the first criterion and worse for the second).

In this section, we describe the MOEA (multi-
objective evolutionary algorithm) implementation that
we use and give theoretical elements in order to prove
its convergence. We present beforehand convergence
conditions and extend them.

3.1 Convergence conditions

In the mono-objective case, the general conditions
under which an EA is guaranteed to converge are given
by Theorem 1 of [10]. This theorem states that in
order for an EA to converge to the global minimum, its
Markovian kernel K should be such that, K(x,Aε) ≥
δ > 0 for all x ∈ Ac

ε = E \ Aε and K(x,Aε) = 1 for all
x ∈ Aε, where E is the state space of the process, Aε

is the set of optimal states and K(xt, A) = P{Xt+1 ∈
A | Xt = xt}, namely the probability that the state

2

of the stochastic process is in A at step t + 1, when
its state is xt at step t. Theorem 2 of [10] gives more
practical implications for the mutation and selection
operators, that are that the mutation should be global
(any schedule can be attained from any other one in a
single step with a nonzero probability) and should be
followed by an elitist mechanism.

The generalization to the multi-objective case is
given by [11]. The basic assumptions of each proposi-
tion are that some degree of elitism should be present
and that the stochastic process from which offspring
are generated must be a homogeneous finite Markov
chain with irreducible transition matrix, roughly im-
plying that the mutation operator should be global.

We propose ourselves to extend the existing theory
to local mutation operators (mutation that cannot gen-
erate any arbitrary solution of the search space in one
single step) having some properties which we detail be-
low.

Let us first introduce some notations and defini-
tions. The product kernel (Kc,Km,Ks) represents the
Markovian kernel of the entire EA process, Kc being
the kernel of the crossover operator, Km for the mu-
tation operator and Ks for the selection. Moreover,
K(M) is the M -th iteration of the kernel K.

We now show an auxiliary result:

Theorem 1. Let Kc(x,A) ≥ δc and Ks(x,A) ≥ δs for
each x ∈ A and for each A ⊂ E. Then,

(Kc Km Ks)
(M) (x,A) ≥ (δcδs)

M
K(M)

m (x,A)

Proof. (by induction) Let Kc(x,A) ≥ δc1A(x) and
Ks(x,A) ≥ δs1A(x) for each x ∈ E and for each A ⊂ E
and where 1A(x) denotes the indicator function for
some set A (1A(x) = 1 if x ∈ A, 0 otherwise). We
obtain the basis of the induction for M = 1 by devel-
oping (Kc Km Ks) (x,A),

(Kc Km Ks) (x,A)

=
∫

E

(∫
E

Kc(x, dz)Km(z, dy)
)

Ks(y, A)

≥
∫

E

(∫
E

δc1dz(x)Km(z, dy)
)

δs1A(y)

≥ δcδs

∫
A

(∫
E

1dz(x)Km(z, dy)
)

≥ δcδs

∫
A

Km(x, dy)

≥ δcδsKm(x,A) (1)

Now assume that the hypothesis is true for M > 1.

Equation 1 induces that

(Kc Km Ks)
(M+1) (x,A)

=
∫

E

(Kc Km Ks)
(M) (y, A) (Kc Km Ks) (x, dy)

≥ δcδs

∫
E

(Kc Km Ks)
(M) (y, A)Km(x, dy)

By induction hypothesis, we have∫
E

(Kc Km Ks)
(M) (y, A)Km(x, dy)

≥
∫

E

(δcδs)
M

K(M)
m (y, A)Km(x, dy)

And by definition,

K(M+1)
m (x,A) =

∫
E

K(M)
m (y, A)Km(x, dy)

Consequently, the hypothesis is true for M ≥ 1.

The main implication of Theorem 1 is that after M
generations the kernel of the EA can be bounded by
the M -th iteration of the mutation operator kernel.
The conditions for convergence given by Theorem 1
of [10] are then fulfilled if the mutation operator be-
comes global when applied M times (even if it is local
at each generation) and if δc and δs are strictly positive.
This implies that crossover should not systematically
change solutions (the probability for the crossover to
be performed should then be different from 1) and that
selection and replacement should not be deterministics
(which is not the case for the binary tournament for
example, because the worst solution is systematically
removed). The EA must still have an elitism mecha-
nism in order to keep any optimal solution.

