
C H A P T E R

2

APPROXIMATION ALGORITHMS

FOR BIN PACKING: A SURVEY

E. G. Co�man, Jr. M. R. Garey D. S. Johnson

The classical one-dimensional bin packing problem has long

served as a proving ground for new approaches to the analysis

of approximation algorithms. In the early 1970's it was one of

the �rst combinatorial optimization problems for which the idea

of worst-case performance guarantees was investigated. It was

also in this domain that the idea of proving lower bounds on the

performance of online algorithms was �rst developed, and it is

here that the probabilistic analysis of approximation algorithms

has truly
owered. The chapter surveys the literature on worst-

case and average-case behavior of approximation algorithms for

one-dimensional bin packing, using each type of analysis to put

the other in perspective.

INTRODUCTION

2.1

In the classical one-dimensional bin packing problem, we are given a sequence

L = (a

1

;a

2

; :::;a

n

) of items, each with a size s(a

i

) 2 (0;1] and are asked to pack

them into a minimum number of unit-capacity bins (i.e., partition them into a

minimum number m of subsets B

1

;B

2

; :::;B

m

such that

P

a

i

2B

j

s(a

i

) � 1, 1 �

j �m).

This NP-hard problem has many potential real-world applications, from

loading trucks subject to weight limitations to packing television commercials

into station breaks [Bro71] to stock-cutting problems, where the bins correspond

to standard lengths of some material, say cable, lumber, or paper, from which

1

2 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

items must be cut.

Bin packing has also been of fundamental theoretical signi�cance, serving

as an early proving ground for many of the classical approaches to analyzing

the performance of approximation algorithms. These include determining worst-

case performance ratios (currently called competitive ratios) [Ull71] [JDU74],

identifying lower bounds on the best possible online performance [Yao80], and

analyzing average-case behavior [Sha77] [Lue82].

In this chapter, we survey the literature that has grown from these early

papers. We concentrate on results for the basic problem de�ned above. A subse-

quent survey [CGJ97] will cover the wide variety of variants that it has spawned,

including generalizations to higher dimensions, generalizations to include other

constraints beyond bin capacity, and variants with di�erent optimization criteria.

The chapter can be viewed as a partial successor to two earlier surveys by the

same authors, written in 1981 [GJ81] and 1984 [CGJ84]. As evidence of growth

in the �eld, the number of references doubled between the �rst and second ver-

sions, and although this survey is restricted to the classical one-dimensional case,

it has more references than [CGJ84] which covered the basic problem and all its

variants.

We divide our coverage into two parts. The �rst (Section 2.2) covers worst-

case results, while the second (Section 2.3) covers the average case. In both

sections we consider the distinction between online and o�ine algorithms, where

in the former, items arrive in some given order and must be assigned to bins as

they arrive, without knowledge of the items yet to arrive. A brief �nal section

(Section 2.4) o�ers general conclusions, and sketches the variety of variants of

the basic problem that have been studied.

WORST-CASE ANALYSIS

2.2

In the case of bin packing, the standard metric for worst-case performance is

the asymptotic worst-case performance ratio. For a given list L and algorithm

A, let A(L) be the number of bins used when algorithm A is applied to list

L, let OPT(L) denote the optimum number of bins for a packing of L, and

let R

A

(L) � A(L)=OPT(L). The absolute worst-case performance ratio R

A

for

algorithm A is de�ned to be

R

A

� inffr� 1 :R

A

(L) � r for all lists Lg

The asymptotic worst-case performance ratio R

1

A

is de�ned to be

R

1

A

� inffr � 1 : for some N > 0;R

A

(L) � r for all L with OPT(L) �Ng

If in addition one restricts lists to those for which all items have sizes at

most �, one can analogously de�ne the bounded-size performance ratios, R

A

(�)

and R

1

A

(�). Note that R

1

A

(1) =R

1

A

.

2.2 WORST-CASE ANALYSIS 3

The remainder of this section is organized as follows. Sections 2.2.1 through

2.2.5 are all concerned with various types of online bin packing algorithms. Al-

though for the general bin packing problem we assume that the entire list and its

items' sizes are known before the packing begins, in many applications this may

not be the case. A common situation is where the items arrive in some order,

and must be assigned to a bin as soon as they arrive, without knowledge of the

remaining items. This models situations in which items are physical objects, and

there is no intermediate space to store them before placing them in bins. A bin

packing algorithm that can construct its packings under this regime is called an

online algorithm.

We begin in Sections 2.2.1 and 2.2.2 by introducing perhaps the two simplest

and best known online algorithms, Next Fit and First Fit. Section 2.2.3 then

considers generalizations and variations on First Fit, including Best Fit and the

Almost Any Fit algorithms, all of which share with First Fit an asymptotic worst-

case performance ratio of 1.7. Sections 2.2.4 and 2.2.5 examine the question of

what is the best possible worst-case performance under the online constraint.

Section 2.2.4 does this �rst in the context of a second type of online con-

straint, that of bounded space. Now not only do the items arrive in an online

fashion, but only a �xed number of partially-�lled bins may be open to further

items at any point in the packing process, and once a bin is closed it must remain

so. This models situations in which bins are being exported once they are packed,

and there is limited storage space for partially-�lled ones. We present bounded-

space online algorithms that perform as well as, and even slightly better than

First Fit, but also note that the best possible behavior under this constraint is

only marginally better than that obtained by First Fit.

Section 2.2.5 then considers arbitrary online algorithms, and whether more

substantial improvements over First Fit can be obtained when the bounded-

space constraint is removed. There is a limit on how much improvement can be

obtained, as it can be shown that any online algorithm A must have R

1

A

> � for

a constant � > 1:5. We discuss the best current upper and lower bounds known

on �, and the algorithms on which the upper bounds depend (algorithms whose

main motivation is this theoretical question, rather than potential applications

in practice, where they are unlikely to perform as well as some of their simpler

competitors).

Sections 2.2.6 through 2.2.9 cover o�ine algorithms. Section 2.2.6 covers

what might be called semi-online algorithms, where the only relaxation of the

online constraint is that each assignment of an item to a bin may be accom-

panied by a limited amount rearrangement of the other items in the current

packing. Section 2.2.7 then covers what are perhaps the most famous of the of-

ine algorithms, First and Best Fit Decreasing, with asymptotic worst-case ratios

of 11=9 = 1:222::: Section 2.2.8 covers other simple o�ine algorithms, including

both ones that give up a little in worst-case performance for the sake of
exibility,

simplicity, or speed, and ones that outperform First Fit Decreasing at a minor

cost in increased algorithmic complexity. The best of these \simple" algorithms

still has R

1

A

> 1:15, but more complicated approximation schemes exist with

asymptotic worst-case performance ratios approaching 1, and indeed there exist

impractical but still polynomial-time bin packing algorithms with R

1

A

(but not

4 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

L = (1

2
, 1

2N
, 1

2
, 1

2N
, . . . , 1

2
, 1

2N)

 1
2

 1
2N

 1
2

 1
2

 N bins 2N bins 1 bin

OPT(L) = N+1 NF(L) = 2N

FIGURE 2.1

Worst-case examples for Next Fit.

R

A

) equal to 1.0 exactly. These algorithms are discussed in Section 2.2.9.

Our discussion of worst-case results for the classical one-dimensional bin

packing problem concludes in Section 2.2.10 by examining other questions that

have been asked about the classic algorithms, besides the questions about R

1

A

and R

1

A

(�) on which we concentrate in Sections 2.2.1 through 2.2.9. Included are

results about absolute worst-case performance ratios and bounds on anomalies,

such as the situation in which deleting an item from a list causes the algorithm

to use more bins.

2.2.1 NEXT FIT

Perhaps the simplest algorithm for the classical one-dimensional bin packing

problem is Next Fit (NF), apparently �rst described under this name in [Joh73].

This is a bounded-space online algorithm in which the only partially-�lled bin

that is open is the most recent one to be started, i.e., the nonempty bin B

j

in the

current packing with the largest index j. (In this and subsequent discussions, we

assume that bins are indexed B

1

;B

2

; : : : in the order in which they are created,

i.e., receive their �rst items.) Let level(B) be the sum of the sizes of the items in

bin B. In packing item a

i

, Next Fit tests whether s(a

i

) � 1� level(B

j

). If so, it

places a

i

in bin B

j

, leaving that bin open. Otherwise, it closes bin B

j

and places

a

i

in a new bin B

j+1

, which now becomes the open bin.

This algorithm can be implemented to run in linear time, and it is not di�-

cult to show that for all lists L, NF(L)� 2 �OPT(L)�1. Furthermore, there exist

lists L with arbitrarily large values of OPT(L) such that NF(L) = 2 �OPT(L)�1,

as illustrated in Figure 2.1. Thus we conclude that R

1

NF

= 2.

Note that the lists in the �gure contain no items with s(a) > 1=2, so we

can also conclude that R

1

NF

(�) = 2 for all � � 1=2. As � continues to decrease

beyond this point, R

1

NF

(�) decreases in a continuous fashion, with the speci�c

2.2 WORST-CASE ANALYSIS 5

result beingR

1

NF

(�) = 1=(1��) for �� 1=2 [Joh73].

2.2.2 FIRST FIT

As the worst-case examples of Figure 2.1 illustrate, Next Fit can be made to

su�er because of the bounded-space constraint inherent in its de�nition. In Sec-

tion 2.2.5, we shall consider the e�ect of partially relaxing this constraint to

allow more than one but still a bounded number of open bins, as in the Next-

K Fit algorithms of [Joh73]. For now we shall go directly to the historically

more important First Fit algorithm, in which the restriction is removed entirely

and we consider all partially-�lled bins as possible destinations for the item to be

packed. The particular rule followed is implicit in the algorithm's name: we place

an item in the �rst (lowest indexed) bin into which it will �t, i.e., if there is any

partially-�lled binB

j

with level(B

j

)+s(a

i

)� 1, we place a

i

in the lowest-indexed

bin having this property. Otherwise, we start a new bin with a

i

as its �rst item.

Note that in removing the bounded-space restriction, we forfeit the bene�ts of a

linear running time enjoyed by Next Fit. We don't have to settle for the naive

quadratic-time implementation, however, as it is possible to construct the First

Fit packing in time O(n logn) using an appropriate data structure [Joh73]. (This

is the best possible for a comparison-based implementation, since one can use

the First Fit packing rule to sort [Joh73].)

First Fit manages to take good advantage of the wider range of destinations

it considers, as the following result shows.

THEOREM 2.1 [GGJ76]. For all lists L, FF(L) � d(17=10) �OPT(L)e.

This is a slight tightening of what was essentially the �rst nontrivial bin packing

result, proved by Ullman in 1971 [Ull71] [GGU71] with the slightly larger upper

bound of (17=10) �OPT(L) + 3. The bound's additive term was reduced to 2

in the journal version of this paper [JDU74], and to 1 or less by the result of

[GGJ76] highlighted above, although these improvements only re
ected minor

changes in the original proof. That proof has served as a model for many of the

results that followed, so let us say a little bit about it.

The key idea is to use a weighting function W : L!<, and to relate both

A(L) and OPT(L) to W (L)�

P

n

i=1

W (a

i

) in such a way that the desired bound

is implied. For Theorem 2.1, a static function su�ces, i.e., one under which an

item's weight depends only on its size. The version of W used in [GGJ76] is

illustrated in Figure 2.2. Given this function one can use case analyses to prove

two key lemmas: (i) If A is a set of items with s(A) �

P

a2A

s(a) � 1, then

w(A) �

P

a2A

W (a) � 17=10, which implies OPT(L) � (17=10) �W (L), and (ii)

W (L) > FF(L)�1. The theorem follows.

The upper bound of Theorem 2.1 is asymptotically tight, in that for arbi-

trarily large values of N one can construct lists L

N

with FF(L

N

) > (17=10) �

OPT(L

N

)�2 [JDU74]. These lists are fairly intricate, but simple examples that

are almost as bad are readily constructed. Figure 2.3 illustrates a family of lists

6 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

s(a)

W(a)

1/6 1/3 1/2 1

8/5

1

7/10

1/2

1/5

FIGURE 2.2

Weighting function W used in proof of Theorem 2.1.

 1
7

+ ε

 1
3

+ ε

 1
3

+ ε

 1
3

+ ε

 1
2

+ ε

6N bins

 1
7

+ ε

 1
7

+ ε

 1
7

+ ε

 1
7

+ ε

 1
7

+ ε

 1
7

+ ε

N bins 3N bins

 1
2

+ ε

6N bins

OPT(L) = 6N FF(L) = 10N

FIGURE 2.3

Bad lists for First Fit.

for which FF(L)=OPT(L) = 5=3= 1:666:::when the items are sorted in increasing

order by size.

Note that still worse examples can be devised using the idea behind those

in the �gure. For instance, assuming � is small enough, one could include an

additional item of size (1=43)+ � in each bin of the optimal packing. Placing

these at the beginning of the list will force First Fit to put them in an extra

N=42 bins (assuming N is divisible by 42). Generalizing this idea, let t

1

= 2 and

t

i+1

= (t

i

)(t

i

�1)+1, i > 1. Then for any k <1 we can construct examples in

which the optimal bins each contain k items, one each of size (1=t

i

)+�, 1� i� k.

When First Fit is given these items sorted in order of non-decreasing size, it

will require roughly

P

k

i=1

1=(t

i

� 1) bins. The best we can conclude from this,

however, is that

2.2 WORST-CASE ANALYSIS 7

1

2.0

1.7

1.5

1.0
 1

2
 1

3
 1

4
 1

5
 1

6
 1

7

R (α)FF
∞

R (α)NF
∞

FIGURE 2.4

Comparison of R

1

NF

(�) and R

1

FF

(�) as functions of �.

R

1

FF

� T

1

�

1

X

i=1

1

t

i

�1

= 1+

1

2

+

1

6

+

1

42

+

1

1805

+ � � � � 1:69103:::

Although this simple scheme for worst case examples is thus insu�cient to char-

acterize the worst-case behavior of First Fit, we shall see below that there are

other algorithms for which it and the constant T

1

are more relevant. Moreover,

the scheme is correct in suggesting that for First Fit to behave at its worst,

the instance to which it is applied must contain relatively large items. As with

Next Fit, First Fit's worst-case behavior improves dramatically as the size of the

largest item declines. Moreover, it maintains its advantage over Next Fit in such

situations, although the size of its advantage depends on the precise value of �

and shrinks with the size of the largest item.

THEOREM 2.2 [Joh73][JDU74]. Let m 2 Z be such that

1

m+1

< ��

1

m

.

A. For m = 1, R

1

FF

(�) = 17=10

B. For m � 2, R

1

FF

(�) = 1+1=m.

Figure 2.4 plots both R

1

NF

(�) and R

1

FF

(�) as functions of �. Note that al-

though the value for NF approaches that for FF each time � approaches the

reciprocal 1=t of an integer from above, it never catches it, as R

1

FF

(�) is a step

function that changes value at precisely those points.

2.2.3 BEST FIT, WORST FIT, AND ALMOST ANY FIT ALGORITHMS

How crucial is the packing rule used by First Fit to the improved worst-case

behavior outlined in the previous section? It turns out that other packing rules

8 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

can do essentially as well. The most famous of these rules is the one used by the

Best Fit (BF) algorithm. In this packing rule, which like the First Fit packing

rule can be implemented to run in time O(n logn), item a

i

is packed in the

partially-�lled bin B

j

with the highest level level(B

j

) � 1� s(a

i

), ties broken

in favor of lower index. Best and First Fit can give strikingly di�erent packings

for individual lists. Examples are given in [Joh73] of lists L with arbitrarily

large values of OPT(L) both such that BF(L) = (4=3) �FF(L) and such that

FF(L) = (3=2) �BF(L). Nevertheless, all the results mentioned in the previous

section for R

1

FF

(�) hold for R

1

BF

(�) as well [Joh73] [Joh74] [JDU74].

There are plausible packing rules for which these results do not hold, how-

ever. Consider the algorithm Worst Fit (WF), in which each item a

i

is packed

in the partially-�lled bin with the lowest level (ties broken by index), assuming

it �ts, and otherwise starts a new bin. It is not di�cult to see that R

1

WF

(�) =

R

1

NF

(�), 0< �� 1, so that in a worst-case sense, Worst Fit gets no value out of

the fact that it never closes a bin.

Surprisingly, it takes only a slight modi�cation to this algorithm to improve

it dramatically. Consider the close variant Almost Worst Fit (AWF), in which

a

i

is placed in the partially-�lled bin with the second lowest level (ties broken

by index) unless there is only one bin into which it �ts, in which case it goes

in that bin. If a

i

�ts in no partially-�lled bin, it of course starts a new bin. As

shown in [Joh73] [Joh74], the worst-case behavior of Almost Worst Fit is just

as good as that for First and Best Fit. Again, however, there can be signi�cant

di�erences on individual lists. Almost Worst Fit can be just as far o� from Best

Fit (in either direction) as was First Fit, and examples exist both such that

AWF(L) = (5=4) �FF(L) and such that FF(L) = (9=8) �AWF(L) [Joh73].

More generally, let us say that an online bin packing algorithm is an Any

Fit (AF) algorithm if it never starts a new bin unless the item to be packed

does not �t in any partially-�lled bin in the current packing, and that it is in

addition an Almost Any Fit (AAF) algorithm if it never packs an item into a

partially-�lled bin with the lowest level unless there is more than one such bin

or that bin is the only one that has enough room. Then we have the following

result.

THEOREM 2.3 [Joh73][Joh74]. For all �, 0< �� 1,

A. If A is an AF algorithm, then R

1

FF

(�) �R

1

A

(�)� R

1

NF

(�), and

B. If A is an AAF algorithm, then R

1

A

(�) = R

1

FF

(�).

Thus, if we want to obtain better worst-case behavior than that of First Fit,

we shall either have to abandon the Any Fit constraint or the online restriction

itself. In the next two sections we shall discuss what can be done while still

obeying the online restriction.

2.2 WORST-CASE ANALYSIS 9

2.2.4 BOUNDED-SPACE ONLINE ALGORITHMS

One disadvantage of the Any Fit constraint beside that implied by Theorem

2.3 is that under it no bin can ever be permanently closed to further items.

