Probabilité Conditionnelle

1.1 Algèbre des évènements

1.1.1 Définitions

Définition 1 Une expérience aléatoire \mathcal{E} est une expérience qui, répétée dans des conditions apparemment identiques, peut conduire à des résultats différents.

L'ensemble de tous les résultats possibles de \mathcal{E} est noté Ω et s'apelle l'univers associé à \mathcal{E}.

Définition 2 Soit \mathcal{E} une expérience aléatoire et Ω l'univers qui lui est associé. On dit qu'un évènement est lié à l'expérience \mathcal{E} si pour tout résultat ω de Ω, on sait dire si cet évènement a eu lieu ou non.

Un évènement est représenter par l'ensemble des $\omega \in \Omega$ pour lesquels il a eu lieu.

Exemple 1 On lance deux dés cubiques discernables. L'ensemble des résultats est alors l'ensemble des couples d'entiers compris entre 1 et 6 :

$$
\Omega=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}
$$

Déterminer la représentation de l'évènement : "La somme des points est supérieure ou égale à 10 ".

1.1.2 Evènements particuliers

- Tout résultat ω de Ω est un évènement (élémentaire).
- Ω est lévènement certain car il est toujours réalisé.
- \emptyset est l'évènement impossible car il n'est jamais réalisé.

1.1.3 Opérations sur les évènements

Soit A et B deux évènements

- Evènement contraire : \bar{A} :
\bar{A} est réalisé si et seulement si A n'est pas réalisé.
- Evènement $A \cap B$:
$A \cap B$ est réalisé si et seulement si A et B sont réalisés simultanément.
- Evènement $A \cup B$:
$A \cup B$ est réalisé si et seulement si A ou B est réalisé.
- Inclusion :
$A \subset B$ signifie que chaque fois que A est réalisé, B est également réalisé : A implique B.
Exemple 2 On lance deux dés cubiques non discernables.
- Déterminer la représentation de l'évènement A : "La somme des points est inférieure ou égale à 8 ".
- Déterminer la représentation de l'évènement \bar{A}.
- Déterminer la représentation de l'évènement B : "Le minimum de points des deux dé est strictement inférieur à 3
- Déterminer la représentation de l'évènement \bar{B} :
- Déterminer les représentations respectives des évènements $A \cap B$ et $A \cup B$.
- A-t-on $B \subset A$?
- Déterminer un évènement inclus dans A.

1.2 Probabilité d'un évènement

1.2.1 Définitions

Définition 3 Soit Ω l'unvivers d'une expérience \mathcal{E} et soit \mathcal{T} l'ensemble des évènements lié à \mathcal{E}, on appelle probabilité toute application P de \mathcal{T} dans \mathbb{R}_{+} vérifiant :

- $P(\Omega)=1 ;$
- $\forall A, B \in \mathcal{T}$, si $A \cap B=\emptyset$ alors
- $P(A \cup B)=P(A)+P(B)$

Propriétés 1 La probabilité P d'un évènement vérifie les propriétés suivantes:

- $P(\bar{A})=1-P(A)$ et donc $0 \leq P(A) \leq 1$
- $P(\emptyset)=0$

Théorème $1 A$ et B étant deux évènements quelconques, on a :

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

1.2.2 Probabilité conditionnelle

Définition 4 Soit A un évènement donné tel que $P(A) \neq 0$, B étant un évènement quelconque, on appelle probabilité conditionnelle de B sachant que A est réalisé le nombre $P(B / A)$ défini par :

$$
P(B / A)=\frac{P(A \cap B)}{P(A)}
$$

1.2.3 Exemple

Considérons une famille dont nous savons qu'elle a deux enfants.

1. Quelle est la probabilité que les deux enfants soient des garçons sachant que l'âné est un garçon?
2. Quelle est la probabilité que les deux enfants soient des garçons sachant qu'il y a au moins un garçon?