Adapting this convergence result to the multi-
objective case is omitted due to lack of space, but
can be drawn by extending [11] (especially its proposi-
tion 4) with the current theory.

3.2 MOEA implementation

3.2.1 Algorithm

Several successful modern MOEA exists such as
NSGA-II [5] and IBEA [15], just to mention a few.
NSGA-II is the reference metaheuristic in the area and
performs similarly to IBEA for combinatorial prob-
lems. Thus, we have selected the NSGA-II algorithm
as it is implemented in the ParadisEO library [3].

This MOEA takes care of the multi-objective as-
pect and selection phase. We have still to address the
crossover and mutation operators and the evaluation
part.

3

3.2.2 Operators

We use the chromosome representation and the
crossover and mutation schemes described in [14]. Al-
though this mutation operator is not global, we show
that it becomes global when applied a given number of
times.

Since the chromosome representation consists of 2
strings, it is necessary to proceed in 2 steps. The case of
the assignment string is straightforward. Each time a
task is selected, a new processor is chosen randomly for
it without any other constraint. Thus, the probability
to get a given assignment string from an initial one
with n mutation iterations is lower bounded by δm1 =(

pm

nP

)n
n! > 0, where n is the number of tasks, P the

number of processor and pm the probability that the
mutation happens.

The schedule string is a linear extension of the poset
E obtained from the task graph G and any of its local
modifications should respect the order (corresponding
to the precedence constraint). The maximum number
of permutations needed to obtain any linear extension
from any other is called the linear extension diameter
led(E) and it is shown in [7] that this diameter is upper
bounded by Inc(E), which is the number of pairs of
incomparable elements (for independent tasks, this can
be up to n(n−1)

2). The probability to get a given linear
extension after applying led(E) mutation iterations is

thus lower bounded by δm2 =
(

pm

n2

)led(E)
> 0.

Then after M = max(n, led(E)) mutation itera-
tions, the resulting probability to obtain any sched-
ule from any given one is then lower bounded by
δm = δm1δm2 > 0 and thus K

(M)
m (x,A) > 0. Finally,

we can apply Theorem 1 to prove the convergence of
the EA, by ensuring that the crossover does not hap-
pen systematically, and that the selection operator is
not deterministic.

3.2.3 Evaluation

As stated in Section 2, the evaluation of any single
schedules is #P-complete and thus an accurate evalua-
tion would be too much time consuming. To achieve a
correct precision with Monte Carlo (MC) simulations
requires a lot of computation time (as shown in Sec-
tion 5.6). We have thus opted for an approximation
scheme: we assume that all the distributions are Gaus-
sian and we compute the final makespan distribution
by determining where independence of these distribu-
tions can be assumed. This allows fast evaluation with
a correct precision in most cases.

4 Heuristics

We introduce in this section a class of heuristics
based on HEFT [13] able to generate a set of solutions
intended to have good performance for both criteria
from a stochastic task graph.

4.1 Aggregation principle

In order to take into account the bicriteria na-
ture of the schedules that are constructed, we aggre-
gate the average makespan with its standard deviation:
f(µ, σ, a) = a× µ

µmax
+ (1− a)× σ

σmax
, with a ∈ [0, 1],

µ and σ the current end time mean and standard de-
viation respectively, and µmax and σmax the maximum
mean and standard deviation of the makespan. The
parameter a allow to weight each criterion accordingly
to the importance we give to each one (when a = 1, we
are only concerned by the makespan average criterion).
The goal is to cover the Pareto front by varying a.

4.2 Tasks ordering

The first part of HEFT consists of ordering the task
according to their upward ranks. At this stage, we
only consider average times rather than the aggregation
mentioned above because it gives better results this
way.

4.3 Assignment selection

We first point out that the standard deviation cri-
terion is difficult to tackle because contrarily to the
average criterion, it is non-monotonic, that is to say
that the standard deviation of the end time of a given
assignment can lower when tasks are added to the cor-
responding processor.