Consequently no Any Fit algorithm can be used in situations where the bounded-

space constraint described at the beginning of Section 2.2 holds, i.e., where at

most K bins can remain open at any given time for some �xed K. In this section

we consider what can be accomplished when space is bounded.

We have already seen one bounded-space online algorithm, Next Fit, and

observed that it paid a substantial worst-case performance penalty in compar-

ison to the unbounded-space algorithms First and Best Fit. Such a penalty is

unavoidable if the bound K on the number of open bins is 1. When k > 1, four

natural hybrids between Next Fit and First and Best Fit suggest themselves.

Note that in constructing a bounded-space online algorithm we need to specify

a closing rule in addition to a packing rule. First and Best Fit each suggest one

rule of each type.

Assuming some open bin has room for the current item b, the First Fit

packing rule places b in the lowest indexed open bin that has room for it and the

Best Fit packing rule places b in the highest-level open bin that has room (ties

broken in favor of lowest index). When there are already K open bins and none

of them has room for b, some bin must be closed before a new bin can be opened

to receive b. The First Fit closing rule closes the lowest indexed open bin, and

the Best Fit closing rule closes the fullest open bin (ties broken in favor of lowest

index).

The Next-K Fit algorithm (NF

K

), introduced in [Joh73], combines the First

Fit packing and closing rules. The K-Bounded Best Fit algorithm (BBF

K

), in-

troduced in [CJ91] combines the Best Fit packing and closing rules. The two

remaining hybrids mix Best and First Fit rules and are denoted by ABF

K

and

AFB

K

in [CJ91]. The �rst algorithm, ABF

K

, uses the Best Fit packing rule

and the First Fit closing rule and was analyzed by [Mao93a] under the name

Best-K Fit. The second, AFB

K

, uses the First Fit packing rule and the Best

Fit closing rule. All four algorithms reduce to Next Fit when K = 1, and all

can be implemented to run in linear time for any �xed K, as opposed to the

(n logn) time needed by our implementations of First and Best Fit. The next

theorem summarizes what is known about the asymptotic worst-case ratios for

the algorithms when K � 2.

THEOREM 2.4 [CI89] [Mao93b] [Mao93a] [Zha94] [CJ91]. For K � 2,

A. R

1

NF

K

=R

1

AFB

K

= 1:7+

3

10(K�1)

B. R

1

ABF

K

= 1:7+

3

10K

C. R

1

BBF

K

= 1:7

The lower bound examples for R

1

NF

K

were discovered by Csirik and Imreh [CI89]

and the matching upper bound was proved by Mao [Mao93b], who also proved

the result for R

1

ABF

K

[Mao93a]. The result for R

1

AFB

K

was proved by Zhang

10 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

[Zha94], and that for R

1

BBF

K

was proved by Csirik and Johnson [CJ91]. All the

upper bound proofs rely on weighting function arguments similar to those used

for FF in Theorem 2.1.

The surprise here is the result for BBF

K

, which yields the same performance

guarantee as do First and Best Fit as soon as K � 2, although as might be

expected, the penalty for the space bound approaches 0 for the other three

algorithms as K!1. One could not have expected any of these algorithms to

do better than First and Best Fit, for although they do not obey the Any Fit

constraint, they do obey the bounded-space analog of that constraint, and the

proof of Theorem 2.3 implies that any such algorithm must have R

1

A

� 1:7. If we

are to �nd an algorithm with R

1

A

< 1:7, we will thus have to consider algorithms

that start new bins even when the current item �ts in one of the currently open

bins.

The worst-case examples of Figures 2.1 and 2.3 suggest the following se-

ries of bounded-space algorithms, introduced by Lee and Lee in [LL85] as the

Harmonic

K

algorithms (H

K

). Divide the unit interval into K subintervals I

k

,

1 � k � K, where I

k

= (1=(k+1);1=k], 1 � k < K, and I

K

= (0;1=K]. An item

a will be identi�ed as having type k if s(a) 2 I

k

. Similarly, bins will be divided

into K types, with bins of type k only receiving items of type k, and at most

one bin of each type open at any time. Each item a is then packed as follows:

Let k be the type of item a. If there is an open bin of type k and that bin has

room for a, then place a in that bin. Otherwise, close the open bin of type k if

one exists, and place a in a new (open) bin of type k. For K su�ciently large,

these algorithms �nally break the 1.7 barrier, with a limiting value that equals

the constant that we encountered in Section 2.2.2.

THEOREM 2.5 [LL85]. lim

K!1

R

1

H

K

= T

1

= 1:69103::

Indeed, as soon as K � 7, we have R

1

H

K

� 1:695. One can actually get per-

formance guarantees less than 1.7 for K as small as 6, but this requires a variant

on the original Harmonic scheme introduced by Woeginger [Woe93]. Woeginger's

algorithms, which he calls the Simpli�ed Harmonic algorithms (SH

K

), rely on

a more complicated interval structure, derived from the sequence of t

i

's de�ned

in Section 2.2.2. Table 2.1 summarizes what is known about the values of R

1

A

as a function of K for the various bounded-space algorithms discussed in this

section. Tight bounds for H

K

are not known for all values of K, so the table

gives the best upper and lower bounds currently known. In this table, the upper

bounds for all values of K except 4 and 5 are from [LL85]. The upper bounds

for K 2 f4;5g are due to van Vliet [Vli95] and are tight. The lower bounds for

K � 4 are due independently to [CJ92] and to [Vli95] [Vli96].

Note that BBF

K

provides the best guarantee for K 2 f2;3;4g, BBF

K

, H

K

,

and SH

K

are tied for the best when K = 5, and thereafter SH

K

is the best.

Asymptotically, it uses only O(loglogK) as many open bins to obtain the same

performance guarantee as H

K

, although its margin over H

K

for particular values

of K is never more than about 0.3%, and rapidly declines to 0 as K !1.

Asymptotically, both are only about 0.5% better than FF, BF, and BBF

K

. This

2.2 WORST-CASE ANALYSIS 11

K NF

K

ABF

K

BBF

K

H

K

� H

K

� SH

K

2 2.00000 1.85000 1.70000 2.00000 2.00000 2.00000

3 1.85000 1.80000 1.70000 1.75000 1.75000 1.75000

4 1.80000 1.77500 1.70000 1.71429 1.71429 1.72222

5 1.77500 1.76000 1.70000 1.70000 1.70000 1.70000

6 1.76000 1.75000 1.70000 1.70000 1.70000 1.69444

7 1.75000 1.74286 1.70000 1.69444 1.69444 1.69388

8 1.74286 1.73750 1.70000 1.69377 1.69388 1.69106

9 1.73750 1.73333 1.70000 1.69326 1.69345 1.69104

10 1.73333 1.73000 1.70000 1.69287 1.69312 1.69104

1 1.70000 1.70000 1.70000 1.69103 1.69103 1.69103

Table 2.1: Values ofR

1

A

under �xed space bounds, rounded to �ve decimal places.

is not a major advantage, but it is all that is possible for bounded-space online

algorithms in light of the following result of Lee and Lee.

THEOREM 2.6 [LL85]. If A is any bounded-space online bin packing algo-

rithm, then R

1

A

� T

1

= 1:69103::

It should be noted that at present no online bounded-space algorithm A is

know for which R

1

A

= T

1

. The worst-case ratios for the sequences of algorithms

H

K

and SH

K

only approach this value in the limit. If one is willing to consider

bounded-space algorithms that are only semi-online, however, there are algo-

rithms whose worst-case ratios match the limiting value, as has recently been

shown by Galambos and Woeginger [GW93b] and [Gro95]. The relaxation used

by [GW93b] is to allow repacking of the current open bins, i.e., to allow us to

take all the items out of the current open bins and reassign them before pack-

ing the current item. The conclusion of Theorem 2.6 continues to hold even if

we allow repacking [GW93b], but Galambos and Woeginger present an \online

with repacking" algorithm REP

3

that never uses more than three open bins and

yet has R

1

REP

3

= T

1

. Grove [Gro95] independently constructed an algorithm

with the same behavior using an alternative notion he calls lookahead. In such

an algorithm, one is given a �xed warehouse size W , and an item a

i

need not

be packed until one has looked at all items a

i

through a

j

, for j > i such that

P

j

h=i

s(a

h

) �W . Allowing lookahead does not allow us to escape from the con-

straints of Theorem 2.6 either, but if one allows su�ciently large (�xed) values

of K and W , Grove's Warehouse algorithm can again guarantee an asymptotic

worst-case ratio of T

1

.

As remarked above, however, T

1

= 1:691::: is not that great an improvement

over 1.7. If an online algorithm is to improve signi�cantly over the worst-case

behavior of First Fit, it must exploit something stronger than bounded-space

repacking or lookahead, i.e., it must allow for the use of unbounded space. In

light of Theorem 2.3, it must also be prepared to disobey the Any Fit constraint

and start new bins even when the current item will �t in some already-started

bin. We discuss such algorithms in the next section.

12 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

2.2.5 ARBITRARY ONLINE ALGORITHMS

The �rst unbounded-space algorithms to be proposed that did not obey the

Any Fit constraint were the Group-X Fit (GXF) algorithms of Johnson [Joh73]

[Joh74]. One gets di�erent versions of the algorithm depending on the choice of

X, which is an increasing sequence 0 = x

0

< x

1

< ::: < x

p

= 1 of real numbers. At

any given time, a partially-�lled bin with gap g is viewed as having a de facto gap

equal to maxfx

i

� g : 0� i < pg. This in e�ect partitions the bins into p groups.

Items are then packed via Best Fit with respect to the de facto gaps. Note that,

like our bounded-space algorithms, this algorithm can be implemented to run

in linear time for any �xed X. Now, however, the only bins to be e�ectively

closed are those with gaps smaller than x

1

, which hence get de facto gaps of

0. Unfortunately, the main advantage of GXF seems to be its linear running

time, as the algorithm does not avoid the worst-case examples for First Fit

and so has R

1

GXF

> 1:7. Johnson did show, however, that for m = b1=�c � 2,

R

1

GXF

(�) =R

1

FF

(�) whenever f1=(m+1);1g�X, and conjectured that the same

equality held for m= 1 whenever f1=6;1=3;1=2g�X [Joh73].

The �rst online algorithm with R

1

A

< T

1

(and actually the �rst one to beat

First Fit, since it preceded the Harmonic algorithm of [LL85]), was the Re�ned

First Fit (RFF) algorithm of Yao [Yao80]. This algorithm classi�ed items as to

which of the intervals (0;1=3], (1=3;2=5], (2=5;1=2], and (1=2;1] their sizes fell,

and classi�ed bins according to a related scheme. Each item was then packed

into a particular class of bins according to the First Fit rule, with the bin class

being determined by the item class and, in the case of the items with sizes in

(1=3;2=5], the number of such items previously encountered in the list. For this

type of item, one in 6 are treated specially, the idea being to occasionally start a

new bin with an item of this size in hopes of subsequently adding an item of size

greater than 1=2 to that bin. This will allow the algorithm to defeat the worst-

case examples for First Fit (and the Harmonic algorithms), while not opening

the way for an adversary to do too much damage by providing many items with

sizes in (1=3;2=5] but no later items in (1=2;1] that will pair up with them. Yao

showed that R

1

RFF

= 5=3 = 1:666:::

This paper set o� something of a race, which has led to more and more

elaborate variants. The �rst was the Re�ned Harmonic (RH

K

) algorithms of

[LL85], a hybrid of the Harmonic algorithms with Re�ned First Fit. RH

K

uses

the partitioning scheme of HK

20

, with the modi�cation that the two size-intervals

(1=3;1=2] and (1=2;1] are replaced by the four intervals (1=3; y], (y;1=2], (1=2;1�

y], and (1� y;1], where y = 37=96. Packing proceeds much as in a Harmonic

algorithm, except now one attempts to pair items whose sizes are in the �rst of the

new intervals with items whose sizes are in the third new interval, since such pairs

can always �t in the same bin. As in Re�ned First Fit, one must hedge one's bet

when doing this, and here only one in 7 of the items with sizes in the �rst interval

get the special treatment. Lee and Lee showed that R

1

RH

20

� 373=228= 1:6359:::,

with little to be gained by increasing K further.

Next came Ramanan, Brown, Lee, and Lee [RBL89], with what they called

the Modi�ed Harmonic (MH

K

) algorithms, which added the possibility of pack-

2.2 WORST-CASE ANALYSIS 13

ing still smaller items with items of size in (1=2;1=2+y], and a consequently more

complicated algorithmic structure (as well as a di�erent value for y, in this case

y = 265=684). The details are too complex to be gone into here, but Ramanan et

al. were able to show that 1:6156146< R

1

MH

38

� 1:(615)

�

� 1:615615:::. Shortly

after drafts of [RBL89] began to circulate, Hu and Kahng [HK88] used some-

what similar principles to construct an (unnamed) variant for which they claimed

R

1

A

� 1:6067. Ramanan et al. themselves sketched further variants which they

thought might take the asymptotic worst-case ratio down to as little as 1.59, but

proved that the basic approach could never yield R

1

A

< 1:(583)

�

.

The current champion, Richey's Harmonic+1 algorithm [Ric91], uses some-

what di�erent principles, but essentially attains the limit claimed by Ramanan

et al., at least to the �rst three decimal places. Although it runs in linear time

like its predecessors, it is substantially more complicated, with a signi�cantly

more complex interval structure involving over 70 intervals and with a packing

rule that itself depends on an almost full-page table of constants. Richey shows

that for this algorithm, 1:5874� R

1

A

� 1:588720, and that the lower bound will

hold for any variant that takes roughly the same approach.

Whether some other approach might do better remains an open question.

Given the complicated nature of Harmonic+1 and the fact (as we shall see in

Section 2.2.2) that all algorithms that do better than First Fit in the worst case

seem to do much worse in the average case, this is perhaps not an open question

than needs an answer. We can, however, place bounds on how much improvement

might be possible, analogous to the bound on bounded-space online algorithms

of Theorem 2.6.

The �rst such bound was proved by Yao in [Yao80], and actually preceded

the abovementioned bounded space result. Yao showed that no online algorithm

could have R

1

A

< 1:5, using an adversary argument that required only three item

sizes: 1=2+ �, 1=3+ �, and 1=7+ �. Note that these item sizes are simply 1=t

i

+ �

for 1 � i � 3 and the t

i

used in the de�nition of T

1

given in Section 2.2.2.

Shortly thereafter Brown and Liang independently generalized this approach to

use items of size 1=2+ �, 1=3+ �, 1=7+ �, 1=43+ �, and 1=1807+ �, i.e., 1=t

i

+ �

for 1 � i� 5, and proved that no online algorithm could have R

1

A

< 1:536346:::

[Bro79] [Lia80] . A simpli�ed version of this proof has recently been presented

in [GF93]. Because of the rapid growth in the values t

i

, attempts to improve

this bound by allowing the adversary additional item sizes 1=t

i

+ � for i > 5 do

not seem likely to yield much increase in the bound. More careful analysis using

just the values for i � 5 can make a di�erence however, as shown by van Vliet

[Vli95] [Vli96]. Building on an approach �rst proposed by Galambos [Gal86], van

Vliet constructs a linear program whose solution speci�es the best possible way

of exploiting these item sizes, and derives the currently best lower bound known:

THEOREM 2.7 [Vli95][Vli96]. For any online algorithm A, R

1

A

� 1:540.

This sort of lower bound analysis can be extended to questions about R

1

A

(�),

and Table 2.2 summarizes the current best bounds known for �= 1=m, 1�m� 5,

comparing them with the best values known for R

1

A

(�) with A online, with the

limiting value of R

1

H

K

(�) (as K !1), and with R

1

FF

(�). The lower bounds are

14 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

due again to [Vli95] [Vli96], improving on earlier results of [Gal86]. Note that

by the time � = 1=5, even First Fit is providing guarantees within 1% of best

possible.

m Lower Bound Best Known R

1

H

K

(1=m) R

1

FF

(1=m)

1 1.540... 1.588... 1.691... 1.700...

2 1.389... 1.423... 1.423... 1.500...

3 1.291... 1.302... 1.302... 1.333...

4 1.229... 1.234... 1.234... 1.250...

5 1.188... 1.191... 1.191... 1.200...

Table 2.2: Best possible and actual values of R

1

A

(1=m) for online algorithms.

The proofs of the above lower bound results all assume that the online algo-

rithm is deterministic. It appears, however that this is not necessarily a required

assumption. Chandra [Cha92] has shown that even if we allow an online algo-

rithm to base its assignments on random coin
ips, and use the expected length

of the resulting packing as our metric, there still exist lists that yield ratios of

E[A(L)]=OPT(L) approaching 1.536... (Chandra's proof technique seems general

enough to extend as well to the other lower bounds summarized above).

2.2.6 SEMI-ONLINE ALGORITHMS

As we saw at the end of Section 2.2.4 for bounded-space online algorithms, re-

laxing the online restriction slightly by allowing bounded repacking or lookahead

can yield better algorithms. However, whereas in the case of bounded space such

relaxations only allowed us to attain rather than beat the online lower bound,

the situation is quite di�erent in the general online case, at least for su�ciently

powerful notions of bounded repacking.

Note �rst that if no limit on repacking is imposed, then one can do as well

as the best o�ine algorithm, simply by repacking everything according to that

algorithm each time an item arrives. This, however, would multiply the overall

running time by a factor of n, and introduce at least linear-time delays each

time a new item arrives. (By delaying the repackings appropriately, one can

reduce the amortized delay per new item to T (n) logn=n, where T (n) is the

o�ine algorithm's running time, but the worst-case delay would remain T (n)

[IL94].) In applications that still retain something of an online
avor, one would

presumably need stronger restrictions on how much repacking is allowed, for

instance allowing only constant or O(logn) time per item in a worst-case sense.

Even under such restrictions, however, major improvements can be obtained over

the 1.540 lower bound on R

1

A

for pure online algorithms.

