Exercise 1

Find an example of a graph having 8 vertices, 12 edges, minimum degree equal to 1 and maximum degree equal to 5 . Is your graph connected?

Exercise 2

Find an example of a disconnected graph having 8 vertices, 12 edges, minimum degree equal to 1 and maximum degree equal to 5 .

Exercise 3

How many 3 -colorings does the following graph have (up to permutation of the colors)?

Exercise 4

Prove that for every graph G, we have $\frac{n}{\alpha} \leq \chi$.

Exercise 5

For a fixed number of vertices n, find the largest number of edges of a disconnected graph G on n vertices.
Is the extremal graph unique? If so, what is its structure?

Exercise 6

Prove Turán's theorem.
Hint. Prove the stronger version (including the characterization of the structure of extremal graphs) by induction on n :
Consider a largest clique in a graph without K_{r}. Observe that it is possible to add edges to your graph until it has a clique of size $r-1$. Remove this maximal clique and apply induction.

Exercise 7

1. Find an example of a graph having 8 vertices, 12 edges, and girth equal to 3 .
2. Find an example of a graph having 8 vertices, 12 edges, and girth equal to 4 .
3. Find an example of a graph having 8 vertices, 12 edges, and girth equal to 5 .