We have studied several strategies and present the
two most relevant. The first is based on the usual EFT
policy. At each step, the schedulable task with the
higher rank is selected and every possible assignment to
each processor is simulated. For each assignment, the
aggregate criterion defined in Section 4.1 is computed
and the final assignment is the one minimizing this cri-
terion. This first heuristic scheme is called: HEFT with
uncertainty level. According to how is performed the
makespan distribution evaluation we have two version
of this heuristic: Hul MC when we use the Monte Carlo
method and Hul when we use the same approximation
scheme as for the MOEA.

The second is based on the observation that if a
given assignment reduces (by the non-monotonicity
property) significantly the standard deviation of the

4

end time on one processor, it should be preferred to
an assignment that has the lowest standard deviation.
Thus, it leads us to compute the overall maximum of
every processor end time for each possible assignment
and to apply the same minimization selection than be-
fore (by aggregating the mean and standard deviation
of this overall maximum). We call it Hulm (HEFT with
uncertainty level and maximum). Here we do not use
the Monte Carlo method to evaluate the makespan dis-
tribution because we want this heuristic to be as fast
as possible.

5 Experiment

5.1 Testbed

The task graphs generation, the heterogeneous plat-
form, the stochastic simulation and the MOEA require
each a set of parameters. For the two first objects,
we use the coefficient of variation [1] to model hetero-
geneity of the task graph costs and platform resources.
This coefficient is the ratio between the mean and the
standard deviation of a given value (following it-self
a Gamma distribution with the corresponding param-
eters). Each parameter susceptible to change comes
with a coefficient of variation (denoted by the prefix
“V ”). In Table 1, each value in bracket correspond
to a single experiment while the values outside are the
default ones, leading thus to 150 different experiment
scenarios.

Only non-obvious parameters are described. Task
graphs are generated from the Strassen algorithm de-
scription and randomly in two ways accordingly to [12],
namely samepred and layrpred. Some of the parame-
ters are ignored for Strassen graphs: the communica-
tion cost (it is already induced by the number of tasks
and by the execution cost), V Cost (the coefficient of
variation associated with these 2 costs is zero) and the
average number of edges per node. Besides, the num-
bers of tasks are instead: 23, 163 and 1143.

The distributions of the costs in the task graphs fol-
low either a Beta distribution with parameters α = 2
and β = 5 (see [4] for a justification) or an exponential
or a normal one. The uncertainty level (UL) is the ra-
tio between the maximum and the minimum of a RV
(or between the 0.999-quantile and the 0.001-quantile
when the previous values are inexistent). Lastly, we
have to define the number of MC simulations required
to achieve a meaningful precision. If we assume that
the makespan distribution is normal, the theory of
statistics says that 20,000 MC simulations are needed
in order to have less than 5% of precision with a con-
fidence level of 99% for both criteria (750,000 simula-

Parameter default { experiment }
Task graph
GraphType samepred layrpred strassen
TaskNumber 1000 { 10 100 1000 }
SeedApp 0 { 1 2 3 4 5 6 7 8 9 }
ExeCost (FLOP) 100 M { 10 M 1G }
CommCost (B) 100 k { 10 k 1 M }
V Cost 0.5 { 0.001 0.1 0.3 1 2 }
Avg Edge/Node 3. { 1. 5. }
Distribution BETA { EXP NORMAL }
UL 1.1 { 1.0001 1.2 1.5 2 3 5 }
V UL 0.3 { 0.001 0.1 0.5 1 2 }
Platform
ProcessorNumber 50 { 25 100 }
SeedPlat 0 { 1 2 }
MachPower (FLOPS) 2.5G
LinkLatency (ms) 0.1
V Plat 0.5 { 0.001 0.1 0.3 1 2 }
LinkBandwidth (B/s) 50 M
V LinkBandwidth 1 { 0.001 0.1 0.3 0.5 2 }

Table 1. Task graph and platform parameters

tions would be necessary to have a precision less than
1%, which is too much time consuming).