The �rst authors to observe this were Gambosi et al. [GPT90]. They designed

two algorithms that beat the bound. The �rst yielded R

1

A

� 1:5 using only

constant time per item. In the worst case
(n) items might have to be moved

2.2 WORST-CASE ANALYSIS 15

while accommodating a single new item, but with the aid of appropriate data

structures Gambosi et al. could treat large collections of small items as a group

and move them all at once in constant time. In a physical bin packing situation,

this might correspond to keeping collections of small items in boxes and moving

entire boxes from one bin to another. In this algorithm, which was based on a

simple classi�cation of items into four types by size, no more than 3 group or

single-item moves are ever required when a new item has to be assigned.

The second algorithm of [GPT90] had six types of items, required �(logn)

time but at most 7 group/item moves per new item, and yielded R

1

A

� 4=3 =

1:333:::. More recently, Ivkovi�c and Lloyd [IL93] have devised an algorithm with

R

1

A

� 5=4 = 1:25, although for this they need as many as O(logn) group/item

movements as well as O(logn) time per new item. They also have signi�cantly

more complicated packing/repacking rules, although part of this is because their

algorithm can also handle the dynamic bin packing problem where items can

depart as well as arrive. (It has the same bound on asymptotic worst-case per-

formance in this more generalized situation.)

This is currently the best worst-case behavior currently known for such semi-

online algorithms. If we want provably better asymptotic worst-case ratios, we

must turn to algorithms that are o�ine and hence have access to all the items

before any of them need to be assigned to bins. The next section covers the

most famous of these, ones that were investigated long before many of the above

questions about the online case were even considered.

2.2.7 FIRST FIT DECREASING AND BEST FIT DECREASING

Looking at the instances in Figure 2.3 that make First Fit misbehave, it is clear

that there are dangers in lists of items sorted by increasing size. Thus a natural

idea for improving on First Fit once the online restriction is removed would be to

sort the list in some other way before applying the First Fit packing rule. In the

First Fit Decreasing (FFD) algorithm, the items are �rst sorted in order of non-

increasing size, and then the First Fit packing rule is applied. The algorithm

Best Fit Decreasing (BFD) is de�ned analogously, using the Best Fit packing

rule. The improvement over First and Best Fit is dramatic.

THEOREM 2.8 [Joh73]. R

1

FFD

= R

1

BFD

= 11=9 = 1:222:::.

Examples of instances that provide the lower bound for this result are given

in Figure 2.5, and �rst appeared in [GGU71]. The upper bound in [Joh73] was

more precisely FFD(L)� (11=9) �OPT(L)+4 for all lists L. The proof of this was

much more complicated than that for Theorem 2.1, with a weighting function

that depended not only on item sizes but locations in the packing, and 70 pages

of case analysis. Subsequently, Baker devised a somewhat simpler proof and

reduced the additive constant from 4 to 3 [Bak83], and Yue has claimed a much

simpler proof and a reduction of the additive constant to 1 [Yue91].

16 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

6N bins 3N bins2N bins

OPT(L) = 9N BFD(L) = FFD(L) = 11N

3N bins 6N bins

 1
4

+ 2ε

 1
4

+ 2ε

 1
4

+ 2ε

 1
2

+ ε 1
2

+ ε

 1
4

+ ε

 1
4

+ ε

 1
4

+ ε

 1
4

+ ε

 1
4

– 2ε

 1
4

– 2ε

 1
4

– 2ε

 1
4

– 2ε

 1
4

– 2ε 1
4

– 2ε

 1
4

– 2ε

FIGURE 2.5

Worst-case examples for First and Best Fit

Decreasing.

The analogous results for Best Fit Decreasing follow from the fact that for

all lists L with no item smaller than 1=6, BFD(L) � FFD(L) [Joh73] [JDU74].

This is enough, since any list in which an item of size less than 1=6 starts a bin

under BFD must have a BFD packing in which all bins except the last have

level exceeding 5=6. Hence for such lists BFD(L)� (6=5) �OPT(L)+1. BFD can

produce worse packings than FFD, however, if smaller items are allowed. Lists

L are shown in [Joh73] [JDU74] for which BFD(L) = (10=9) �FFD(L). BFD can

produce better packings than FFD as well, so long as items as small as 1=5� �

are allowed, and lists L of this sort for which FFD(L) = (11=10) �BFD(L) are

shown in the same reference.

As with the earlier algorithms, the worst-case ratios for First and Best Fit

Decreasing improve as the maximum item size � declines, although now the

dependence on � is more complicated than it was for the earlier algorithms. The

examples in Figure 2.5 imply that R

1

FFD

(�) = 11=9 for 1=2< � � 1. In [Joh73],

it was shown that

R

1

FFD

(�) =

8

>

>

>

<

>

>

>

:

71

60

;

8

29

< � �

1

2

7

6

;

1

4

< � �

8

29

23

20

;

1

5

< � �

1

4

It was also conjectured that for integers m � 4,

R

1

FFD

(1=m) = F

m

� 1+

1

m+2

�

2

m(m+1)(m+2)

.

This conjecture turns out to hold only when m is even. When m is odd,

Csirik [Csi93] subsequently showed that

R

1

FFD

(1=m) =G

m

� 1+

1

m+2

�

1

m(m+1)(m+2)

2.2 WORST-CASE ANALYSIS 17

.

The question of what the situation is for general values of � was answered by Xu

in [Xu93], which showed that when m is even, R

1

FFD

(�) equals F

m

throughout

the interval (1=(m+1);1=m], but when m is odd, there is a d

m

, 1=(m+1) <

d

m

< 1=m, such that R

1

FFD

(�) equals G

m

only in the interval (d

m

;1=m] while

equaling F

m

in the interval (1=(m+1);d

m

]. (The precise value of d

m

is (m+

1)

2

=(m

3

+3m

2

+m+1).)

Note that both F

m

and G

m

represent signi�cant improvements over the

results for First Fit cited above, where R

1

FF

(1=m) = 1+(1=m).

2.2.8 OTHER SIMPLE OFFLINE ALGORITHMS

The choice of a packing rule could make a big di�erence in the case of online

algorithms.One mightwonder whether it is so crucial in the context of lists sorted

by decreasing size. In the case of the NF versus FF comparison, use of decreasing

lists actually ampli�es the di�erence in worst-case behavior. Consider Next Fit

Decreasing (NFD), the algorithm that puts the items in decreasing order by size

and then applies Next Fit. As proved in [BC81], we have R

1

NFD

=T

1

= 1:69103:::.

Note that this limit exceeds 11=9 by more than R

1

NF

�R

1

FF

= 3=10.

More typically, however, the di�erence between packing rules shrinks when

we consider only lists ordered by decreasing item size. For Any Fit packing rules

the maximum di�erence shrinks from the :3 we saw in Section 2.2.3 to :0277:::,

as a consequence of the following.

THEOREM 2.9 [Joh73][Joh74]. For any algorithm A that sorts the items

by decreasing size and then applies an Any Fit packing rule,

A.

11

9

� R

1

A

�

5

4

, and

B.

1

m+2

�

2

m(m+1)(m+2)

�R

1

A

(�)�

1

m+2

, where m= b1=�c.

The maximum discrepancy so far identi�ed between Any Fit Decreasing

algorithms is that between First Fit Decreasing and Worst Fit Decreasing, each

of which can for certain classes of lists produce packings that are only 8=9 as

long as the packings produced by the other [Joh73]. As might be expected, given

the examples in Figure 2.3, the alternative of �rst sorting the items in increasing

order by size is counterproductive, and indeed, any algorithm A that applies

an Any Fit algorithm after �rst performing such a sort must have R

1

A

� T

1

=

1:69103:::

One potential drawback of First and Best Fit Decreasing is that they re-

quire
(n logn) time to pack n items, both for the initial sorting phase and for

the subsequent packing phase, at least if one assumes simple comparison-based

implementations [Joh73]. How well can one do if one restricts attention to algo-

rithms with linear-time implementations?

In the previous section, we have already seen one linear-time o�ine algorithm

that beats the online bound (although there we were viewing it as a semi-online

18 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

algorithm). This is the �rst algorithm of [GPT90], which had R

1

A

= 1:5. The

same worst-case bound was attained earlier by the more fully o�ine Group-X

Fit Grouped algorithm (GXFG) of [Joh73] [Joh74]. This algorithm applies the

Group-X Fit algorithmmentioned in Section 2.2.5 after �rst classifying the items

by size using the set X of breakpoints and then reordering them so that items in

each class go together, with the classes themselves being ordered by decreasing

size. In [Joh73] [Joh74] it is shown that for allm� 1 ifX contains 1=m, 1=(m+1),

and 1=(m+2) then for all �� 1 such that m= b1=�c, R

1

GXFG

(�) = 1+1=m. For

the special case of �= 1, this yields R

1

GXFG

= 1:5 when X = f1=2;1=3;1=4g.

If one reorders items according to this last set of breakpoints and then packs

using an Any Fit packing rule, one gets R

1

A

= 4=3 [Joh73], but this will not

be a linear-time algorithm. One can, however, obtain an asymptotic worst-case

ratio of 4=3 in linear time if one uses an algorithm due to Martel [Mar85]. This

algorithm uses the breakpoint set X = f1=4;1=3;=1=2;2=3g but does not easily

�t into the two-part paradigm in which the list is �rst reordered according to

a simple rule and then an online packing algorithm is applied. For details, see

[Mar85].

No algorithm is currently known that does better than this 4=3 bound and

runs in linear time on a sequential computer, although if one is fortunate enough

to have an EREW PRAM with n= logn processors, one can in fact construct

a packing in parallel O(logn) time that obeys the same worst-case bound as

FFD (i.e, 11=9 asymptotically) [AMW89]. The algorithm performs a two-stage

process, with the �rst stage constructing the FFD packing of all items with

s(a)> 1=6 and the second stage adding the remaining small items to the packing

e�ciently. It is unlikely that the FFD packing for the full set of items can be

precisely constructed in polylogarithmic parallel time, as constructing the FFD

packing is a P-hard problem [AMW89].

Having seen what we can do with less than the �(n logn) time required

by FFD, the next question is what can we do if we are allowed more than

�(n logn) time? Can we devise algorithms with R

1

A

< 11=9? This question was

�rst answered in the positive by Yao [Yao80], who showed that there exists an

O(n

10

logn) time algorithm (called Re�ned First Fit Decreasing by Yao) with

R

1

A

� 11=9�10

�7

.

This existence proof was later followed by more practical contenders. Garey

and Johnson [GJ85] proposed an algorithm they called Modi�ed First Fit De-

creasing (MFFD) that improves on FFD much more substantially. It di�ers from

First Fit Decreasing only in the way it packs the items with sizes in (1=6;1=3],

but in handling these it also departs from the reordering-plus-online-packing

paradigm. In packing these items, one considers the bins currently containing

a single item of size exceeding 1/2 (the \A-bins" in the terminology of [GJ85])

from right to left, i.e., in order of decreasing gaps. To treat the current A-bin,

one �rst checks if the two smallest still-unpacked items with size in (1=6;1=3] will

�t together in the bin. If so, we place the smallest such item in the bin, together

with the largest remaining such item that will �t with it. If not, this special phase

is over, and all the remaining unpacked items are added to the current packing

according to First Fit Decreasing. This algorithm has the same O(n logn) run-

ning time as FFD, and has roughly the same constant of proportionality. Its

2.2 WORST-CASE ANALYSIS 19

worst-case behavior is characterized as follows.

THEOREM 2.10 [GJ85]. R

1

MFFD

=

71

60

= 1:18333:::.

An alternative approach to beating FFD was subsequently proposed by

Friesen and Langston [FL91]. They modify FFD as follows. First, note that the

FFD packing can be constructed bin by bin using the following rule: To pack the

next bin, continue adding the largest unpacked item that will �t until no such

items remain. The algorithm Best Two Fit (B2F) also proceeds bin by bin, but

now does some postprocessing after FFD is used to �rst �ll the bin. If the bin

contains more than one item at this point, we check to see if the smallest item

in it can be replaced by the two smallest currently unpacked items with size 1=6

or greater. If so, it is replaced by the pair of such items that has the largest total

size that will �t, and is added back to the list of unpacked items. This process

continues until there are no unpacked items left of size greater than 1=6, at which

point we revert to FFD. Friesen and Langston showed that R

1

B2F

= 5=4 = 1:25,

which isn't better than what FFD can provide, but they also showed that the

worst-case instances for the two algorithms were complementary. Thus, if we

denote by CFB the compound algorithm that runs both B2F and FFD and out-

puts the better of the two packings, we do much better than either algorithm

separately, in only twice the overall running time. More speci�cally, we have the

following.

THEOREM 2.11 [FL91]. 1:164:::=

227

195

�R

1

CFB

�

6

5

= 1:2

MFFD and B2F try to improve the packings of individual bins by considering

pairs of items as well as individual items in making their packing decisions. One

might think that even better results would be possible (at the price of increased

running time) if one was allowed to consider larger sets of items as units. With

this idea in mind, Johnson [Joh73] proposed a sequence of algorithms Most-k

Fit (MF

K

), k� 1. As with B2F, these algorithms construct packings bin by bin.

To pack the next bin, one starts by placing the largest as-yet-unpacked item in

the bin. Then, so long as the smallest unpacked item will �t in the gap, one

repeatedly adds the set of k or fewer items that will �t with the least space left

over. Once the gap is too small for the smallest unpacked item, we go on to

the next bin. The running time for MF

K

is O(n

k

logn) and hence not all that

practical for k much greater than 2. Johnson observed that MF

2

did much better

than FFD on its own worst-case examples, and conjectured that lim

k!1

R

1

MF

k

might equal 10=9. Unfortunately, the worst case examples of [FL91] for B2F

imply that in fact R

1

MF

K

� 5=4 for all k � 2, so even going from MF

1

= FFD to

MF

2

causes a degradation in performance.

An even greater degradation occurs if one eliminates the requirement that

the largest unpacked item start each bin. Graham [Gra72] has analyzed the

algorithm that proceeds by packing each bin in turn so as to contain the set of

unpacked items of largest total size no more than 1 (whether that set contains

the largest item or not). Not only does this algorithm have to solve an NP-

hard problem at each step, its worst-case behavior is much worse than that even

20 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

for FFD. For this algorithm R

1

A

=

P

1

k=1

1=(2

k

� 1) � 1:60669:::[Gra72]. (The

examples that imply this bound are described in [Joh73].)

As a �nal candidate for a simple algorithm that might have better worst-case

behavior than MFFD, let us consider an algorithm proposed by Kenyon [Ken96].

This is a variant on Best Fit Decreasing that we might call Best Fit Randomized

(BFR). Like BFD, this algorithm applies the Best Fit packing rule after �rst

re-ordering the list, but instead of sorting the list, it simply performs a random

permutation on it. Unlike our previous algorithms, Best Fit Randomized thus

does not produce a unique packing for any given list, but a random distribution

of packings. For such an algorithmA, a reasonable measure of its performance on

a list of items L would be the expected number of bins it uses E[A(L)]. For worst-

case behavior, one then looks for those lists L that maximize E[A(L)]=OPT(L),

and de�ne R

1

A

correspondingly. Using these de�nitions, we have the following.

THEOREM 2.12 [Ken96]. 1:08 =

227

195

�R

1

BFR

� 1:5

It is likely that R

1

BFR

is bigger than the stated lower bound. One can generate

million-item lists L that, based on a sampling of permutations, appear to have

E[BFR(L)]=OPT(L) � 1:144 [JKS95]. Nevertheless, 1.08 represents the largest

ratio so far obtained for instances whose value of E[BFR(L)] can be analytically

determined. No examples have been found that empirically yield expected ratios

exceeding 1.144, however, so it is possible that in fact R

1

BFR

< 1:15.

This concludes our discussion of \practical" o�ine bin packing algorithms.

If the only running time constraint one worries about is the theoretical one of

polynomial time, one can do signi�cantly better, as we shall see in the next

section.

2.2.9 SPECIAL-CASE OPTIMALITY, APPROXIMATION SCHEMES, AND

ASYMPTOTICALLY OPTIMAL ALGORITHMS

There are basically two approaches to improving on the worst-case ratios high-

lighted in the previous section. Before we discuss the approach that is the

main subject of this section, let us brie
y mention the other way to get bet-

ter worst-case performance ratios. This is to restrict attention to speci�c types

of input lists. For instance, for most of the algorithms we have considered so

far, worst-case ratios approach 1 as the maximum item size approaches 0, i.e.,

lim

�!0

R

1

A

(�) = 1.

A second class of instances that yield substantially improved worst-case re-

sults are those with divisible item sizes. As described in [CGJ87], a sequence of

item sizes s

1

> s

2

> � � �> s

i

> s

i+1

> � � � is a divisible sequence if for each i > 1,

s

i

exactly divides s

i+1

. A list L of items is weakly divisible if the sizes of the

items when sorted form a divisible sequence. It is strongly divisible if it is weakly

divisible and the largest item size is of the form 1=k for some integer k, i.e., if

it exactly divides the bin capacity. A natural example would be a list where all

2.2 WORST-CASE ANALYSIS 21

item sizes are of the form 1=2

j

for various integers j. It is shown in [CGJ87] that,

so long as L is weakly divisible, First Fit Decreasing always produces optimal

packings, and if L is strongly divisible, then First Fit produces optimal packings

as well. (Analogous results hold for many bin packing variants [CGJ87].)

Another class of instances that theoretically can be solved optimally in poly-

nomial time are those in which the number of item sizes is bounded, independent

of the number of items. If there are only k item sizes, and the smallest is bigger

than 1=j, then there are O(k

j�1

) possible ways in which a bin can be �lled by

items of the various sizes, and hence at most O(n

k

j�1

) possible packings, assum-

ing we treat items of the same size as indistinct. This is a polynomial-bounded

number of options, and one can in polynomial time check each one to see if it is

feasible, given the number of items of each size in the given list. Obviously the

actual list of potential packings can be substantially pruned, but even so, the

resulting running time bound will still be far from a \low order polynomial."

From a theoretical point of view, there is a better way to solve this problem

than simply trying all possible packings [BE83]. Determining the number of bins

needed of each type can be formulated as an integer program (IP) with a variable

for each bin type and constraints that insure that the total number of occurrences

of items of size s is precisely the number of such items in the instance. This IP will

have an A-matrix with k rows (constraints) and O(k

j�1

) columns (variables).