1.3 Utilisation des probabilités conditionnelles

Il est courant de connaître $P(B / A)$. On utilise plutôt la formule des probabilités composées:

$$
P(A \cap B)=P(A) \times P(B / A)
$$

1.3.1 Exemple

Considérons deux urnes U_{1} et U_{2} contenant chacune 2 boules noires et 3 boules blnches. On tire une boule de U_{1}, on note sa couleur et on la met dans l'urne U_{2}. Puis on tire une boule de U_{2}.

Question : Quelle est la probabilité d'obtenir deux fois la boule noire?

1.3.2 Un exemple ... "plus biologique"

Considérons une population dont 1 habitant sur 100 est atteint d'une maladie; on a mis au point un test qui permet de détecter cette maladie avec 8 chances sur 10 de reconnaître un malade (test positif) et 9 chances sur 10 de reconnaître un sujet sain (test négatif).

Question : Quelle est la probabilité pour qu'un sujet ayant un test positif soit malade?

Remarque 1

Cet exemple soulève quelques problèmes :

- Choix des probabilités de réussite au test et de tirer dans la population malade. Comment estimer ces probabilités.
- Dans l'exemple précédent, un sujet qui présente un test positif a environ 75 chances sur 1000 d'être malade mais aussi :

$$
P(S / T)=0.55
$$

Un individu présentant un test positif a beaucoup plus de chance d'être sain que malade!!!

- Importance de la détermination des valeurs des probabilités intervenant dans le calcul

Remarque

D'une manière générale, pour tout évènement M et T la formule de Bayes s'écrit également

$$
P(M / T)=\frac{P(M) \times P(T / M)}{P(M) \times P(T / M)+P(\bar{T}) \times P(T / \bar{T})}
$$

1.3.3 Généralisation

Soit trois évènements quelconques, A, B, C tel que $P(A) \neq 0$ et $P(A \cap B) \neq 0$ alors :

$$
P(A \cap B \cap C)=P(A) \times P(B / A) \times P(C / A \cap B)
$$

1.3.4 Exemple

Considérons une urne U_{1} contenant 3 boules noires et 4 boules blanches. On tire une à une sans remise trois boules de U_{1}.

Question : Quelle est la probabilité que la première boule tirée soit blanche, la seconde blanche et la troisième noire?

1.4 Èvènements indépendants

Définition 5 Deux évènements A et B sont dits indépendants si :

$$
P(A)=P(A / B) \quad \text { ou } \quad P(B)=P(B / A)
$$

La réalisation de l'un quelconque des deux évènements n'influe pas sur la réalisation (ou la non réalisation) de l'autre.

D'où en appliquant le théorème de Bayes :

$$
P(A)=P(A / B)=\frac{P(A \cap B)}{P(B)}
$$

On écrit généralement que deux évènements sont indépendants si et seulement si :

$$
P(A \cap B)=P(A) \times P(B)
$$

Remarque

En général, on utilise cette égalité pour décider de l'indépendance de deux évènements A et B :

$$
P(A \cap B)=P(A) \times P(B / A)=P(A) \times P(B) \Rightarrow P(B / A)=P(B)
$$

Par exemple : deux évènements incompatibles de probabilités non nulles ne sont pas indépendants :

$$
A \cap B=\emptyset \Rightarrow P(A \cap B)=0=P(A) \times P(B / A)
$$

Exemple

On jette simultanément un dé blanc et un dé rouge. Soit A l'évènement 'le n. 1 est sorti sur le dé blanc". Soit B l'évènement "la somme des numéros est égale à 7 ".

- Calculer $P(A)$ et $P(B)$
- Calculer $P(A \cap B), P(A / B)$ et $P(B / A)$.
- A et B sont-ils indépendants?

1.5 Loi des grands nombres

La fréquence relative d'un évènement E dans une suite de n épreuves identiques tend vers la probabilité P de cet évènement lorsque le nombre n d'épreuves augmente indéfiniment :

$$
\lim _{n \rightarrow \infty} P\left(\left|f_{n}-P\right|<\epsilon\right)=1
$$

f_{n} est la fréquence relative d'un évènement E et P sa probabilité.