Concerning the MOEA setup, we consider popula-
tions of 200 chromosomes over 1,000 generations. The
crossover and mutation probabilities are respectively
0.25 and 0.35. For Hul and Hulm heuristics, we vary
the parameter a from 0 to 1 by step of 0.005. For
Hul MC, the step size is 0.05.

5.2 Search space

In a first attempt to study the problem specificity,
we characterize the search space by generating 5,000
random schedules (denoted by rand in the following)
and extreme schedules present on the border fronts de-
noted by SW, SE and NW (obtained with the MOEA,
when the objectives are alternatively maximized and
minimized). These 3 last metaheuristics are named af-
ter the intercardinal directions (NW (North West) con-
sists in minimizing the average makespan while maxi-
mizing the standard deviation). SW is thus designed
to find optimal solutions for both criteria. Figure 1
depicts the search space of one experiment scenario.

An immediate observation is the apparent correla-
tion between both criteria (even the SE and the NW
sets follow a linear pattern). Table 2 summarize the
correlation coefficients over every experiment scenario
(a value close to 1 implies a high linear relationship be-
tween the criteria) for the rand schedules. Tukey’s five

5

0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Search space

Mean

St
an

da
rd

 d
ev

ia
tio

n

● SW
SE
NW
rand

●●

Figure 1. Mean vs. std. dev. of the
makespan of different schedules in random
and border cases, with a layrpred graph and
TaskNumber = 1000

number summary corresponds to minimum, the first
quartile, the median, the last quartile and the max-
imum of the set of measures. We see that 25% of
the correlation coefficients of Strassen graphs are lower
than 0.78 and 75% are higher. We observe that sched-
ules for Strassen graphs have highly correlated means
and standard deviations.

Graph Min 25% Med 75% Max
STRASSEN 0.26 0.78 0.81 0.81 0.91
LAYRPRED 0.20 0.49 0.57 0.73 0.80
SAMEPRED 0.095 0.31 0.40 0.76 0.81

Table 2. Tukey’s five number summary of cor-
relation coefficients by graph kind

It is also worth noting that the SW front is almost
always isolated from other regions and has a limited
spread. Pareto-optimal solutions are hence quite close
in regards to the global search space. When V UL >
0.3, correlations are however the worst and the SW
fronts are larger. Minimizing the average makespan
will therefore not necessarily induce good robustness
when V UL takes high values.

5.3 Normality test

We conduct normality tests on our schedules to val-
idate the normality assumption we have done at sev-
eral occasions (in the approximation scheme, for the
confidence intervals and for the reduction of the ro-
bustness metrics to the standard deviation). We have
selected the Anderson-Darling (AD) test, which is one
of the best EDF omnibus tests for normality. The re-
turned statistic corresponds more or less to the distance
with a normal. Half of the schedules have a statis-
tic lower than 31.6 (the same as a Student t distribu-
tion with 8 degrees of freedom, which is visually really
close to a normal) and 84% of these are more closer
to a normal than a Weibull with parameter λ = 1 and
k = 2 (Weibull are considered similar to normal for
k = 3.4). Therefore, it allows us to consider distribu-
tions as Gaussian in most cases.

Although, it is hard to draw any general trend in
function of the kind of graph or region in the search
space, we notice that Strassen graphs, SE and rand
schedules give the best normality results.

5.4 Average quality

The purpose of this section is to assess the quality of
the schedules generated by the strategies presented in
Section 3 and 4 in term of robustness and average per-
formance. Figure 2 is a representative example regard-
ing the position of the approximation sets (or Pareto
fronts) of each strategy. Error bars denote the confi-
dence intervals of each schedule evaluation. We also
compute the binary ε-indicator [16] for each pair of
heuristics (in Table 3). The value Iε(A,B) corresponds
to the ratio between a chosen solution of A and one of
B for a selected criterion. It is roughly related to the
relative distance between the two Pareto fronts and if
we have Iε(A,B) ≤ 1 and Iε(B,A) > 1, then the ap-
proximation set A is better than B. In other cases, the
two fronts are incomparable.