Because the number of variables is bounded, it can be solved in time polynomial

in the number of constraints using the algorithm of [Len83] (although the time

is exponential in the number of variables). Because the number of constraints

is also bounded, the total time for constructing and solving the IP is thus just

a constant, albeit one that is exponential in k and doubly exponential in j. To

this constant must be added linear time for turning the solution of the IP into

an explicit bin-by-bin description of the packing. Thus one can �nd an optimal

packing in linear time. (We assume, as is standard in discussions of running

times for bin packing algorithms, that the item sizes are rational numbers whose

numerators and denominators are integers with binary representations that will

�t in a single register of our computer, and that the registers are also big enough

to contain the binary representation of the number n of items in the input.)

If one is willing to settle for asymptotic optimality rather than exact op-

timality, one can follow Gilmore and Gomory [GG61] [GG63] and simply solve

the linear programming (LP) relaxation of the above IP. Using the ellipsoid

method or a polynomial-time interior point algorithm along with appropriate

post-processing techniques, one can �nd a basic optimal solution to the LP in

time that is polynomial in k and only singly-exponential in j, a major reduction

in the amount of \constant time" needed for the original IP. Such a basic solu-

tion will have at most k non-zero variables. These variables can then be rounded

up to induce a packing of a superset of our original list, which can be converted

in linear time to a bin-by-bin description of a packing of L that has at most k

more bins than the optimal number.

By giving up a bit more in the worst-case guarantee, one can extend this

approach to arbitrary instances, as shown by Fernandez de la Vega and Lueker.

22 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

THEOREM 2.13 [FL81]. For any � > 0, there exists a linear time algorithm

A

�

such that R

1

A

�

� 1+ �.

In standard terminology, the algorithms A

�

constitute an approximation scheme

[GJ79] for one-dimensional bin packing, or more precisely an asymptotic ap-

proximation scheme, since here we deal with asymptotic as opposed to absolute

worst-case ratios. Here is a sketch of how algorithm A

�

works, adapted from

[FL81]. Note that to prove the theorem, we need only show that for all lists L,

A

�

(L) � (1+ �) �OPT(L)+K

�

bins for some constant K

�

� 1 depending only on

�. (As we shall see, K

�

= 4=� will su�ce.)

We may assume without loss of generality that �� 1. For a suitably chosen

�

0

< �, we begin by partitioning the given input list L into two parts L

0

and L

�

,

where the latter part consists of all items a with s(a)� �

0

and can be identi�ed in

linear time. If we can pack L

0

into (1+�) �OPT(L)+K

�

bins, we will essentially

be done, as the following procedure will su�ce to construct an overall packing

that satis�es the same bound: Add the elements of L

�

to the packing one bin

at a time, continuing to add items to a bin until the next one does not �t. This

is a linear-time operation. If no new bins are created, our �nal packing will still

obey the desired bound. If a new bin is created, all bins except the last must

be �lled at least to the level 1� �

0

, which implies that the total number of bins

used is at most OPT(L)=(1� �

0

)+1. This will be less than (1+ �) �OPT(L)+1

and hence less than (1+ �) �OPT(L)+K

�

so long as �

0

� �=(1+ �). (For future

reference, note that because of this we may assume that �

0

> �=2.)

So let us concentrate on L

0

. Let n

0

= jL

0

j, m= d4=�

2

e, and h= bn

0

=mc. Now

pretend L

0

is sorted in nondecreasing order by size as a

1

;a

2

; : : :;a

n

0

. Let L

1

=

(b

1

; b

2

; : : :; b

(m�1)h

) be a list consisting of h items of size s(a

jh

), 1 � j � m�1,

sorted in nondecreasing order. Note that we must have s(b

i

) � s(a

i+h

), 1� i �

(m�1)h, and so OPT(L

1

)� OPT(L

0

). Moreover, the items of L

1

are restricted

to m�1 < 4=�

2

distinct sizes, all larger than �=2. Thus by the above argument,

one can for �xed � construct in linear time a packing for L

1

that uses at most

OPT(L

1

)+m�1�OPT(L

0

)+4=� bins. Moreover, note that for 1� i� (m�1)h,

s(b

i

)� s(a

i

), and so we can in linear time convert our packing of L

1

to a packing

of the smallest (m�1)h items in L

0

that uses just OPT(L

0

)+4=� bins, leaving

at most 2h� 1 items unpacked. If we pack these leftover items one per bin,

we obtain an overall packing of L

0

that uses at most OPT(L

0

)+ 2h� 1+4=�

bins. But by de�nition, h� (n

0

)(�

2

=4) and OPT (L

0

)� (n

0

)(�

0

)� (n

0

)(�=2). Thus

2h� 1 � � �OPT(L

0

), and we have constructed a packing of L

0

using at most

(1+ �) �OPT(L

0

)+4=� bins, as desired.

For �xed �, the running time for this algorithm remains linear (assuming a

model of computation as described above). This is because we do not actually

have to sort L

0

in order to identify the keym�1 item sizes, which can be found by

use of linear-time median-�nding techniques. More precisely, the running time

is C

�

+Cn log(1=�), where C is a �xed constant independent of � and C

�

is a

constant re
ecting the cost of constructing and solving the key linear program.

Assuming we use the ellipsoid method or an appropriate polynomial-time interior

point algorithm for solving the LP, C

�

should be polynomial in (4=�)

(1+�)=�

. This

is probably too large to yield feasible computations even for � = :18333, which

2.2 WORST-CASE ANALYSIS 23

would yield the same asymptotic worst-case ratio as MFFD.

Since we are being theoretical, however, it is interesting to note what happens

when we let � grow slowly with OPT(L)� n. (We can determine close bounds on

OPT(L) using FFD, so such growth can easily be arranged.) Suppose for instance

that we let �� (log logOPT (L))=(logOPT(L)). The worst-case guarantee would

then be

A(L) � (1+

loglog(OPT(L))

log(OPT(L))

) �OPT(L)+

4log(OPT(L))

loglog(OPT(L))

which would imply that R

1

A

=1. Moreover, for some �xed constant d, the running

time would then be bounded by a polynomial in d

(log logn)(1+(logn)=(loglogn)

, which

is a (possibly high-order) polynomial in n. Thus we have the following corollary

to the result of [FL91], �rst observed in [Joh82].

THEOREM 2.14. Polynomial-time bin packing algorithms exist with R

1

A

= 1.

A much better guarantee of this sort was subsequently discovered by Kar-

markar and Karp [KK82], who demonstrated a polynomial-time algorithm A

that guarantees A(L) �OPT(L)+log

2

(OPT(L)). They exploit many additional

techniques beyond those in [FL81] to obtain this result. One key idea is to avoid

actually generating the entire linear program. For this they concentrate on the

dual of the LP described above (actually, the dual of an LP that is similar to that

of [FL81] but is constructed using somewhat more sophisticated rounding pro-

cedures). In the dual, the variables correspond to items and the constraints cor-

respond to the packings. Karmarkar and Karp then apply the ellipsoid method,

which only generates constraints as they are needed for separation purposes.

Moreover, tbese separating constraints turn out to be solutions to knapsack prob-

lems, as in the column-generation approach that Gilmore and Gomory proposed

decades ago for solving the original problem using the simplex method [GG61]

[GG63]. The knapsack problems are NP-hard, but fortunately we can settle for

near-optimal as opposed to optimal solutions in this context, since we only need

to solve the LP to within an additive constant. Thus existing polynomial-time

approximation algorithms for the knapsack problem can be used. Once the LP

has been approximately solved, Karmarkar and Karp exploit additional ideas

to eliminate unneeded constraints (bin-types) so as to get down to a near-basic

solution, from which a �nal packing can be derived.

Unfortunately, all this cleverness comes at a price, and the best running-time

bound proved in [KK82] is worse than O(n

8

). Better running times are possible,

however, if one is willing to settle for less than asymptotic optimality.Whereas in

the [FL81] scheme a guarantee of the formA

�

(L)� (1+�) �OPT(L)+K

�

required

time exponential in 1=�, an analogous guarantee based on the [KK82] approach

can be obtained in running time bounded by a polynomial in 1=� (although the

dependence on n is �(n logn) rather than linear, as it was in the [FL81] scheme).

Thus we have a fully polynomial (asymptotic) approximation scheme (FPAS) for

bin packing. For full details see [KK82]. An alternative sketch of the results of

[FL81] and [KK82] is given in Chapter 9.

From the theoretical point of view, the Karmarkar-Karp algorithm leaves

24 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

little room for further improvement in the level of approximation obtainable by

polynomial-time algorithms. We should point out, however, that there are to

date no NP-hardness results that rule out the possibility (assuming P 6= NP)

of a polynomial-time heuristic A that guarantees A(L) � OPT(L)+d for some

�xed constant d.

2.2.10 OTHER WORST-CASE QUESTIONS

2.2.10.1 Absolute worst-case ratios

The results we have mentioned so far concentrate on asymptotic worst-case ratios

R

1

A

, but the question of absolute worst-case ratios R

A

� inffr � 1 : R

A

(L) �

r for all lists Lg is also of interest, especially when we are considering relatively

short lists of items. For these the current best results are as follows:

THEOREM 2.15 [Sim94].

A. For A 2 fFF;BFg, R

A

� 1:75.

B. For A 2 fFFD;BFDg, R

A

= 1:5.

Note that the former bound is actually quite close to the asymptotic bound of

R

1

FF

= R

1

BF

= 1:7. The latter is further from the asymptotic bound of R

1

FFD

=

R

1

BFD

= 11=9, but in comparing the latter conclusion to the speci�c results un-

derlying the asymptotic conclusion, we see that Theorem 2.15 provides a better

bound at least for OPT(L) � 3. To be speci�c, if it is true that FFD(L) �

(11=9) �OPT(L) + � for all L, then the absolute bound is stronger only for

OPT (L) � (18=5)�. Baker shows in [Bak83] that � = 3 su�ces, implying that

the asymptotic result dominates for OPT (L)> 10. In [Yue91] a proof is claimed

for �= 1, which would imply that the asymptotic result dominates the absolute

one for OPT(L)> 3. More recently, [CSB94] presents a tighter result that domi-

nates both [Yue91] and [Sim94] when OPT(L) 2 f3;4;5g. Using techniques that

exploit linear programming lower bounds on the optimal packing, the authors

prove that both FFD(L) and BFD(L) are no more than (4=3) �OPT(L)+1=3.

2.2.10.2 Bounds on anomalous behavior

One di�culty that often must be confronted in proving worst-case guarantees for

bin packing algorithms is the fact that certain natural monotonicity properties

can be violated by the better heuristics. Let us say that a list L

2

is dominated

by a list L

1

if L

2

can be obtained from L

1

by deleting items and/or reducing

their size. A bin packing algorithm A is monotone if for any two lists L

1

and

L

2

where L

1

dominates L

2

, A(L

2

) � A(L

1

) [Mur88]. Such a property clearly

might be helpful in proving results about algorithm A. Indeed, in Section 2.3 we

shall introduce a monotone algorithm Matching Best Fit as a key intermediary

in proving results about the average-case behavior of the non-monotone Best

2.3 AVERAGE-CASE ANALYSIS 25

Fit algorithm. Unfortunately few of the algorithms we have discussed so far are

monotone. In a comprehensive study, Murgolo [Mur88] was able to identify only

two: Next Fit and Next-2 Fit. Monotonicity does not hold even for Next-3 Fit

or for ABF

2

(the algorithm that replaces the First Fit packing rule in Next-2

Fit by the Best Fit rule). Nor does it hold for such simple algorithms as the

Harmonic algorithms H

K

, K � 3 (although it holds trivially for H

1

and H

2

).

Given that most of the algorithms worth studying are non-monotonic, the

question then arises, just how non-monotonic can they be? For the four most

famous bin packing heuristics, FF, BF, FFD, and BFD, the non-monotonicity

can be arbitrarily large, that is it can grow with n. This was implicit in ex-

amples discovered by Hal�asz [Hal74], but has been studied in most detail by

Murgolo, who constructed lists implying the following result. If A is a bin pack-

ing algorithm, de�ne the asymptotic worst-case nonmonotonicity of A, denoted

by N

1

A

to be the maximum value � such for all N > 0 there exists a pair of

lists (L

1

;L

2

) with OPT(L

1

) �N , L

1

dominating L

2

, and A(L

2

)=A(L

1

)�1� �.

In other words, the nonmonotonicity is the asymptotic fraction by which the

number of bins may increase when items are shrunk or deleted.

THEOREM 2.16 [Mur85][Mur88]. With respect to asymptotic worst-case

nonmonotonicity,

A. Both N

1

WF

and N

1

WFD

are at least 1=15,

B. Both N

1

FF

and N

1

BF

are at least 1=42, and

C. Both N

1

FFD

and N

1

BFD

are at least 1=75.

In general, no upper bounds on nonmonotonicity besides the trivial that N

1

A

�

R

1

A

�1 are currently known. For more details on nonmonotonicity, see [Mur85]

[Mur88].

AVERAGE-CASE ANALYSIS

2.3

One drawback of relying on worst-case analysis is that in many applications the

worst case never seems to occur. Indeed, quite intricate and unlikely lists of items

were needed to prove many of the lower bounds in the previous section. Thus

there is a strong need for results that tell us more about typical behavior. Proving

results about the average-case behavior of heuristics under a variety of item-

size distributions is one step in this direction. Objections can be lodged against

any single choice of distribution, since real-world applications rarely generate

instances that obey the sorts of probability distributions for which tight analysis

is currently possible. Objections might also be made to the standard assumption

that each item size is chosen independently of all the rest. Nevertheless, if results

are obtained for a variety of such distributions, a broader picture may begin to

26 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

emerge, and at the very least the worst-case results can be put into perspective.

In the case of the classical one-dimensional bin packing problem, just such a

broad-based average-case approach has begun to emerge, and we survey it in

this section. In spite of the di�culty of probabilistic analysis, both the general

theory and average-case results for speci�c algorithms have grown impressively

in the past decade.

Let us begin with some terminology. Although a variety of item-size dis-

tributions have been studied, the common assumption is that the items in a

list have independent, identically distributed sizes. Let F denote the item-size

distribution, and denote its mean and variance by � and �

2

. For purposes of

asymptotic analysis, we are typically concerned with a list L

n

of n randomly

generated items. For simplicity, our notation does not specify what distribution

F is under consideration, but the identity of F will always be made clear.

In this context, many of our standard functions of lists become random vari-

ables: s(L

n

) (the sum of the item sizes), OPT(L

n

), A(L

n

) (where A is a bin

packing algorithm), and R

A

(L

n

) � A(L

n

)=OPT(L

n

). We are also interested in

the derived random variable W

A

(L

n

) � A(L

n

)� s(L

n

), which is the amount of

wasted space in the bins of the packing of L

n

by algorithm A. It is often eas-

ier to prove average-case results about W

A

(L

n

) than about R

A

(L

n

) directly.

Fortunately, the former typically imply the latter, since for most of the distri-

butions that have been studied lim

n!1

E[OPT(L

n

)=s(L

n

)] = 1. Moreover, even

for those distributions F and algorithms A where lim

n!1

E[A(L

n

)=s(L

n

)] also

equals 1, we typically have E[W

OPT

(L

n

)] = o(E[W

A

(L

n

)]), so that E[W

A

(L

n

)] =

�(E[A(L

n

)�OPT(L

n

)]).

In what follows, we use average-case notation that mirrors the worst-case

notation of Section 2.2. For a given item-size distribution F and algorithm A,

de�ne

�

R

n

A

(F)� E[R

A

(L

n

)] =E

�

A(L

n

)

OPT(L

n

)

�

and

�

W

n

A

(F)�E [A(L

n

)� s(L

n

)]

for lists L

n

generated according to F . We then can de�ne the asymptotic expected

ratio for A under F to be

�

R

1

A

(F)� lim

n!1

�

R

n

A

(F)

(No asymptotic notation is needed for expected wasted space, as this is un-

bounded for most algorithms and distributions.)

Although there have been some general average-case results that hold for

arbitrary distributions F , most of the speci�c expected values that have been

computed concern continuous uniform or discrete uniform distributions. A dis-

tribution of the former type is denoted by U [a;b], where 0� a < b� 1, and item-

sizes are chosen uniformly from the (continuous) interval [a;b]. Typically a = 0,

although we shall present some results for a > 0 in Section 2.3.5. Distributions

of the second type are denoted by Ufj;kg, 1� j � k, where item sizes are chosen

uniformly from the �nite set f1=k;2=k; : : :; j=kg. Note that as m approaches 1,

2.3 AVERAGE-CASE ANALYSIS 27

the discrete distributions Ufjm;kmg become more and more like the continuous

distribution U [0; j=k]. As we shall, see, however, this does not prevent the two

types of distribution from yielding results that are mathematically very di�erent.

Our discussion of the average case parallels our earlier discussion of worst-

case results, and we organize the presentation by algorithm rather than by distri-

bution. In Section 2.3.1 we survey average-case results for bounded-space online

algorithms. Section 2.3.2 covers results for arbitrary online algorithms, with spe-

cial emphasis on the much-studied First and Best Fit algorithms. Section 2.3.3

describes results for the o�ine case. These three sections all concentrate on ques-

tions about

�

R

1

A

(F) and

�

W

n

A

(F). Section 2.3.4 considers two other average-case

questions that have received attention: (1) what is the expected optimal number

of bins under various distributions and (2) what can we say about the probability

distribution of A(L

n

) as a function of n for various algorithms and distributions.

The results relating to question (1) help back up the claims made above about

the relationship between E[s(L

n

)] and E[OPT(L

n

)]. The results relating to ques-

tion (2) allow us to reach conclusions about

�

R

1

A

(F), which measures expected

ratios, from results about ratios of expectations, something we shall do regularly

in Sections 2.3.1 through 2.3.3, and only justify when we get to Section 2.3.4.2.

We shall not provide much detail about proof techniques beyond highlighting the

di�erent types of approaches taken. Readers interested in learning more details

about these approaches are referred to the corresponding references and to the

monograph by Co�man and Lueker [CL91].

2.3.1 BOUNDED-SPACE ONLINE ALGORITHMS

The �rst probabilistic analysis of bin packing algorithms appears to be that of

Shapiro [Sha77], who proposed an approximate analysis of Next Fit based on the

exponential distribution. The �rst precise average-case asymptotics were those

of Co�man, So, Hofri, and Yao [CSH80], again for Next Fit. They proved that,

if F = U [0;1], then the distribution of the level of the highest indexed closed bin

converges geometrically fast to the stationary distribution V (x) = x

3

;0� x � 1

with mean 3=4. From this we can conclude the following.

THEOREM 2.17 [CSH80].

�

R

1

NF

(U [0;1])=

4

3

.

Karmarkar [Kar82a] subsequently extended the NF results to cover the dis-

tributions U [0; b]. His analysis came down to the solution of linear systems of

di�erential equations. Closed-form results were obtained for 1=2 � a � 1 and

showed that E[NF(L

n

)]� �n as n!1, where

�=

1

12b

3

(15b

3

�9b

2

+3b�1)+

p

2

�

1� b

2b

�

2

tanh

�

1� b

p

2b

�

;

which gave numbers con�rming the experimental results of Ong, Magazine,

and Wee [OMW84]. A numerical calculation using this expression veri�ed that,

asymptotically, the packing e�ciency

�

R

1

NF

(U [0; b]) is not monotone in b as one

28 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

NF

H∞

NF2
SNF
NF3
BBF2
NF5
BBF3
BBF4

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

1.5

.
. .

. .
. .

. . .
. .

FIGURE 2.6

�

R

1

A

(U [0; b]) as a function of b.

might expect; it reaches a maximum at b� 0:841.

The average-case performance of the Harmonic algorithms H

K

is relatively

easy to obtain for general distributions F . Lee and Lee [LL87] showed that,

for all K � 3,

�

R

1

H

K

(U [0;1])< 1:306, and hence is signi�cantly better than the

asymptotic expected ratio of 4=3 for Next Fit, even for relatively small K. As K

goes to 1 we have

THEOREM 2.18 [LL87][CL91]. lim

K!1

�

R

1

H

K

(U [0;1])= �

2

=3�2� 1:2899.

Note however that even the limiting di�erence of 4=3�1:2899 is far smaller

than the 2.0 versus 1.691... worst-case gap between the two algorithms. For a

pictorial comparison of the results for Next Fit and the Harmonic algorithms, see

Figure 2.6, which originally appeared in [CJ91] and covers results for F = U [0; b],

0 < b � 1. The curve labeled H

1

in the �gure represents lim

K!1

�

R

1

H

K

(U [0; b]).

Note that the expected values for H

1

are not uniformly better than those for

Next Fit. Indeed, they oscillate as a function of b. The local minima occur when-

ever b is of the form 1=m for m an integer. Values for Next Fit when b < 1=2

are experimentally determined, as are the curves included for some of the other

algorithms of Section 2.2.6.

The �gure also includes the curve for an interesting modi�cation of Next Fit

devised and analyzed by Ramanan [Ram89], called Smart Next Fit (SNF). This

algorithm works as follows: The next item p to be packed is put by SNF into the

current bin B if it �ts, as in NF. But if p does not �t in B, then SNF puts p into

2.3 AVERAGE-CASE ANALYSIS 29

a new bin B

0

and retains as the new current bin whichever of B and B

0

has the

most space remaining. (Note that this algorithm lies somewhere between Next

Fit and the 2-Bounded Best Fit algorithm of Section 2.2.6.) Ramanan applied

Karmarkar's techniques and showed that improvements are possible under SNF

when F =U [0; b] with 1=2< b� 1. For b=1,

�

R

1

SNF

(U [0; b]) is roughly 1.227 versus

1.333 for Next Fit, although the di�erence declines to 0 as b! 1=2.

The curves in the �gure for versions of Next-K Fit (NF

K

) and K-Bounded

Best Fit (BBF

K

) raise interesting issues. Presumably asK goes to1 these curves

should converge to those for First and Best Fit respectively, and one wonders

just what those limiting curves will look like, given the rapid improvement (and

attening) of the curves depicted here. We will return to this question in the

next section.

In the meantime we should note that, just as there are lower bounds on

how well bounded-space online algorithms can perform in the worst-case, there

are also nontrivial bounds on what they can do on average. In particular, no

bounded-space online algorithmA can have

�

R

1

A

(U [0;1])= 1.Co�man and Shor [CS93]

proved that such algorithms inevitably waste a constant fraction of the allocated

space on average. More speci�cally, they show the following.

THEOREM 2.19 [CS93]. If A is an online algorithm limited to K active bins,

then

�

W

n

A

(U [0;1])�

n

16(K+1)

Analogous results (with di�erent constants of proportionality) also hold for the

distributions U [0; b], 0< b < 1. The lower bound of Theorem 2.19 can probably

be improved substantially by tighter analysis, and it remains to be seen whether

a tight lower bound can be obtained.

As to other sorts of distributions, results for discrete uniform distributions

Ufj;kg should roughly track those for the corresponding continuous uniform

distributions. There has been work on the average-case behavior of Next Fit

under further sorts of distributions, for example the abovementioned study by

Shapiro [Sha77] along with that of Hal�n [Hal89], which were based on the

exponential distribution, but these dealt with di�erent questions and did not

yield results that are directly comparable to the ones reported here.

2.3.2 ARBITRARY ONLINE ALGORITHMS

2.3.2.1 Results for U [0;1]

As pointed out in Section 2.2.5, relaxing the bounded-space requirement al-

lows one to design algorithms with substantially better worst-case behavior than

any bounded-space online algorithm. One of the improved algorithms covered

in that section, the Modi�ed Harmonic algorithm MH

38

of Ramanan, Brown,

Lee, and Lee [RBL89], has been analyzed from an average-case point of view.

30 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

In [RT89f], Ramanan and Tsuga show that this algorithm improves on the ba-

sic Harmonic algorithms on average as well as in the worst case, at least when

F = U [0;1]. In particular, they show that

�

R

1

MH

38

(U [0;1]) lies between 1.27684

and 1.27688. This is signi�cantly less than the 1.333... ratio for Next Fit and the

1.2899... limiting value for the Harmonic algorithms, although not as good as the

ratio of 1.227 for Smart Next Fit. However, Ramanan and Tsuga then describe

a sequence of variants on the Modi�ed Harmonic algorithms (obtained simply by

altering certain parameters but not the boundaries of the item-size classes) which

have

�

R

1

MH

K

(U [0;1])< 1:2 as soon as K � 5, and lim

K!1

�

R

1

MH

K

(U [0;1])� 1:189.

This last-mentioned sequence of algorithms obtains its improved average-

case performance at the cost of degraded worst-case performance with respect

to MH

38

. At a further cost in worst-case behavior, one can improve average-case

performance still more. Indeed, as �rst observed by Ho�man [Hof82], there exist

�(n logn) time online algorithms whose expected behavior when F = U [0;1]

is in a sense asymptotically optimal. We illustrate Ho�man's approach using

a variant studied by Co�man and Lueker [CL91, pp. 148{150]. The approach

actually involves yet another indexed sequence of algorithms, which we shall call

the Online Match algorithms (OM

K

for K � 3) and which are closely related to

the Interval First Fit algorithms of Csirik and Galambos [CG86]. Call p and p

0

companions for algorithm OM

K

if 1�1=K � s(p)+ s(p

0

) � 1. Algorithm OM

K

maintains two initially empty packings; one is partial match packing, and the

other is a NF packing that contains only items � 1=2. The algorithm packs the

next item p according to the following two-part rule: If s(p)� 1=2, pack p into an

empty bin and add the bin to the partial match packing. If s(p)< 1=2 and there

exists a bin B in the partial match packing that contains only a companion of

p, pack p in B along with its companion. If s(p) < 1=2 and no such bin exists,

pack p into the NF packing. It is easily veri�ed that the asymptotic worst-case

ratio R

1

OM

K

= 2. The average case result is as follows.

THEOREM 2.20 [CL91]. For some universal constant c,

�

R

1

OM

K

(U [0;1])= 1+ c

r

K

n

+O

�

1

K

�

Thus lim

K!1

�

R

1

OM

K

(U [0;1])= 1, although of course for each particular value of

K we still have

�

R

1

OM

K

(U [0;1])> 1. Note that we could presumably get a sin-

gle algorithm with

�

R

1

A

(U [0;1]) = 1 by letting K grow with N , say by setting

K = logn. Strictly speaking, however, this would be a violation of the online

restriction, since it would require us to know n in advance. Let us call an al-

gorithm that is online except for the fact that it knows n in advance a closed

online algorithm. Thus it appears that there exist closed online algorithms A

with

�

R

1

A

(U [0;1])= 1.

The question thus becomes whether there exist open online algorithms, i.e.,

ones that do not know n in advance, with this same optimality property. The an-

swer is yes. One could devise such an algorithm from the Online Match approach

above by adaptively increasing K as more items arrive, but fortunately some-

thing much simpler will su�ce. In 1984, Bentley, Johnson, Leighton, McGeoch,

2.3 AVERAGE-CASE ANALYSIS 31

and McGeoch [BJL84] proved the following surprising result.

THEOREM 2.21 [BJL84].

�

R

1

FF

(U [0;1])= 1.

This result was viewed as surprising because of earlier conjectures based

on simulation results. Johnson in [Joh73] had conjectured based on samples

lists with n= 200 that

�

R

1

FF

(U [0;1])� 1:07. Ong, Magazine, and Wee [OMW84],

based on sample lists with n ranging from 40 to 1000, updated this conjecture

to

�

R

1

FF

(U [0;1])� 1:056, still quite far from 1. It turned out, however, that much

larger values of n were needed to get a true picture of asymptotic behavior.

For instance, based on much more extensive experiments [BJL83] we now know

that

�

R

n

FF

(U [0;1]) still exceeds 1:01 for n as large as 250,000. The question thus

becomes how fast does

�

R

n

FF

(U [0;1]) approach 1.

This question can be addressed by turning our attention to expected waste,

in particular the function

�

W

n

FF

(U [0;1]). It was shown by a complicated argument

in [BJL84] that this function was O(n

0:8

). Much simpler arguments have since

been derived and we now know the precise order of the function.

THEOREM 2.22 [Sho86][CJS95].

�

W

n

FF

(U [0;1])= �(n

2=3

).

The algorithm Best Fit turns out to be even better:

THEOREM 2.23 [Sho86][LS89].

�

W

n

BF

(U [0;1])= �(

p

n log

3=4

n).

The proofs of these results embody fascinating connections to the theory of

stochastic planar matching, a theory that has had a surprising variety of appli-

cations. The foundation for the modern theory of stochastic planar matching

is the work of Ajtai, Koml�os, and Tusn�ady [AKT84]. Chapter 3 in [CL91] gives

a broad coverage of the area, but the de�nitive treatment can be found in the

more recent work of Talagrand [Tal94].

There are many variants on the original planar matching problem of [AKT84],

several of which come up in bin packing contexts. As a primary example, let us

consider the up-right matching problem. An instance of this problem is a set

of n points chosen independently and uniformly at random in the unit square.

The points are colored red and blue, with each point having equal probability of

receiving either color, and the choices for all points being independent. We ask

for a maximummatching of blue points to red points such that in each matched

pair the blue point is above and to the right of the red point, i.e., in both coor-

dinates, the blue point is at least as far from the origin as the red point. This

problem originated in an analysis of a two-dimensional bin packing problem by

Karp, Luby, and Marchetti-Spaccamela [KLM84b], who were the �rst to apply

stochastic planar matching problems to bin packing.

The connection is to Best Fit and comes about as follows. Consider a random

list L

n

generated according to F = U [0;1]. An item a

i

is identi�ed with a blue

point at location (s(a

i

); i=n) if s(a

i

) � 1=2 and with a red point at location

(1�s(a

i

); i=n) if s(a

i

)> 1=2. An edge in an up-right matching thus corresponds

to a pair of items such that the �rst-arriving has size exceeding 1=2 and the

32 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

total size of the two items does not exceed 1, i.e., the pair can �t in a bin

together. Thus the following simpli�ed variant on Best Fit, called Matching Best

Fit (MBF), will construct an up-right matching: Proceed as in Best Fit, except

that bins are closed as soon as they receive an item a with s(a) � 1=2. It is

easy to see that the number of unmatched points that result will be roughly

proportional to the amount of wasted space in the MBF packing of L

n

. Shor

proves three additional key facts about Matching Best Fit in [Sho86]:

� MBF constructs an optimal up-right matching.

� MBF(L) � BF(L) for all lists L.

�

�

W

n

BF

(U [0;1])=
(

�

W

n

MBF

(U [0;1])) so long as the latter is
(

p

n logn).

Thus, assuming that

�

W

n

MBF

(U [0;1]) grows quickly enough, we will have

�

W

n

BF

(U [0;1]) = �(

�

W

n

MBF

(U [0;1])) = �(E[U

n

]), where U

n

is de�ned to be the

number of unmatched points in an optimal up-right matching on 2n random

points. The initial results in [KLM84b] gave an
(

p

n logn) lower bound and a

O(

p

n logn) upper bound on E[U

n

]. A lower bound of
(

p

n log

3=4

n) was proved

by Shor in [Sho86] and the tight upper bound E[U

n

] =O(

p

n log

3=4

n) was proved

by Leighton and Shor in [LS89], thus completing the proof of Theorem 2.23. Rhee

and Talagrand [RT88a] independently proved the same bounds on E[U

n

]. Sim-

pler proofs were discovered later by Co�man and Shor [CS91] and then, in a

more general setting, by Talagrand [Tal94].

The proof of Theorem 2.22 for First Fit is derived in a similar fashion, based

on an appropriately de�ned variant on up-right matching and using an analo-

gously de�ned Matching First Fit algorithm as an intermediary. The
(n

2=3

)

lower bound for

�

W

n

FF

(U [0;1] was proved by Shor in [Sho86]; Shor's original

O(n

2=3

logn) upper bound was subsequently tightened to O(n

2=3

) by Co�man,

Johnson, Shor, and Weber in [CJS95].

Stochastic planar matching results can also be used to obtain lower bounds

on the best possible average case performance for an online algorithm when F =

U [0;1]. Here the relevant variant is the rightward matching problem. Instances

are as in up-right matching, but now a point P can be matched either to a point

of the other color, in which case the blue point must be to the right of the red

point, or to a point directly beneath P on the lower boundary of the square.

The objective is a matching with a minimum total vertical distance between

matched points, i.e., a matching such that the sum of the vertical components of

straight-line segments connecting matched points is minimized. Let us call this

quantity the vertical discrepancy of the matching. Shor showed in [Sho86] that

any open online algorithm operating a list L

n

generated according to F =U [0;1]

will generate a rightward matching whose vertical discrepancy roughly equals the

average wasted space during the course of the packing. Thus if we let V

n

denote

the vertical discrepancy of an optimal rightward matching for a random point

set, we have

�

W

n

A

(U [0;1])=
(E[V

n

]) for all open online algorithmsA. In [Sho86]

he proved that E[V

n

] =
(

p

n logn). In [Sho91] he exhibited an O(n logn)-time

open online algorithm that achieved this bound on wasted space. Thus we have

the following.

2.3 AVERAGE-CASE ANALYSIS 33

THEOREM 2.24 [Sho86][Sho91]. For any open online algorithm A,

�

W

n

A

(U [0;1])=
(

p

n logn)

and this is the best possible such lower bound.

The above bound does not hold for closed online algorithms (ones that know

n in advance). For these the only lower bound is the trivial one of

�

W

n

A

(U [0;1])=

(

p

n) (trivial because

�

W

n

OPT

(U [0;1])=
(

p

n), as is easily seen). Moreover, as

is shown in [Sho86], this bound is achieved by the simple algorithm that begins

by packing the �rst bn=2c items one per bin, and then packs the remaining items

using Best Fit. Note however, that there are drawbacks to algorithms that opti-

mize their behavior for a particular distribution like U [0;1]. Both this algorithm

and the one in Theorem 2.24 have unbounded worst-case behavior and indeed

can have arbitrarily bad average-case behavior under natural distributions. For

example, each has lim

b!0

�

R

1

A

(U [0; b]) =1.

2.3.2.2 Results for U [0; b], 0< b < 1

Although the distribution F = U [0;1] gives rise to interesting behavior and ap-

pealing mathematical connections, the very fact that simple matching algorithms

su�ce to yield good average-case behavior makes this distribution somewhat sus-

pect. In real-world applications, one often has to put more than two items in a

bin to get good packings. As a �rst step to obtaining a more realistic picture of

real-world behavior, let us see what has been learned about average-case behavior

under the distributions F = [0; b], 0< b < 1.

For such distributions

�

W

n

OPT

(F) =O(1), as we shall see in the next section,

but a lower bound of
(n

1=2

) on

�

W

n

A

(F) holds for all open online algorithms

A [CCG91]. No algorithm achieving this bound has yet been found, although

one can come close. Rhee and Talagrand [RT93b, RT93c] have shown that, with

only a slight weakening, results similar to those for Best Fit can be derived

for any distribution F . They exhibit an online algorithm in [RT93c] that packs

L

n

into at most OPT(L

n

)+K

p

n log

3=4

n bins with a probability at least 1�

n

��

p

logn

, where K and � are universal constants, and where, as one might

suspect, the

p

n log

3=4

n term comes from the algorithm's connection with Best

Fit. The algorithm works for all F , dynamically changing its packing strategy as

it `learns' more about F from items already packed. For the case of F = U [0; b],

b < 1, the above bound implies that

�

W

n

A

(F) = �(

p

n log

3=4

n). Unfortunately,

even if one is able to specialize the algorithm in advance to the distribution in

question, it is still likely to be complex, it will only come into its own for huge

values of n, and it will behave poorly in a worst-case sense.