B\A Hul Hulm Hul MC SW
Hul 1.00 1.18 1.01 1.00

Hulm 0.90 1.00 0.87 0.90
Hul MC 1.04 1.20 1.00 1.04

SW 1.04 1.20 1.02 1.00

Table 3. Comparison of the Pareto front: the
binary ε-indicator values Iε(A,B) for all pairs
of strategies

It is clear in this example that Hulm performs the

6

1.05 1.10 1.15 1.20 1.25 1.30 1.35

0.
00

24
0.

00
26

0.
00

28
0.

00
30

0.
00

32
0.

00
34

Pareto region

Mean

St
an

da
rd

 d
ev

ia
tio

n

● Hul
Hulm
Hul_MC
SW

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2. Mean vs. std. dev. of the makespan
of different schedules in the Pareto region,
with a layrpred graph and V Cost = 1

worst and SW is better than Hul. Iε(SW,Hul MC) >
Iε(Hul MC,SW) does not necessary mean that Hul MC
is better than the MOEA. It can be explained by the
fact that the indicator is a ratio between either 2 means
or between 2 standard deviations. Since this last crite-
ria varies relatively the most, the presence of more ro-
bust solutions will have more impact on the ε-indicator.

Hul

Hul

0.6 1.0 1.4

● ● ● ●

Hulm

● ●●● ●●●●●●●●●●●●● ●●●●●

Hul_MC

0.6 1.0 1.4

●●● ●● ● ●●●●●● ● ●●●

SW

●● ●●●● ●● ●●● ●● ● ●● ●● ●●● ●●Hulm ●●

● ● ● ●Hul_MC ● ● ● ●

●● ● ●● ●●● ● ●●●SW ●

0.6 1.0 1.4

●●●●●● ●●● ●●● ●●

0.6 1.0 1.4

Figure 3. Comparison of the Pareto fronts:
boxplot of the indicators over every experi-
ment

Since the ε-indicator is a ratio, it allows doing com-
parison on every experiment scenario. Figure 3 repre-
sents the summary of every computed indicator in the
form of boxplots. Boxplots allow to represent a five

number summary of a given set (in this case, this is
the 5th percentile, the first quartile, the median, the
last quartile and the 95th percentile) and the outliers
that exceed these values. For example, on the line
Hulm and column SW, these 5 values are respectively
0.61, 0.83, 0.94, 1 and 1.21. We show that the previ-
ous remarks are general, that is that Hulm is the worst
heuristics (despite being the most sophisticated) and
that the MOEA, Hul and Hul MC are mostly incom-
parable. Although it does not appear on this figure, the
MOEA systematically outperforms other heuristics in
term of average makespan.

5.5 Computation time

We realize the average of every heuristic over 5 runs
with random graphs (Strassen graphs having different
number of tasks). These measures are represented on
Table 4. The second time includes the MC evaluation
of the schedules (except for Hul MC because it is al-
ready included and SW because it is negligible).

Task number 10 100 1000
Hul 0.4”/1” 19”/1.2’ 5.7’/37.6’

Hulm 0.5”/1” 2’/4.6’ 1h33’/2h5’
Hul MC 1.1’ 19.6’ 3h24’

SW 55.8’ 1h30’ 6h44’

Table 4. Execution time of every strategy

It would have been possible to reduce the number of
MC simulations in order to have similar execution time
for Hul and Hul MC. However, with 600 simulations,
the standard deviation precision is about 25% which is
quite high. Hence, Hul MC is relevant only with high
number of simulations.

5.6 MOEA evolution

Figure 4 illustrates the evolution of both criteria in
function of the time taken by the MOEA when MC
evaluations are used. The evolution of the standard
deviation is less stable than with the average, which
could be caused by a greater difficulty to generate ro-
bust schedules than efficient ones.

6 Conclusion

In this article we have studied the problem of max-
imizing the robustness and minimizing the execution
time of an application modeled by a stochastic task
graph. This is a very difficult problem. Minimizing
the makespan is an NP-hard problem while computing

7

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900
 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

M
e

a
n

S
ta

n
d
a
rd

 d
e
v
ia

to
n

Time (hour)

Mean
Standard deviaton

Figure 4. Evolution of the MOEA for both cri-
teria with MC simulations

the metrics requires solving a #P-complete problem
which is very time-consuming.