More natural and robust alternatives have yet to be found. First and Best Fit

in particular do not appear to be good candidates. Based on extensive simulations

[BJL83] [Joh96], it appears that for all b, 0 < b < 1 both Best and First Fit

have linear expected waste, i.e.,

�

W

n

A

(U [0; b]) = �(n) and hence

�

R

1

A

(U [0; b])> 1.

See Figure 2.7, which illustrates the case for First Fit and :70 � b � 1. The

�gure presents experimentally-derived curves for

�

R

n

FF

(U [0; b]) with b increasing

34 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

32,000

0.70 0.75 0.80 0.85 0.90 0.95 1.00

1.000

1.005

1.010

1.015

1.020

1.025

64,000

128,000

256,000

512,000

1,024,000

2,048,000
4,096,000
8,192,000

16,000

n =

b

FIGURE 2.7

�

R

n

FF

(U [0; b]) as a function of b for increasing values of n.

in increments of :01 from :70 to 1.00, and with n increasing by factors of 2 from

16,000 to 8,192,000.Note that the curves are consistent with the above conclusion

about

�

R

n

FF

(U [0; b]), but also suggest (as one would hope given Theorem 2.21) that

lim

b!1

�

R

1

FF

(U [0; b]) = 1. As was the case for Next Fit, the value of

�

R

1

FF

(U [0; b])

takes on its maximum for b roughly equal to .81, although now the maximum

value is quite small, i.e, less than 1.02. In general the values are so small that

for small n they are overwhelmed by the �(n

2=3

) expected waste term, with

�

R

n

FF

(U [0; b]) actually increasing as b! 1.

The cases for Best Fit and for 0< b< :70 are similar, except that

�

R

1

BF

(U [0; b])

appears always to be a bit less than

�

R

1

FF

(U [0; b]) for any �xed b < 1, and both

approach 1 in the limit as b approaches 0. Unfortunately, although the evidence of

the experiments reported in Figure 2.7 seems incontrovertible, no one has so far

been able to rigorously prove that either

�

R

1

FF

(U [0; b]) or

�

R

1

BF

(U [0; b]) exceeds 1

for any b, 0< b< 1. To �nd proofs of such behavior we must turn to the analogous

discrete uniform distributions Ufj;kg de�ned at the beginning of Section 2.3.

As was the case for the bounded-space online algorithms of Section 2.3.1, the

behavior of First and Best Fit on such distributions roughly mimics that for

the corresponding continuous cases, although now there are a few interesting

di�erences.

2.3 AVERAGE-CASE ANALYSIS 35

2.3.2.3 Results for discrete distributions

The major di�erence between results for discrete and continuous uniform distri-

butions is that for certain combinations of j and k, we have

�

W

n

BF

(Ufj;kg)=O(1).

That is, the expected waste is bounded independent of n, something that is im-

possible in the continuous uniform case. Before discussing such cases, however,

let us �rst see what happens for the discrete uniform analogues of the continuous

uniform distribution U [0;1].

THEOREM 2.25 [CCG91][CJS95]. For k > 1,

A.

�

W

n

FF

(Ufk;kg) = �(

p

nk).

B.

�

W

n

BF

(Ufk;kg) =O(

p

n logk).

C. For any open online algorithm A,

�

W

n

A

(Ufk;kg)=
(

p

n logk).

Note that this means that for �xed k, both Best and First Fit have �(

p

n)

expected waste, something that is impossible for any open online algorithmunder

U [0;1]. However, if one allows k to grow with n, say as n

1=3

, one obtains the

bounds reported above for the U [0;1] case, except for a small discrepancy in case

(B). Indeed, the upper bound on

�

W

n

FF

(U [0;1]) in Theorem 2.22 was obtained from

the proof of claim (A) in the above theorem by taking k= dn

1=3

e. We conjecture

that the bound in (B) can be replaced by �(

p

n log

3=4

k), thus eliminating the

one discrepancy. We also conjecture that there exists an open online algorithm

meeting the lower bound of (C), operating along much the same principles as

the algorithm in the corresponding continuous result.

For j = k�1, the results of Theorem 2.25 continue to hold, since the only

signi�cant di�erence between Ufk;kg and Ufk�1;kg is the presence of items of

size k=k= 1. Such an item �lls a single bin with no waste and no impact on the

remainder of the packing. Reducing j just one step further, however, gives rise

to bounded expected waste results of the type mentioned above.

THEOREM 2.26 [CJS93][KRS96]. For all k > 2,

�

W

n

BF

(Ufk�2;kg)=O(1).

This was proved for k � 10 by Co�man, Johnson, Shor, and Weber in

[CJS93]. They modeled the packing process as a multi-dimensionalMarkov chain

and used linear programming to derive for each individual distribution a poten-

tial function that could be used to show that the Markov chain was stable.

Kenyon, Rabani, and Sinclair generalized this to arbitrary k in [KRS96] by de-

riving a simple potential function that works for all k (but needs signi�cantly

more sophisticated arguments to show that it works).

The Best Fit algorithm is well suited for a Markov chain approach, since

the ordering of the bins in the packing is irrelevant as far as wasted space is

concerned. Thus a packing can be represented by the numbers N

i

of bins with

gaps of size i=k, 0 � i < k. This not only facilitates Markov chain proofs, but

also allows for much faster simulations of the algorithm. No similar advantage

holds for First Fit, which helps explain why much less is known about First Fit.

Moreover, limited experiments suggest that the analog of Theorem 2.26 does not

36 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

j k 5 6 7 8 9 10 11 12 13 14

3 B B B B B B B B B B

4 B B B B B B B B B

5 B B B B B B B B

6 B B B B B B B

7 B B B B B B

8 B L B* B* B

9 B L L* B*

10 B L* L*

11 B L*

12 B

Table 2.3: Simulation results for

�

W

n

BF

(Ufj;kg) when j < k�1.

B = Bounded Waste; L = Linear Waste; * = Unproved

hold for First Fit, and indeed that

�

W

n

FF

(Ufk� 2;kg) may still be
(n

1=2

) for

large enough �xed k.

When we consider distributions Ufj;kg with j � k�3, behavior can become

much worse, even for Best Fit, and begins to mimic that for the continuous case,

where

�

W

n

BF

(U [0; b]) is apparently linear for all b 2 (0;1). We conjecture that for

any such b there exists an integer K

b

such that

�

W

n

BF

(Ufj;kg) is linear whenever

k > K

b

and jb� j=kj < minf(b=2; (1� b)=2g. Simulations reported in [CJS93]

support this conjecture, with the conclusions summarized in Table 2.3. Most

of the empirical conclusions in the table have now been rigorously proved, the

exceptions being those entries marked by a *". The results along the diagonal

follow from Theorem 2.26, while the remaining bounded-waste results can be

proved using individually-derived potential functions. (The linear-programming-

based technique for generating these potential functions seems to run out of gas

once k � 15 [CJS93].) The proofs that

�

W

n

BF

(Uf8;11g) and

�

W

n

BF

(Uf9;12g) are

both linear rely on much more complicated Markov chain arguments that involve

lengthy computer-aided numerical computations. To date no general approach

has been found to prove such linear-waste conjectures.

To complete the picture for discrete uniform distributions, we note that for

su�ciently small values of j, one can get bounded-waste results muchmore easily,

and even extend them to First Fit. For instance, it is easy see that under both

First and Best Fit, the expected waste is bounded for all Ufj;kg with j 2 f1;2g.

More generally, we have the following.

THEOREM 2.27 [CCG91].

A.

�

W

n

BF

(Ufj;kg) =O(1) whenever k � j(j+3)=2.

B.

�

W

n

FF

(Ufj;kg) = O(1) whenever k � j

2

.

This completes our discussion of what is known about the performance of

standard online algorithms like First and Best Fit under the discrete uniform

distributions. The normal next question to ask is what is the best performance

2.3 AVERAGE-CASE ANALYSIS 37

one can hope for from an online algorithm on such distributions. Given the lower

bounds we saw in the continuous case, the answer is surprising.

THEOREM 2.28 [CCG91]. For any distribution F = Ufj;kg with 1 � j <

k�1, there exists an open online algorithm A

F

such that

�

W

n

A

F

(F) = O(1).

This theorem is an application of an earlier result of Courcoubetis and Weber

[CW86a] [CW86b] which applies to all discrete distributions, and provides an

explicit test by which the expected waste under any such distribution can be

determined up to a constant factor. In general performing the test is an NP-

hard problem, but it can be done e�ciently in several important special cases

(such as that of the distributions Ufj;kg). In these situations, the Courcoubetis-

Weber result can yield much tighter bounds than does the general result of

Rhee and Talagrand [RT93b] [RT93c] mentioned in Section 2.3.2.2 that holds

for all distributions, both continuous and discrete. Moreover, most real-world

bin packing applications involve discrete rather than continuous distributions.

Here is a sketch of what is involved in the Courcoubetis-Weber test.

A discrete distribution F = (s

F

;P

F

) is speci�ed by a �nite set of item sizes

s

F

= fs

F

(1); : : :; s

F

(j)g, 0< s

F

(i)� 1 for 1� i� j, together with a list of proba-

bilities P

F

= (P

F

(1); : : :;P

F

(j)) where

P

j

i=1

P

F

(i) = 1. Let us call an integer vec-

tor (c

1

; : : :; c

q

) a packing con�guration for F if c

i

items of size s

F

(i); i= 1; : : :; j,

can all be packed into a bin, i.e., if

P

j

i=1

c

i

s

F

(i) � 1. If this sum is equal to 1

(there is no wasted space), then (c

1

; : : :; c

j

) is a perfect packing con�guration. Let

�

F

be the convex cone in R

q

spanned by all non-negative linear combinations of

perfect packing con�gurations for F . The Courcoubetis-Weber test asks whether

P

F

, considered as a vector, lies in the convex cone �

F

. The answer to the test

not only determines the best possible expected waste for an online algorithm,

but also characterizes the expected waste in an optimal packing, which turns out

to be the same to within a constant factor.

THEOREM 2.29 [CW86a][CW86b]. For any discrete distribution F there

exists an open online algorithm A

F

with

�

W

n

A

F

(F) = �(

�

W

n

OPT

(F)). Moreover,

A.

�

W

n

OPT

(F) =O(1) if P

F

is in the interior of �

F

.

B.

�

W

n

OPT

(F) = �(n

1=2

) if P

F

is on the surface of �

F

.

C.

�

W

n

OPT

(F) = �(n) if P

F

is outside �

F

.

For speci�c classes of distributions one can avoid the NP-hardness inherent

in the general Courcoubetis-Weber result by proving combinatorial theorems

about perfect packings that imply that one of the three cases always holds. This

is what is done in [CCG91] to prove Theorem 2.28. The speci�c perfect packing

theorem proved in [CCG91] is stronger than what is needed, and much harder

to prove, but it is easier to state: For positive integers k, j, and r, with k � j,

the list L of rj items, r each of sizes 1 through j, can be packed perfectly into

bins of size k if and only if the sum of the rj item sizes is a multiple of k.

38 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

The speci�c online algorithms embodied in Theorem 2.29 are randomized,

but can be e�ciently derandomized when F is a discrete uniform distribution.

In their randomized form, they maintain a separate pool of bins for each of the

possible perfect packing con�gurations, and assign each new item randomly to

an appropriate pool, using probabilities determined by a linear program over the

current numbers of partially-packed bins of each type. As described, a separate

algorithm is needed for each distribution, although in the case of the discrete

uniform distribution a single algorithm can be constructed that has O(1) ex-

pected waste for all such distributions [CCG91]. As with the more general but

less-e�ective algorithm of Rhee and Talagrand [RT93b] [RT93c], this algorithm

works by learning the distribution as it goes along. Also as with the Rhee and

Talagrand algorithm, it is only of theoretical interest, a statement that holds for

the speci�c algorithms A

F

as well. For more practical results, let us now turn to

the o�ine case.

2.3.3 OFFLINE ALGORITHMS

Given the impressive average-case performance of online algorithms, it is not

clear whether o�ine algorithms have much of an advantage as far as expected

performance is concerned. However, at least for continuous uniform distributions

First and Best Fit Decreasing still outperform First and Best Fit in important

ways. A �rst result (both in our presentation and historically) is the following.

THEOREM 2.30 [Kno81][Lue82]. For A 2 fFFD;BFDg,

�

W

n

A

(U [0;1])= �(

p

n)

Note that this is better than can be obtained by the best possible open online

algorithm by a factor of

p

logn.

The determination of the growth rate for

�

W

n

FFD

(U [0;1]) was the �rst signif-

icant average-case result proved for bin packing. Frederickson in [Fre80] showed

that it was O(n

2=3

). Kn�odel [Kno81] and Lueker [Lue82] then independently im-

proved this to the correct bound. Once again a simple algorithm was needed

as an intermediary to make the analysis go through, and the main advan-

tage that Kn�odel and Lueker had over Frederickson was a better choice of

an intermediary. Perhaps the simplest choice for the intermediary is the al-

gorithm Match (MA) given by Karp in [Kar82b]. This algorithm is the same

as FFD except that as soon as a bin receives its second item it is closed.

It is easy to show that MA(L) � maxfFFD(L);BFD(L)g for all lists L. The

analysis of Match when F = U [0;1] easily reduces to computing the expected

maximum excursion of a symmetric random walk above its original position

and yields

�

W

n

MA

(U [0;1]) = �(n

1=2

) thus implying the desired upper bound for

both FFD and BFD. The corresponding lower bound follows from the fact

that

�

W

n

OPT

(U [0;1]) = �(n

1=2

), which itself is proved via an analysis of the ex-

pected value of the lower bound OPT(L)�maxfs(L); jfa2L : s(a)> 1=2gjg (see

also [CL91, p. 122]).

2.3 AVERAGE-CASE ANALYSIS 39

It should be noted, as observed in [Kno81], that the above results hold for

any distribution F that is symmetric about 1=2, where a random variable X and

its distribution function F are symmetric about a if X �a and a�X have the

same distribution [CL91, p. 103].

For the distributions U [0; b], 0 < b < 1, the average-case advantage of Best

and First Fit Decreasing over their online counterparts increases substantially,

although to date this has only been proved for FFD, as shown by Bentley, John-

son, Leighton, McGeoch, and McGeoch [BJL84].

THEOREM 2.31 [BJL84].

�

W

n

FFD

(U [0; b]) =

�

�(1) if b� 1=2

�(n

1=3

) if 1=2< b < 1.

These results should be compared to our earlier result that any open online algo-

rithmmust have expected waste at least
(

p

n) for 0<b< 1, and our observation

that both First and Best Fit appear to have linear expected waste for all such b.

When b � 1=2 the constant bound appears to be no more than 0.7 based

on simulations reported in [BJL83], meaning that FFD is typically optimal or

at most one bin o�. The proof in [BJL84] unfortunately only provided a bound

of something like 10

10

. A later analysis of the case 0 < b � 1=2 by Floyd and

Karp [FK91] reduced the bound on the constant hidden in the �(1) notation to

11.3, albeit at a slight change in the probabilistic model. Their technique was to

take the number of items in L to be Poisson distributed with mean n, and then to

reduce the problem to the analysis of a queueing system; the discontinuity from

bounded to unbounded expected wasted space when b= 1=2 was then explained

by its correspondence with the stability point of the queueing system.

As to the situation when b > 1=2, it is claimed in [BJL84] that one can do

substantially better than FFD by modifying the algorithm slightly.

THEOREM 2.32 [BJL84]. There exists an O(n logn)-time o�ine algorithm

A such that for 1=2< b < 1,

�

W

n

A

(U [0; b]) =O(1).

It should be noted that the proofs of Theorem 2.32 and the second half of The-

orem 2.31 currently still exist only in the form of handwritten notes, and so we

may have been generous in calling these results \theorems" at this point.

When we turn to discrete uniform distributions, the advantages of FFD

and BFD are no longer so clear in light of Theorem 2.29, which says for any

discrete distribution there is an online algorithm with the same expected waste

as an optimal packing to within a constant factor. Moreover, although as one

might expect these two algorithms can outperform First and Best Fit, they do

not do so consistently. For instance, for F = Uf8;11g we have

�

W

n

BFD

(F) =O(1)

and

�

W

n

BF

(F) = �(n), while for F = Uf6;13g we have

�

W

n

BFD

(F) = �(n) and

�

W

n

BF

(F) = O(1). These results for BFD are based on a
uid packing theorem

mentioned in [CCG91] and proved in [CJM96].

In the
uid packing of a discrete distribution F = (s

F

;P

f

) by First or Best

Fit Decreasing, one views the distribution as made up of continuous quantities

40 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

of each item-size, with an amount P

F

(i) of item-size s

F

(i). One then performs a

version of the algorithm that treats each item-size in turn (in decreasing order),

building up a packing that contains fractional amounts of the resulting bin-types.

For example, when F = Uf6;13g, FFD begins by using up the given amount 1=6

of item-size 6=13 to create an amount 1=12 of the bin-type that consists of two

items of size 6=13. When it comes time to pack item-size 1=13, half of the amount

of this item-size will �ll the gaps in these \bins." The �nal packing resulting from

this
uid packing process is called perfect if all the bin types occurring in the

�nal packing in nonzero quantities contain no wasted space. Co�man, Johnson,

McGeoch, Shor, and Weber [CJM96] prove the following general result.

THEOREM 2.33 [CJM96]. Let F = (s

F

;P

f

) be a discrete distribution with

j item sizes and let A 2 fFFD;BFDg. Then

A. If the
uid packing of A for F is not perfect, then

�

W

n

A

(F) = �(n).

B. If the
uid packing of A for F is perfect, then

�

W

n

A

(F) is either O(1) or

�(

p

n). The �rst option occurs if and only if there exists a � > 0 such

that for all probability distributions Q on S

F

with maxfjQ(i)�P

F

(i)j :

1� i � jg < � the
uid packing of A for F

0

= (s

F

;Q) is perfect.

The theorem actually holds for a more general class of o�ine algorithms called

bin type priority algorithms in [CJM96]. The condition stated in (B) can be

tested by solving a �nite number of linear programs, but in general is NP-hard

even for BFD and FFD [CJM96]. In the case of the discrete uniform distribution

Ufj;kg, however, it can be tested in time O(j logj).

The above results are similar in form to those we saw in Theorem 2.29 for

the best possible online algorithms when F is discrete. The consequences are

not nearly so simple, however. For j 2 fk�1;kg and k > 3 the expected waste

is always �(

p

n), although now the constant of proportionality need not depend

on k, as can be proved using arguments like those used in the continuous case

for U [0;1]. Using the
uid packing test, the nature of

�

W

n

F

(F) when j < k�1 has

been determined for both BFD and FFD for all Ufj;kg with k� 1;000 [CCG91]

(and in the case of FFD for all k � 2;500 [CJM96]). All cases examined so far

yield expected waste O(1) or �(n) with the same answer for both BFD and FFD,

but the patterns of pairs (j;k) for which these two options occur is not at all

straightforward. For a given k the values of j for which linear waste occurs are

often broken up into multiple intervals separated by j's for which the expected

waste is O(1), and k's exist with as many as 10 such intervals. See [CCG91] for

more details.

Certain global observations are possible, however. When

�

W

1

A

(Ufj;kg) =

�(n) for A 2 fFFD;BFDg, the
uid packing process can be used to determine

the precise value of

�

R

1

A

(Ufj;kg), and based on the computations for k � 2;500

and additional arguments, one can show the following.

THEOREM 2.34 [CCG91][CJM96]. ForA2fFFD;BFDg and all pairs (j;k)

with j < k�1,

2.3 AVERAGE-CASE ANALYSIS 41

A.

�

R

1

A

(Ufj;kg)�

�

R

1

A

(Uf6=13g)� 1:00596.

B.

�

R

1

A

(Ufj;kg) = O(logk=k).

Thus the asymptotic expected ratios are bounded and go to 0 asK!1. The

proof uses a simpli�ed version of FFD as an intermediary that shares the name

Modi�ed First Fit Decreasing and abbreviation MFFD with the quite di�erent

algorithm of [GJ85] discussed in Section 2.2.8. In this version of MFFD a bin

is closed as soon as it receives its �rst fallback item, where a fallback item is an

item that is added to a bin after a subsequent bin has been started. (This version

of MFFD is also used by Floyd and Karp [FK91] in their analysis of FFD for

U [0; b] when b� 1=2.)

This concludes our coverage of First and Best Fit Decreasing. The only other

o�ine algorithm whose average case behavior has received serious attention is

Next Fit Decreasing (NFD), with the attention probably due more to the ease

with which it can be analyzed than to any likely applications for the algorithm.

The average-case analysis of NFD began with Hofri and Kamhi [HK86] (see also

Hofri [Hof87]) and continued soon after with Csirik et al. [CFF86]. These papers

contain several results including the fact that

�

R

1

NFD

(U [0;1]) = �

2

=3�2� 1:2899

(the same value we saw in Theorem 2.18 for lim

K!1

�

R

1

H

K

(U [0;1]), for much

the same reason). This result is easily generalized to arbitrary distributions F

[Rhe87]. With F general, let �

k

be the probability that an item size falls in

(1=(k+1);1=k], and de�ne �

F

=

P

k�1

�

k

=k. Rhee shows that

�

R

1

NFD

(F) = �

F

2.3.4 OTHER AVERAGE-CASE QUESTIONS

In this section we consider two additional questions about average-case behavior

that bear on the results presented above. The �rst concerns the quality of optimal

packings.

2.3.4.1 When is the expected optimal packing \perfect"?

A distribution F is said to allow perfect packings if

�

W

n

OPT

(F) = o(n). Note that

this implies that lim

n!1

E[OPT(L

n

)=s(L

n

)] = 1 under F , since E[s(L

n

)] = �n,

where � is the mean of F . The question of which distributions allow perfect

packings, originally posed by Karp as reported in [Kar82a], has been a subject

of much study. It is germane to our concerns about the performance of heuristics,

since for those F that allow perfect packing, we can simplify our estimates of

�

R

1

A

(F) by simply comparing values of E[A(L

n

)] to �n.

Fortunately for our analysis, all the discrete and continuous uniform distri-

butions that we have been examining do allow perfect packings, as is implied

by the results already presented. On the other hand, perhaps our understand-

ing of algorithmic performance would be more thorough if it contained some

knowledge about average-case results for distributions that do not allow perfect

packings. Be that as it may, the distributions on which we have concentrated in

42 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

fact allow even more \perfect" packings than the de�nition requires. For all the

continuous uniform distributions F = U [0; b], 0< b < 1, and all the discrete uni-

form distributions F = Ufj;kg, k > 1 and j � k�2, we have

�

W

n

OPT

(F) = O(1)

as a consequence of Theorems 2.28, 2.31, and 2.32. For the remaining cases,

F = U [0;1] and F 2 fUfk�1;kg;Ufk;kg : k � 3g, we have

�

W

n

OPT

(F) = �(

p

n).

For the case of U [0;1], even more detailed information is known, as various

authors have attempted to estimate the multiplicative constant of the

p

n term.

The current best estimate, due to Csirik, Frenk, Galambos, and Rinnooy Kan

[CFG91], is that

�

W

n

OPT

(U [0;1])=

r

n

32�

+o(

p

n):

In contrast, most searches for distributions that allow perfect packings have

been willing to settle for simply showing that the expected waste is o(n), which

is all that the de�nition requires, or O(

p

n), which is typically the case. Although

the original proof that U [0;1] allows perfect packings was implicit in the 1980

analysis of FFD by Frederickson [Fre80], the �rst explicit study of the question

appears to be that of Karmarkar [Kar82a]. Implicit in Frederickson's result was

the fact that any symmetric distribution (as de�ned in the previous section)

allows perfect packings. Karmarkar extended this to show that the same held for

any decreasing distribution, i.e., one whose density function is non-increasing.

The proof is based on the fact that any such distribution can be decomposed

into the union of a sequence of distributions that are symmetric around powers

of 1=2, an observation also made by Loulou [Lou84a] and partially attributable

to Kn�odel [Kno81].

When Karp originally asked the question about perfect packings, he was

concerned with the class of continuous uniform distributions U [a;b] with 0<a<

b � 1. For this class there exist examples of distributions that trivially do not

allow perfect packings, for instance all those with a> 1=2 or a� 1=2 and b> 1�a,

as well as others with more subtle reasons for being bad. Lueker in [Lue83]

identi�ed all of these using a proof technique motivated by linear programming

duality. He also showed that U [a;b] allows perfect packings whenever (a+ b)=2

is the reciprocal of an integer m � 3, although he was unable to show that all

the distributions outside of his bad class allowed perfect packings.

Rhee [Rhe88, Rhe90] and Rhee and Talagrand [RT88b, RT89d, RT89e] con-

tinued this research, addressing the general problem of characterizing all dis-

tributions on [0;1] that allow perfect packing. Incorporating results in topology

and functional analysis, they developed a comprehensive and deep theory. We

present here a few of the major results, starting with a fundamental charac-

terization of the set B of measures allowing perfect packing. Let R

k

;k � 1; be

the set of k-tuples (x

1

; : : :;x

k

) such that 0 � x

i

� k and

P

k

i=1

x

i

= 1. Let M

k

denote the set of all probability measures on R

k

, and let B

k

denote the set of

all probability measures �̂ on [0;1] induced by the measure � 2M

k

as follows:

Sample R

k

according to �, then choose a single component of the sample, with

all k components equally likely. Rhee [Rhe88] proved that B is the class of all

probability measures obtainable as (countable) positive linear combinations of

measures chosen from the sets B

k

. Following up on this work, Rhee and Tala-

2.3 AVERAGE-CASE ANALYSIS 43

grand [RT88b] derived more explicit su�cient conditions for F to allow perfect

packings, and as a corollary resolved the questions left open by Lueker's earlier

work on the uniform distributions, thus completing the solution to Karp's perfect

packing problem.

In general, the proofs that various classes of distributions allow perfect pack-

ing have not been constructive, i.e., optimal packing algorithms have not been

given. Exceptions are the cases mentioned above of decreasing distributions and

distributions U [a;b] with (a+b)=2 = 1=m, as well the case of any triangular den-

sity whose expectation is 1=m with m� 3 an integer, for which Krause, Larmore,

and Volper [KLV87] have given a constructive proof that perfect packings are

allowed.

2.3.4.2 What can we say about the probability distribution of A(L

n

)?

It is one thing to know the expected number of bins A(L

n

) that an algorithm A

will produce given a list L

n

generated under distribution F . In many applications,

however, it is useful to know more about the distribution of A(L

n

), such as the

nature of its tails. This might have practical signi�cance in the computation of

safety margins, but it also has theoretical signi�cance for our analysis. Although

we have de�ned

�

R

n

A

(F) in terms of the expected ratio E[A(L

n

)=OPT(L

n

)], it

is often much easier to prove results about E[A(L

n

)]=E[OPT(L

n

)], the ratio of

expectations. Fortunately, for any distribution F the tails of the distribution of

OPT(L

n

) decline su�ciently rapidly with n that these ratios must converge to

the same limit as n!1, and this is all we are interested in when we talk about

�

R

1

A

(F).

To be speci�c, consider the following result of Rhee and Talagrand [RT87].

Recall from Section 2.2.10.2 that we call an algorithm A monotone if an increase

in the sizes or numbers of items in L never causes A(L) to decrease for any list

L. Say an algorithm is k-conservative if inserting a new item in L never increases

A(L) by more than k. Next Fit is one the few of our standard heuristics that

meet both these constraints (the latter with k = 2). However, OPT, viewed as

an algorithm, also meets these criteria, in this case with k= 1. Using martingale

techniques, Rhee and Talagrand proved the following result.

THEOREM 2.35 [RT87]. For any monotone, k-conservative algorithmA and

any distribution F ,

P (jA(L

n

))�E[A(L

n

)]j � t)� 2e

��t

2

=n

where � > 0 is a constant depending on the value of k but not on F .

For OPT we have � = 1=2 and for NF we have � = 1=8. Thus, if we take t =

p

4n lnn, we get that the probability that OPT(L

n

) exceeds its mean by more

than t is no more than 2=n

2

. Given that no algorithm A can have a worst-case

ratio R

n

A

(F) > n, it is then an easy exercise to show that E[A(L

n

)=OPT(L

n

)]

and E[A(L

n

)]=E[OPT(L

n

)] go to the same limit as n!1.

In addition to Theorem 2.35, there have been many other results giving

44 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

similar exponential type bound on tail probabilities. These include ones that

tighten up Theorem 2.35 for particular distributions F [Rhe89] [Rhe93a] [Rhe94],

as well as weaker results covering algorithms not captured by Theorem 2.35, such

as MFFD (the version discussed in Section 2.3.3) [Rhe91], BFD and FFD [RT89b]

[RT89c], and stronger results for algorithms like Next Fit Decreasing that were

captured by the theorem [Rhe87]. See also [Rhe85] [Rhe89] [Rhe93b] [RT89a]

[CL91].

CONCLUSION

2.4

In this chapter we have tried to give a relatively complete picture of the state of

the art with respect to the classical one-dimensional bin packing problem, both

from the worst-case point of view that is the common outlook of this book and

from an average-case point of view that helps to put those worst-case results

into perspective. The �eld of bin packing is much wider than the single classi-

cal problem studied here, however, and many of the same questions have been

studied in great detail for a wide range of variants. Among these are generaliza-

tions to higher dimensions [CR89], variants in which additional constraints are

present, such as precedence relations [WM82] or bounds on the maximum num-

ber of items allowed in a bin [KSS75], variants in which bins of di�erent sizes are

allowed [FL86a], variants in which items have lifetimes and may leave the pack-

ing before subsequent items arive [CGJ83] variants in which each non-empty bin

must contain items of total size at least a given amount and we wish to maximize

the number of bins used [AJK84], and variants in which the number of bins is

�xed and some other objective function is considered, such as minimizing the

maximum bin contents (the multiprocessor scheduling problem [Gra69]).

The literature on such generalizations is vast, and the references given above

should only be viewed as existence proofs for work on the problems in question.

The current authors' earlier survey [CGJ84] elaborates on the variety of problems

and covers the literature through 1984. There are many important references that

have appeared since it was written, however, especially in the multidimensional

cases, and an expanded version of this chapter is planned that will bring the

entire picture up to date [CGJ97].

References

[AJK84] S. B. Assman, D. S. Johnson, D. J. Kleitman, and J. Y-T. Leung. On a

dual version of the one-dimensional bin packing problem. J. Algorithms,

5:502{525, 1984.

[AKT84] M. Ajtai, J. Koml�os, and G. Tusn�ady. On optimal matchings. Combina-

torica, 4:259{264, 1984.

[AMW89] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation

REFERENCES 45

algorithms for bin packing. Inf. and Comput., 82:262{277, 1989.

[Bak83] B. S. Baker. A new proof for the �rst-�t decreasing bin-packing algorithm.

J. Algorithms, 6:49{70, 1985.

[BC81] B. S. Baker and E. G. Co�man, Jr. A tight asymptotic bound for next-

�t-decreasing bin-packing. SIAM J. Alg. Disc. Meth., 2:147{152, 1981.

[BE83] J. Blazewicz and K. Ecker. A linear time algorithm for restricted bin

packing and scheduling problems. Oper. Res. Lett., 2:80{83, 1983.

[BJL83] J. L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch. An ex-

perimental study of bin packing. In Proceedings of the 21st Annual Aller-

ton Conference on Communication, Control, and Computing, pages 51{60,

Urbana, 1983. University of Illinois.

[BJL84] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, and L. A.

McGeoch. Some unexpected expected behavior results for bin packing. In

Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-

puting, pages 279{288, 1984.

[Bro71] A. R. Brown. Optimum Packing and Depletion. American Elsevier, New

York, 1971.

[Bro79] D. J. Brown. A lower bound for on-line one-dimensional bin packing al-

gorithms. Technical Report R-864, Coordinated Science Laboratory, Uni-

versity of Illinois, Urbana, IL, 1979.

[CCG91] E. G. Co�man, Jr., C. A. Courcoubetis, M. R. Garey, D. S. Johnson, L. A.

McGeogh, P. W. Shor, R. R. Weber, and M. Yannakakis. Fundamental

discrepancies between average-case analyses under discrete and continuous

distributions: A bin packing case study. In Proceedings of the 23rd Annual

ACM Symposium on Theory of Computing, pages 230{240. ACM Press,

1991.

[CFF86] J. Csirik, J. B. G. Frenk, A. Frieze, G. Galambos, and A. H. G. Rinnooy

Kan. A probabilistic analysis of the next �t decreasing bin packing heuris-

tic. Oper. Res. Lett., 5:233{236, 1986.

[CFG91] J. Csirik, J. B. G. Frenk, G. Galambos, and A. H. G. Rinnooy Kan. Proba-

bilistic analysis of algorithms for dual bin packing problems. J. Algorithms,

12:189{203, 1991.

[CG86] J. Csirik and G. Galambos. An O(n) bin-packing algorithm for uniformly

distributed data. Computing, 36:313{319, 1986.

[CGJ83] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing.

SIAM J. Comput., 12:227{258, 1983.

[CGJ84] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Approximation algo-

rithms for bin-packing: An updated survey. In G. Ausiello, M. Lucertini,

and P. Sera�ni, editors, Algorithm Design for Computer System Design,

pages 49{106. Springer-Verlag, Wien, 1984. CISM Courses and Lectures

Number 284.

[CGJ87] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Bin packing with

divisible item sizes. J. Complexity, 3:405{428, 1987.

[CGJ97] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. To appear.

[Cha92] B. Chandra. Does randomization help in on-line bin packing? Information

46 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

Proc. Lett., 43:15{19, 1992.

[CI89] J. Csirik and B. Imreh. On the worst-case performance of the NkF bin-

packing heuristic. Acta Cybernetica, 9:89{105, 1989.

[CJ91] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best

is better than �rst. In Proceedings, Second Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 309{319, Philadelphia, 1991. Society

for Industrial and Applied Mathematics.

[CJ92] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best is

better than �rst. Algorithmica, submitted.

[CJM96] E. G. Co�man, Jr., D. S. Johnson, L. A. McGeoch, P. W. Shor, and R. R.

Weber. Bin packing with discrete item sizes, part III: Average-case behav-

ior of FFD and BFD, 1996. In preparation.

[CJS93] E. G. Co�man, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber. Markov

chains, computer proofs, and best �t bin packing. In Proceedings of the

25th ACM Symposium on the Theory of Computing, pages 412{421, New

York, 1993. ACM Press.

[CJS95] E. G. Co�man, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber. Bin

packing with discrete item sizes, part II: Average-case behavior of �rst �t,

1995. manuscript.

[CL91] E. G. Co�man, Jr. and G. S. Lueker. Probabilistic Analysis of Packing and

Partitioning Algorithms. Wiley, New York, 1991.

[CR89] D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing:

Algorithms and worst-case analysis. Oper. Res. Lett., 8:17{20, 1989.

[CS91] E. G. Co�man, Jr. and P. W. Shor. A simple proof of the O(

p

n log

3=4

n)

up-right matching bound. SIAM J. Disc. Math., 4:48{57, 1991.

[CS93] E. G. Co�man, Jr. and P. W. Shor. Packing in two dimensions: Asymptotic

average-case analysis of algorithms. Algorithmica, 9:253{277, 1993.

[CSB94] L. M. A. Chan, D. Simchi-Levi, and J. Bramel. Worst-case analyses, linear

programming, and the bin-packing problem, 1994. Manuscript.

[CSH80] E. G. Co�man, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic model

of bin-packing. Inf. and Cont., 44:105{115, 1980.

[Csi93] J. Csirik. The parametric behavior of the �rst-�t decreasing bin packing

algorithm. J. Algorithms, 15:1{28, 1993.

[CW86a] C. Courcoubetis and R. R. Weber. A bin-packing system for objects with

sizes from a �nite set: Necessary and su�cient conditions for stability and

some applications. In Proceedings of the 25th IEEE Conference on Decision

and Control, pages 1686{1691, Athens, Greece, 1986.

[CW86b] C. Courcoubetis and R. R. Weber. Necessary and su�cient conditions for

stability of a bin packing system. J. Appl. Prob., 23:989{999, 1986.