In order to tackle the problem of trade-off between
computation time of the solution and the quality of
the solution, we have proposed different strategies.
The slowest strategy is our evolutionary algorithm.
The proposed Hul MC (an extension of the makespan-
centric heuristic HEFT) is faster and but provides
worse makespan solution than our MOEA. Hul and
Hulm are even faster heuristics but give even worse re-
sults for both criteria. Concerning our multi-objective
evolutionary algorithm, we have given theoretical ele-
ments in order to prove its convergence by extending
previous results on the global nature of the mutation
operator.

All these strategies are also able to give a Pareto
front of the solution. Therefore we are able to help the
user in choosing another trade-off between makespan
and robustness.

It is also important to remark that our method can
be extended to other makespan-centric heuristics (BIL,
PCT, HBMCT, CC, ILHA). Evaluation of these ex-
tensions is left to future work. We also need a bet-
ter evaluation mechanism for our MOEA in order to
systematically outperform Hul MC for the robustness.
This requires either to better take into consideration
the approximation of the current fitness function or to
develop more precise evaluation methods.

References

[1] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen,
and S. Ali. Representing Task and Machine Het-

erogeneities for Heterogeneous Computing Systems.
Tamkang Journal of Science and Engineering, Special
50th Anniversary Issue, 3(3):195–207, Nov. 2000.

[2] T. Bäck. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming,
genetic algorithms. Oxford University Press, Oxford,
UK, 1996.

[3] S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A
Framework for the Reusable Design of Parallel and
Distributed Metaheuristics. Journal of Heuristics,
10(3):357–380, 2004.

[4] L.-C. Canon and E. Jeannot. A Comparison of Ro-
bustness Metrics for Scheduling DAGs on Hetero-
geneous Systems. In HeteroPar’07, pages 568–567,
Austin, Texas, USA, Sept. 2007.

[5] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan.
A Fast Elitist Non-Dominated Sorting Genetic Algo-
rithm for Multi-Objective Optimization: NSGA-II. In
Parallel Problem Solving from Nature VI Conference,
pages 849–858, Paris, France, 2000.

[6] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in
Parallel and Distributed Systems. Prentice Hall, 1994.

[7] S. Felsner and K. Reuter. The Linear Extension Di-
ameter of a Poset. SIAM Journal on Discrete Mathe-
matics, 12(3):360–373, 1999.

[8] J. N. Hagstrom. Computational complexity of PERT
problems. Networks, 18(2):139–147, 1998.

[9] J. Y.-T. Leung, editor. Handbook of Scheduling. Chap-
man & Hall/CCR, 2004.

[10] G. Rudolph. Convergence of Evolutionary Algorithms
in General Search Spaces. In International Conference
on Evolutionary Computation, pages 50–54, Nagoya,
Japan, May 1996.

[11] G. Rudolph and A. Agapie. Convergence Properties
of Some Multi-Objective Evolutionary Algorithms. In
Congress on Evolutionary Computation, pages 1010–
1016, La Jolla, California, USA, July 2000.

[12] T. Tobita and H. Kasahara. A standard task graph
set for fair evaluation of multiprocessor scheduling al-
gorithms. Journal of Scheduling, 5(5):379–394, 2002.

[13] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing. Transactions on Parallel
and Distributed Systems, 13(3):260–274, Mar. 2002.

[14] L. Wang, H. J. Siegel, V. R. Roychowdhury, and
A. A. Maciejewski. Task Matching and Scheduling
in Heterogeneous Computing Environments Using a
Genetic-Algorithm-Based Approach. Journal of Paral-
lel and Distributed Computing, 47(1):8–22, Nov. 1997.

[15] E. Zitzler and S. Künzli. Indicator-Based Selection
in Multiobjective Search. In Conference on Parallel
Problem Solving from Nature (PPSN VIII), pages 832–
842. Springer, 2004.

[16] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fon-
seca, and V. G. da Fonseca. Performance Assessment
of Multiobjective Optimizers: An Analysis and Re-
view. IEEE Transactions on Evolutionary Computa-
tion, 7(2):117–132, Apr. 2003.

8