[FK91] S. Floyd and R. M. Karp. FFD bin packing for item sizes with distributions

on [0;1=2]. Algorithmica, 6:222{240, 1991.

[FL81] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved

within 1+ � in linear time. Combinatorica, 1:349{355, 1981.

[FL86a] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J.

REFERENCES 47

Comput., 15:222{230, 1986.

[FL91] D. K. Friesen and M. A. Langston. Analysis of a compound bin-packing

algorithm. SIAM J. Disc. Math, 4:61{79, 1991.

[Fre80] G. N. Frederickson. Probabilistic analysis for simple one- and two-dimensional

bin packing algorithms. Inf. Proc. Lett., 11:156{161, 1980.

[Gal86] G. Galambos. Parametric lower bound for on-line bin-packing. SIAM J.

Alg. Disc. Meth., 7:362{367, 1986.

[GF93] G. Galambos and J. B. G. Frenk. A simple proof of Liang's lower bound

for on-line bin packing and the extension to the parametric case. Disc.

Appl. Math., 41:173{178, 1993.

[GG61] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting stock problem. Oper. Res., 9:948{859, 1961.

[GG63] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting stock program | Part II. Oper. Res., 11:863{888, 1963.

[GGJ76] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao. Resource

constrained scheduling as generalized bin packing. J. Comb. Th. Ser. A,

21:257{298, 1976.

[GGU71] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of

memory allocation algorithms. In Proceedings, 4th Annual Symposium on

Theory of Computing, pages 143{150, New York, 1972. ACM.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco,

1979.

[GJ81] M. R. Garey and D. S. Johnson. Approximation algorithms for bin-packing

problems: A survey. In G. Ausiello and M. Lucertini, editors, Analysis

and Design of Algorithms in Combinatorial Optimization, pages 147{172.

Springer-Verlag, New York, 1981.

[GJ85] M. R. Garey and D. S. Johnson. A 71/60 theorem for bin packing. J. of

Complexity, 1:65{106, 1985.

[GPT90] G. Gambosi, A. Postiglione, and M. Talamo. New algorithms for on-line

bin packing. In R. Petreschi G. Aussiello, D. P. Bovet, editor, Algorithms

and Complexity, Proceedings of the First Italian Conference, pages 44{59,

Singapore, 1990. World Scienti�c.

[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J.

Appl. Math., 17:263{269, 1969.

[Gra72] R. L. Graham. Bounds on multiprocessing anomalies and related packing

algorithms. In Proc. 1972 Spring Joint Computer Conference, pages 205{

217, Montvale, NJ, 1972. AFIPS Press.

[Gro95] E. F. Grove. Online bin packing with lookahead. In Proceedings, The

Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 430{

436, Philadelphia, 1995. Society for Industrial and Applied Mathematics.

[GW93b] G. Galambos and G. J. Woeginger. Repacking helps in bounded space

on-line bin-packing. Computing, 49:329{338, 1993.

[Hal74] S. Hal�asz. Private communication, 1974.

48 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

[Hal89] S. Hal�n. Next-�t bin packing with random piece sizes. J. Appl. Prob.,

26:503{511, 1989.

[HK86] M. Hofri and S. Kamhi. A stochastic analysis of the NFD bin-packing

algorithm. J. Algorithms, 7:489{509, 1986.

[HK88] T. C. Hu and A. B. Kahng. Anatomy of on-line bin packing. Techni-

cal Report CSE-137, Department of Computer Science and Engineering,

University of California at San Diego, La Jolla, CA, 1988.

[Hof82] U. Ho�man. A class of simple stochastic online bin packing algorithms.

Computing, 29:227{239, 1982.

[Hof87] M. Hofri. Probabilistic Analysis of Algorithms. Springer-Verlag, New York,

1987.

[IL93] Z. Ivkovi�c and E. Lloyd. Fully dynamic algorithms for bin packing: Be-

ing myopic helps. In Proceedings of the First European Symposium on

Algorithms, number No. 726 in Lecture Notes in Computer Science, pages

224{235, New York, 1993. Springer Verlag. Journal version to appear in

SIAM J. Comput.

[IL94] Z. Ivkovi�c and E. Lloyd. Partially dynamic bin packing can be solved within

1+ � in (amortized) polylogarithmic time. Technical report, Department

of Computer and Information Sciences, University of Delaware, Newark,

DE 19716, 1994.

[JDU74] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Gra-

ham. Worst-case performance bounds for simple one-dimensional packing

algorithms. SIAM J. Comput., 3:299{325, 1974.

[JKS95] D. S. Johnson, C. Kenyon, P. W. Shor, and N. Young, 1995. Private

communication.

[Joh73] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Mas-

sachusetts Institute of Technology, Department of Mathematics, Cambridge,

1973.

[Joh74] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and

System Sciences, 8:272{314, 1974.

[Joh82] D. S. Johnson. The NP-completeness column: An ongoing guide. J. Al-

gorithms, 3:288{300, 1982.

[Joh96] D. S. Johnson, 1996. Unpublished results.

[Kar82a] N. Karmarkar. Probabilistic analysis of some bin-packing algorithms. In

Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science, pages 107{111, 1982.

[Kar82b] R. M. Karp. Lecture notes. Computer Science Division, University of

California, Berkeley, 1982.

[Ken96] C. Kenyon. Best-�t bin-packing with random order. In Proceedings, The

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages

359{364, Philadelphia, 1996. Society for Industrial and Applied Mathe-

matics.

[KK82] N. Karmarkar and R. M. Karp. An e�cient approximation scheme for

the one-dimensional bin packing problem. In Proc. 23rd Ann. Symp. on

Foundations of Computer Science, pages 312{320, 1982. IEEE Computer

REFERENCES 49

Soc.

[KLM84b] R. M. Karp, M. Luby, and A. Marchetti-Spaccamela. A probabilistic anal-

ysis of multidimensional bin packing problems. In Proceedings of the Six-

teenth Annual ACM Symposium on Theory of Computing, pages 289{298,

1984.

[KLV87] K. Krause, L. Larmore, and D. Volper. Packing items from a triangular

distribution. Inf. Proc. Lett., 25:351{361, 1987.

[Kno81] W. Kn�odel. A bin packing algorithm with complexity O(n logn) and per-

formance 1 in the stochastic limit. In J. Gruska and M. Chytil, editors,

Proceedings 10th Symp. on Mathematical Foundations of Computer Sci-

ence, Lecture Notes in Computer Science, 118, pages 369{378, Berlin, 1981.

Springer-Verlag.

[KRS96] C. Kenyon, Y. Rabani, and A. Sinclair. Biased random walks, Lyapunov

functions, and stochastic analysis of best �t bin packing. In Proc. Seventh

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 351{358,

Philadelphia, 1996. Society for Industrial and Applied Mathematics.

[KSS75] K. L. Krause, Y. Y. Shen, and H. D. Schwetman. Analysis of several task-

scheduling algorithms for a model of multiprogramming computer systems.

J. Assoc. Comput. Mach., 22:522{550, 1975.

[Len83] H. W. Lenstra, Jr. Integer programming with a �xed number of variables.

Math. Oper. Res., 8:538{548, 1983.

[Lia80] F. M. Liang. A lower bound for on-line bin packing. Inf. Proc. Lett.,

10:76{79, 1980.

[LL85] C. C. Lee and D. T. Lee. A simple on-line packing algorithm. J. ACM,

32:562{572, 1985.

[LL87] C. C. Lee and D. T. Lee. Robust on-line bin packing algorithms. Tech-

nical report, Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, IL, 1987.

[Lou84a] R. Loulou. Probabilistic behavior of optimal bin-packing solutions. Oper.

Res. Lett., 3:129{135, 1984.

[LS89] T. Leighton and P. Shor. Tight bounds for minimax grid matching with

applications to the average case analysis of algorithms. Combinatorica,

9:161{187, 1989.

[Lue82] G. S. Lueker. An average-case analysis of bin packing with uniformly

distributed item sizes. Technical Report 181, University of California at

Irvine, Department of Information and Computer Science, 1982.

[Lue83] G. S. Lueker. Bin packing with items uniformly distributed over intervals

[a;b]. In Proceedings of the 24th Annual Symposium on Foundations of

Computer Science, pages 289{297, 1983.

[Mao93a] W. Mao. Best-k-�t bin packing. Computing, 50:265{270, 1993.

[Mao93b] W. Mao. Tight worst-case performance bounds for next-k-�t bin packing.

SIAM J. Comput., 22:46{56, 1993.

[Mar85] C. U. Martel. A linear time bin-packing algorithm. Oper. Res. Lett.,

4:189{192, 1985.

[Mur85] F. D. Murgolo. Approximation Algorithms for Combinatorial Optimization

50 CHAPTER 2 APPROXIMATION ALGORITHMS FOR BIN PACKING

Problems. PhD thesis, Univesity of California at Irvine, 1985.

[Mur88] F. D. Murgolo. Anomalous behavior in bin packing algorithms. Disc.

Appl. Math., 21:229{243, 1988.

[OMW84] H. L. Ong, M. J. Magazine, and T. S. Wee. Probabilistic analysis of bin

packing heuristics. Oper. Res., 32:993{998, 1984.

[Ram89] P. Ramanan. Average-case analysis of the smart next �t algorithm. Inf.

Proc. Lett., 31:221{225, June 12 1989.

[RBL89] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin packing

in linear time. J. Algorithms, 10:305{326, 1989.

[Rhe85] W. T. Rhee. Convergence of optimal stochastic bin packing. Oper. Res.

Lett., 4:121{123, 1985.

[Rhe87] W. T. Rhee. Probabilistic analysis of the next �t decreasing algorithm for

bin packing. Oper. Res. Lett., 6:189{191, 1987. Correction: Oper. Res.

Lett., 7:211, 1988.

[Rhe88] W. T. Rhee. Optimal bin packing with items of random sizes. Math. Oper.

Res., 13:140{151, 1988.

[Rhe89] W. T. Rhee. Some inequalities for bin packing. Optimization, 20:299{304,

1989.

[Rhe90] W. T. Rhee. A note on optimal bin packing and optimal bin covering with

items of random size. SIAM J. Comput., 19:705{710, 1990.

[Rhe91] W. T. Rhee. Stochastic analysis of a modi�ed �rst �t decreasing packing.

Math. Oper. Res., 16:162{175, 1991.

[Rhe93a] W. T. Rhee. Optimal bin packing of items of sizes uniformly distributed

over [0;1]. Math. Oper. Res., 18:694{704, 1993.

[Rhe93b] W. T. Rhee. Inequalities for Bin Packing { II. Math. Oper. Res., 18:685{

693, 1993.

[Rhe94] W. T. Rhee. Inequalities for Bin Packing { III. Optimization, 29:381{385,

1994.

[Ric91] M. B. Richey. Improved bounds for harmonic-based bin packing algo-

rithms. Disc. Appl. Math., 34:203{227, 1991.

[RT87] W. T. Rhee and M. Talagrand. Martingale inequalities and NP-complete

problems. Math. Oper. Res., 12:177{181, 1987.

[RT88a] W. T. Rhee and M. Talagrand. Exact bounds for the stochastic upward

matching problem. Trans. Amer. Math. Soc., 307:109{125, 1988.

[RT88b] W. T. Rhee and M. Talagrand. Some distributions that allow perfect

packing. Assoc. Comp. Mach., 35:564{578, 1988.

[RT89a] W. T. Rhee and M. Talagrand. The complete convergence of best �t de-

creasing. SIAM J. Comput., 18:909{918, 1989.

[RT89b] W. T. Rhee and M. Talagrand. The complete convergence of �rst �t de-

creasing. SIAM J. Comput., 18:919{938, 1989.

[RT89c] W. T. Rhee and M. Talagrand. Optimal bin covering with items of random

size. SIAM J. Comput., 18:487{498, 1989.

[RT89d] W. T. Rhee and M. Talagrand. Optimal bin packing with items of random

REFERENCES 51

sizes|II. SIAM J. Comput., 18:139{151, 1989.

[RT89e] W. T. Rhee and M. Talagrand. Optimal bin packing with items of random

sizes { III. SIAM J. Comput., 18:473{486, 1989.

[RT89f] P. Ramanan and K. Tsuga. Average-case analysis of the modi�ed harmonic

algorithm. Algorithmica, 4:519{533, 1989.

[RT93b] W. T. Rhee and M. Talagrand. On line bin packing with items of random

size. Math. Oper. Res., 18:438{445, 1993.

[RT93c] W. T. Rhee and M. Talagrand. On line bin packing with items of random

sizes { II. SIAM J. Comput., 22:1251{1256, 1993.

[Sha77] S. D. Shapiro. Performance of heuristic bin packing algorithms with seg-

ments of random length. Inf. and Cont., 35:146{148, 1977.

[Sho86] P. W. Shor. The average-case analysis of some on-line algorithms for bin

packing. Combinatorica, 6(2):179{200, 1986.

[Sho91] P.W. Shor. How to pack better than best-�t: Tight bounds for average-case

on-line bin packing. In Proceedings, 32nd Annual Symposium on Founda-

tions of Computer Science, pages 752{759, New York, 1991. IEEE Com-

puter Society Press.

[Sim94] D. Simchi-Levi. New worst-case results for the bin packing problem. Nav.

Res. Log., 41:579{585, 1994.

[Tal94] M. Talagrand. Matching theorems and empirical discrepancy computations

using majorizing measures. J. Amer. Math. Soc., 7:455{537, 1994.

[Ull71] J. D. Ullman. The performance of a memory allocation algorithm. Tech-

nical Report 100, Princeton University, Princeton, NJ, October 1971.

[Vli95] A. van Vliet. Lower and Upper Bounds for On-Line Bin Packing and

SchedulingHeuristic. PhD thesis, Erasmus University, Rotterdam, Nether-

lands, 1995.

[Vli96] A. van Vliet. On the asymptotic worst case behavior of harmonic �t. J.

Algorithms, 20:113{136, 1996.

[WM82] T. S. Wee and M. J. Magazine. Assembly line balancing as generalized

bin-packing. Oper. Res. Lett., 1:56{58, 1982.

[Woe93] G. Woeginger. Improved space for bounded-space, on-line bin-packing.

SIAM J. Disc. Math., 6:575{581, 1993.

[Xu93] K. Xu. A Bin-Packing Problem with Item Sizes in the Interval (0;�] for

� �

1

2

. PhD thesis, Chinese Academy of Sciences, Institute of Applied

Mathematics, Beijing, China, 1993.

[Yao80] A. C. Yao. New algorithms for bin packing. J. Assoc. Comput. Mach.,

27:207{227, 1980.

[Yue91] M. Yue. A simple proof of the inequality FFD(L)�

11

9

OPT(L)+1 8L, for

the FFD bin-packing algorithm. Acta Math. App. Sinica, 7:321{331, 1991.

[Zha94] G. Zhang. Tight worst-case performance bound for AFB

k

. Technical

Report 015, Institute of Applied Mathematics, Academia Sinica, Beijing,

china, May 1994.

52 INDEX

Index

Almost Any Fit algorithm, 8

Any Fit algorithm, 8, 10, 17, 18

approximation scheme

asymptotic, 21{23

asymptotically optimal algorithms

for bin packing, 23{24

in the average case, 30{33, 35{

39

average case ratio

asymptotic, 27

average-case analysis

for bin packing, 25{44

average-case ratio, 26

asymptotic, 26, 43

Best Fit, 8, 20, 24, 25, 29, 31{36

Best Fit Decreasing, 15{17, 24, 25,

38{41, 44

BF, see Best Fit

bin packing, 1{44

competitive ratio, 2

continuous uniform distribution, see

uniform distribution, con-

tinuous

discrete uniformdistribution, see uni-

form distribution, discrete

ellipsoid algorithm, 21{23

experimental results

for bin packing, 27{29, 31, 33{

36

FF, see First Fit

First Fit, 5{7, 21, 24, 25, 29, 31{33,

35, 36

First Fit Decreasing, 15{17, 21, 24,

25, 38{41, 44

uid packing, 39

FPAS

asymptotic for bin packing, 23

Group-X Fit, 12, 18

Harmonic algorithms, 10{13, 25, 28,

30

Harmonic+1, 13

Modi�ed, 12, 30

Re�ned, 12

Simpli�ed, 10, 11

integer programming

in bin packing algorithms, 21

K-Bounded Best Fit, 9{11, 28, 29

Knapsack, 23

linear programming

as a proof technique, 13, 24, 35,

36, 40, 42

in bin packing algorithms, 21{

23, 38

matching

bin packing results based on, 30{

33

MFFD, see Modi�ed First Fit De-

creasing

Modi�ed First Fit Decreasing, 18,

23, 41, 44

First de�nition, 18, 23

Second de�nition, 41, 44

monotone algorithm, 24

INDEX 53

Next Fit, 4{5, 25, 27{30

Smart, 28, 30

Next Fit Decreasing, 17, 41, 44

Next-K Fit, 5, 9{11, 25, 28

NF, see Next Fit

nonmonotonicity, worst-case, 25

online bin packing, 3{14, 27{38

best possible algorithm, 3, 11,

14, 29, 32{33, 37

bounded space, 3, 9{11, 27{29

closed algorithms, 30, 33

open algorithms, 30, 32{33

semi-online algorithm,3, 11, 14{

15

with lookahead, 11

with repacking, 11, 14{15

parallel algorithms

for bin packing, 18

perfect packings, 37, 41{43

potential function, 35, 36

randomized algorithm

for bin packing, 14, 20, 38

semi-online algorithm, see on line bin

packing, semi-online algo-

rithm

s(L), 26

stochastic planar matching, 31{33

symmetric distribution, 39, 42

T

1

, 7, 10{13, 17

uniform distribution

continuous, 26{34, 38{39, 41

discrete, 27, 29, 34{41

wasted space

in bin packing, 26

weighting function proof, 5, 6, 10, 15

worst case ratio

absolute, 2, 24

asymptotic, 2, 4{24, 30

bounded size, 2, 4, 7{8, 13, 14,

16{17

Worst Fit, 8, 25

Worst Fit Decreasing, 17, 25

